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Abstract

Relational reasoning is a central component of
generally intelligent systems, enabling robust and
data-efficient inductive generalization. Recent
empirical evidence shows that many existing neu-
ral architectures, including Transformers, struggle
with tasks requiring relational reasoning. In this
work, we distinguish between two types of infor-
mation: sensory information about the properties
of individual objects, and relational information
about the relationships between objects. While
neural attention provides a powerful mechanism
for controlling the flow of sensory information be-
tween objects, the Transformer lacks an explicit
computational mechanism for routing and pro-
cessing relational information. To address this
limitation, we propose an architectural extension
of the Transformer framework that we call the
Dual Attention Transformer (DAT), featuring two
distinct attention mechanisms: sensory attention
for directing the flow of sensory information, and
a novel relational attention mechanism for direct-
ing the flow of relational information. We em-
pirically evaluate DAT on a diverse set of tasks
ranging from synthetic relational benchmarks to
complex real-world tasks such as language mod-
eling and visual processing. Our results demon-
strate that integrating explicit relational compu-
tational mechanisms into the Transformer archi-
tecture leads to significant performance gains in
terms of data efficiency and parameter efficiency.
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1. Introduction
A central goal of machine learning research is to develop
a universal architecture capable of learning and reasoning
across a wide range of tasks and data modalities. Theo-
retical frameworks for understanding human and animal
intelligence seek to explain intelligent behavior through a
small set of fundamental principles [1]. However, in ma-
chine intelligence, there is a tension between the objective
of developing a general architecture and the need to incorpo-
rate inductive biases that are beneficial for specific tasks [2,
3]. When faced with finite training data and numerous
solutions to empirical risk minimization, inductive biases
steer the learning algorithm towards solutions with desirable
properties, enhancing data efficiency and generalization. A
core scientific challenge of machine learning is to identify a
complete and broadly applicable set of inductive biases that
promote robust, flexible, and data-efficient learning across a
diverse set of problems.

Relational reasoning is a central component of generally
intelligent systems and is believed to underlie human abili-
ties for abstraction and systematic generalization [4–7]. The
power of relational reasoning lies in its capacity to generate
inferences and generalizations in systematic and novel ways,
even across instances which are superficially very different
but have similarities on an abstract structural level. This
grants humans a capacity for out-of-distribution generaliza-
tion, data efficiency, and continual learning, which modern
machine learning is yet to match [8–10]. Replicating this
ability in machine intelligence can ultimately lead to univer-
sal inductive generalization from a finite set of observations
to an infinite set of novel instances [11].

The ability of artificial intelligence systems to perform rela-
tional reasoning has long been an area of active study across
various approaches to AI. In symbolic modeling frame-
works, the relationships between symbols are explicitly de-
fined in the language of logic and mathematics [12–14].
However, such approaches often require hand-crafted repre-
sentations and suffer from the symbol grounding problem,
limiting their ability to generalize to variations in the task or
input outside a certain domain. By contrast, deep learning
approaches build data-dependent representations that are, in
principle, capable of generalizing across diverse conditions.
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However, recent work exploring the ability of deep learning
models to learn relational tasks finds that seemingly simple
relational inferences can be remarkably difficult for pow-
erful neural network architectures [15–23]. An emerging
hypothesis, which we explore further here, explains this
through the lens of inductive biases, arguing that neural
networks struggle with relational reasoning because they
overemphasize individual object representations—sensory
information—while lacking explicit mechanisms for encod-
ing and processing relational information [24].

In this work, we explore this idea in the context of the
Transformer architecture [25], which offers a promising
starting point for building a versatile, general-purpose neu-
ral architecture. Although Transformers, like other neu-
ral architectures, struggle to learn abstract relational rep-
resentations [19–23], there is encouraging evidence that
Transformer-based foundation models acquire some rela-
tional reasoning ability [26–32] through large-scale training
on large amounts of data [33–36]. This presents an op-
portunity to explore Transformer-based architectures with
built-in neural mechanisms and inductive biases for explicit
and enhanced relational reasoning capabilities, seeking to
imbue the Transformer architecture with a greater capacity
for efficient induction of abstractions.

To introduce our proposal, we highlight a distinction be-
tween two types of information which are encoded in the
internal representation of Transformer models: sensory in-
formation, which represents features of individual objects,
and relational information, representing comparisons and
relationships between objects. In the standard attention
mechanism of Transformers, relational information is entan-
gled with sensory information, limiting the model’s ability
to learn to explicitly represent and reason about the relation-
ships between objects. In particular, in standard attention,
relational information directs the flow of information (i.e.,
attention scores encoding a selection criterion), while the
values routed are representations of the sensory attributes of
individual objects. In this work, we explore a new type of
attention mechanism we call relational attention, in which
the values being routed are themselves representations of
relationships between the source and the target, computed
explicitly as a series of comparisons under learned feature
maps. This equips the model with a mechanism for explic-
itly routing and processing relational information, decou-
pling it from sensory features.

We integrate relational attention with the standard attention
mechanism of Transformers, yielding a variant of multi-
head attention that processes both sensory and relational
information in parallel. The resulting Dual Attention Trans-
former (DAT) architecture disentangles the two types of
information during the information retrieval stage and inte-
grates them during the local processing stage of each layer.

We empirically evaluate this architecture on a diverse set of
tasks, ranging from synthetic benchmarks on relational rea-
soning to complex real-world tasks such as language mod-
eling and visual processing. Our results demonstrate that
integrating explicit relational mechanisms into the Trans-
former architecture leads to significant performance gains
in terms of data efficiency and parameter efficiency.

2. Disentangling Attention over Sensory and
Relational Information

2.1. Standard Attention: Attention over Sensory
Information

The attention mechanism of standard Transformers can be
understood as a differentiable computational mechanism for
dynamically routing sensory information between different
elements in the input. An object emits a query that is com-
pared against the keys of each object in its context via an
inner product. A “match” occurs when the inner product is
large, causing an encoding of the features of the attended
object to be retrieved and added to the residual stream of
the receiver. Formally, attention between an object x ∈ Rd

and a context y = (y1, . . . , yn) ∈ Rn×d takes the form

Attention(x, (y1, . . . , yn))

=

n∑
i=1

αi(x,y)ϕv(yi), where,

α(x,y) = Softmax
( [〈

ϕattn
q (x), ϕattn

k (yi)
〉]n

i=1

)
,

(1)

where ϕattn
q , ϕattn

k are learnable query and key maps control-
ling the selection criterion, and ϕv is a learnable value map
controlling what information about yi is sent. The attention
scores α(x,y) are used to retrieve a convex combination of
the values, where αi(x,y) denotes the i-th component.

Here, the retrieved information is sensory, comprising the
features and attributes of individual objects in the context.
For this reason, we refer to standard neural attention as
“sensory attention”.

2.2. Relational Attention: Attention over Relational
Information

Standard neural attention does not explicitly capture infor-
mation about the relationship between the source/sender and
the target/receiver, making relational learning in standard
Transformers inefficient [15, 16, 18–24, 37]. We propose re-
lational attention, an attention mechanism for dynamically
routing relational information between objects.

Mirroring standard attention, this operation begins with each
object emitting a query and a key, which are compared via
an inner product to compute attention scores determining
which objects to attend to. Next, instead of retrieving the
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Figure 1. Standard self-attention retrieves sensory information vi about the attributes of individual objects while relational attention
retrieves relational information r(x, yi) about the relationship between the objects in the context and the target. Each relation is tagged
with a symbol si which acts as an abstract variable identifying the source. In both cases, information is aggregated according to the
attention scores αi, which are computed by a softmax over inner products of queries and keys.

sensory features of the selected object, relational attention
retrieves the relation between the two objects—defined as
a series of comparisons between the two objects under dif-
ferent feature subspaces. In addition, a symbolic identifier
is sent to indicate the identity of the sender to the receiver.
Formally, this operation is defined as follows.

RelationalAttention(x, (y1, . . . , yn))

=

n∑
i=1

αi(x,y)
(
r(x, yi)Wr + siWs

)
, where,

α(x,y) = Softmax
( [〈

ϕattn
q (x), ϕattn

k (yi)
〉]n

i=1

)
,

r(x, yi) =
( 〈

ϕrel
q,ℓ(x), ϕ

rel
k,ℓ(yi)

〉 )
ℓ∈[dr]

,

(s1, . . . , sn) = SymbolRetriever(y; Slib)

(2)

Thus, relational attention between the object x and the con-
text y = (y1, . . . , yn) retrieves a convex combination of the
relation vectors {r(x, yi)}ni=1, representing x’s relationship
with each object in the context. Relational attention also
retrieves a symbol vector si that encodes the identity infor-
mation of the attended object. The role and implementation
of the symbols will be discussed in the next subsection.
As with standard attention, ϕattn

q , ϕattn
k are learned feature

maps that govern the attention selection criterion. A separate
set of query and key feature maps, ϕrel

q,ℓ, ϕ
rel
k,ℓ, ℓ ∈ [dr], are

learned to represent the relation between the sender and the
receiver. For each ℓ ∈ [dr], the feature maps ϕrel

q,ℓ, ϕ
rel
k,ℓ ex-

tract specific attributes from the object pair, which are com-
pared by an inner product. This produces a dr-dimensional
relation vector representing a fine-grained series of com-
parisons (⟨ϕrel

q,ℓ(x), ϕ
rel
k,ℓ(yi)⟩)ℓ∈[dr] across different feature

subspaces.

