
Flatness is Necessary, Neural Collapse is Not:
Rethinking Generalization via Grokking

Ting Han
Lamarr Institute, TU Dortmund, Germany
and Institute for AI in Medicine, UK Essen

ting.han@tu-dortmund.de

Linara Adilova
Research Center Trustworthy Data Science

and Security of the University Alliance Ruhr,
TU Dortmund, Germany

Henning Petzka
Ruhr University Bochum, Germany

Jens Kleesiek
Institute for AI in Medicine, UK Essen

and Department of Physics, TU Dortmund, Germany

Michael Kamp
Lamarr Institute, TU Dortmund, Germany
and Institute for AI in Medicine, UK Essen

michael.kamp@tu-dortmund.de

Abstract

Neural collapse, i.e., the emergence of highly symmetric, class-wise clustered
representations, is frequently observed in deep networks and is often assumed to
reflect or enable generalization. In parallel, flatness of the loss landscape has been
theoretically and empirically linked to generalization. Yet, the causal role of either
phenomenon remains unclear: Are they prerequisites for generalization, or merely
by-products of training dynamics? We disentangle these questions using grokking,
a training regime in which memorization precedes generalization, allowing us to
temporally separate generalization from training dynamics and we find that while
both neural collapse and relative flatness emerge near the onset of generalization,
only flatness consistently predicts it. Models encouraged to collapse or prevented
from collapsing generalize equally well, whereas models regularized away from flat
solutions exhibit delayed generalization, resembling grokking, even in architectures
and datasets where it does not typically occur. Furthermore, we show theoretically
that neural collapse leads to relative flatness under classical assumptions, explaining
their empirical co-occurrence. Our results support the view that relative flatness
is a potentially necessary and more fundamental property for generalization, and
demonstrate how grokking can serve as a powerful probe for isolating its geometric
underpinnings.1

1 Introduction

Overparameterized neural networks continue to challenge classical learning theory. Despite their
capacity to memorize arbitrary labels [Zhang et al., 2017], they often generalize well on natural data
and, in some cases, only begin to generalize after complete memorization, a phenomenon known
as grokking [Power et al., 2022]. This apparent contradiction has motivated a renewed interest in
identifying geometric signatures of generalization. Two candidates have emerged as particularly
prominent: the flatness of the loss landscape [Keskar et al., 2017, Jiang et al., 2020, Petzka et al.,

1Code implementation: https://github.com/TrustworthyMachineLearning-Lab/grokking flatness.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/TrustworthyMachineLearning-Lab/grokking_flatness

2021] and the neural collapse (NC) phenomenon [Papyan et al., 2020, Mixon et al., 2022, Zhou et al.,
2022]. Both tend to appear late in training and are frequently associated with good generalization,
yet their precise causal roles remain unclear.

In this paper, we challenge the common conjecture that NC is necessary for generalization [Mixon
et al., 2022, Zhou et al., 2022, Súkenı́k et al., 2023, Zhu et al., 2021]. Our key idea is to leverage
grokking as a unique observational window: since generalization emerges only after prolonged
memorization, it enables a clean separation between training dynamics and generalization. This
allows us to ask: do NC and flatness merely correlate with generalization, or do they contribute to it?

We measure both phenomena in the penultimate layer. For flatness, we adopt the relative flatness
metric proposed by Petzka et al. [2021], which considers the Hessian trace normalized by the weight
norm, a quantity theoretically and empirically shown to align with generalization. To make this
computable in large state-of-the-art neural networks, we employ the alternative closed-form upper
bound introduced by [Walter et al., 2024], which is valid in the penultimate layer under cross-
entropy loss. For NC, we measure the class-wise clustering of penultimate-layer representations
through empirical variance and mean properties, tracking its emergence throughout training. In
grokking experiments, we find that flatness emerges alongside generalization, never before. NC, in
contrast, appears earlier during memorization, suggesting that it can lead to, but is not neccessary for
generalization (cf. Fig. 1).

101 102 103 104 105

Training steps (log scale)

0

50000

100000

150000

200000

250000

300000

350000

400000

Re
la

tiv
e

Fl
at

ne
ss

Relative flatness
Training accuracy
Validation accuracy
Neural collapse clustering

0

20

40

60

80

100

Ac
cu

ra
cy

 /
Ne

ur
al

 C
ol

la
ps

e
Cl

us
te

rin
g

Figure 1: Neural collapse clustering and relative flatness
in grokking. While both correlate with generalization, neu-
ral collapse emerges early during memorization, whereas
flatness only drops sharply when generalization begins,
highlighting flatness as a better indicator of generalization
onset.

To isolate their functional roles, we per-
turb training dynamics. When we sup-
press collapse-style clustering, networks
still generalize robustly; test accuracy
remains high despite high clustering val-
ues. Flatness, however, is unaffected.
In contrast, regularizing against flatness,
i.e., encouraging sharp solutions, reli-
ably delays generalization and induces
grokking-like behavior even in settings
where it does not typically arise, in-
cluding ResNets on CIFAR-10, ViTs on
ImageNet and various pre-trained lan-
guage models on SST-5. These findings
point to flatness as a more fundamental
driver of generalization. To explain the
frequent co-occurrence of NC and flat-
ness, we provide a theoretical result: un-
der classical NC assumptions, collapse
leads to relative flatness. This unifies
previously observed correlations under
a single geometric framework, but also
shows that flatness can arise via other
mechanisms. NC is thus a sufficient but
non-exclusive path toward flatness. Fi-
nally, we revisit the theoretical frame-
work of Petzka et al. [2021], which as-
serts that generalization requires not only flatness, but also representativeness, i.e., the alignment
between learned features and the true data distribution. Our experiments confirm this dependency.
Representativeness, when approximated, improves only as generalization sets in, highlighting that
neither flatness nor collapse alone ensures generalization without meaningful feature alignment.

Together, these results place NC in a new light. While it often accompanies generalization, it is not
a prerequisite. Instead, it may serve as an inductive bias toward flatness under standard training
dynamics. Relative flatness, by contrast, tends to be empirically necessary and theoretically justified,
especially when labels are locally constant and features are representative—assumptions which
appear to hold in our experimental settings.

Our work provides new insight into the geometry of generalization:

2

• We show empirically that relative flatness, but not neural collapse, is potentially necessary
for generalization;

• we prove that neural collapse leads to relative flatness under classical assumptions;

• we demonstrate that grokking-like behavior can be actively induced by manipulating flatness,
even in real-world architectures.

These insights challenge prevailing narratives about generalization in deep learning and suggest new
levers for training, regularization, and model diagnostics.

2 Related Work

Despite substantial empirical success, the mechanisms driving generalization in deep neural networks
remain poorly understood. Two pronounced geometric perspectives, neural collapse and loss surface
flatness, have emerged as phenomena empirically correlated with generalization, but their interrelation
and causal roles remain ambiguous. In this work, we leverage the properties of grokking to disentangle
necessity from sufficiency and to assess which of these phenomena are required for generalization.

Neural Collapse and Generalization Neural collapse (NC) describes a geometric convergence dur-
ing training a classifier where penultimate layer features from the same class collapse to a single mean,
the means form a simplex equiangular tight frame, and classifier weights align accordingly [Papyan
et al., 2020]. This phenomenon has been widely observed at late training stages in overparameterized
networks [Han et al., 2022, Graf et al., 2021, Rangamani and Banburski-Fahey, 2022, Wu and
Papyan, 2024, Zhou et al., 2025] and has become a widely accepted indicator for generalization and
robustness. Under idealistic assumption of an unconstrained features model, i.e., a model which
optimizes features as free variables, NC has been shown to be the global optimal solution for various
loss functions [Mixon et al., 2022, Zhou et al., 2022, Súkenı́k et al., 2023, Zhu et al., 2021]. Similar
results for compatibility of zero test error and collapse of variances (so only NC1 condition) were
shown for mean-field networks [Wu and Mondelli, 2025]. Practical applications have leveraged
NC properties for downstream performance. For instance, Wu et al. [2025] use a feature separation
loss based on NC to improve out-of-distribution detection. Similarly, Munn et al. [2024] show that
lower geometric complexity in pre-trained representations fosters NC and leads to better few-shot
generalization in transfer learning. Galanti et al. [2022] shows theoretically and empirically that NC
is the reason for transfer learning to work better. These findings suggest that NC may be sufficient for
generalization in certain regimes. However, the open question remains: is NC necessary outside of
the unconstrained features models? For example, NC is a debated matter in the context of inbalanced
learning, where it was observed that minority collapse can happen, i.e., the means of the minority
classes merge, thus preventing classification [Fang et al., 2021]. At the same moment it is possible to
induce NC by enforcing it through training, even in the unbalanced data setup [Yang et al., 2022].
For deep linear networks it was also theoretically shown that the global optimum exhibits NC, but
even more: Under unbalanced data, NC gets means proportional to the class size [Dang et al., 2023].
Hui et al. [2022] argues for measuring NC on the test set for understanding generalization properties
and demonstrates that test set NC is hurting generalization performance on related downstream tasks,
i.e., representations with strong NC on the test set are bad for transfer learning. Moreover, Hong
and Ling [2024] show that a sufficiently high signal-to-noise ratio is a necessary condition for NC
to correlate with good generalization, explaining why strong NC can otherwise coincide with poor
transfer performance.

