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ABSTRACT

Drug repurposing is a promising strategy to accelerate therapeutic development,
and provides a viable and effective way to treat diseases, especially rare diseases,
that otherwise do not have established and approved treatment options. As the
magnitude of available biological data continues to increase, computational meth-
ods have become vital for extracting meaningful insights and identifying can-
didates for repurposing. Although large language model (LLM)-driven agen-
tic workflows show potential, their computational cost and latency often make
them impractical. We present a novel, efficient platform that addresses this chal-
lenge by grounding LLM reasoning in a biomedical knowledge graph (PrimeKG).
This uses known relationships between biological entities to deduce relevant drug
repurposing information. Our method first identifies multiple diverse paths be-
tween a given drug-disease pair from a natural language query. A Graph-of-
Thoughts (GoT)-inspired module then constrains the LLM to reason over these
structured paths and synthesize the information into a coherent biological hypoth-
esis. Our platform presents key novelties such as Graph-of-Thoughts-inspired
reasoning and diverse KG path-finding that seek to ground reasoning in biologi-
cal knowledge and mitigate hallucinations. Our evaluation demonstrates that this
constrained approach performs comparably in accuracy to unconstrained agentic
workflows. Our platform achieves this with significantly fewer LLM calls, 55.3%
lower token consumption, and 40.4% less time. This GoT-inspired framework,
grounded on knowledge graph data, presents an efficient and powerful system
for LLM-driven drug repurposing, effectively balancing reasoning with computa-
tional efficiency.

1 INTRODUCTION

The traditional drug discovery process is a complex and costly endeavor, often spanning a decade
or more, with costs reaching billions of dollars (Deore et al., 2019; Shareef et al., 2024). It typically
involves going through several phases, some of which include target selection, safety review, clinical
research and development, and FDA approval (Hughes et al., 2011). Thus, drug repurposing, identi-
fying new uses for existing drugs, is emerging as a promising solution, providing a path forward to
shorter timelines and a reduction in high rates of clinical failure (Cha et al., 2018). Drug repurposing
utilizes existing drugs with established clinical efficacy and safety profiles, allowing drug candidates
to bypass initial drug development research and safety evaluation phases (Pushpakom et al., 2019;
Saranraj & Kiran, 2025), thereby saving time and reducing costs. Furthermore, the use of drugs
with established clinical efficacy and safety profiles mitigates risks and reduces failures typically
associated with traditional drug discovery (Parvathaneni et al., 2019). By reducing costs, time, and
clinical failures, drug repurposing holds the promise for great societal impact as it leads to faster,
more cost-effective treatments for diseases. Furthermore, it provides a path forward for treating
rare diseases that otherwise do not have established and approved treatment options (Roessler et al.,
2021; Jonker et al., 2024).

There are generally four phases involved in repurposing an existing drug for a new indication. First,
the drug repurposing candidate must be identified based on initial research on pathways, mechanisms
of action, safety, and efficacy, among other factors (Kulkarni et al., 2023). This phase can take
around 1-2 years. Then, the proper license for the drug must be obtained, which can take 0-2 years.
The drug development phase can then begin, which involves preclinical and clinical research to
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evaluate the drug for treatment. This phase may span anywhere from 1 to 6 years. Finally, when
the drug is publicly available, post-market safety surveys are carried out to monitor drug safety
(Xue et al., 2018). This process significantly speeds up the process of developing therapeutics and
provides expanded options for conditions that lack or have limited treatments.

Information from biomedical databases, existing clinical trials, reports of off-label uses, and other
published data are often used to identify and select drug candidates. However, as the volume of
biomedical data has grown exponentially, computational approaches have become essential for un-
derstanding and reasoning through this data (Park, 2019; Jarallah et al., 2025). Central to these
computational methods is the use of Knowledge Graphs (KGs), large-scale graph networks that
structure information by representing entities like drugs, proteins, and diseases as nodes, and their re-
lationships as edges (Perdomo-Quinteiro & Belmonte-Hernández, 2024). One such KG is PrimeKG
(Chandak et al., 2023), an expansive KG that integrates several data sources to map relationships
between biological entities. The graph structure is ideal for uncovering hidden connections, forming
the basis for identifying potential repurposing candidates.

1.1 BUILDING BLOCKS

Although such data is readily available, interpreting it requires sophisticated reasoning. This makes
Large Language Models (LLMs) a valuable tool. In addition to text generation capabilities, LLMs
can be used as powerful reasoning engines (Sahoo et al., 2025). LLM reasoning frameworks lever-
age prompting techniques to guide models through multi-step problem-solving processes (Fagbohun
et al., 2024), enabling them to analyze evidence, follow logical sequences, and synthesize informa-
tion to form complex conclusions.