In certain tasks [21–23], a useful inductive bias on the
relations function r(·, ·) is symmetry; i.e., r(x, y) =
r(y, x), ∀x, y. This corresponds to using the same feature
filter for the query and key maps, ϕrel

q = ϕrel
k . This adds

structure to the relation function, transforming it into a posi-
tive semi-definite kernel that defines a pseudometric on the
object space, along with a corresponding geometry.

2.3. Symbol Assignment Mechanisms

To process relational information effectively, the receiver
must have two pieces of information: 1) its relationship to
the objects in its context, and 2) the identity of the object
associated with each relation. In relational attention, the
former is captured by r(x, yi) and the latter by si. The
symbols si are used to tag each relation with the identity
information of the sender.

The symbol si identifies or points to the object yi, but, im-
portantly, is designed to not fully encode the features of the
object. Instead, the symbols si function as abstract refer-
ences to objects, perhaps viewed as a connectionist analog
of pointers in traditional symbolic systems. In particular, by
drawing symbol vectors from a finite library Slib, relational
attention maintains a relation-centric representation. This
separation between sensory and relational information is key
to decoupling relational attention disentangled from sensory
features, enabling generalization across relations.

The notion of the “identity” of an object can vary depending
on context. In this work, we consider modeling three types
of identifiers: 1) position, 2) relative position, or 3) an equiv-
alence class over features. For each type of identifier, we
model a corresponding symbol assignment mechanism [22].
We find that different symbol assignment mechanisms are
more effective in different domains.

Positional Symbols. In some applications, it is suffi-
cient to identify objects through their position in the in-
put sequence. We maintain a library of symbols Slib =
(s1, . . . , smax_len) ∈ Rmax_len×d and assign si to the i-th ob-
ject in the sequence. These are essentially learned positional
embeddings.
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Position-Relative Symbols. Often, the relative position
with respect to the receiver is a more useful identifier than
absolute position. This can be implemented with position-
relative embeddings. We learn a symbol library Slib =
(s−∆, . . . , s−1, s0, s1, . . . , s∆) ∈ R(2∆+1)×d, where ∆ is
the maximum relative position, and relational attention be-
comes

∑
j αij(r(xi, xj)Wr + sj−i Ws).

Symbolic Attention. In certain domains, some information
about the objects’ features is necessary to identify them for
the purposes of relational processing. Yet, to maintain a rela-
tional inductive bias, we would like to avoid a full encoding
of object-level features. In symbolic attention, we learn a
set of symbol vectors, Slib = (s1, . . . , sns

) ∈ Rns×d and
a matching set of feature templates Flib = (f1, . . . , fns

).
We retrieve a symbol for each object by an attention oper-
ation that matches the input vectors xi against the feature
templates fj and retrieves symbols sj .

SymbolicAttention(x) = Softmax
(
(xWq)F

⊤
lib

)
Slib.

(3)
Here, Slib, Flib,Wq are learned parameters. This can be
thought of as implementing a learned differentiable “equiv-
alence class map” over feature embeddings. Crucially, the
number of symbols (i.e., feature equivalence classes) is fi-
nite, which enables relational attention to still produce a
relation-centric representation while tagging the relations
with the necessary identifier.

2.4. What Class of Functions can Relational Attention
Compute?

To give some intuition about the type of computation that
relational attention can perform, we present the following
expressivity result. The following theorem states that rela-
tional attention can approximate any function on X × Yn

that 1) selects an element in (y1, . . . , yn), then 2) computes
a relation with it. Both the selection criterion and the rela-
tion function are arbitrary, and the selection criterion can be
query-dependent. The formal statement and proof are given
in Appendix A.

Theorem 1 (Informal). Let Select : X × Yn → Y be an
arbitrary preference selection function, which selects an
element among (y1, . . . , yn) based on a query-dependent
preorder relation {≼x}x∈X . Let Rel : X × Y → Rdr be
an arbitrary continuous relation function on X × Y . There
exists a relational attention module that approximates the
function Rel(x, Select(x,y)) to arbitrary precision.

Algorithm 1: Dual Attention

Input: x = (x1, . . . , xn) ∈ Rn×d

Compute self-attention heads

α(h) ← Softmax
(
(xW attn

q,h )(xW attn
k,h )

⊺)
, h ∈ [nsa

h ]

e
(h)
i ←

∑
j

α
(h)
ij xj W

h
v , i ∈ [n], h ∈ [nsa

h ]

ei ← concat
(
e
(1)
i , . . . , e

(nsa
h )

i

)
W sa

o , i ∈ [n]

Assign symbols:
s = (s1, . . . , sn)← SymbolRetriever(x; Slib)

Compute relational attention heads

α(h) ← Softmax
(
(xW attn

q,h )(xW attn
k,h )

⊺)
, h ∈ [nra

h ]

rij ←
( 〈

xi W
rel
q,ℓ , xj W

rel
k,ℓ

〉 )
ℓ∈[dr]

i, j ∈ [n]

a
(h)
i ←

∑
j

α
(h)
ij

(
rij W

h
r + sj W

h
s

)
, i ∈ [n], h ∈ [nra

h ]

ai ← concat
(
a
(1)
i , . . . , a

(nra
h )

i

)
W ra

o , i ∈ [n]

Output :
(
concat(ei, ai)

)n
i=1

3. Integrating Attention over Sensory and
Relational Information

3.1. Dual Attention

One of the keys to the success of the Transformer archi-
tecture is the use of so-called multi-head attention. This
involves computing multiple attention operations in parallel
at each layer and concatenating the output, enabling the
model to learn multiple useful criteria for routing informa-
tion between objects. However, in standard Transformers,
these attention heads focus solely on routing sensory in-
formation, lacking explicit support for routing relational
information between objects.

We posit that both sensory and relational information are
crucial for robust and flexible learning over sequences or col-
lections of objects. To this end, we propose an extension of
multi-head attention comprising two distinct types of atten-
tion heads: sensory attention (i.e., standard self-attention),
and relational attention. This yields a powerful mechanism
for dynamically routing both sensory and relational infor-
mation in parallel. Our hypothesis is that by having access
to both computational mechanism, the model can learn to
select between them based on the current task or context,
as well as compose them to create highly-expressive and
flexible computational circuits.

Algorithm 1 describes the proposed module, referred to as
dual attention. The number of sensory attention heads nsa

h
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Algorithm 2: Dual Attention Encoder Block

Input :x ∈ Rn×d

x← Norm(x+DualAttn(x))
x← Norm(x+MLP(x))

Output: x

Algorithm 3: Dual Attention Decoder Block

Input :x,y ∈ Rn×d

x← Norm(x+DualAttn(x))
x← Norm(x+CrossAttn(x,y))
x← Norm(x+MLP(x))
Output: x

and number of relational attention heads nra
h are hyperpa-

rameters. The sensory attention heads attend to sensory
information while the relational attention heads attend to re-
lational information. The combined nh := nsa

h + nra
h heads

are then concatenated to produce the output. The result is
a representation of contextual information with integrated
sensory and relational components. Appendix B provides
further discussion on the details of the architecture and its
implementation.

Attention Masks & Causality. Any type of attention mask
(e.g., causal mask for autoregressive language modeling)
can be implemented in relational attention in the same way
as for standard self-attention (i.e., mask is added to αh

ij

pre-softmax).

Positional Encoding. There exists different methods in the
literature for encoding positional information in the Trans-
former architecture. For example, [25] propose adding posi-
tional embeddings to the input, [38] propose adding relative-
positional embeddings at each attention operation, and [39]
propose rotary positional embeddings (RoPE) which apply a
position-dependent map to the queries and keys pre-softmax.
These methods are compatible with dual attention and are
configurable options in our public implementation.

Computational complexity. The computational complex-
ity of relational attention scales similarly to standard self-
attention with a O(n2) dependence on sequence length.
Like standard attention, relational attention can be computed
in parallel via efficient matrix multiplication operations.

Symmetric relations. A symmetry constraint can be in-
jected into the relations rij by imposing that W rel

q = W rel
k ,

which is a useful inductive bias when the task-relevant rela-
tions are inherently symmetric.

3.2. The Dual Attention Transformer Architecture

The standard Transformer architecture is composed of re-
peated blocks of attention (information retrieval) followed
by an MLP (local processing). Our proposed Dual Atten-
tion Transformer follows this same structure, but replaces
multi-head self-attention with dual attention (Algorithm 1).
At each layer, dual attention dynamically retrieves both sen-
sory and relational information from the previous level of
computation, which is then processed locally by an MLP. Al-

gorithms 2 and 3 in Appendix B define encoder and decoder
blocks with dual attention. Composing these blocks yields
the Dual Attention Transformer architecture.

The Dual Attention Transformer framework supports all
architectural variants of the standard Transformer, making
it applicable to a wide range of task paradigms. An encoder-
decoder architecture with causal dual-head attention in the
decoder can be applied to sequence-to-sequence tasks, as in
the original Transformer paper [25]. An encoder-only archi-
tecture can be used for a BERT-style language embedding
model [40] or a ViT-style vision model [41]. A decoder-only
architecture with causal dual-head attention can be used for
autoregressive language modeling.