Overall, the existing research suggests that NC is common, but might not be required for generaliza-
tion: a network can generalize without NC and some setups (like noisy labels) can break the link
between generalization and NC. Our work addresses this question directly by constructing settings
in which models generalize without exhibiting NC, demonstrating that it is not a prerequisite for
generalization.

Flatness and Generalization The connection between loss surface flatness and generalization has
long been suspected [Hochreiter and Schmidhuber, 1997], and more recently has been supported
by empirical studies showing that flatness-based measures often outperform alternatives such as
norm-, margin- or optimization-based metrics [Jiang et al., 2020, Keskar et al., 2017]. However,
classical flatness measures, typically based on the Hessian of the loss with respect to parameters,

3

are known to be sensitive to reparameterizations that leave the function and generalization behavior
unchanged [Dinh et al., 2017], and computationally expensive for large state-of-the-art models. To
resolve this, Petzka et al. [2021] introduced a reparameterization-invariant measure of relative flatness,
grounded in a theoretical framework that connects flatness of an individual layer to generalization
under assumptions of representative data and locally constant labels. This formulation not only
explains prior empirical correlations, but also provides theoretically grounded conditions under which
flatness predicts generalization. Walter et al. [2024] further made this measure more practical by
deriving closed-form computation formulas in standard classification settings. In our work, we
empirically verify that relative flatness drops precisely when generalization emerges during grokking.
Moreover, we demonstrate that promoting relative flatness can actively induce generalization even
in the absence of NC. In doing so, we confirm and extend the theoretical framework of Petzka et al.
[2021], while disentangling flatness from NC.

Grokking as a Window into Generalization Grokking refers to the sudden emergence of gen-
eralization long after perfect training performance is achieved, as first described by Power et al.
[2022]. This phase transition, which is often induced by implicit or explicit regularization, offers
a unique opportunity to isolate potential causes for the emergence of generalization. Recent work
explains grokking through two-phase dynamics: an initial kernel regime focused on memorization,
followed by feature learning that supports generalization [Mohamadi et al., 2023, Lyu et al., 2024,
Kumar et al., 2024]. Analytical studies reveal closed-form grokking solutions in modular arithmetic
tasks [Gromov, 2023, Žunkovič and Ilievski, 2024], while mechanistic studies identify sparse and
dense subnetworks competing during training [Nanda et al., 2023, Gouki et al., 2023]. Most of these
studies focus on shallow networks or toy tasks. However, recent work shows that grokking also
arises in deeper architectures and real-world datasets [Murty et al., 2023, Humayun et al., 2024],
suggesting greater relevance. We build on this foundation by using grokking as an experimental lens:
By tracking the timing of flatness, NC, and generalization, we are able to distinguish which factors
are causally connected and which are merely correlated.

3 Geometric Foundations of Generalization

In this work, we investigate the interplay between generalization and two notable phenomena in
modern deep learning: neural collapse, and flatness of the loss surface. These concepts are frequently
observed to co-occur late in training, but their individual roles and causal relations remain poorly
understood. Our goal is to disentangle their contributions to model performance by leveraging
the grokking setting, in which memorization precedes generalization, allowing us to observe the
emergence of each phenomenon in isolation.

Generalization A central objective in machine learning is to ensure that a trained model not
only performs well on the training data, but also generalizes to unseen data drawn from the same
distribution. This difference in performance is formalized via the generalization gap. Let f : X → Y
be a model from a model class F trained with a twice-differentiable loss function ℓ : Y × Y → R+

on a finite training set S ⊆ X × Y , drawn i.i.d. from a data distribution D over the input space
X and output space Y . The generalization gap is defined as Egen(f, S) := E(f) − Eemp(f, S),
where E(f) := E(x,y)∼D [ℓ(f(x), y)] is the risk and Eemp(f, S) :=

1
|S|
∑

(x,y)∈S ℓ(f(x), y) is the
empirical risk. The model generalizes well when Egen(f, S) is small, indicating close alignment
between training and test performance.

Neural Collapse and the NCC Measure Neural collapse (NC) is a geometric phenomenon
characterizing the late stages of training in deep classification networks [Papyan et al., 2020, Mixon
et al., 2022]. It manifests as an alignment of the learned representations such that: (1) within each
class, features in the penultimate layer collapse to their class mean; (2) the class means themselves
form a simplex equiangular tight frame, a maximally spaced configuration; (3) the classifier weights
align with these class means; and (4) the classifier effectively becomes a nearest-neighbor model.

This structure has been theoretically motivated and empirically observed in both training and unseen
test samples, including new classes, particularly in transfer learning settings [Galanti et al., 2022]. To
quantify the emergence of NC, we adopt the simplified Neural Collapse Clustering (NCC) measure
proposed by Galanti et al. [2022], which captures the essential characteristics of neural collapse, i.e.,

4

tight intra-class clustering and strong inter-class separation, without requiring all four formal NC
conditions. This is the measure we use throughout our analysis.

Definition 3.1 (NCC Measure). Let ϕ(x) denote the penultimate-layer representation of input x, and
Dc the set of training samples from class c. Then

NCC :=
∑
c̸=c′

Vc + Vc′

2∥µc − µc′∥2
,

where µc :=
1

|Dc|
∑

x∈Dc
ϕ(x), Vc =

∑
x∈Dc

∥ϕ(x)− µc∥2 are the mean, respectively the variance
of representations of class c.

A low NCC value indicates tight intra-class clustering and well-separated class means, characteristic
of NC. In Section 5, we confirm that the NCC measure correlates with the angular separation of
means, thus capturing all the characteristics of NC.

Relative Flatness Flatness of the loss landscape, understood as the insensitivity of the training loss
to small perturbations in the parameter space, has long been linked to generalization research [Hochre-
iter and Schmidhuber, 1997, Keskar et al., 2017]. However, classical measures based on the Hessian
or curvature are sensitive to reparameterizations, making them unreliable in modern architectures.
To overcome this, Petzka et al. [2021] introduced a reparameterization-invariant notion of relative
flatness, grounded in a theory of robust generalization under locally constant labels.

Consider a model that decomposes as f(x,w) = g(wϕ(x)), where ϕ is a fixed feature map (e.g.,
the penultimate layer), w ∈ Rd×m is a weight matrix, and g is a twice-differentiable function. The
relative flatness is defined via the trace-weighted Hessian along the directions spanned by w.

Definition 3.2 (Relative Flatness). Let g, ℓ be twice differentiable, and S a sample set. Then:

κϕ
Tr(w) :=

d∑
s,s′=1

⟨ws,ws′⟩ · Tr(Hs,s′(w, ϕ(S))),

where ws denotes the s-th row of w, ⟨·, ·⟩ is the scalar product, and Hs,s′(w, ϕ(S)) is the Hessian of
the empirical loss with respect to ws and ws′ evaluated at ϕ(S).

This measure is invariant to neuron-wise rescaling and composition with orthogonal transformations,
making it robust across different parameterizations. Under mild assumptions—namely, that the
training data is representative and the labels are locally constant in feature space—relative flatness
predicts generalization. Note that a small value of κϕ

Tr(w) is indicative of a flat solution and good
generalization. In Section 5, we further show that NC leads to low relative flatness, establishing a
theoretical dependency between the two phenomena.

On the Role of Representativeness Both neural collapse and relative flatness have been proposed
as geometric signatures of generalization. However, neither property is meaningful in isolation:
their predictive value depends critically on the relationship between training and test distributions in
feature space. In particular, if the training features are not representative of the full data distribution,
then both NC and flatness can emerge without leading to generalization. For example, consider a
network that perfectly collapses the training set into a class-wise simplex configuration and assigns
test samples to incorrect cluster means. (On discrete data, such a network function can be easily
constructed.) Prediction will then fail despite the presence of collapse. This limitation also holds
for relative flatness: a flat but non-representative model does not generalize [cf. Sec. 2, Petzka
et al., 2021]. While NC lacks a rigorous definition of representativeness, relative flatness is grounded
in a formal framework that makes the required assumptions explicit. In particular, the theory of
ε-representativeness [Petzka et al., 2021] defines a condition under which robustness in feature space
becomes necessary for generalization. Under this assumption, relative flatness serves as an upper
bound on feature robustness and provides a tractable diagnostic for generalization. This perspective
clarifies that our analysis operates under the assumption of representative features—an assumption
that is empirically supported in our settings, as we demonstrate in Appendix D.

5

0 50 100 150 200 250
Training epochs

50

60

70

80

90

100
(a) Training/validation accuricies

Training acc.
Val acc.
Training acc. (REG)
Val acc. (REG)

0 50 100 150 200 250
Training epochs

0

100

200

300

400

500

600

700

(b) Relative flatness
Relative flatness
Relative flatness (REG)

0 50 100 150 200 250
Training epochs

0

2

4

6

8

10

(c) Neural collapse clustering (NCC)
NCC
NCC (REG)

Figure 2: Results of neural collapse clustering regularization on CIFAR-10. We display both
unregularized and regularized (REG) training dynamics for comparison. Increasing NCC does not
affect generalization or relative flatness, indicating that NC is not necessary for generalization. Figure
(a) shows the training and validation accuracies, and y-axis represents accuracy. Figure (b) presents
the relative flatness values during training, and y-axis represents measurement of relative flatness.
Figure (c) illustrates the NCC development, and y-axis represents NCC value.