The foundational step in the evolution of prompting techniques was Chain-of-Thought (Wei et al.,
2022), which improves upon existing LLM reasoning capabilities by instructing them to break down
their thought process into smaller steps. This allows the LLM to sequentially reason through smaller
tasks that lead to the overall answer, simulating a thought process similar to that of a human.

While powerful, a single reasoning chain can be prone to errors. To address this, the concept was
extended to Multiple CoTs, or Chain of Thought with Self-Consistency (CoT-SC) (Wang et al., 2022),
which builds upon CoT by generating multiple reasoning chains and selecting the most consistent
answer among them, further solidifying the reasoning process.

The CoT and CoT-SC prompting techniques still largely follow linear reasoning paths. However,
a more advanced approach, Tree of Thoughts (ToT) (Yao et al., 2023a), introduced a more flexible
structure. This prompting technique enables an LLM to explore multiple reasoning paths like a
decision tree, allowing it to consider several thought chains in parallel, evaluate intermediate steps,
and backtrack from mistakes. This process builds upon previous prompting techniques to provide
more robust solutions.

The Graph-of-Thoughts (GoT) (Yao et al., 2023b) framework represents a significant evolution in
prompting techniques. Moving beyond the linear nature of CoT, GoT formalizes the reasoning
process itself as a graph. With GoT, individual reasoning steps or ideas are nodes, and the LLM
can generate, evaluate, and aggregate these thoughts in a flexible, non-linear structure. This allows
for the exploration of multiple reasoning paths, the aggregation of convergent lines of evidence,
and the removal of unpromising ones. While GoT has shown promise in general problem-solving
and creative tasks, its application in specialized scientific domains like biomedicine remains largely
unexplored.

The most advanced applications of these reasoning capabilities are found in complex agentic LLM
workflows (Derouiche et al., 2025; Hosseini & Seilani, 2025; Sapkota et al., 2025; Acharya et al.,
2025). These systems can autonomously interact with tools, search databases, and synthesize find-
ings, effectively following a similar process to that of a human researcher. While powerful, their
unconstrained, iterative nature leads to a high volume of API calls and extensive token consumption,
making them prohibitively slow and expensive for the kind of high-throughput screening required
to systematically evaluate thousands of drug-disease pairs.

To address this gap, we propose a novel platform that combines the structured knowledge of a
biomedical KG with the analytical power of a GoT-inspired reasoning framework. Our core thesis
is that by constraining the LLM to generate thoughts along diverse biological paths, found in a
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Figure 1: Architecture Overview. Given a drug repurposing question with a drug and disease, the
drug and disease entities are extracted from the natural language question to add context. An LLM
is then prompted to create a Cypher query for path finding. The query is executed and all returned
paths are converted to natural language as context for the LLM to be used in the Graph-of-Thoughts
reasoning process.

biomedical knowledge graph, our platform generates high-quality repurposing hypotheses that are
comparable to those from resource-intensive agentic workflows, but with a lower computational
cost.

In this paper, we present a novel application of a Graph-of-Thoughts-inspired framework to drug
repurposing, grounding LLM reasoning in a real-world biomedical knowledge graph. We provide a
quantitative and qualitative analysis, demonstrating that our method achieves comparable results to
a baseline agentic workflow with significantly greater computational efficiency.

2 METHODS

2.1 SYSTEM ARCHITECTURE OVERVIEW

Our drug repurposing platform is designed as a multi-stage pipeline that integrates natural language
processing (NLP), knowledge graph traversal, and advanced LLM-based reasoning. It was designed
with the purpose of transforming a simple, natural language question into a well-supported hypoth-
esis. The entire workflow is implemented within a Jupyter Notebook environment, orchestrating
the interactions between the NLP model, the graph database, and the reasoning module. The pro-
cess can be broken down into three key stages, as shown in Figure 1: Input Processing, Knowledge
Graph Pathfinding, and GoT Reasoning. Several prompts and the natural language conversion struc-
ture throughout the workflow were adapted from K-paths (Abdullahi et al., 2025), a framework that
extracts paths from dense biomedical KGs for drug repurposing and interaction tasks.