4. Empirical evaluation
We empirically evaluate the Dual Attention Transformer
(abbreviated, DAT) architecture on a range of tasks span-
ning different domains and modalities. Our goal is to assess
the impact of integrating relational inductive biases into
the Transformer architecture. We begin with a synthetic
relational learning benchmark to evaluate DAT’s relational
computational mechanisms in a more controlled setting.
We then proceed to evaluate the proposed architecture on
more complex real-world tasks, including mathematical
problem-solving, image recognition, and language model-
ing. These experiments cover multiple task paradigms and
architectural variants, including: discriminative (encoder-
only architecture), sequence-to-sequence (encoder-decoder),
autoregressive language modeling (decoder-only), and vi-
sion (ViT-style architecture) tasks. For each experiment, we
compare a DAT model that incorporates both sensory and
relational heads against a standard Transformer where all
heads are ordinary sensory attention heads. The difference
in performance highlights the impact of integrating both
types of attention heads, enabling a richer representation
of sensory and relational information. We summarize the
experimental results below and defer certain experimental
details to Appendix C.

4.1. Sample-Efficient Relational Reasoning: Relational
Games

We begin our empirical evaluation with the “Relational
Games” benchmark for visual relational reasoning proposed
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Figure 2. Learning curves on the relational games benchmark. Each subplot corresponds to a different task. Numbers in square brackets in
legend labels indicate parameter counts. Solid lines indicate the mean over 5 trials with different random seeds and the shaded regions
indicate bootstrap 95% confidence intervals. DAT is more data-efficient at relational learning compared to a Transformer.

by Shanahan et al. [20]. The dataset consists of a family of
binary classification tasks, each testing a model’s ability to
identify a particular visual relationship among a series of
objects (see Figure 5 for examples). The input is an RGB
image depicting a grid of objects, and the target is a binary
classification indicating whether the particular relationship
holds for this input. This forms a controlled synthetic setting
for evaluating DAT’s effectiveness in relational learning.

Our goal in this section is to explore how the relational
computational mechanisms of DAT affect data-efficiency in
relational learning—that is, how much data is necessary to
learn a given task. We evaluate learning curves by varying
the size of the training set, training each model until con-
vergence, and evaluating on a hold-out validation set. We
test two configurations of DAT: one with only relational
attention heads, and one with a combination both sensory
and relational heads. We include several Transformer base-
lines, varying the number of attention heads and the model
dimension, controlling for parameter count. The results are
depicted in Figure 2.

We find that DAT is significantly more sample-efficient,
particularly at more difficult tasks. Both configurations of
DAT are consistently more sample-efficient compared to the
standard Transformer. The effect is particularly dramatic on
the ‘match pattern’ task which is the most difficult and
requires identifying a second-order relation (i.e., a relation
between relations). We note that these tasks are purely re-
lational in the sense that pairwise same/different relations
between objects are a sufficient statistic for predicting the
target. This suggests that relational attention is sufficient
for solving the task. Indeed, the DAT variant with only rela-
tional heads performs slightly better than the variant with a
combination of both sensory and relational heads. Notably,

however, the difference is only marginal, suggesting that the
model is able to learn to select the computational mecha-
nisms that are most relevant to the given task. We provide
further discussion in Appendix C.1, including results com-
paring against previously-proposed relational architectures
with stricter inductive biases.

4.2. Relational Inductive Biases for Symbolic Reasoning
in Sequence-to-Sequence tasks: Mathematical
Problem Solving

Next, we evaluate DAT on a set of mathematical problem-
solving tasks based on the benchmark contributed by Saxton
et al. [42]. Mathematical problem-solving is an interesting
test for neural models because it requires more than statisti-
cal pattern recognition—it requires inferring laws, axioms,
and symbol manipulation rules. The benchmark consists of
a suite of mathematical problem-solving tasks, with each
task’s dataset consisting of a set of question-answer pairs.
The tasks range across several topics including solving equa-
tions, adding polynomials, expanding polynomials, differen-
tiating functions, predicting the next term in a sequence, etc.
An example of a question in the “polynomials__expand”
task is “Expand (5x− 3)(2x+ 1)” with the target answer
“10x2− x− 3”. This is modeled as a sequence-to-sequence
task with character-level encoding.

We compare DAT against Transformers using an encoder-
decoder architecture. The encoder processes the question,
and the decoder autoregressively generates the answer while
cross-attending to the encoder. We explore how perfor-
mance scales with model size by varying the number of
layers. In the Transformer, all attention heads are standard
self-attention with nsa

h = 8, while in DAT we have a combi-
nation of both types of attention heads with nsa

h = nra
h = 4.
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Figure 3. Average character-level accuracy on different mathematical problem-solving tasks measured at different model sizes. Error bars
indicate bootstrap 95% confidence intervals over 5 trials. DAT outperforms a standard Transformer across model sizes, suggesting that
relational computational mechanisms confer benefits on sequence-to-sequence tasks that involve symbolic computation.

Figure 3 depicts the character-level accuracy for DAT and
Transformers across varying model sizes. We find that the
DAT model outperforms the standard Transformer at all
model scales and across all tested tasks. This suggests
that the relational computational mechanisms of DAT are
beneficial for the type of symbolic processing involved in
solving mathematical problems.

4.3. Visual Processing with Relational Inductive Biases

As a general sequence model, the Transformer architec-
ture can be applied to visual inputs by dividing an image
into patches that are then flattened, linearly embedded into
vectors, and passed in as a sequence. Through a series of
attention and MLP operations, the visual input is processed
for the downstream visual task. This architecture is referred
to as a Vision Transformer (ViT) [41]. Although Transform-
ers lack the explicit spatial inductive biases found in models
like convolutional networks, recent work has demonstrated
its effectiveness at scale [43], demonstrating the versatility
of attention as a computational mechanism across several
data modalities.

In this section, we explore how the relational computa-
tional mechanisms introduced in DAT—namely, relational
attention—impact visual processing tasks. We hypothesize
that visual processing benefits from attending to both sen-
sory and relational information. That is, when processing a
local region of a visual input (e.g., a patch, object, or object
part), it is useful consider not only the sensory features of
other regions but also the relationships between these re-
gions. For example, this captures information about similar
objects occurring in multiple places in the scene, or objects

which are similar across some attributes (e.g., texture) but
different across others (e.g., color). In particular, the rela-
tions in relational attention can be interpreted as taking the
source patch as a filter and comparing it against each patch
in the image under different transformations.

We evaluate a ViT-style DAT architecture (ViDAT), and
compare it against a standard ViT on the CIFAR image
recognition benchmarks [44]. We train directly on CIFAR-
10 and CIFAR-100, respectively, without pretraining on
larger datasets. During training, we use random cropping,
MixUp [45], and CutMix [46] as data augmentation tech-
niques. We evaluate 8-layer models with dmodel = dff =
384. The ViT model has nsa

h = 12 standard self-attention
heads, while the DAT model uses both sensory and rela-
tional heads, with an even split of nsa

h = nra
h = 6. We use

symmetric relations rij based on the intuition that visual
processing involves symmetric attribute-similarity relations.
In Appendix C.3, we present ablations, additional results,
visualizations of learn relations, and further discussion.

Table 1 reports the classification accuracy of each model.
ViDAT outperforms ViT on both datasets, suggesting that
relational computational mechanisms enhance visual pro-
cessing. These experiments show that relational inductive
biases can be useful for image recognition. We hypothe-
size that relational processing is even more important in
visual tasks requiring complex scene parsing, where rea-
soning about the relationships between constituent objects
is essential. Recent work on scene understanding in large
vision-language models supports this view [47–49]. We
leave the exploration of such tasks for future work.

7
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4.4. Relational Inductive Biases in Language Modeling

Language understanding involves processing and organizing
relational information, such as syntactic structures, semantic
roles, and contextual dependencies, to extract meaning from
words and their connections within sentences. Transformers
have been remarkably effective at language modeling, with
neural scaling laws demonstrating that increasing model
size and dataset size result in predictable improvements
in performance across a range of language tasks [34, 35].
While the standard attention mechanism of Transformers is
able to capture simple positional and syntactic relations in
its attention scores, this is only used to control the flow of
information between tokens rather than explicitly encoding
relational information in the latent embeddings themselves.
The relational attention mechanism of DAT enables explic-
itly learning relational contextual information that is directly
encoded in each token’s latent embedding.

In this section, we evaluate DAT on causal language mod-
eling, exploring the impact of its relational computational
mechanisms in the domain of language. We use a decoder-
only architecture, where the model receives a sequence of
tokens as input and is trained to causally predict the next
token at each position. We train on 10 billion tokens of the
FineWeb-Edu dataset [50], which is a curated dataset of
high-quality educational text data from CommonCrawl. We
train models at multiple parameter scales, up to 1.3 billion
parameters, to study the scaling properties of DAT on lan-
guage modeling with respect to both model size and data
size. Details of training and architectural hyperparameters
are given in Appendix C.4, together with further discussion
of the results.

Figure 4 depicts the scaling properties of DAT’s language
modeling performance with respect to model size and data
size, compared to a standard Transformer. We observe that
DAT demonstrates greater data and parameter efficiency,
achieving improved performance across model and data
scales. This suggests that DAT’s relational computational
mechanisms confers benefits in language processing.