4 Neural Collapse and Flatness in Delayed Generalization

Grokking refers to the surprising phenomenon in which a neural network, after memorizing the
training set with zero generalization for an extended period, suddenly begins to generalize with
high accuracy, often after tens or hundreds of thousands of additional optimization steps [Power
et al., 2022]. This temporal separation between memorization and generalization provides a unique
opportunity to disentangle the factors that underlie generalization. In our setting, we use grokking, or
delayed generalization, not as a curiosity, but as a causal probe: a mechanism for identifying which
geometric properties emerge coincidentally with generalization, and which ones may be functionally
necessary for it.

First, we study grokking on symbolic algorithmic tasks such as modular arithmetic (e.g., x + y
mod p), where networks are trained to predict the output of binary operations over abstract tokens.
These tasks are small, fully observable, and require exact generalization beyond memorized samples,
making them an ideal testbed. We follow the original setup of Power et al. [2022], training a 2
layer-transformer using the AdamW optimizer with a learning rate of 10−4 and weight decay of
1.0. Each experiment runs for 106 steps with a 50/50 train/validation split. All results are averaged
over three seeds. Figure 1 shows the evolution of train and validation accuracy, as well as relative
flatness (Def. 3.2), and neural collapse clustering (Def. 3.1) throughout training. We observe that both
measures decrease sharply when the network starts generalizing, however, NCC already decreases
during the memorization phase. Relative flatness remains high during the memorization phase and
decreases sharply near the point at which generalization begins. This temporal coincidence suggests
that both NCC and relative flatness are correlated with generalization, but representations start
exhibiting collapse behaviour before generalization has emerged.

However, temporal correlation is not causation. The simultaneous decrease of NCC and flatness
may reflect shared dependence on generalization, or confounders, rather than causal influence. The
grokking setting thus makes it clear that we must go further: it is not enough to ask whether these
quantities track generalization, we must ask whether they are causing it. In the following sections, we
address this question empirically. In Section 5, we show that neural networks can generalize without
exhibiting collapse. In Section 6, we provide empirical evidence that relative flatness is necessary for
generalization under mild assumptions.

5 Neural Collapse is not Necessary

Neural collapse (NC) is often observed in models that generalize well, leading to the impression that
it may play a functional role in generalization. However, correlation does not imply necessity. In this
section, we demonstrate both empirically and theoretically that NC is not required for generalization.
While collapse can accompany good generalization, it is not necessary: It is one path that leads to
flatness, and through flatness, to generalization.

6

To substantiate this claim, we explicitly suppress the emergence of NC during training without
affecting generalization. We train a ResNet-18 on CIFAR-10 using a regularized loss of the form:

LNC REG = LCE − λ · NCC,

where LCE is the standard cross-entropy loss and NCC is the NC clustering measure (Def. 3.1).
The NCC term penalizes tight clustering of penultimate-layer features by shrinking the distances
between class means and increasing intra-class variance, thereby actively discouraging the geometric
structure characteristic of NC. The training hyperparameter setups, additional experimental details
are provided in Appendix B.

0 50 100 150 200 250
Training epochs

35

40

45

50

55

60

65

An
gl

e
va

lu
e

(in
 d

eg
re

e)

Angle Difference
Angle Difference (REG)

Figure 3: Pairwise cluster angles vs. optimal 10-
simplex angles. Under NCC regularization, angles
drift from the optimal configuration, while in stan-
dard training they remain stable. ”REG” indicates
use of the NCC regularizer.

We show that generalization can occur without
NC in Figure 2. As shown in panel (a), both
training and validation accuracies remain unaf-
fected by the regularizer. Panel (b) shows that
relative flatness, our proxy for generalization,
also remains stable. However, panel (c) reveals
that NC is effectively suppressed: after a brief
drop in the NCC measure, it steadily increases
throughout training. This provides clear evi-
dence that generalization can occur in the com-
plete absence of NC, and that collapse is not a
necessary condition for generalization. In Fig-
ure 3 we confirm that the NCC measure correctly
captures cluster angles as well. Under neural col-
lapse, angles are close to the optimal 10-simplex,
yet when we regularize with the NCC measure,
angles deviate strongly from this optimum.

Why, then, does neural collapse often accom-
pany generalization? We argue that collapse is
one geometric pathway to flat solutions, which
are more directly linked to generalization. In
fact, under mild assumptions, NC in the penul-
timate layer leads to relative flatness2. This rela-
tionship is formalized below.

We assume that classical neural collapse [Papyan et al., 2020] in the limit holds for a network function
f . That is, the following four conditions apply to the neural network f(x) = softmax(wϕ(x) + b)
with ϕ(x) as the representation of the penultimate layer.

Assumptions 5.1 (Neural Collapse [Papyan et al., 2020]). Let ϕ(x) denote the penultimate layer
feature representation of an input x ∈ X , and for a dataset D ⊂ X , let Dc ⊆ D denote the set of
inputs belonging to class c ∈ {1, . . . , k}. Then the four neural collapse criteria are

(NC1) Feature representations collapse to class means: ϕ(x) = µc for all x ∈ Dc.

(NC2) All class means µc have equal distance to the global mean µg, i.e., ∥µc − µg∥2 = M , and
they form a centered equiangular tight frame (ETF), so that (µj − µg)

⊤(µc − µg) = − M2

k−1

for j ̸= c.

(NC3) The classifier weights align with class means, i.e., wj = λ(µj − µg) for all j and some
λ > 0.

(NC4) argmaxjw
⊤
j h+ bj = argminj∥h− µj∥.

Remark 5.2. For the proof of Proposition 5.3, we additionally assume that ∥µc∥ ≤ M for each c.
This entails that the center of the ETF is not diverging. This mild technical condition does not alter
the essence of the neural collapse assumptions.

2Related works often rely on simplifying assumptions, e.g., one-layer behavior or layer peeling [Mixon et al.,
2022, Fang et al., 2021], yet our analysis does not require such approximations.

7

0 50 100 150 200 250 300 350 400
Training epochs

20

40

60

80

100

(a) Training/validation accuricies (CIFAR10)

Training acc.
Val acc.

Training acc. (unplug)
Val acc. (unplug)

0 50 100 150 200 250 300
Training epochs

20

40

60

80

100

(b) Training/validation accuricies (IMAGENET100)

Training acc.
Val acc.

Training acc. (unplug)
Val acc. (unplug)

Figure 4: Results of inducing delayed generalization on training Resnet18 on CIFAR-10 and ViT on
ImageNet-100 through relative flatness regularization. We display both unregularized and regularized
(unplug) training dynamics for comparison. Relative flatness regularizer is removed at epoch 200 for
CIFAR-10 experiment and 150 for ImageNet-100. Delayed generalization occurs after the regularizer
is removed, as indicated by sharp increase in validation accuracy. Figure (a) shows the training and
validation accuracies on CIFAR-10, and Figure (b) on ImageNet-100.

Proposition 5.3. Let f(x) = softmax(wϕ(x) + b) be a neural network with softmax output and
trained with cross-entropy loss, where w ∈ Rk×d denotes the final-layer weight matrix classifying
into k classes and ϕ(x) is the penultimate-layer representation. Assume that the classical neural
collapse holds in the limit as above. Then relative flatness κϕ(w) is bounded by:

κϕ(w) ≤ λ2k3M4 · e−λM2· k
k−1(

1 + (k − 1)e−λM2· k
k−1

)2
In particular, for sufficiently large λ, this yields the asymptotic bound:

κϕ(w) ≲ λ2k3M4e−λM2· k
k−1 ,

which decays exponentially in λ.

The proof is provided in Appendix A. The fact that relative flatness indeed decreases to zero in the
limit follows from the fact that the conditions of neural collapse are independent of the weight norm
and thereby also the magnitude of the scalar λ. As training continues in the NC limit, the training loss
can be decreased to zero by increasing λ, because the softmax probabilities converge to ŷc(xc) = 1
and ŷj(xc) = 0, j ̸= c as λ→∞.

Taken together, our results demonstrate that, while NC can facilitate generalization by inducing
flatness, it is not a prerequisite. Flatness remains the more fundamental quantity, and its relevance
critically depends on the representativeness of the learned feature space. It remains to investigate
whether flatness is a sufficient condition and whether it could be necessary.