2.2 INPUT PROCESSING AND ENTITY RECOGNITION

The workflow begins with the user’s query (e.g., "Can Aldesleukin be repurposed to treat neu-
roblastoma?"). To add context to this query, we use a specialized biomedical NLP model,
en_ner_bc5cdr_md, from scispaCy (Neumann et al., 2019) for named entity recognition (NER).
To enhance the model’s accuracy and ensure it correctly identifies the specific entities present in our
knowledge graph, we augment its capabilities using an Entity Ruler. This component is pre-loaded
with lists of all drug and disease names, extracted directly from PrimeKG. This step ensures that
when the user’s question is processed, the specific drug and disease entities are accurately identified
and tagged as a drug, protein, or disease, converting the unstructured text into a contextualized input
for the next stage.

2.3 KNOWLEDGE GRAPH PATHFINDING IN PRIMEKG

With the drug and disease entities identified, the system queries the PrimeKG database to find po-
tential mechanisms of action.
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2.3.1 DATA SOURCE

The foundation of our pathfinding module is PrimeKG, a comprehensive biomedical knowledge
graph comprising 129,375 nodes and over 4 million relationships. We selected PrimeKG for its
extensive coverage of diverse biological entities and its integration of multiple data sources. Fur-
thermore, PrimeKG was built to be extensible and easily updated from literature. This allows it to
be constantly updated as new research becomes available, making it an ideal knowledge base for our
platform. The graph’s nodes encompass a wide range of types, including molecular entities (e.g.,
gene/protein, drug), clinical concepts (e.g., disease, effect/phenotype), and biological contexts (e.g.,
biological_process, pathway). The relationships between these nodes are similarly diverse, captur-
ing interactions from the molecular level (e.g., protein_protein, drug_protein) to the clinical (e.g.,
indication, contraindication). To store and query this large-scale graph, we utilized Neo4j AuraDB,
a managed graph database optimized for complex traversal and pathfinding operations (Guia et al.,
2017).

2.3.2 PATH DIVERSITY

A core objective of our methodology was to find multiple mechanistically diverse pathways be-
tween a drug and a disease, rather than only identifying the shortest paths. Discovering varied paths
is crucial, as it can reveal different potential mechanisms of action, suggest pharmacological ef-
fects, or provide convergent evidence that strengthens a repurposing hypothesis. To achieve this,
we implemented a multi-step Cypher query strategy that leverages Neo4j’s apoc.path.expandConfig
procedure with a Depth First Search (DFS) algorithm in order to find paths of varying lengths in
a memory-efficient manner. The process is designed to efficiently find meaningful paths by first
identifying the direct neighbors of the target disease node and then searching for paths from the
source drug node to this collection of neighbors. A key innovation in our approach is the dynamic
generation of the database query. An LLM (Gemini 2.5 Flash) is prompted to construct a Cypher
query specifically designed to find multiple, diverse paths between the drug and disease nodes in
PrimeKG. This approach is more flexible than using static queries and is tailored to prioritize varied
and mechanistically interesting connections.

The path expansion was carefully constrained using several key parameters within the procedure:

Path Length: We specified a minimum and maximum number of hops for the expansion from the
drug to the disease’s neighbors. This ensures the resulting paths are long enough to be mechanisti-
cally interesting while avoiding overly convoluted connections.

Uniqueness: The uniqueness constraint was set to NODE_GLOBAL, which ensures that no node is
traversed more than once within any given path. This is critical for preventing cyclical or redundant
paths and ensuring each result represents a unique sequence of biological events.

Relationship Filtering: To focus the search on the most biologically relevant interactions, a curated
set of relationship types was selected. This selection prioritizes core pharmacological and physio-
logical connections, such as drug-protein interactions, disease-protein interactions, drug effects, and
others. The selection was made by the LLM generating the Cypher query.

This tailored approach allows us to efficiently extract a set of diverse and high-quality paths to be
analyzed in the reasoning module without overwhelming the amount of context available. Providing
this information allows for reasoning over known facts directly from the KG, which helps mitigate
hallucinations and promote mechanistic, rigorous reasoning. The following shows an example of a
Cypher query incorporating this logic.