Dataset Model Params Accuracy

CIFAR-10 ViT 7.1M 86.4± 0.1%
ViDAT 6.0M 89.7± 0.1%

CIFAR-100 ViT 7.2M 68.8± 0.2%
ViDAT 6.1M 70.5± 0.1%

Table 1. Classification accuracy on image recognition with the
CIFAR-10 and CIFAR-100 datasets. Each training configuration is
repeated 10 times with different random seeds; we report the mean
accuracy ± the standard error of mean. DAT outperforms a stan-
dard Vision Transformer, suggesting that relational computational
mechanisms are useful for visual processing tasks.

350M 750M 1.3B

Param Count
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10B
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o

ke
n

s
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Transformer

Figure 4. Performance scaling of DAT compared to a standard
Transfomer on language modeling: DAT is more data-efficient and
more parameter-efficient.

Beyond performance improvements, we also find evidence
that relational attention encodes human-interpretable seman-
tic relations. Figure 8 depicts a visualization of the relations
rij learned by a DAT language model. We observe that
the relations learned by relational attention tend to encode
semantic relations, rather than syntactic relations. That is, re-
lational activations rij ∈ Rdr are large between tokens with
related meanings. We believe that further exploration of this
phenomenon from a mechanistic interpretability perspective
could offer an exciting avenue for future research. Such
an exploration would be complementary to interpretability
efforts seeking to understand the attention scores of standard
Transformers, which have been found to attend e.g., based
on position, syntax, and punctuation [51–53].

5. Conclusion
Summary. The standard attention mechanism of Transform-
ers provides a versatile mechanism for retrieval of sensory
information from a given context, but does not explicitly
support retrieval of relational information. In this work,
we presented an extension of the Transformer architecture
that disentangles and integrates sensory and relational in-
formation through a variant of multi-head attention with
two distinct types of attention heads: standard self-attention
for sensory information and a novel relational attention
mechanism for relational information. We empirically eval-
uate this architecture and find that it yields performance
improvements across a range of tasks and modalities.

Limitations & Future Work. The proposed architecture
introduces several hyperparameters and possible configu-
rations. Although we carried out ablations on the major
configuration choices (e.g., composition of head types, sym-
metry, symbol assignment mechanisms), an expanded em-
pirical investigation would help develop an improved under-
standing of the behavior of this architecture under different
configurations. We also note that our implementation of the
Dual-Attention Transformer currently lacks the hardware-
aware optimizations available for standard Transformers
(e.g., Flash-Attention [54]), which makes it slower to train

8
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Figure 5. Relational attention in DAT language models encodes human-interpretable semantic relations. A visualization of the relations
rij learned by a 24-layer 343M-parameter DAT language model. Top. Visualization of one relation dimension in the first layer,
focusing on the token ‘model’, which has high activation with the tokens ‘state’, ‘machine’, and ‘mathematical’. Bottom.
Visualization of one relation dimension in the twelfth layer, focusing on the token ‘state’, which has high activation with the tokens
‘mathematical’, ‘model’, and ‘computation’.

overall (though we expect similar optimizations to be possi-
ble). An important direction for future work is the mecha-
nistic interpretability [53, 55, 56] of DAT models, focusing
on identifying specific circuits that perform key computa-
tions, to better understand the performance improvements
observed in complex domains like language modeling.

Code and Reproducibility
Our implementation of the Dual Attention Transformer ar-
chitecture is open-sourced at https://github.com/
Awni00/dual-attention and published as a Python
package. Pre-trained model weights, including the 1.3B-
parameter DAT language model, are made publicly available
and can be loaded directly using the package. Additionally,
we provide code for running the experiments described in
this paper, along with instructions for reproducing our re-
sults and access to the experimental logs.
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A. Function Class of Relational Attention: a universal approximation result
To gain a better understanding of the types of functions that can be computed by relational attention, we presented a simple
approximation result (Theorem 1) in Section 2.4. Here, we will provide a formal statement of the result and prove it.

Recall that relational attention is a mapping on Rd ×Rn×d → Rdout , where d is the dimension of the input objects and dout
is the output dimension. For convenience, we denote the “query space” by X and the “key space” by Y , though both are Rd

in this setting. Relational attention takes as input a query x ∈ X and a collection of objects y = (y1, . . . , yn) ∈ Yn and
computes the following

RA(x,y) =

n∑
i=1

αi(x;y)
(
r(x, yi)Wr + si Ws

)
, (4)

α(x;y) = Softmax
([ 〈

ϕattn
q (x), ϕattn

k (yi)
〉 ]n

i=1

)
∈ ∆n, (5)

r(x, yi) =
(〈
ϕrel
q,ℓ(x), ϕ

rel
k,ℓ(yi)

〉)
ℓ∈[dr]

∈ Rdr , (6)

(s1, . . . , sn) = SymbolRetriever (y; Slib) ∈ Rn×dout , (7)

where ϕattn
q , ϕattn

k , ϕrel
q,ℓ, ϕ

rel
k,ℓ : Rd → Rdk are the feature maps defining the attention mechanism and the relation, respec-

tively. For this section, these are multi-layer perceptrons. Note that in Algorithm 1 these are linear maps, but they are
preceded by multi-layer perceptron in Algorithms 2 and 3, which makes the overall function class the same. Moreover, for
this analysis we will take Wr = I, dout = dr and Ws = 0. We will later discuss how the role of symbols fits within the
message of the result.

The following result states that relational attention can approximate any function of the form: 1) select an object in
(y1, . . . , yn) by an arbitrary query-dependent selection criterion, and 2) compute an arbitrary relation r : X × Y → Rdr

with the selected object. This is formalized below.

To formalize (1), we adopt an abstract and very general formulation of a “selection criterion” in terms of a family of
preference preorders, {≼x}x: for each possible query x, the preorder ≼x defines a preference over objects in Y to be
selected. Intuitively, “y1 ≼x y2” means that y2 is more relevant to the query x than y1.

More precisely, for each query x ∈ X , ≼x is a complete (for each y1, y2 ∈ Y , either y1 ≼ y2 or y2 ≼x y1), reflexive
(y ≼x y for all y ∈ Y), and transitive (y1 ≼x y2 and y2 ≼x y3 implies y1 ≼x y3) relation. For each x ∈ X , ≼x induces a
preordered space (Y,≼x). This implicitly defines two additional relations: ≺x and∼x. We will write y1 ≺x y2 if “y1 ≼x y2
and not y2 ≼x y1”, and y1 ∼ y2 if “y1 ≼x y2 and y2 ≼x y1”.

For a collection of objects y = (y1, . . . , yn) ∈ Yn and a query x ∈ X , the preorder ≼x defines a selection function

Select(x, (y1, . . . , yn)) := max ((y1, . . . , yn), key =≼x) . (8)

That is, Select(x,y) returns the most relevant element with respect to the query x. In particular, it returns yi when
yi ≻x yj , ∀j ̸= i (and may return an arbitrary element if no unique maximal element exists in (y1, . . . , yn)).

We will assume some regularity conditions on the family of preorders {≼x}x which essentially stipulate that: 1) nearby
elements in Y have a similar preference with respect to each x, and 2) nearby queries in X induce similar preference
preorders.

Assumption 1 (Selection criterion is query-continuous and key-continuous). The family of preorder relations {≼x}x∈X
satisfies the following:

1. Key-continuity. For each x ∈ X , ≼x is continuous. That is, for any sequence (yi)i such that yi ≼x z and yi → y∞,
we have y∞ ≼x z. Equivalently, for any y ∈ Y , {z ∈ Y : z ≼x y} and {z ∈ Y : y ≼x z} are closed sets in Y .

2. Query-continuity. Under key-continuity, Debreu et al. [57] shows that for each x ∈ X , there exists a continuous in
utility function ux : Y → R for ≼x such that y1 ≼x y2 ⇐⇒ ux(y1) ≤ ux(y2). For query-continuity, we make the
further assumption that there exists a family of utility functions {ux : Y → R}x∈X such that u(x, y) := ux(y) is also
continuous in its first argument.
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For technical reasons, for Equation (8) to make sense, we must assume that there exists a unique element to be selected. We
formulate this in terms of an assumption on the data distribution of the space X × Yn. This is a technical assumption, and
different forms of such an assumption would be possible (e.g., instead condition on this event).

Assumption 2 (Selection is unique almost always). Let (x,y) ∼ Px,y. For each ε > 0, there exists ηε > 0 such that
minj ̸=i |ux(yi)− ux(yj)| > ηε with probability at least 1− ε.

Theorem (Function class of relational attention). Let X ,Y be compact Euclidean spaces. Let {≼x}x∈X be an ar-
bitrary family of relevance preorders on Y which are query-continuous and key-continuous (Assumption 1). Let
Select(x, (y1, . . . , yn)) = max((y1, . . . , yn), key =≼x) be the selection function associated with {≼x}x. Let R : X×Y →
Rdr be an arbitrary continuous relation function. Suppose x,y ∼ Px,y and that Assumption 2 holds (i.e., the data distri-
bution is such that there exists a unique most-relevant element w.h.p). For any ε > 0, there exists multi-layer perceptrons
ϕattn
q , ϕattn

k , ϕrel
q , ϕrel

k and a choice of symbols such that,

∥RA(x, (y1, . . . , yn))−R(x, Select(x, (y1, . . . , yn)))∥∞ < ε

Proof. Condition on the event E := {(x,y) ∈ X × Yn : minj ̸=i |ux(yi)− ux(yj)| > ηε}. Let i∗ =
argmax((y1, . . . , yn), key =≼x) = argmax(ux(y1), . . . , ux(yn)). By [58, Theorem 5.1], for any ε1 > 0, there ex-
ists MLPs ϕattn

q , ϕattn
k such that αi∗(x,y) > 1 − ε1 for any (x,y) ∈ E . That is, the attention score is nearly 1 for the

≼x-selected element uniformly over inputs in E .