6 Relative Flatness is Necessary

In this section, we induce delayed generalization, similar to what is observed in grokking. These
experiments demonstrate that relative flatness is necessary for generalization. To achieve such
behaviour, we design a loss function that includes the following regularization term:

LRF REG = LCE − λ · κϕ
Tr(w),

where κϕ
Tr(w) is specified in Definition 3.2, and LCE denotes the cross-entropy loss. To efficiently

compute the relative flatness on the penultimate layer, we adopt the closed-form derivation under

8

cross-entropy loss provided by Walter et al. [2024]. By maximizing the relative flatness, we encourage
the network to explore sharper regions of the loss landscape rather than flatter ones, which leads to
suboptimal generalization. The coefficient λ controls the strength of the regularization. We train
ResNet-10 on CIFAR-10 and ViT [Dosovitskiy et al., 2021] on ImageNet-1003, both from scratch,
to evaluate the effectiveness of inducing delayed generalization in general settings by regularizing
relative flatness. The results are shown in Figure 4. We also fine-tune TinyBERT [Jiao et al., 2020]
and DistilGPT2 [Sanh et al., 2019] on SST-5 to show that delayed generalization can be induced
by regularizing relative flatness in pretrained language models. It is worth noting that stabilizing
training in sharp minima under the relative-flatness regularizer is nontrivial, since cross-entropy loss
reduces prediction uncertainty (in terms of the entropy of softmax), whereas the regularizer operates
effectively only under high uncertainty. Additional analysis of the behavior and sensitivity of the
regularizer, particularly its conflict with cross-entropy loss, is provided in Appendix C, which also
includes the training setups and additional experimental details.

From Figure 4 (a), we observe that the validation accuracy is low, but increases after the relative
flatness regularizer is removed at epoch 200. A similar phenomenon is observed in the results on
ImageNet-100, shown in Figure 4 (b) and in the NLP experiments presented in Appendix C.4. This
recovery is facilitated by applying standard regularization techniques after unplugging, helping the
model escape sharp minima and restore validation accuracy to the baseline. The successful induction
of delayed generalization in these tasks demonstrates that this effect is not exclusive to algorithmic
tasks trained with the next-token prediction objective. By surpressing relative flatness, we can induce
delayed generalization in more general tasks and training settings.

In particular, when the relative flatness regularizer is applied throughout the entire training process, the
final validation accuracy remains around 60% on CIFAR-10, whereas the optimal validation accuracy
reaches approximately 78%. For ImageNet-100, the stable validation accuracy under regularization
is around 38%, compared to an optimal accuracy of around 43%. A detailed analysis of pretrained
language models on SST-5 is provided in Appendix C.4. This gap in validation accuracy, caused by
the absense of relative flatness, suggests that optimal generalization cannot be achieved in such a way.

To further support the need for solutions to be flat for better generalization, we compute the relative
flatness values at the epoch right before the regularizer is removed and at the final training epoch.
For CIFAR-10, at the epoch 199, the measure of relative flatness under regularization is 2209.94,
which decreases to 1.91 at the final epoch. For ImageNet-100, the measure is 22212.75 at epoch
149 and 313.22 at the final epoch. We also observe similar trends on SST-5 with TinyBERT and
DistilGPT2 (Appendix C.4). Therefore, a smaller generalization gap is directly correlated with the
value of relative flatness.

Overall, these results provide strong empirical evidence that relative flatness is necessary for general-
ization, consistently observed across all evaluated tasks.

7 Discussion and Conclusion

Our results identify relative flatness as a potentially necessary condition for generalization in deep
networks, while neural collapse emerges as a correlated but non-essential feature of late-stage training.
This distinction reshapes our understanding of the geometry of well generalizing solutions and invites
several important reflections. Our experiments show that neural collapse tends to coincide with high
training accuracy but does not reliably track generalization. This suggests that it is more a byproduct
of training dynamics than a causal mechanism, a view that aligns with findings from Hui et al. [2022]
and Hong and Ling [2024]. Nevertheless, we show theoretically that under mild assumptions, neural
collapse-style clustering leads to relative flatness. As such, collapse may still serve as a practical
proxy for flat solutions in some settings.

While neural collapse produces highly symmetric and compact feature representations, this structural
simplicity can be problematic in transfer learning and out-of-distribution scenarios. For instance, if a
network is trained to classify supercategories by collapsing fine-grained class distinctions, it becomes
impossible to recover those distinctions later, thus limiting the generality and interpretability of the
learned features [Hui et al., 2022]. The requirement for geometric compression of the representation

3https://www.kaggle.com/datasets/ambityga/imagenet100/data

9

https://www.kaggle.com/datasets/ambityga/imagenet100/data

space, with neural collapse as one instance, has also been questioned from an information-theoretic
perspective on deep learning dynamics [Adilova et al., 2023b].

Flatness itself has also come under scrutiny, particularly in the context of sharpness-aware minimiza-
tion (SAM) [Foret et al., 2021] and recent critique by Andriushchenko et al. [2023]. However, many
such criticisms target classical flatness metrics, which are sensitive to reparameterization [Dinh et al.,
2017] or measures with unclear connection to geometric flatness [Andriushchenko and Flammarion,
2022]. Our analysis relies on relative flatness, a reparameterization-invariant measure with theoretical
guarantees [Petzka et al., 2021, Walter et al., 2024]. While it remains an open question how these
recent critiques translate to relative flatness, our findings suggest that it continues to offer a reliable
signal for generalization in the settings we consider. One of the notable properties of relative flat-
ness is that it is theoretically defined for a single, preselected layer, which enables computability
independent of the model size. This formulation also allows for a non-idealized comparison with
neural collapse, which is similarly defined in terms of single-layer properties, thereby enhancing the
precision of our analysis. At the same time, it raises questions about how to characterize embeddings
in other layers, since prior work [Zhang et al., 2022, Adilova et al., 2024, Ansuini et al., 2019]
has shown that different representations and layers exhibit distinct properties, even though relative
flatness appears to behave similarly across layers [Walter et al., 2025].

The theoretical link between relative flatness and generalization depends on two key assumptions:
that labels are locally constant and that the features at the selected embedding layer are representative
of the data distribution. In our settings (standard image classification, modular arithmetic tasks
and NLP tasks) both assumptions are well justified: (i) the assumption of locally constant labels
underlies the very notion of adversarial robustness, and its empirical validity is supported by our
experimental findings, and (ii) we show in Appendix D that representativeness improves with the
onset of generalization. Nonetheless, these assumptions may not hold in other domains such as
structured prediction, high-noise regression, or complex real-world tasks, where label semantics may
vary significantly under small input changes.

One of our most surprising results is that regularizing networks away from flat minima consistently
induces delayed generalization, mimicking grokking even on real-world datasets and architectures.
This underscores the functional importance of relative flatness, not just its correlation with general-
ization. It also opens new directions for controlling training dynamics via geometric regularization.
However, the extent to which these artificially induced grokking phases mirror the mechanisms of
standard grokking remains to be understood.

Finally, while penalizing relative flatness reliably delays generalization, encouraging flatter minima
does not substantially improve it [Adilova et al., 2023a]. Even SAM, which improves training results
in vision tasks, surprisingly does not actually encourage only flatter minima [Andriushchenko and
Flammarion, 2022]. This asymmetry supports the long-held view that stochastic gradient descent
(SGD) already biases toward flat minima [Hochreiter and Schmidhuber, 1997, Keskar et al., 2017],
and that relative flatness may serve more effectively as a diagnostic and interpretive tool rather than a
universal optimization target.

While our findings are robust across datasets and architectures, our conclusions are necessarily limited
in scope. We focus exclusively on classification networks and generative language models trained
with standard objectives and optimizers; whether our results extend to contrastive pretraining, or
large-scale language models remains an open question.

We challenge the assumption that neural collapse is essential for generalization. Through grokking
and targeted regularization, we isolate flatness as the necessary factor. Our theoretical and empirical
results jointly establish flatness as the geometric driver of generalization.

Acknowledgements

This research is supported by the Federal Ministry of Education and Research of Germany and the
state of North Rhine-Westphalia as part of the Lamarr Institute for Machine Learning and Artificial
Intelligence, and received support from the Cancer Research Center Cologne Essen (CCCE).

10

References
Linara Adilova, Amr Abourayya, Jianning Li, Amin Dada, Henning Petzka, Jan Egger, Jens Kleesiek,

and Michael Kamp. Fam: Relative flatness aware minimization. In Topological, Algebraic and
Geometric Learning Workshops, 2023a.

Linara Adilova, Bernhard C Geiger, and Asja Fischer. Information plane analysis for dropout neural
networks. In International Conference on Learning Representations, 2023b.

Linara Adilova, Maksym Andriushchenko, Michael Kamp, Asja Fischer, and Martin Jaggi. Layer-
wise linear mode connectivity. In International Conference on Learning Representations, 2024.

Maksym Andriushchenko and Nicolas Flammarion. Towards understanding sharpness-aware mini-
mization. In International conference on machine learning, 2022.

Maksym Andriushchenko, Francesco Croce, Maximilian Müller, Matthias Hein, and Nicolas Flam-
marion. A modern look at the relationship between sharpness and generalization. In International
Conference on Machine Learning, 2023.

Alessio Ansuini, Alessandro Laio, Jakob H Macke, and Davide Zoccolan. Intrinsic dimension of data
representations in deep neural networks. In Advances in Neural Information Processing Systems,
2019.

Hien Dang, Tho Tran Huu, Stanley Osher, Nhat Ho, Tan Minh Nguyen, et al. Neural collapse in
deep linear networks: From balanced to imbalanced data. In International Conference on Machine
Learning, 2023.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize for
deep nets. In International Conference on Machine Learning, 2017.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. In International Conference
on Learning Representations, 2021.