// Step 1: Find start , end , and the end node’s neighbors
CALL db.index.fulltext.queryNodes(’drugNames ’, ’Aldesleukin~’) YIELD node

AS drugNode LIMIT 1
CALL db.index.fulltext.queryNodes(’diseaseNames ’, ’Neuroblastoma~’) YIELD

node AS diseaseNode LIMIT 1

MATCH (neighbor) -[]->( diseaseNode)
WITH drugNode , diseaseNode , COLLECT(neighbor) AS neighbors

4
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// Step 2: Run path expansion to the neighbors
CALL apoc.path.expandConfig(drugNode , {

minLevel: 4,
maxLevel: 6,
uniqueness: ’NODE_GLOBAL ’,
terminatorNodes: neighbors ,
filterStartNode: false ,
relationshipFilter: ’drug_protein >| protein_protein >| disease_protein >|
drug_effect >| phenotype_protein >’

}) YIELD path

// Step 3: Match the final step and return a map representing the path
WITH path , diseaseNode
MATCH (lastNodeInPath)-[lastRel]->(diseaseNode) WHERE lastNodeInPath =

nodes(path)[-1]
RETURN {nodes: nodes(path) + diseaseNode , relationships: relationships(

path) + lastRel} AS p
LIMIT 30

Figure 2: GoT Reasoning Overview. The Generator node serves as the entry point for reasoning by
generating an initial answer. The answer is then evaluated and if needed, iteratively refined until the
score meets the threshold or reaches the revisions threshold. The strengths of each answer is then
aggregated into a cohesive final answer and returned to the user.

2.4 THE GRAPH-OF-THOUGHTS (GOT) REASONING MODULE

To systematically evaluate the biological plausibility of the pathways identified from PrimeKG, we
developed a reasoning module inspired by the Graph-of-Thoughts (GoT) framework (Besta et al.,
2024). GoT structures LLM reasoning as a graph, allowing for the generation, evaluation, and syn-
thesis of multiple intermediate "thoughts" in a non-linear fashion. Our implementation formalizes
this process into a directed state graph to analyze each KG path, ensuring that the final output is a
well-reasoned and well-supported mechanistic hypothesis. The workflow was constructed using the
LangGraph library and consists of four primary nodes: Generation, Evaluation, Aggregation, and
Answer, as shown in Figure 2.

The process begins at the Generation node, which serves as the entry point for the reasoning work-
flow. This node’s function is to produce an initial hypothesis, or "thought," that explains the mech-
anistic connection between the drug and the disease. For context, the LLM receives all KG paths,
translated from its graph structure into a natural language description. Given this context, the LLM
is prompted to generate a preliminary answer explaining how the drug could treat the disease. It is
also asked to explain its reasoning, provide the exact KG triples it used in its answer, and a simple
“yes” or “no” for evaluating accuracy.

Once an initial hypothesis is generated, it is passed to the Evaluation node for assessment. This node
employs a separate LLM-based evaluator to score the hypothesis against two key criteria, ensuring
both factual accuracy and informational value:

Grounding Score (0-10): This metric assesses how well the generated text adheres to the information
provided in the KG path context. A high score indicates that the reasoning is directly supported by
the provided data, minimizing the potential for model hallucination.
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Redundancy Score (0-10): This metric evaluates the novelty and conciseness of the information
presented. It penalizes responses that are overly repetitive or fail to synthesize the path information
into a coherent insight.

These two scores are averaged to produce a final quality score. This evaluation step is critical, acting
as a filter to ensure only high-quality, data-supported thoughts proceed. If a hypothesis achieves a
final score of 9.0 or higher, it is considered validated and is passed to the Aggregation node. Other-
wise, If the score is below 9.0, the hypothesis is routed back to the Generation node for improvement.
This creates an iterative refinement loop where the model is explicitly guided on how to improve its
reasoning. To ensure computational efficiency and prevent infinite loops, this refinement process is
limited to a maximum of three iterations. If a satisfactory score is not achieved after three attempts,
the last generated hypothesis is carried forward.

All validated hypotheses from the refinement loop are collected at the Aggregation node. At this
node, a final LLM call synthesizes the key insights from each of the previous responses into a final,
robust hypothesis. This step ensures that the strengths of each previous response are combined.
Finally, the workflow terminates at the Answer node, which formats and returns this aggregated
explanation as the final output for the drug-disease query.

Algorithm 1 Workflow Process

Require: drug, disease
1: Set question, formatted as "Can {drug} be repurposed to treat {disease}?"
2: relationships← [List of all relationship types]
3: nodes← [List of all node types]
4: Set LLM prompt to generate Cypher query
5: Use Gemini-2.5 Flash to generate Cypher query
6: Run the query and get triples formatted in a DataFrame
7: Convert triples to natural language
8: if Paths were found in the KG then:
9: final_answer ← Run Graph-of-Thought reasoning on the paths

10: else
11: final_answer ← "Answer: Searched knowledge graph for up to 6 hops and no paths
12: were found between {drug} and {disease}. Cannot determine drug repurposing value"
13: end if
14: return final_answer

This process is advantageous because it allows the LLM to revise its work, as opposed to a zero-shot
setting where the first answer produced is final. This results in a more cohesive and robust final
answer.