Similarly, by [58, Theorem 3.1], for any ε2 > 0, there exists MLPs (ϕrel
q,ℓ, ϕ

rel
k,ℓ)ℓ∈[dr] such that r(x, y) :=

(⟨ϕrel
q,ℓ(x), ϕ

rel
k,ℓ(y)⟩)ℓ∈[dr] approximates the target relation R uniformly within an error of ε2,

∥R(x, y)− r(x, y)∥∞ < ε2, Lebesgue almost every (x, y) ∈ X × Y.

Thus, we have

∥RA(x, (y1, . . . , yn))−R(x, Select(x, (y1, . . . , yn)))∥∞

=

∥∥∥∥∥
n∑

i=1

αi(x;y) r(x, yi)−R(x, yi∗)

∥∥∥∥∥
∞

≤
n∑

i=1

∥αi(x;y) r(x, yi)−R(x, yi∗)∥∞

≤ αi∗(x,y) ∥r(x, yi∗)−R(x, yi∗)∥∞ +
∑
j ̸=i∗

αi(x;y) ∥r(x, yi)−R(x, yi∗)∥∞

≤ (1− ε1)ε2 + ε1 max
x,y,y∗

∥r(x, y)−R(x, y∗)∥∞ .

Note that maxx,y,y∗ ∥r(x, y)−R(x, y∗)∥∞ is finite since X ,Y are compact and r,R are continuous. Letting ε1, ε2 be
small enough completes the proof.

To summarize the analysis in this section, we showed that relational attention can approximate any computation composed of
first selecting an object from a collection then computing a relation with that object. We can approximate any well-behaved
selection criterion by formulating it in terms of an abstract preference preorder, and approximating the corresponding
utility function (given by a Debreu representation theorem) by inner products of query and key feature maps. We can then
approximate the target relation function similarly by inner products of a different set of query and key feature maps.

In the analysis above, we set aside the role of the symbols. Note that the function class this approximation result proves
involves retrieving a relation from a selected object, but does not explicitly encode the identity of the selected object.
Informally, the receiver knows that it has a particular relation with one of the objects in its context, and knows that this
relation is with an object that was selected according to a particular selection criterion, but does not know the identity of the
object beyond that. This is the purpose of adding symbols to relational attention—the retrieved relation is tagged with a
symbol identifying the source.
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B. Architecture & Implementation Details
In this section, we briefly discuss some details of implementation that may be of interest to some readers. Our code is
publicly available through the project git repository and includes detailed instructions for reproducing our experimental
results. We also provide links to experimental logs. Our code uses the PyTorch framework.

B.1. Relational Attention and Dual-Head Attention

The relational attention operation is defined as part of dual-head attention in Algorithm 1. We briefly mention some details
of the implementation.

Learnable parameters. Let nh := nsa
h + nra

h be the total number of sensory and relational heads. The learnable parameters
are

• Sensory attention heads. For each head h ∈ [nsa
h ]:

◦ Attention query/key projections: W attn
q,h ,W attn

k,h ∈ Rdmodel×dkey ,

◦ Value projections: Wh
v ∈ Rdmodel×dh ,

◦ Output projection: W sa
o ∈ Rdmodel×dmodel .

• Relational attention heads. For each head h ∈ [nra
h ] and each relation ℓ ∈ [dr]:

◦ Attention query/key projections: W attn
q,h ,W attn

k,h ∈ Rdmodel×dkey ,

◦ Relation query/key projections: W rel
q,ℓ ,W

rel
k,ℓ ∈ Rdmodel×dproj ,

◦ Symbol projection: Wh
s ∈ Rdmodel×dh ,

◦ Relation projection: Wh
r ∈ Rdr×dh ,

◦ Output projection: W ra
o ∈ Rdmodel×dmodel .

We let dkey, dh = dmodel/nh to maintain the same dimension for the input and output objects. Similarly, we let dproj =
dh · nra

h /dr so that the number of parameters is fixed as dr varies. That is, we scale dproj down as dr increases; dproj has
the interpretation of being the dimensionality of the subspace on which we are computing comparisons. So, having a larger
number of relations corresponds to a more fine-grained comparison between the two objects.

To model symmetric relations, we let W rel
q,ℓ = W rel

k,ℓ. Recall that this has the interpretation of computing a comparison
between the same attributes in the pair of objects.

Note that the same dr-dimensional relation is used for all nra
h attention heads, with a different learned linear map Wh

r

for each head extracting the relevant aspects of the relation for that attention head and controlling the placement in the
residual stream. This allows for useful computations to be shared across all heads. Note also that the head dimension
dh = dmodel/nh is defined in terms of the total number of attention heads and is the same for both sensory attention and
relational attention. The output of each head is a dh-dimensional vector. This means that after concatenating all the heads,
the proportion in the final dmodel-dimensional output that corresponds to each attention head type is proportional to the
number of heads of that type. For example, if nsa

h = 6, nra
h = 2, then 75% of the dmodel-dimensional output is composed of

the output of sensory attention heads and 25% is composed of the output of relational attention heads. This enables tuning
the relative importance of each head type for the task.

Code. We briefly discuss the code implementing relational attention. We use einsum operations heavily in our implemen-
tation due to the flexibility they offer for implementing general tensor contractions. From Algorithm 1, recall that relational
attention takes the form:

a
(h)
i ←

∑
j

α
(h)
ij

(
rijW

h
r + sjW

h
s

)
, (9)

where α
(h)
ij are the softmax attention scores for head h ∈ [nra

h ], rij ∈ Rdr are relation vectors, sj ∈ Rdmodel is the symbol
associated with the j-th input, and Wh

r ,W
h
s map rij and sj , respectively, to dh-dimensional vectors. We assume those are

already computed and focus on a particular portion of the computation of relational attention. We break up the computation
as follows: ∑

j

α
(h)
ij

(
rijW

h
r + sjW

h
s

)
=

∑
j

(
α
(h)
ij sjW

h
s

)
+

(∑
j

α
(h)
ij rij

)
Wh

r . (10)
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Note that we factor out the Wh
r linear map and apply it after computing

∑
j α

(h)
ij rij . This is intentional, as will be explained

below.

This can be computed in PyTorch via einsum operations as follows.

# sv: (b, n, n_h, d_h)
# attn_scores: (b, n_h, n, n)
# relations: (b, n, n, d_r)
# self.wr: (n_h, d_h, d_r)

attended_symbols = torch.einsum(’bhij,bjhd->bihd’, attn_scores, sv)
# shape: (b, n, n_h, d_h)

attended_relations = torch.einsum(’bhij,bijr->bihr’, attn_scores, relations)
# shape: (b, n, n_h, d_r)

attended_relations = torch.einsum(’bihr,hdr->bihd’, attended_relations, self.wr)
# shape: (b, n, n_h, d_h)

output = attended_symbols + attended_relations
# shape: (b, n, n_h, d_h)

Here, we assume sv, attn_scores, and relations are already computed, and focus on a particular part of the compu-
tation. sv[:,:,h,:] = sWh

s , corresponds to the symbols of each object in the context, attn_scores[:,h,:,:] =
αh are the softmax attention scores, and relations[:, i,j,:] = rij are the relations, which can all be computed
with simple matrix multiplication operations, very similar to the standard implementations of multi-head attention.

The first line corresponds to computing
∑

j α
h
ijsjW

h
s . The second line corresponds to computing

∑
j α

h
ijrij . The third

line corresponds to applying the linear map Wh
r to the retrieved relations at each head. The reason we apply the map Wh

r

after attending to the relations is for memory efficiency reasons. If we were to apply Wh
r first, we would need to manifest a

tensor of dimension b× n× n× nra
h × dh, which is of order O(b · n2 · dmodel). Instead, by factoring out Wh

r and applying
it after computing attention, we only need to manifest a tensor of dimension b× n× n× dr, which is much smaller since
dr ≪ dmodel. This tensor is contracted to a dimension b× n× dr first, then mapped up to b× n× nra

h × dh. This makes
the memory footprint of relational attention of the same order as standard (sensory) attention when dr ≍ nh.

When using position-relative symbols, the implementation is adjusted since we need to compute∑
j

α
(h)
ij

(
rijW

h
r + sj−iW

h
s

)
(11)

instead, where the symbol sj−i sent now depends on both the source j and the target i. Thus, we now compute a symbols
tensor which is indexed by both the source j and target i: sv[i,j,h,:] = sj−iW

h
s . Then, the implementation is adjusted

by replacing the first line in the code above with

attended_symbols = torch.einsum(’bhij,ijhd->bihd’, attn_scores, sv)

The full implementation is made available through the project’s github repository.