Cong Fang, Hangfeng He, Qi Long, and Weijie J Su. Exploring deep neural networks via layer-peeled
model: Minority collapse in imbalanced training. Proceedings of the National Academy of Sciences,
118(43), 2021.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
for efficiently improving generalization. In International Conference on Learning Representations,
2021.

Tomer Galanti, András György, and Marcus Hutter. On the role of neural collapse in transfer learning.
In International Conference on Learning Representations, 2022.

Minegishi Gouki, Yusuke Iwasawa, and Yutaka Matsuo. Grokking tickets: Lottery tickets accelerate
grokking. CoRR, 2023.

Florian Graf, Christoph Hofer, Marc Niethammer, and Roland Kwitt. Dissecting supervised con-
trastive learning. In International Conference on Machine Learning, 2021.

Andrey Gromov. Grokking modular arithmetic. arXiv preprint arXiv:2301.02679, 2023.

XY Han, Vardan Papyan, and David L Donoho. Neural collapse under mse loss: Proximity to and
dynamics on the central path. In International Conference on Learning Representations, 2022.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural computation, 9(1), 1997.

Wanli Hong and Shuyang Ling. Neural collapse for unconstrained feature model under cross-entropy
loss with imbalanced data. Journal of Machine Learning Research, 25(192), 2024.

Like Hui, Mikhail Belkin, and Preetum Nakkiran. Limitations of neural collapse for understanding
generalization in deep learning. arXiv preprint arXiv:2202.08384, 2022.

11

Ahmed Imtiaz Humayun, Randall Balestriero, and Richard Baraniuk. Deep networks always grok
and here is why. In High-dimensional Learning Dynamics Workshop: The Emergence of Structure
and Reasoning, 2024.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantas-
tic generalization measures and where to find them. In International Conference on Learning
Representations, 2020.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
Tinybert: Distilling bert for natural language understanding. In Findings of the Association for
Computational Linguistics: Empirical Methods in Natural Language Processing, 2020.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In
International Conference on Learning Representatiosn, 2017.

Tanishq Kumar, Blake Bordelon, Samuel J. Gershman, and Cengiz Pehlevan. Grokking as the transi-
tion from lazy to rich training dynamics. In International Conference on Learning Representations,
2024.

Kaifeng Lyu, Jikai Jin, Zhiyuan Li, Simon Shaolei Du, Jason D. Lee, and Wei Hu. Dichotomy of
early and late phase implicit biases can provably induce grokking. In International Conference on
Learning Representations, 2024.

Dustin G Mixon, Hans Parshall, and Jianzong Pi. Neural collapse with unconstrained features.
Sampling Theory, Signal Processing, and Data Analysis, 20:11, 2022.

Mohamad Amin Mohamadi, Zhiyuan Li, Lei Wu, and Danica Sutherland. Grokking modular
arithmetic can be explained by margin maximization. In NeurIPS 2023 Workshop on Mathematics
of Modern Machine Learning, 2023.

Michael Munn, Benoit Dherin, and Javier Gonzalvo. The impact of geometric complexity on neural
collapse in transfer learning. In Advances in Neural Information Processing Systems, 2024.

Shikhar Murty, Pratyusha Sharma, Jacob Andreas, and Christopher Manning. Grokking of hierar-
chical structure in vanilla transformers. In Annual Meeting of the Association for Computational
Linguistics, 2023.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures for
grokking via mechanistic interpretability. In International Conference on Learning Representations,
2023.

Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the terminal
phase of deep learning training. Proceedings of the National Academy of Sciences, 117(40), 2020.

Henning Petzka, Michael Kamp, Linara Adilova, Cristian Sminchisescu, and Mario Boley. Relative
flatness and generalization. In Advances in neural information processing systems, 2021.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-
eralization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177,
2022.

Akshay Rangamani and Andrzej Banburski-Fahey. Neural collapse in deep homogeneous classifiers
and the role of weight decay. In International Conference on Acoustics, Speech and Signal
Processing, 2022.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Peter Súkenı́k, Marco Mondelli, and Christoph H Lampert. Deep neural collapse is provably optimal
for the deep unconstrained features model. In Advances in Neural Information Processing Systems,
2023.

12

Nils Philipp Walter, Linara Adilova, Jilles Vreeken, and Michael Kamp. The uncanny valley:
Exploring adversarial robustness from a flatness perspective. arXiv preprint arXiv:2405.16918,
2024.

Nils Philipp Walter, Linara Adilova, Jilles Vreeken, and Michael Kamp. When flatness does (not)
guarantee adversarial robustness. arXiv preprint arXiv:2510.14231, 2025.

Diyuan Wu and Marco Mondelli. Neural collapse beyond the unconstrainted features model: Land-
scape, dynamics, and generalization in the mean-field regime. In International Conference on
Machine Learning, 2025.

Robert Wu and Vardan Papyan. Linguistic collapse: Neural collapse in (large) language models. In
Advances in Neural Information Processing Systems, 2024.

Yingwen Wu, Ruiji Yu, Xinwen Cheng, Zhengbao He, and Xiaolin Huang. Pursuing feature separation
based on neural collapse for out-of-distribution detection. In International Conference on Learning
Representations, 2025.

Yibo Yang, Shixiang Chen, Xiangtai Li, Liang Xie, Zhouchen Lin, and Dacheng Tao. Inducing neural
collapse in imbalanced learning: Do we really need a learnable classifier at the end of deep neural
network? In Advances in neural information processing systems, 2022.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understand-
ing deep learning requires rethinking generalization. In International Conference on Learning
Representations, 2017.

Chiyuan Zhang, Samy Bengio, and Yoram Singer. Are all layers created equal? Journal of Machine
Learning Research, 23(67), 2022.

Jinxin Zhou, Chong You, Xiao Li, Kangning Liu, Sheng Liu, Qing Qu, and Zhihui Zhu. Are all
losses created equal: A neural collapse perspective. In Advances in Neural Information Processing
Systems, 2022.

Jinxin Zhou, Jiachen Jiang, and Zhihui Zhu. Are all layers created equal: A neural collapse perspective.
In The Second Conference on Parsimony and Learning, 2025.

Zhihui Zhu, Tianyu Ding, Jinxin Zhou, Xiao Li, Chong You, Jeremias Sulam, and Qing Qu. A geo-
metric analysis of neural collapse with unconstrained features. In Advances in Neural Information
Processing Systems, 2021.

Bojan Žunkovič and Enej Ilievski. Grokking phase transitions in learning local rules with gradient
descent. Journal of Machine Learning Research, 25(199), 2024.

13

A Proof of Proposition 5.3

First, we provide a technical lemma that establishes that, under Neural Collapse, the combined
contribution of the bias and the projection of the class mean onto the global mean is identical across
classes. This means that the logits are effectively governed solely by the geometric structure of the
class means relative to each other.
Lemma A.1. Suppose that the neural collapse conditions (NC1)− (NC4) in the limit apply as in
Section 5 (see also below). Then there is a constant d such that λ(µj − µg)

⊤µg + bj = d for all j.

Proof. For all h, the following set of equations holds:

argmaxj λ(µj − µg)
⊤h+ bj

(NC3)
= argmaxj w

⊤
j h+ bj

(NC4)
= argminj ∥h− µj∥

= argminj ∥(h− µg)− (µj − µg)∥2

= argminj ∥h− µg∥2 + ∥µj − µg∥2 − 2(h− µg)
⊤(µj − µg)

(NC2)
= argminj ∥h− µg∥2 +M2 − 2(h− µg)

⊤(µj − µg)

= argmaxj 2(µj − µg)
⊤(h− µg)− ∥h− µg∥2.

Let ϵ > 0 be a real number and c ∈ {1, . . . , k}. Since the above equations hold for all h, they hold in
particular for all h(c, ϵ) = ϵ

M (µc − µg) + µg . Note that ∥h(c, ϵ)− µg∥2 = ϵ2.

Substituting h(c, ϵ) for h in the above equation and letting dj = λ(µj − µg)
⊤µg + bj gives us that

argmaxj
λϵ

M
(µj − µg)

⊤(µc − µg) + dj = argmaxj
2ϵ

M
(µj − µg)

⊤(µc − µg)− ϵ2

= argmaxj (µj − µg)
⊤(µc − µg)

(NC2)
= c

This implies that

λϵ

M
(µc − µg)

⊤(µc − µg) + dc ≥
λϵ

M
(µj − µg)

⊤(µc − µg) + dj , j ̸= c

Using (NC2), this gives that

λϵMk

k − 1
+ dc ≥ dj , j ̸= c

But since ϵ > 0 was arbitrary, we can let ϵ → 0 to get that dc ≥ dj for all j ̸= c. Finally, also c
was arbitrarily chosen, which implies that dj = dc for all j, c. Hence, dj = λ(µj − µg)

⊤µg + bj is
constant over j.

We now provide a second technical lemmma showing that relative flatness is upper bounded by the
simplified version ∥w∥2Tr(H(w)), for which we have a closed form expression in terms of logits.

Lemma A.2. Let H(w) be the Hessian wrt. the penultimate layer weights w ∈ Rd×m at a minimum
and κϕ(w) the relative flatness measure. Then

κϕ(w) ≤ ∥w∥2Tr(H(w)) .