2.5 BASELINE AGENTIC WORKFLOW FOR COMPARISON

To contextualize the performance of our constrained reasoning pipeline, we established a baseline
using Biomni (Huang et al., 2025), a state-of-the-art, multi-purpose biomedical AI agent. Biomni
represents a fundamentally different approach to hypothesis generation, operating within a vast, uni-
fied agentic environment that integrates over 150 specialized tools, 59 databases, and 105 software
packages. This architecture allows it to autonomously select and execute a wide range of actions to
answer complex biomedical queries.

For the comparison, we posed the exact same set of natural language questions to Biomni that were
used to evaluate our system (structured as, "Can Drug X be repurposed to treat Disease Y?"). Unlike
our pipeline, which is constrained to a specific knowledge graph, Biomni was free to leverage all
accessible tools. Observational analysis of its workflow revealed that its primary strategy involved
deploying literature search tools to query biomedical publications. It also utilized predictive models,
such as the TxGNN graph neural network, and performed computational simulations, including
docking studies, to formulate its conclusions. By benchmarking against Biomni, we can directly
compare our focused, knowledge graph-driven methodology with a powerful, unconstrained agentic
system. This comparison allows us to evaluate the trade-offs between computational efficiency,
reasoning transparency, and predictive accuracy inherent in each approach.
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Table 1: GoT(ours) and Biomni Accuracy Metrics

System Dataset Precision Recall F1-Score
Biomni PharmaDB 0.66 0.86 0.75

GoT(ours) PharmaDB 0.54 0.89 0.67
Biomni Custom Dataset 0.64 0.97 0.77

GoT(ours) Custom Dataset 0.75 0.89 0.81

Table 2: Time and Token Consumption Metrics

System Mean Time per Query (seconds) ↓ Mean Token Usage ↓
Biomni 114 121636

GoT(ours) 68 17280

3 RESULTS

3.1 QUANTITATIVE EVALUATION AND BENCHMARK COMPARISON

To assess the performance of our drug repurposing pipeline, we constructed a custom evaluation
dataset comprising 93 unique drug-disease pairs. This dataset was carefully curated to include a
balanced mix of positive cases (drugs known to be effective for the given disease) and negative
cases (drugs not indicated for the disease), providing a robust dataset for evaluating predictive ac-
curacy. Each pair was formatted into a natural language question ("Can drug be repurposed to treat
disease?") and processed through the system. For 11 of the 93 pairs, the system could not find
any connecting paths within PrimeKG. In these cases, the system cannot make a prediction due
to knowledge graph sparsity, and were therefore omitted from the quantitative analysis, leaving 82
pairs for the final evaluation.

To further assess the robustness and generalizability of our system, we conducted a secondary eval-
uation on a subset of the PharmaDB dataset, previously utilized in the K-Paths study. This dataset
contains 92 drug-disease pairs characterized by a more concentrated focus on a smaller set of dis-
eases, with multiple candidate drugs evaluated against the same few indications.

The performance of our GoT-based pipeline on the 82-pair dataset and PharmaDB is summarized in
the table below.

The quantitative evaluation highlights the distinct advantages of our constrained, GoT-based
methodology. As shown in Table 1, our custom-built, generalized dataset, our system achieved a
higher precision than Biomni (0.75 vs. 0.64). This indicates that when our pipeline proposes a
repurposing candidate, it is more likely to be a true positive, underscoring the reliability of its KG-
grounded reasoning. Although Biomni achieved a higher recall (0.97 vs. 0.89), suggesting it is more
exhaustive in identifying potential candidates, this comes at the cost of a higher false positive rate.
This trade-off is particularly compelling given our system’s architectural simplicity, which achieves
this output with significantly greater computational efficiency.

The secondary evaluation on the more narrowly focused PharmaDB dataset further illuminates these
characteristics. On this dataset, our system’s precision was lower than Biomni’s (0.54 vs 0.66),
though its recall was higher (0.89 vs 0.86). Crucially, as shown in Table 2, these comparable results
were achieved with 55.3% lower token consumption and 40.4% less time.