Composing relational attention to learn hierarchical relations. We remark that composing relational attention modules can
be interpreted as representing hierarchical or higher-order relations. That is, relations between relations. An example of
this is the relation tested in the match pattern task in the relational games benchmark. After one iteration of relational
attention, an object’s representation is updated with the relations it has with its context. A second iteration of relational
attention now computes a representation of the relation between an object’s relations and the relations of the objects in its
context.

B.2. Encoder and Decoder Blocks

We briefly mention a few configurations in our implementation that appear in our experiments. We aimed to make our
implementation configurable to allow for various tweaks and optimizations that have been found in the literature for training
Transformer models.
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Symbol assignment. A shared symbol assignment module is used for all layers in the model. We explore three types of
symbol assignment mechanisms: positional symbols, position-relative symbols, and symbolic attention. Different symbol
assignment mechanisms are more well-suited to different tasks. We discuss ablation experiments we carried out on the effect
of the symbol assignment mechanism in Appendix C.

MLP block. The MLP block uses a 2-layer feedforward network with a configurable activation function. The intermediate
layer size is dff = 4 · dmodel by default. We also use the SwiGLU “activation function” [59] in some of our experiments.
SwiGLU is not merely an activation function, but is rather a neural network layer defined as the component-wise product of
two linear transformations of the input. It is a type of gated linear unit [60] with the sigmoid activation replaced with a
Swish activation [61], SwiGLU(x) = Swish(xW + b)⊗ (xV + c). This is used in the Llama series of models and was
found to be a useful modification [62].

Normalization. Either LayerNorm [63] or RMSNorm [64] can be used. Normalization can be performed post-attention,
like in the original Transformer paper [25], or pre-attention as in [65].

Positional encoding. Our experiments use either learned positional embeddings or RoPE [39].
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same occurs xoccurs between match patt

Figure 6. Examples of different tasks in the Relational Games benchmark. Each column corresponds to a different task in the benchmark.
The top row is an example of a positive instance and the bottom row is an example of a negative instance.

C. Experimental Details & Further Discussion
C.1. Relational Games (Section 4.1)

EXPERIMENTAL DETAILS

Dataset details. The Relational Games benchmark datasets consists of 36× 36× 3 RGB images depicting a 3× 3 grid of
objects which satisfy a particular visual relationship. The task is to identify whether a given relationship holds or not. The
set of objects consists of simple geometric shapes. Examples of each task are presented in Figure 5. For example, in the
occurs task, one object is present in the top row and three in the bottom row, and the task is to determine whether the object
in the top row occurs (i.e., is among) the objects in the bottom row. The most difficult task in the benchmark is the match
pattern task, where the grid contains a triplet of objects in the top row and another triplet of objects in the bottom row.
Each triplet satisfies some relationship (e.g., ABC, ABA, ABB, or AAB), and the task is to determine whether the relation in
the first triplet is the same as the relation in the second triplet. The difficulty in solving this task is that it requires parsing
a second-order relation (a relation between relations). We remark that composing relational attention modules naturally
captures this kind of hierarchical relations: the first relational attention operation produces objects representing relational
information and the second would compute relations between those relations (i.e., second-order relations).

Model architectures. We use a Vision-Transformer-type architecture where the input image is split up into patches, flattened,
and passed through the sequence model with added learned positional embeddings. We use average pooling at the end and
pass through an MLP to produce the final prediction. We use a patch size of 12× 12 which separates objects according to
the grid structure. We note that in more general visual relational reasoning tasks where there isn’t this type of grid structure,
it would be appropriate to combine our approach with an object-discovery module such as Slot Attention [66].

We use 2-layer models. The DAT models use dmodel = 128, dff = 256. One set of Transformer baselines uses the same,
while another is larger with dmodel = 144, dff = 288. All models use SwiGLU “activation”, dropout rate = 0.1, and
pre-LayerNormalization. For the DAT models, we use positional symbols as the symbol assignment mechanism. The
composition of sensory and relational attention heads are depicted in the figure. In Figure 2, we use symmetric relations
(i.e., imposing that W rel

q = W rel
k ). Below, we also explore the effect of this inductive bias, evaluating variants without the

symmetry constraint.

Training details. For each task and model, we evaluated learning curves by varying the training set size and training the
model until convergence, then evaluating on a hold-out test set. For four out of five of the tasks, we evaluate learning curves
within the range of 250 to 2, 500 samples, in increments of 250. For the more difficult match pattern, the range is
from 5, 000 to 25, 000 in increments of 5, 000. The ranges were chosen based on the difficulty of the different tasks in order
to identify the right “resolution”. When evaluating learning curves, each training set is sampled randomly from the full
dataset. For each task, model, and training set size, we repeat the experiment 5 times with different random seeds to compute
approximate confidence intervals (accounting for randomness in sampling the dataset and random initialization). We use an
Adam optimizer with a learning rate of 0.001, β1 = 0.9, β2 = 0.99, and a batch size of 512. We train for 50 epochs.
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FURTHER DISCUSSION, EXPLORATION, & ABLATIONS

Comparison to previous relational architectures. Previous research has explored relational learning in synthetic settings,
proposing various architectures with relational inductive biases. Here, we compare DAT to three such architectures:
PrediNet [20], CoRelNet [21], and Abstractor [22]. Unlike DAT, these architectures use subtractive rather than additive
relational inductive biases, imposing constraints on the types of learnable representations to improve relational learning
efficiency. As a result, they are not general-purpose architectures and cannot be applied to broader domains such as language
modeling. Nonetheless, it is useful to compare DAT against those architectures to explore the trade-offs of strong inductive
biases and evaluate DAT in comparison to alternative approaches to relational learning. Figure 6 shows learning curves
comparing DAT against those baselines. DAT performs competitively with previous relational architectures, generally
outperforming PrediNet and Abstractor, while performing marginally worse than CoRelNet. It is relevant to note that
CoRelNet incorporates strong task-specific inductive biases, and was partially designed with this benchmark in mind.
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Figure 7. Learning curves on the Relational Games benchmark, comparing DAT against previously-proposed relational architectures. DAT
performs competitively with previous relational architectures.

Ablation over symmetry. We performed an ablation over the symmetry inductive bias in the relations computed in relational
attention. Our implementation exposes an argument which controls whether the relation r(x, y) = (⟨W rel

q,ℓ ,W
rel
k,ℓ⟩)ℓ∈[dr] ∈

Rdr modeled in relational attention is constrained to be symmetric by setting W rel
q,ℓ = W rel

k,ℓ. Indeed, we find symmetry to be
a useful inductive bias in this task. Figure 7 depicts learning curves for the two configurations of DAT comparing symmetric
RA against asymmetric RA. We find that symmetry results in faster learning curves for both configurations.

C.2. Mathematical Problem-Solving (Section 4.2)

EXPERIMENTAL DETAILS

Dataset details. Saxton et al. [42] propose a benchmark to assess neural models’ ability to perform mathematical reasoning.
The dataset consists of a suite of tasks in free-form textual input/output format. The tasks cover several topics in mathematics,
including arithmetic, algebra, and calculus. For each task, the authors programmatically generate 2× 106 training examples
and 104 validation examples. Questions have a maximum length of 160 characters and answers have a maximum length of
30 characters.

Model architectures. We use an encoder-decoder architecture for this experiment, treating it as a sequence-to-sequence
task. We use character-level encoding with a common alphabet of size 85 containing small and upper case letters, digits
0-9, and symbols (e.g., *, /, +, -). We vary the number of layers to explore how performance scales with model size
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Figure 8. An ablation of the effect of symmetry in relational attention in the relational games experiments.

in DAT compared to standard Transformers. Each encode/decoder block uses ReLU activation, dropout rate = 0.1, and
post-normalization. We use dmodel = 128, dff = 256 for the DAT models and dmodel = 144, dff = 288 in the Transformer
models to control for parameter count and give the Transformer an advantage in the evaluation. Sinusoidal positional
embeddings are used as the positional encoding method. For all models, the total number of attention heads (across
self-attention and relational attention) is 8. For the Transformer model, there are only self-attention heads: nsa

h = 8 for
both the encoder and decoder. For DAT, we evaluated two configurations for the composition of head types, one with
nsa
h = nra

h = 4 in the encoder and nsa
h = 8, nra

h = 0 in the decoder (i.e., standard Transformer Decoder), and one with
nsa
h = 4 = nra

h = 4 in the encoder and nsa
h = 4 = nra

h = 4 in the decoder. The number of cross-attention heads in the
decoder is 8 in all cases. No symmetry constraint is made on relational attention. Position-relative symbols are used as the
symbol assignment mechanism, and the symbol library is shared across all layers in both the encoder and decoder.

Training Details. Each model is trained on each task for 50 epochs. We use the Adam optimizer with β1 = 0.9, β2 = 0.995,
a learning rate of 6× 10−4, and a batch size of 128. We evaluate and track the per-character accuracy over the course of
training. We repeat this process 5 times for each combination of model and task with different random seeds to compute
approximate confidence intervals.

FURTHER DISCUSSION, EXPLORATION, & ABLATIONS

Table 2 reports the full set of results obtained for this experiment, including certain configurations omitted from the figure in
the main text.