Proof. Recall that

κϕ(w) =
∑
s,s′

⟨ws, ws′⟩Tr(Hs,s′) ≤
∑
s,s′

|⟨ws, ws′⟩Tr(Hs,s′)| ≤
∑
s,s′

∥ws∥∥ws′∥ |Tr(Hs,s′)| .

14

Since w is at a minimum, H is positive semi-definite (psd) and therefore (Tr(Hs,s′))s,s′ is also psd.
Then it holds that

|Tr(Hs,s′)| ≤
√

Tr(Hs,s)Tr(Hs′,s′) .

Summing over all s, s′ and using the Cauchy-Schwartz inequality we get

∑
s,s′

∥ws∥∥ws′∥
√
Tr(Hs,s)Tr(Hs′,s′) ≤

(∑
s

∥ws∥
√
Tr(Hs,s)

)2

,

and using symmetrie yields

κϕ(w) ≤ ∥w∥2
(√

Tr(H(w))
)2

= ∥w∥2Tr(H(w)) .

With this we can proof the theorem, which we restate together with the neural collapse criteria for
convenience.

Assumptions A.3 (Neural Collapse [Papyan et al., 2020]). Let ϕ(x) denote the penultimate layer
feature representation of an input x ∈ X , and for a dataset D ⊂ X , let Dc ⊆ D denote the set of
inputs belonging to class c ∈ {1, . . . , k}. Then the four neural collapse criteria are

(NC1) Feature representations collapse to class means: ϕ(x) = µc for all x ∈ Dc.

(NC2) All class means µc have equal distance to the global mean µg, i.e., ∥µc − µg∥2 = M , and
they form a centered equiangular tight frame (ETF), so that (µj − µg)

⊤(µc − µg) = − M2

k−1

for j ̸= c. We additionally assume that ∥µc∥ ≤M for each c. That is, we assume that the
center of the ETF is not diverging using the same constant M for simplicity.

(NC3) The classifier weights align with class means, i.e. wj = λ(µj − µg) for all j and some
λ > 0.

(NC4) argmaxjw
⊤
j h+ bj = argminj∥h− µj∥.

Proposition A.4. Let f(x) = softmax(wϕ(x) + b) be a neural network with softmax output and
trained with cross-entropy loss, where w ∈ Rk×d denotes the final-layer weight matrix classifying
into k classes and ϕ(x) is the penultimate-layer representation. Assume that the classical neural
collapse holds in the limit as above. Then relative flatness κϕ(w) is bounded by:

κϕ(w) ≤ λ2k3M4 · e−λM2· k
k−1(

1 + (k − 1)e−λM2· k
k−1

)2
In particular, for sufficiently large λ, this yields the asymptotic bound:

κϕ(w) ≲ λ2k3M4e−λM2· k
k−1 ,

which decays exponentially in λ.

Proof. Lemma A.1 shows that the NC conditions imply that there is a constant d such that bj +
λ(µj − µg)

⊤µg = d for all class labels j = 1, . . . , k. For xc ∈ Dc, the logits of f are

w⊤
j ϕ(xc) + bj =λ(µj − µg)

⊤µc + bj

=λ(µj − µg)
⊤(µc − µg) + λ(µj − µg)

⊤µg + bj︸ ︷︷ ︸
=d

= λ(µj − µg)
⊤(µc − µg) + d ,

and the softmax probabilities become:

ŷc(xc) =
1

1 + (k − 1)e−λδ
, ŷj(xc) =

e−λδ

1 + (k − 1)e−λδ
, j ̸= c,

15

with margin

δ := M2 −
(
− M2

k − 1

)
= M2 · k

k − 1
.

The trace of the Hessian for input xc ∈ Dc is (cf. Walter et al. [2024]):

Tr(H(xc, w)) =

k∑
j=1

ŷj(xc)(1− ŷj(xc)) · ∥ϕ(xc)∥2 = M2 ·
k∑

j=1

ŷj(xc)(1− ŷj(xc)).

= M2 (k − 1)e−λδ · (2 + (k − 2)e−λδ)

(1 + (k − 1)e−λδ)2
.

Thus,

Tr(H(w)) ≤M2 · (k − 1)ke−λδ

(1 + (k − 1)e−λδ)2
.

Since ∥w∥2 = λ2
∑

j ∥µj − µg∥2 = λ2kM2, we obtain with Lemma A.2:

κϕ(w) ≤ λ2kM2 ·M2 · (k − 1)ke−λδ

(1 + (k − 1)e−λδ)2
≤ λ2k3M4 · e−λM2· k

k−1(
1 + (k − 1)e−λM2· k

k−1

)2 .
This yields the desired bound, and for large λ, the denominator tends to 1, giving the asymptotic
behavior.

Relationship between Neural Collapse and Relative Flatness. Neural Collapse (NC) character-
izes a geometric property of the feature representations in the penultimate layer, which we quantify
by the Neural Collapse Coefficient (NCC). Importantly, NCC is invariant to rescaling of the last-layer
weights, and therefore independent of the scalar λ that controls their magnitude. Consequently, NCC
itself does not directly imply flatness: the loss landscape can remain sharp even in the presence
of perfect collapse. However, in the NC regime, the network structure enables flatness to emerge
naturally. As training with the cross-entropy loss continues, the model can reduce the training loss
further by increasing λ, since the softmax probabilities satisfy ŷc(xc)→ 1 and ŷj(xc)→ 0, j ̸= c as
λ→∞. This rescaling leaves the feature geometry (and hence NCC) unchanged but decreases the
relative flatness measure, effectively leading to flatness without altering the collapsed representation.
In summary, NC itself does not guarantee flatness, but in combination with CE loss training leads
to flatness: it defines a feature geometry that allows the network to reach a flat minimum through
continued optimization. Observing NC is thus a strong empirical indicator of eventual generalization,
but not a necessary condition for it. Conversely, models can achieve generalization and flatness
through other representational structures that do not exhibit collapse.

B Training Setups for NCC and Additional Experiments

We evaluate our method on the CIFAR-10 dataset using the standard training (50,000 samples) and test
(10,000 samples) splits. Input images are normalized using the channel-wise mean and standard devi-
ation of (0.5, 0.5, 0.5) and (0.5, 0.5, 0.5), respectively, as implemented in transforms.Normalize.
No data augmentation is applied in the main experiments.

All models are trained using stochastic gradient descent (SGD) with a fixed learning rate of 0.01, a
batch size of 64, and no weight decay. The regularization coefficient is set to λ = 10−3. Momentum
is 0.9. Training is performed for 250 epochs without the use of a learning rate scheduler or early
stopping.

We use the ResNet-18 architecture as implemented in torchvision version 0.19.1, without any
modifications. In particular, we retain the original 7× 7 kernel size in the first convolutional layer
and the following max pooling layer, despite the smaller resolution of CIFAR-10 images.

All results in the main experiments are reported as the average over three independent runs with
random seeds 1, 42, and 15213 to account for variability due to random initialization. Experiments
are conducted using PyTorch 2.4.1 on a single NVIDIA A100 GPU with 80GB of memory. Training
each model for 250 epochs takes approximately 10.5 hours.

The loss corresponding to Figure 2 is presented in Figure 5.

16

0 50 100 150 200 250
Training epochs

0.0

0.5

1.0

1.5

2.0
Lo

ss

(a) Training/validation losses

Training loss
Val loss

0 50 100 150 200 250
Training epochs

2

1

0

1

2

3

4

5

Lo
ss

(b) Training/validation losses (REG)
Training loss (REG)
Val loss (REG)

Figure 5: Results of training and validation losses in the NCC experiments.

Effect of Different λ Values of NCC Regularizer In our main experiments, we apply λ = 1×10−3

using three random seeds. To study the effect of different λ values, we conduct a hyperparameter
search experiment using a range of λ = {1 × 10−2, 1 × 10−3, 1 × 10−4, 1 × 10−5, 1 × 10−6},
evaluated with Seed 42 due to computational constraints. We have verified that results with a single
seed remain consistent with the trends observed using multiple seeds.

The results are shown in Figure 6, which plots accuracy, loss, relative flatness, and neural collapse
clustering (NCC) metrics. We observe that a large λ value (e.g., 1× 10−2) causes training instability:
although training accuracy reaches nearly 100% at the end of training, validation accuracy remains
below 60%, and both training and validation accuracies collapse to around 10% around epoch 70.

Conversely, when λ is smaller than 1 × 10−3, the NCC regularizer has little to no effect on the
training, as evidenced by negligible differences in performance metrics and NCC values compared
to the baseline. When λ is set to 1× 10−3, the measure of relative flatness remains low while the
NCC metric increases. This supports our argument that neural collapse clustering is not necessary
for generalization, as good generalization performance can still be achieved in the absence of strong
NCC behavior.

Effect of Data Augmentation in NCC To investigate the effect of data augmentation on NCC reg-
ularization, we apply standard transformations—RandomCrop(32, padding=4) and RandomHorizon-
talFlip()—and conduct experiments using λ ∈ {10−2, 10−3, 10−4}. All inputs are normalized using
per-channel means and standard deviations of (0.4914, 0.4822, 0.4465) and (0.2023, 0.1994, 0.2010),
respectively.