We attribute the shift in precision on the PharmaDB dataset to its concentrated nature, with many
drugs being tested against the same few diseases. When the underlying knowledge graph contains
sparse information for a specific, recurring disease, our system’s ability to generate unique and valid
reasoning paths for multiple different drug candidates is constrained. This dependency on the KG’s
richness is a core feature of our design.

Taken together, these results are highly instructive. The strong performance on our generalized
dataset demonstrates the system’s effectiveness across a wide spectrum of repurposing questions.
The results from the PharmaDB benchmark, in turn, reveal that while performance can be context-
dependent, the system maintains a comparable level of efficacy to a much larger agentic framework
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Table 3: Comparison of GoT and Biomni for question: Can Dactinomycin be repurposed to treat
peripheral nervous system neoplasms?

GoT(ours) Biomni

Query
Can Dactinomycin be repurposed to
treat peripheral nervous system neo-
plasms?

Can Dactinomycin be repurposed to
treat peripheral nervous system neo-
plasms?

System Answer
Dactinomycin can be repurposed to
treat peripheral nervous system neo-
plasms.

Dactinomycin is not a promising
candidate for repurposing to treat pe-
ripheral nervous system neoplasms.

Reasoning

Dactinomycin has been shown to in-
teract with ABCB1, a key trans-
porter protein involved in drug ef-
flux, which can significantly influ-
ence the pharmacokinetics of var-
ious drugs, including chemothera-
peutics. The interaction of Dacti-
nomycin with ABCB1 suggests that
it may modulate the transport and
bioavailability of other molecules in-
volved in the pathogenesis of periph-
eral nervous system neoplasms. The
downstream connections to UBC
and proteins such as SUZ12, NF1,
CDKN2A, and PNPLA6 indicate
pathways that could be influenced by
Dactinomycin, as these proteins are
implicated in tumorigenesis and cel-
lular regulation within the peripheral
nervous system.

Dactinomycin functions as a non-
specific cytotoxic agent by binding
to DNA and inhibiting RNA synthe-
sis. This is a general mechanism ef-
fective against many rapidly prolif-
erating cells. However, peripheral
nervous system neoplasms, such as
malignant peripheral nerve sheath tu-
mors (MPNSTs), are known to be
driven by specific molecular alter-
ations, primarily in the Ras/MAPK
and PI3K/Akt/mTOR signaling path-
ways. Dactinomycin does not specif-
ically target these pathways, mak-
ing it a less-than-ideal candidate
compared to modern targeted ther-
apies.The TxGNN model, a power-
ful tool for predicting drug repur-
posing opportunities, did not iden-
tify Dactinomycin as a top can-
didate for treating malignant pe-
ripheral nerve sheath tumors.While
Dactinomycin is approved for other
sarcomas (e.g., Ewing sarcoma,
rhabdomyosarcoma), its efficacy is
context-dependent.

Correct Answer
Dactinomycin can be repurposed to
treat peripheral nervous system neo-
plasms.

Dactinomycin can be repurposed to
treat peripheral nervous system neo-
plasms.

with significantly better efficiency. This underscores the power of our structured methodology to
deliver reliable and well-grounded scientific hypotheses.

3.2 QUALITATIVE ANALYSIS

3.2.1 CASE STUDY: REPURPOSING OF DACTINOMYCIN FOR THE REPURPOSING OF
PERIPHERAL NERVOUS SYSTEM NEOPLASMS

In order to validate our results, we present a comparison, shown in Table 3, of an answer and rea-
soning provided by our GoT system and Biomni for the repurposing of Dactinomycin for peripheral
nervous system neoplasms.

As shown in the table, the two systems used different information to come to their final conclu-
sions. Biomni did not identify connections between Dactinomycin and proteins such as SUZ12,
NF1, CDKN2A, and PNPLA6. However, SUZ12 and NF1 proteins are frequently inactivated MP-
NSTs, accelerating tumor growth (Rad & Tee, 2016). Thus, it is important to consider this drug for
repurposing, which our system correctly identifies. This information is grounded in the paths found
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in PrimeKG and allows for more rigorous reasoning over information that may not be commonly
highlighted in literature.

Dactinomycin has been studied for the treatment of MPNSTs in combination with other chemother-
apy drugs (Martin et al., 2020). Although the improvement in survival benefits were marginal, it
is still important to consider the drug for repurposing rather than rule it out immediately due to its
interactions with highly relevant proteins involved in cell proliferation for MPNSTs.