C.3. Visual Processing (Section 4.3)

EXPERIMENTAL DETAILS

Dataset details. In this set of experiments, we use the CIFAR-10 and CIFAR-100 datasets [44] which are datasets of
labeled small images. The CIFAR-10 dataset consists of 60, 000 32× 32 RGB images, evenly split across 10 classes. The
CIFAR-100 dataset consists of 60, 000 RGB images of the same size, evenly split across 100 classes.

Model architectures. We use a ViT-style architecture [41]. RGB images are divided into 4× 4 patches, flattened, linearly
embedded into a vector, and fed through an Encoder. We use average pooling followed by an MLP to produce the final
prediction. We evaluate 8-layer models with dmodel = dff = 384, GeLU activation, Pre-LayerNormalization, and no

20



Relational & Sensory Processing in Transformers

Task Model Parameter Count # Layers dmodel Encoder nsa
h Encoder nra

h Decoder nsa
h Decoder nra

h Accuracy

algebra__linear_1

Transformer 692K 2 128 8 0 8 0 62.5± 1.1%
DAT 783K 2 128 4 4 8 0 66.5± 1.0%
Transformer 871K 2 144 8 0 8 0 64.0± 1.5%
DAT 1.09M 3 128 4 4 8 0 68.1± 6.5%
Transformer 1.3M 3 144 8 0 8 0 57.0± 2.3%
DAT 1.43M 4 128 4 4 8 0 73.1± 1.1%
Transformer 1.7M 4 144 8 0 8 0 53.2± 1.1%

algebra__sequence_next_term

Transformer 692K 2 128 8 0 8 0 91.1± 0.2%
DAT 783K 2 128 4 4 8 0 91.6± 0.6%
Transformer 871K 2 144 8 0 8 0 91.4± 0.2%
DAT 1.09M 3 128 4 4 8 0 97.0± 0.5%
Transformer 1.3M 3 144 8 0 8 0 96.1± 0.5%
DAT 1.43M 4 128 4 4 8 0 –
Transformer 1.7M 4 144 8 0 8 0 93.4± 2.0%

calculus__differentiate

Transformer 692K 2 128 8 0 8 0 99.9± 0.0%
DAT 783K 2 128 4 4 8 0 100.0± 0.0%
Transformer 871K 2 144 8 0 8 0 99.9± 0.0%
DAT 1.09M 3 128 4 4 8 0 –
Transformer 1.3M 3 144 8 0 8 0 99.9± 0.0%
DAT 1.43M 4 128 4 4 8 0 100.0± 0.0%
Transformer 1.7M 4 144 8 0 8 0 99.9± 0.0%

polynomials__add

Transformer 692K 2 128 8 0 8 0 83.3± 0.1%
DAT 783K 2 128 4 4 8 0 85.6± 0.0%
Transformer 871K 2 144 8 0 8 0 84.5± 0.3%
DAT 1.09M 3 128 4 4 8 0 87.8± 0.1%
Transformer 1.3M 3 144 8 0 8 0 86.4± 0.3%
DAT 1.43M 4 128 4 4 8 0 88.7± 0.0%
Transformer 1.7M 4 144 8 0 8 0 87.6± 0.2%

polynomials__expand

Transformer 692K 2 128 8 0 8 0 74.0± 0.7%
DAT 783K 2 128 4 4 8 0 77.8± 0.1%
Transformer 871K 2 144 8 0 8 0 74.1± 0.6%
DAT 1.09M 3 128 4 4 8 0 –
Transformer 1.3M 3 144 8 0 8 0 81.0± 1.2%
DAT 1.43M 4 128 4 4 8 0 91.4± 0.9%
Transformer 1.7M 4 144 8 0 8 0 89.2± 0.5%

Table 2. Full results of mathematical problem-solving experiments. For each task, this table shows the mean test character-level accuracy
± the standard error of mean for each model configuration.
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Dataset Model Parameter Count # Layers dmodel nsa
h nra

h Symmetric rij Accuracy

CIFAR-10
ViT 7.1M 8 384 12 0 NA 86.4± 0.1%

ViDAT
6.0M 8 384 6 6 Yes 89.7± 0.1%
6.6M 8 384 6 6 No 89.5± 0.1%

CIFAR-100
ViT 7.2M 8 384 12 0 NA 68.8± 0.2%

ViDAT
6.1M 8 384 6 6 Yes 70.5± 0.1%
6.7M 8 384 6 6 No 70.5± 0.1%

Table 3. Ablation over symmetry of rij in relational attention for image recognition experiments.

Dataset Model Parameter Count # Layers dmodel nsa
h nra

h Accuracy

CIFAR-10 ViT 7.1M 8 384 12 0 89.5± 0.1%
ViDAT 6.0M 8 384 6 6 91.7± 0.1%

CIFAR-100 ViT 7.2M 8 384 12 0 68.2± 0.1%
ViDAT 6.1M 8 384 6 6 70.9± 0.1%

Table 4. Classification accuracy on CIFAR-10 and CIFAR-100 with AutoAugment data augmentation during training. Each training
configuration is repeated 10 times with different random seeds; we report the mean accuracy ± the standard error of mean. DAT continues
to outperform the standard Vision Transformer.

dropout. The ViT model has nsa
h = 12 standard self-attention heads, while the DAT model uses both sensory and relational

heads, with an even split nsa
h = nra

h = 6. In the main text, we use symmetric relations rij with the intuition that visual
processing involves symmetric attribute-similarity relations. We also carried out experiments with asymmetric relations
and discuss the results below. In DAT, we use position-relative symbols as the symbol assignment mechanism. Further, we
use Grouped Query Attention [67] in DAT to reduce the parameter count to account for the added parameters in relational
attention.

Training Details. We train for 100 epochs. We use the Adam optimizer with a learning rate schedule consisting of a
gradual warmup to 10−3 in the first 5 epochs, followed by a cosine rate decay down to 10−5. We use the hyperparameters
β1 = 0.9, β2 = 0.999, and weight decay of 5 · 10−5. We normalize the images channel-wise such that pixels have mean
zero and unit standard deviation. In the results reported in Table 1 in the main text, we use random cropping, MixUp [45],
and CutMix [46] as data augmentation techniques during training. We also report results using AutoAugment [68] below.

FURTHER DISCUSSION, EXPLORATION, & ABLATIONS

Effect of symmetry in rij . In the main text, Table 1 reports DAT results with symmetric relations rij by imposing
W rel

q = W rel
k . Here, we explore the effect of this choice. Table 3 compares DAT models with and without the symmetry

constraint. We find no significant difference in performance. Though, we note the smaller parameter count in the symmetric
variant.

Interpretability Visualization. ?? depicts a visualization of the relations learned by a ViDAT model trained on the CIFAR
dataset. The relations rij in relational attention can be interpreted as applying the source patch i as a filter, comparing it
against each patch j. The different components of rij can be seen as analogous to the channels in a convolution operation.
We see that some relations in the ViDAT model appear to capture a human-interpretable notion of visual similarity across
patches.

Alternative data augmentation. In the main text, we use random cropping, MixUp, and CutMix data augmentation during
training. Here, we report results on an alternative data augmentation technique: AutoAugment [68]. AutoAugment is
an optimized set of data augmentation policies, found through a data-dependent automatic search procedure. At each
mini-batch, a random sub-policy is chosen which consists of image processing operations such as translation, rotation, or
shearing. Table 4 reports results using this data augmentation procedure. We continue to find that ViDAT outperforms the
standard ViT model.

22



Relational & Sensory Processing in Transformers

(a) Original Image (b) A Relation in the First Layer (c) A Relation in the Fifth Layer

Figure 9. A visualization of the relations rij [ℓ] learned by an 8-layer 6M-parameter ViDAT model trained on CIFAR. The left panel
depicts the original image input. The middle and right panels depict the first relation in the relation vector rij between the source patch i
(red outline) and every other patch j. The relation activation is normalized with the tanh function for visualization. The normalized value
of the relation is represented by a tint in each patch j—a green hue for large positive activations and a red tint for negative activations.

C.4. Language Modeling (Section 4.4)

EXPERIMENTAL DETAILS

Dataset details. The FineWeb-Edu [50] dataset is a curated dataset of text data. It is generated by filtering the large-scale
FineWeb dataset for LLM pre-training [69] using an educational quality classifier trained on annotations generated by
Llama3-70B-instruct. FineWeb-Edu has been shown to outperform FineWeb on several benchmarks, demonstrating the
importance of data quality. We train our language models on a random subset of 10 billion tokens of FineWeb-Edu.

Model Architectures. We use a Decoder-only architecture, with causal attention for autoregressive language modeling. We
vary model size to explore the scaling properties of DAT with respect to both model size and data size, comparing to the
scaling properties of standard Transformers. Our architectural hyperparameters follow common choices at different model
scales, based on scaling analyses performed for Transformers [69]. We explore 3 model scales: 350M (dmodel = 1024, nh =
16, L = 24), 750M (dmodel = 1536, nh = 24, L = 24), and 1.3B (dmodel = 2048, nh = 32, L = 24) parameters. We use
dff = 4 · dmodel, GeLU activation, RoPE positional encoding, no bias, no dropout, and Pre-LayerNormalization. We use the
GPT2 tokenizer [70]. We use symbolic attention as the symbol assignment mechanism, with the number of symbols in
the symbol library scaling with model size: 1024 symbols and 8 heads for the 350M and 750M scale models, and 2048
symbols with 16 heads for the 1.3B scale model. We also increase the relation dimension with model size. We don’t impose
a symmetry constraint, with the intuition that linguistic relations can be asymmetric. We use Grouped Query Attention in
the DAT models to reduce parameter count to account for the added parameters in relational attention, making them smaller
overall compared to the Transformer baselines at each parameter scale.