We limit the range of λ to these three values because prior results indicate that λ = 10−4 has
negligible effect; smaller values would therefore be redundant. Due to limited resources, we use seed
42 for this experiment, and based on consistent trends observed across seeds in other experiments, we
find this sufficient for reliable comparison.

The results, shown in Figure 7, indicate that with λ = 10−2, training becomes unstable and perfor-
mance significantly deteriorates. With λ = 10−3 and 10−4, data augmentation prevents the NCC
metric from increasing as it does in the non-augmented setting—suggesting that NCC regularization
is less effective when strong implicit regularization is already applied. In particular, λ = 10−3, which
was effective without augmentation (low measure of relative flatness and increased NCC), does not
produce the same NCC increase under augmentation. At λ = 10−4, the NCC metric remains low in
both augmented and non-augmented cases.

In these experiments, we also adopt a ResNet-18 variant tailored for CIFAR-10, following prior work:
the first convolutional layer is modified to use a 3 × 3 kernel, and the initial max pooling layer is
removed to better suit the smaller input resolution. The model with augmentation achieves higher
validation accuracy (94%) compared to the non-augmented case (78%).

17

0 50 100 150 200 250
Training Epochs

20

40

60

80

100

Ac
cu

ra
cy

Training/validation accuracies, = 1e 2

ncc_1e-2_train_acc_array
ncc_1e-2_train_acc_array

0 50 100 150 200 250
Training Epochs

0

50000

100000

150000

200000

250000

300000

Re
la

tiv
e

fla
tn

es
s

Relative flatness, = 1e 2

ncc_1e-2_train_acc_array

0 50 100 150 200 250
Training Epochs

0

500

1000

1500

2000

Ne
ur

al
 c

ol
la

ps
e

clu
st

er
in

g

Neural collapse clustering, = 1e 2

ncc_1e-2_train_acc_array

0 50 100 150 200 250
Training Epochs

0

1

2

3

4

Lo
ss

Train/validation loss, = 1e 2
ncc_1e-2_train_loss_array
ncc_1e-2_val_loss_array

0 50 100 150 200 250
Training Epochs

50

60

70

80

90

100

Ac
cu

ra
cy

Training/validation accuracies, = 1e 3

ncc_1e-3_train_acc_array
ncc_1e-3_train_acc_array

0 50 100 150 200 250
Training Epochs

0

100

200

300

400

500

600

Re
la

tiv
e

fla
tn

es
s

Relative flatness, = 1e 3
ncc_1e-3_train_acc_array

0 50 100 150 200 250
Training Epochs

1

2

3

4

5

6

Ne
ur

al
 c

ol
la

ps
e

clu
st

er
in

g

Neural collapse clustering, = 1e 3
ncc_1e-3_train_acc_array

0 50 100 150 200 250
Training Epochs

0.0

0.5

1.0

1.5

2.0

Lo
ss

Train/validation loss, = 1e 3

ncc_1e-3_train_loss_array
ncc_1e-3_val_loss_array

0 50 100 150 200 250
Training Epochs

50

60

70

80

90

100

Ac
cu

ra
cy

Training/validation accuracies, = 1e 4

ncc_1e-4_train_acc_array
ncc_1e-4_train_acc_array

0 50 100 150 200 250
Training Epochs

0

100

200

300

400

500

600

Re
la

tiv
e

fla
tn

es
s

Relative flatness, = 1e 4
ncc_1e-4_train_acc_array

0 50 100 150 200 250
Training Epochs

1

2

3

4

5

6

7

8

Ne
ur

al
 c

ol
la

ps
e

clu
st

er
in

g

Neural collapse clustering, = 1e 4
ncc_1e-4_train_acc_array

0 50 100 150 200 250
Training Epochs

0.0

0.5

1.0

1.5

2.0

Lo
ss

Train/validation loss, = 1e 4

ncc_1e-4_train_loss_array
ncc_1e-4_val_loss_array

0 50 100 150 200 250
Training Epochs

50

60

70

80

90

100

Ac
cu

ra
cy

Training/validation accuracies, = 1e 5

ncc_1e-5_train_acc_array
ncc_1e-5_train_acc_array

0 50 100 150 200 250
Training Epochs

0

100

200

300

400

500

600

700

Re
la

tiv
e

fla
tn

es
s

Relative flatness, = 1e 5
ncc_1e-5_train_acc_array

0 50 100 150 200 250
Training Epochs

1

2

3

4

5

Ne
ur

al
 c

ol
la

ps
e

clu
st

er
in

g

Neural collapse clustering, = 1e 5
ncc_1e-5_train_acc_array

0 50 100 150 200 250
Training Epochs

0.0

0.5

1.0

1.5

2.0

Lo
ss

Train/validation loss, = 1e 5

ncc_1e-5_train_loss_array
ncc_1e-5_val_loss_array

0 50 100 150 200 250
Training Epochs

50

60

70

80

90

100

Ac
cu

ra
cy

Training/validation accuracies, = 1e 6

ncc_1e-6_train_acc_array
ncc_1e-6_train_acc_array

0 50 100 150 200 250
Training Epochs

0

100

200

300

400

500

600

700

Re
la

tiv
e

fla
tn

es
s

Relative flatness, = 1e 6
ncc_1e-6_train_acc_array

0 50 100 150 200 250
Training Epochs

0

2

4

6

8

10

12

Ne
ur

al
 c

ol
la

ps
e

clu
st

er
in

g

Neural collapse clustering, = 1e 6
ncc_1e-6_train_acc_array

0 50 100 150 200 250
Training Epochs

0.0

0.5

1.0

1.5

2.0
Lo

ss
Train/validation loss, = 1e 6

ncc_1e-6_train_loss_array
ncc_1e-6_val_loss_array

NCC results on

Figure 6: Results of different λ values for the NCC regularizer. Each row contains training/validation
accuracies, measure of relative flatness, NCC measurement and training/validation losses for a
particular λ value.

C Training Setups for Regularizing Relative Flatness and Experimental
Results

C.1 Aanalysis of Relative Flatness Regularizer and Gradients

As stated in Section 6, the loss employed to regularize relative flatness is as follows:

LRF REG = LCE − λ · κϕ
Tr(w).

Let a single training example be (x(i), y(i)) with label y(i) ∈ {1, . . . , C}. The penultimate represen-
tation is ϕ(i) ∈ Rd, and the linear classifier has parameters W ∈ RC×d, b ∈ RC . The logits and
softmax probabilities are

z(i) = Wϕ(i) + b, p(i)c =
exp(z

(i)
c)∑C

j=1 exp(z
(i)
j)

, c = 1, . . . , C.

18

0 50 100 150 200 250
Training Epochs

20

40

60

80

100

Ac
cu

ra
cy

Training/validation accuracies, = 1e 2

ncc_1e-2_train_acc_array
ncc_1e-2_train_acc_array

0 20 40 60 80 100 120
Training Epochs

0

100000

200000

300000

400000

500000

600000

Re
la

tiv
e

fla
tn

es
s

Relative flatness, = 1e 2
ncc_1e-2_train_acc_array

0 20 40 60 80 100 120
Training Epochs

0

1000

2000

3000

4000

Ne
ur

al
 c

ol
la

ps
e

clu
st

er
in

g

Neural collapse clustering, = 1e 2
ncc_1e-2_train_acc_array

0 20 40 60 80 100 120
Training Epochs

0

1

2

3

4

5

Lo
ss

Train/validation loss, = 1e 2
ncc_1e-2_train_loss_array
ncc_1e-2_val_loss_array

0 50 100 150 200 250
Training Epochs

50

60

70

80

90

100

Ac
cu

ra
cy

Training/validation accuracies, = 1e 3

ncc_1e-3_train_acc_array
ncc_1e-3_train_acc_array

0 50 100 150 200 250
Training Epochs

0

100

200

300

400

500

600

700

Re
la

tiv
e

fla
tn

es
s

Relative flatness, = 1e 3
ncc_1e-3_train_acc_array

0 50 100 150 200 250
Training Epochs

0.5

1.0

1.5

2.0

2.5

3.0

Ne
ur

al
 c

ol
la

ps
e

clu
st

er
in

g

Neural collapse clustering, = 1e 3
ncc_1e-3_train_acc_array

0 50 100 150 200 250
Training Epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Lo
ss

Train/validation loss, = 1e 3
ncc_1e-3_train_loss_array
ncc_1e-3_val_loss_array

0 50 100 150 200 250
Training Epochs

50

60

70

80

90

100

Ac
cu

ra
cy

Training/validation accuracies, = 1e 4

ncc_1e-4_train_acc_array
ncc_1e-4_train_acc_array

0 50 100 150 200 250
Training Epochs

0

100

200

300

400

500

600

700

Re
la

tiv
e

fla
tn

es
s

Relative flatness, = 1e 4
ncc_1e-4_train_acc_array

0 50 100 150 200 250
Training Epochs

0.5

1.0

1.5

2.0

2.5

Ne
ur

al
 c

ol
la

ps
e

clu
st

er
in

g

Neural collapse clustering, = 1e 4
ncc_1e-4_train_acc_array

0 50 100 150 200 250
Training Epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Lo
ss

Train/validation loss, = 1e 4
ncc_1e-4_train_loss_array
ncc_1e-4_val_loss_array

NCC results on , with data augmentation applied

Figure 7: Results of different λ values for the NCC regularizer when data augmentation is applied.
Each row contains training/validation accuracies, measure of relative flatness, NCC measurement and
training/validation losses for a particular λ value.