4 DISCUSSION

4.1 THE POWER OF CONSTRAINED REASONING

The strong performance of our pipeline, particularly its high precision compared to a more complex
agentic system, demonstrates the significant advantages of a constrained reasoning framework for
scientific hypothesis generation. Our methodology is designed to limit the LLM’s operational scope,
yielding substantial benefits in terms of reliability, verifiability, and efficiency.

A major advantage of this approach is the mitigation of LLM hallucination. By providing the rea-
soning module exclusively with data in the form of KG paths, we anchor the reasoning process in a
factual, structured knowledge base. This is critical in a biomedical context, where the accuracy of
underlying data is vital (Pan et al., 2023). To enforce this, we prompt the LLM to cite the KG triples
used to justify its conclusions. This allows researchers to easily verify the evidence supporting any
generated hypothesis and ensures that the system’s outputs are both transparent and trustworthy.

Furthermore, this constrained approach significantly enhances computational efficiency. By provid-
ing the LLM with a curated set of relevant facts, we drastically reduce its search space. Thus, the
model’s resources are entirely focused on synthesizing the data. This approach avoids the computa-
tional cost of exploratory steps common in unconstrained agentic workflows, leading to faster and
more resource-efficient hypothesis generation.

Finally, the Graph-of-Thoughts (GoT) inspired reasoning framework is instrumental in elevating the
quality of the final output. In a zero-shot or one-shot setting, an LLM generates a response in a
single pass, with no opportunity for refinement. Our iterative process of generation, self-evaluation,
and aggregation requires the model to critically assess its own reasoning. This allows it to identify
and fix logical gaps to progressively build a more robust argument over multiple cycles. This results
in a refined and cohesive answer that is more likely to represent a biologically plausible mechanism.

5 CONCLUSION

In this work, we presented a novel drug repurposing platform that effectively addresses the chal-
lenge of analyzing vast biomedical data. We demonstrate that a constrained, knowledge-graph-
grounded reasoning framework can efficiently generate high-quality, verifiable drug repurposing
hypotheses. By first identifying diverse mechanistic paths in PrimeKG and then constraining a
Graph-of-Thoughts (GoT)-inspired LLM module to reason exclusively over this evidence, we suc-
cessfully produced hypotheses with sound, auditable analytical reasoning.

Our evaluation revealed that this structured approach achieves accuracy comparable to a sophisti-
cated, unconstrained biomedical agent while significantly reducing computational overhead. The
results demonstrate the power of grounding LLM reasoning in structured knowledge, which not
only mitigates hallucinations but also focuses computational resources on synthesizing complex in-
formation. This work serves as a proof-of-concept for a new paradigm in computational scientific
discovery: one that strategically combines the pattern-recognition capabilities of LLMs with the
factual rigor of knowledge graphs. Such structured reasoning frameworks hold great potential to
accelerate discovery not only in drug repurposing but across other scientific domains where data is
abundant but requires computational methods for reasoning. Future work could address limitations
such as being constrained to only KG information by exploring hybrid models. For example, a
"human-in-the-loop" system could allow researchers to manually add or suggest alternative reason-
ing paths.
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A APPENDIX

A.1 CASE STUDY: VALIDATING A KNOWN REPURPOSING OF ALDESLEUKIN FOR
NEUROBLASTOMA

To validate our platform’s ability to identify and reason through biologically relevant mechanisms,
we tested it on the use of Aldesleukin for neuroblastoma treatment. Aldesleukin is indicated for the
treatment of metastatic renal cell carcinoma and metastatic melanoma. However, it has also been
studied for neuroblastoma and has been approved to be used in a multi-drug regimen as part of the
first-line therapy for pediatric high-risk neuroblastoma.

Query: Can Aldesleukin be repurposed to treat neuroblastoma?

Knowledge Graph Pathfinding Results: The system identified 30 distinct paths in PrimeKG connect-
ing Aldesleukin to neuroblastoma. The top three paths, representing diverse potential connections,
were:

Path 1: Aldesleukin binds to IL2RA. IL2RA interacts with GATA3. Neuroblastoma is associated
with GATA3.

Path 2: Aldesleukin is metabolized or inhibited by PLA2G4A. PLA2G4A interacts with CTNNB1.
Neuroblastoma is associated with CTNNB1.

Path 5: Aldesleukin is metabolized or inhibited by PLA2G4A. PLA2G4A interacts with UBC. UBC
interacts with MYC. Neuroblastoma is associated with MYC.