Training Details. We train for 10B Tokens, with each batch containing 524, 288 tokens, split into context windows of 1, 024
tokens. We use gradient accumulation to fit micro-batches into memory. We use the AdamW optimizer with a maximum
learning rate of 6× 10−4 and minimum learning rate of 6× 10−5, first linearly warming up over the first 715 steps, then
decaying back down with a cosine schedule. We use β1 = 0.9, β2 = 0.95 and a weight decay of 0.1. We also use gradient
clipping to unit norm.

FURTHER DISCUSSION, EXPLORATION, & ABLATIONS

Figure 4 in the main text depicts the scaling properties of a DAT language model with respect to model size and data size
compared to a standard Transformer. Here, we provide a few additional representations of the results. Table 5 reports the
end-of-training validation perplexity of the different models.

Figure 9 depicts training curves for the different model scales. We observe a power law scaling of the validation loss with
respect to number of training tokens. This matches the neural scaling laws [34], which suggest that validation loss ought
to scale roughly as d−α where d is the amount of training data and the exponent α is a constant that depends on model
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architecture, training details, etc.

Table 5. End-of-training validation perplexity in language modeling on FineWeb-Edu dataset.

Model Param count # Tokens dmodel nlayers nsa
h nra

h dr nh
kv Perplexity ↓

Transformer 353M 10B 1024 24 16 - - - 16.94
DAT 343M 10B 1024 24 8 8 64 4 16.09

Transformer 757M 10B 1536 24 24 - - - 14.65
DAT 734M 10B 1536 24 12 12 64 6 14.31

Transformer 1.31B 10B 2048 24 32 - - - 13.63
DAT 1.27B 10B 2048 24 16 16 128 8 13.43
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Figure 10. Validation loss on a logarithmic scale to examine data scaling laws. Dual Attention Transformer language models obey similar
scaling laws as standard Transformers with respect to the amount of training data, while consistently achieving smaller loss at multiple
model scales.
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D. Comparison to Altabaa et al. [22]: Abstractors and Relational Cross-Attention
A closely related work is Altabaa et al. [22], which proposes a Transformer-based module called the “Abstractor” with
relational inductive biases. The core operation in the Abstractor is a variant of attention dubbed “relational cross-attention”
(RCA). In this section, we will discuss the relation between the Dual Attention Transformer and the Abstractor.

D.1. Comparison between RA (this work) and RCA [22]

Altabaa et al. [22] propose a variant of attention called relational cross-attention which shares some characteristics with our
proposal of what we’re calling “relational attention” in this work. In this discussion, we will use the acronyms RCA and RA,
respectively to distinguish between the two.

RCA processes a sequence of objects x = (x1, . . . , xn) and produces a sequence of objects x′ = (x′
1, . . . , x

′
n) via the

following operation

x′ ← σrel (ϕq(x)ϕk(x)
⊺
) s,

s = SymbolRetriever(x)

where ϕq, ϕk are query and key transformations, and the symbols s take the same role as in this work. σrel is referred to as a
“relation activation”. It may be either softmax or an element-wise activation (e.g., tanh, sigmoid, or linear). For the purposes
of this discussion, let us consider σrel = Softmax, which was used in the majority of the experiments in [22].

To facilitate the discussion, let us write RA and RCA side-by-side using a common notation.

RA (this work) RCA [22]
(x′

1, . . . , x
′
n)← RA(x;Slib), (x′

1, . . . , x
′
n)← RCA(x;Slib)

x′
i =

n∑
j=1

αij

(
r(xi, xj)Wr + sj Ws

)
, x′

i =

n∑
j=1

αij sj ,

α = Softmax
(
ϕq(x)ϕk(x)

⊺)
, α = Softmax

(
ϕq(x)ϕk(x)

⊺)
,

r(x, y) =
( 〈

ϕrel
q,ℓ(x), ϕ

rel
k,ℓ(y)

〉 )
ℓ∈[dr]

,

(s1, . . . , sn) = SymbolRetriever(x; Slib) (s1, . . . , sn) = SymbolRetriever(x; Slib)

RCA can be understood as self-attention, but the values are replaced with symbols (i.e., Attention(Q← x, K ← x, V ←
s)). By viewing the attention scores αij as relations, this has the effect of producing a relation-centric representation. The
rationale is that in standard self-attention, the attention scores form a type of relation, but these relations are only used as
an intermediate processing step in an information-retrieval operation. The relations encoded in the attention scores are
entangled with the object-level features, which have much greater variability. This thinking also motivates the design of RA
in the present work.

RCA can be understood as computing a pairwise relation ⟨ϕattn
q (xi), ϕ

attn
k (xj)⟩ between xi and each xj in the context, and

retrieving the symbol sj associated with the object xj with which the relation is strongest. That is, RCA treats the relations
and the attention scores as the same thing. By contrast, the attention operation and computation of relations are separate in
RA. The attention component is modeled by one set of query/key maps ϕattn

q , ϕattn
k and the relation component is modeled

by another set of query/key maps (ϕrel
q,ℓ, ϕ

rel
k,ℓ)ℓ∈[dr].

The intuitive reason for this choice is that, for many tasks, the optimal “selection criterion” will be different from the
task-relevant relation. For example, in a language modeling task, you may want to attend to objects on the basis of proximity
and/or syntax while being interested in a relation based on semantics. Similarly, in a vision task, you may want to attend to
objects on the basis of proximity, while computing a relation across a certain visual attribute. Thus, the relational attention
mechanism proposed in this work offers greater flexibility and expressivity compared to RCA.

In RA, the symbols maintain the role of identifying the source. But they are now explicitly attached to a separately
parameterized relation vector.
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D.2. Comparison between DAT and the Abstractor

We now briefly discuss the differences in the corresponding model architectures. Altabaa et al. [22] propose an encoder-
like module called the Abstractor which consists of essentially replacing self-attention in an Encoder with relational
cross-attention. That is, it consists of iteratively performing RCA followed by an MLP. The paper proposes sev-
eral ways to incorporate this into the broader Transformer architecture. For example, some of the experiments use a
Encoder → Abstractor → Decoder architecture to perform a sequence-to-sequence task. Here, the output of a
standard Transformer Encoder is fed into an Abstractor, and the Decoder cross-attends to the output of the Abstractor. In
another sequence-to-sequence experiment, Altabaa et al. [22] use an architecture where the Decoder cross-attends to both
the Encoder and the Abstractor, making use of both sensory and relational information. In particular, the standard encoder
and decoder blocks are the same (focusing on sensory information), but an additional module is inserted in between with a
relational inductive bias.

By contrast, our approach in this paper is to propose novel encoder and decoder architectures imbued with two distinct types
of attention heads, one with an inductive bias for sensory information and the other with an inductive bias for relational
information. This has several potential advantages. The first is versatility and generality. The Abstractor architectures that
were explored in [22] only explicitly support sequence-to-sequence or discriminative tasks. For example, they do not support
autoregressive models like modern decoder-only language models (e.g., of the form we experiment with in Section 4.4).
Moreover, even in sequence-to-sequence tasks, Abstractor architectures only support relational processing over the input
sequence, but they do not support relational processing over the target sequence (since the decoder does not have RCA).
Another potential advantage of DAT is simplicity. The Abstractor paper proposes several architectures and configurations
for the Encoder/Abstractor/Decoder modules, introducing several hyperparameters that are not trivial to choose. Moreover,
it is unclear how to interpret this kind of architecture as the number of layers increases, and the original paper does not
experiment with scaling up the number of layers. The final potential advantage is increased expressivity. In DAT, the two
types of attention heads exist side by side in each layer. This allows relational attention heads to attend to the output of the
self-attention heads at the previous layer, and vice-versa. This yields broader representational capacity, and potentially more
interesting behavior as we scale the number of layers.

D.3. How would RCA perform in an DAT-style dual head-type architecture?

One question one might ask is: how would an DAT-style dual head-type architecture perform if we used Altabaa et al. [22]’s
RCA instead of the RA head-type proposed in this work? We carried out a few ablation experiments to answer this question.

Figure 10 compares learning curves on the relational games benchmark between standard DAT (with RA-heads) and a
version of DAT with Altabaa et al. [22]’s RCA heads. We find that the two models perform similarly, with most differences
small enough to be within the margin of error. This figure depicts the configuration with asymmetric RA and positional
symbols.

Figure 11 depicts the validation loss curves on a small-scale language modeling experiment based on the Tiny Stories
dataset [71], comparing standard DAT against a version with RCA heads. Here, we find that our relational attention heads
yield better-performing models, with the RCA-head variant of DAT performing no better than a standard Transformer with a
matching total number of heads.
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Figure 11. Learning curves for DAT with RA compared with DAT with RCA on the relational games benchmark. The performance is
similar, with most differences within the margin of error.
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Figure 12. Ablation of relational attention type. The solid line depicts the form of relational attention proposed in this work. The dotted
line depicts RCA as proposed by Altabaa et al. [22]. We find that our relational attention mechanism performs better, whereas RCA
performs no better than a Transformer.
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