A.1.1 GOT REASONING MODULE OUTPUT

Final Answer: Aldesleukin, also known as interleukin-2 (IL-2), has potential pathways that sup-
port its repurposing for neuroblastoma treatment based on its interactions within the knowledge
graph. Aldesleukin binds to IL2RA (Interleukin-2 receptor alpha), which subsequently interacts
with GATA3, a transcription factor involved in T cell differentiation and implicated in neurob-
lastoma. Additionally, Aldesleukin is metabolized or inhibited by PLA2G4A (phospholipase A2
group IVA), which interacts with key proteins associated with neuroblastoma, including CTNNB1
(beta-catenin), TP53 (tumor protein p53), and MYC (an oncogene). These interactions suggest that
Aldesleukin’s effects could modulate pathways relevant to neuroblastoma progression and survival,
providing a basis for further investigation into its efficacy against this disease.

Reasoning: The reasoning is grounded in the interactions of Aldesleukin with IL2RA and
PLA2G4A, which are linked to key oncogenic pathways and transcription factors associated with
neuroblastoma. The binding of Aldesleukin to IL2RA activates GATA3, which is relevant to neurob-
lastoma biology, while the metabolic interactions with PLA2G4A influence proteins that are critical
in neuroblastoma progression.

KG Triples Used:

- (’Aldesleukin’, ’binds to’, ’IL2RA’)
- (’IL2RA’, ’interacts with’, ’GATA3’)
- (’neuroblastoma’, ’is associated with’, ’GATA3’)
- (’Aldesleukin’, ’is metabolized or inhibited by’, ’PLA2G4A’)
- (’PLA2G4A’, ’interacts with’, ’CTNNB1’)
- (’neuroblastoma’, ’is associated with’, ’CTNNB1’)
- (’Aldesleukin’, ’is metabolized or inhibited by’, ’PLA2G4A’)
- (’PLA2G4A’, ’interacts with’, ’TP53’)
- (’neuroblastoma’, ’is associated with’, ’TP53’)
- (’Aldesleukin’, ’is metabolized or inhibited by’, ’PLA2G4A’)
- (’PLA2G4A’, ’interacts with’, ’MYC’)
- (’neuroblastoma’, ’is associated with’, ’MYC’)
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A.1.2 BIOMNI ANSWER

Aldesleukin, a recombinant form of interleukin-2 (IL-2), exerts its anti-tumor effects by stimulating
the proliferation and activity of T-lymphocytes and Natural Killer (NK) cells. This general mech-
anism of enhancing the immune system’s ability to recognize and eliminate cancer cells provides
a broad rationale for its use in various cancers. Neuroblastoma is a pediatric cancer with several
known molecular drivers, including MYCN amplification. While the tumor has its own specific
genetic landscape, the principle of immune surveillance and the potential for an immune-mediated
attack remains a valid therapeutic strategy. Clinical trials conducted in the early 1990s investigated
the use of Aldesleukin in children with recurrent or refractory neuroblastoma. These studies demon-
strated that while Aldesleukin had a manageable safety profile, its efficacy as a single agent was
limited, with only a small percentage of patients showing a partial response. Despite the modest
results of these early trials, the fundamental mechanism of action of Aldesleukin remains relevant.
The limited success could be attributed to various factors, including the specific patient population
(recurrent/refractory disease), the dosing regimen, or the immunosuppressive tumor microenviron-
ment of neuroblastoma. Modern immunotherapy approaches often involve combination therapies,
where an agent like Aldesleukin could be used to augment the effects of other treatments like check-
point inhibitors or CAR-T cell therapy. Therefore, there is a plausible, albeit not overwhelmingly
strong, rationale for its repurposing, likely as part of a combination regimen.

A.1.3 ANALYSIS OF RESPONSES

These results demonstrate the differences between our knowledge-graph grounded reasoning module
and Biomni, a multi-purpose biomedical agent. The main differences in these answers are due to
the underlying knowledge available. Biomni’s tools were able to access to specific mechanistic
information on Aldesleukin and clinical trial data, as well as relevant information on neuroblastoma.
Our GoT-based module had access to the 30 KG paths that were found and successfully reasoned
over the connections between the drug, genes/proteins, and the disease in a fraction of the time and
compuational cost. While the provided hypothesis does not take into account the drug’s safety and
efficacy profiles, it provides a solid starting point for identifying drug repurposing candidates to be
evaluated.

A.2 LLM USE

Gemini 2.5 Pro was used to polish sections throughout this paper. It was used to clarify details that
were unclear, strengthen language, formatting, and to connect disjoint ideas to improve cohesive-
ness.
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