The per-sample cross-entropy loss is

L(i)
CE = − log p

(i)

y(i) .

Based on the derivation in Walter et al. [2024], the per-sample relative flatness with cross-entropy
loss is

κϕ
Tr

(i)(w) = ∥W∥2F
C∑

c=1

p(i)c

(
1− p(i)c

)
∥ϕ(i)∥22,

and the total per-sample loss is:

L(i)
RF REG = − log p

(i)

y(i) − λ ∥W∥2F

(
C∑

c=1

p(i)c

(
1− p(i)c

))
∥ϕ(i)∥22 (1)

= − log p
(i)

y(i) − λ ∥W∥2F

(
C∑

c=1

p(i)c −
C∑

c=1

(
p(i)c

)2)
∥ϕ(i)∥22 (2)

= − log p
(i)

y(i) − λ ∥W∥2F
(
1− ∥p(i)∥22

)
∥ϕ(i)∥22. (3)

For simplicity, let U(p(i)) = 1 − ∥p(i)∥22, where 0 ≤ U(p(i)) ≤ 1 − 1
C . Then R(i) =

∥W∥2F U(p(i)) ∥ϕ(i)∥22. The per-sample loss can be re-written as

L(i)
RF REG = − log p

(i)

y(i) − λR(i).

To encourage sharper minima, the optimizer tends to increase ∥W∥ and ∥ϕ∥ under high uncertainty
U(p(i)). On the contrary, the cross-entropy loss aims to minimize prediction uncertainty, which
conflicts with the objective of the regularizer. When λ is set to a small value, the cross-entropy loss

19

quickly dominates the training, driving uncertainty down and effectively nullifying the influence of
the regularizer. However, when λ is large, this effect can dominate, causing parameter growth that
eventually destabilizes training. To better understand this, we first look at the gradients with respect
to the regularizer.

Gradients. Write S = ∥ϕ(i)∥22 and U = 1− ∥p(i)∥22. Then

∂R(i)

∂W
= 2U SW + ∥W∥2F S

(
∂U

∂z

)
ϕ(i)⊤,

∂R(i)

∂ϕ
= ∥W∥2F

[
SW⊤

(
∂U

∂z

)⊤
+ 2U ϕ(i)

]
.

Thus the overall gradients are

∂L(i)

∂W
=

∂L(i)
CE

∂W
− λ

∂R(i)

∂W
,

∂L(i)

∂ϕ
=

∂L(i)
CE

∂ϕ
− λ

∂R(i)

∂ϕ
.

Without constraints, the multiplicative term 2USW amplifies ∥W∥ whenever predictions are uncer-
tain (U large) and features have large norm (S large), which may cause runaway weight growth and
unstable training.

Wt+1 = Wt − η
∂L(i)

CE

∂W

∣∣∣∣∣
t

+ ηλ

(
2UtSt Wt + ∥Wt∥2FSt

(
∂U

∂z

)
t

ϕ⊤
t

)
,

ϕt+1 = ϕt − η
∂L(i)

CE

∂ϕ

∣∣∣∣∣
t

+ ηλ∥Wt∥2F

(
St W

⊤
t

(
∂U

∂z

)⊤
t

+ 2Ut ϕt

)
,

bt+1 = bt + ηλ∥Wt∥2FSt

(
∂U

∂z

)
t

.

Multiplicative growth on the classifier. The W -update includes the term 2ηλUt∥ϕt∥22Wt, which
multiplies Wt directly and can drive growth of ∥Wt∥ when Ut and ∥ϕt∥ are not small. This motivates
stabilization strategies.

Stabilization by feature normalization and weight capping. If ∥ϕt∥2 = 1 is enforced (e.g.,
replacing ϕ← ϕ/∥ϕ∥ in the forward pass), then S = ∥ϕt∥22 = 1 and the amplifying factors involving
∥ϕt∥ vanish. The multiplicative W -term reduces to 2ηλUtWt (still present but weaker), and the
ϕ-update no longer scales with ∥ϕt∥. In particular, normalizing ϕ fixes S = ∥ϕ∥22 = 1, eliminating
the quadratic amplification in ϕ that otherwise accelerates the multiplicative growth of ∥W∥.
To further prevent runaway growth of ∥Wt∥, we apply a Frobenius norm cap after each optimizer
step:

Wt+1 ← ΠBF
(Wt+1), BF = {W : ∥W∥F ≤ BF }.

This projection makes the update non-expansive in the Frobenius norm and uniformly bounds all
regularizer-induced gradient terms, since they scale with ∥Wt∥ and ∥Wt∥2. Together, these techniques
ensure that training under the relative flatness regularizer remains stable and well-conditioned.

C.2 CIFAR-10 & Resnet-18 Training Setups and Additional Experiments

We follow the same training setup described in Section B, with two modifications: (1) the total number
of training epochs is increased to 400; and (2) the coefficient of the relative-flatness regularizer is
set to 0.01. During regularized training, the weight capping value is fixed at 50 and the penultimate
representation is normalized (∥ϕ∥ = 1). We introduce temperature parameter τ = 2 in the softmax
when computing uncertainty U(p(i)), so as to inflate the uncertainty signal and maintain the influence
of the regularizer during training. When the regularizer is removed at Epoch 200, weight capping

20

remains active, but normalization of the penultimate layer is deactivated. The same procedure for
weight capping and representation normalization in unplug experiments is applied to the other tasks
as well. We also verify that setting the weight capping to 50 and normalizing the penultimate
representation does not affect training without the regularizer.

The training and validation loss curves associated with Figure 4 are shown in Figure 8, and the
corresponding relative-flatness measurements are reported in Figure 9.

0 50 100 150 200 250 300 350 400
Training epochs

0.0

0.5

1.0

1.5

2.0

2.5
(a) Training/validation losses

Training loss
Val loss

0 50 100 150 200 250 300 350 400
Training epochs

0

100

200

300

400

500

600

700
(b) Training/validation losses (unplug)

Training loss (unplug)
Val loss (unplug)

Figure 8: Results of training loss and validation loss of CIFAR-10 in the delayed generalization.

0 50 100 150 200 250 300 350 400
Training epochs

0

100

200

300

400

500

600

700
(a) Relative Flatness

Relative Flatness

0 50 100 150 200 250 300 350 400
Training epochs

0

2000

4000

6000

8000

10000

12000

(b) Relative Flatness (unplug)

Relative Flatness (unplug)

Figure 9: Results of relative flatness of CIFAR-10 in the delayed generalization.

The main experiments are initialized with seed 42, while additional results with seeds 1 and 15213
are shown in Figure 10. These results demonstrate that initialization with different random seeds can
drive training toward different sharp minima. Consequently, averaging across seeds does not provide
meaningful insights.

In Figure 10, standard training with ResNet-18 converges reliably: training accuracy reaches nearly
100%, while validation accuracy stabilizes around 78%. The relative flatness measure decreases
steadily, indicating convergence toward flatter minima. With the regularizer, training accuracy still
approaches 100%, but validation accuracy drops to about 60%, well below the baseline. At the same
time, the relative flatness remains high (around 2000) and does not decrease, showing that the model
is pushed into sharper solutions. These behaviors are consistent across seeds. The regularizer is
removed at Epoch 200. After unplugging, the total training loss becomes positive small while the
model continues to train stably. To encourage escape from the sharp minima, we reset the learning
rate to 1 × 10−1, apply a cosine annealing schedule, and introduce a weight decay of 2 × 10−4.
As shown in Figure 4, validation accuracy rises toward 78%, aligning with the standard training
baseline. The relative flatness (Figure 9) also decreases and becomes indistinguishable from the

21

baseline, confirming that unplugging enables the model to recover from the sharp minima induced by
the regularizer.

0 50 100 150 200 250 300
Training Epochs

20

40

60

80

100

Training/validation accuracies, seed 42

train acc
val acc
train acc (REG)
val acc (REG)

0 50 100 150 200 250 300
Training Epochs

0

500

1000

1500

2000

Relative flatness, seed 42

relative flatness
relative flatness (REG)

0 50 100 150 200 250 300
Training Epochs

0.0

0.5

1.0

1.5

2.0

2.5
Training/validation losses, seed 42

train loss
val loss

0 50 100 150 200 250 300
Training Epochs

0

100

200

300

400

500

600

700
Training/validation losses (REG), seed 42

train loss (REG)
val loss (REG)

0 50 100 150 200 250 300
Training Epochs

20

40

60

80

100

Training/validation accuracies, seed 1

train acc
val acc
train acc (REG)
val acc (REG)

0 50 100 150 200 250 300
Training Epochs

0

500

1000

1500

2000

Relative flatness, seed 1

relative flatness
relative flatness (REG)

0 50 100 150 200 250 300
Training Epochs

0.0

0.5

1.0

1.5

2.0

Training/validation losses, seed 1

train loss
val loss

0 50 100 150 200 250 300
Training Epochs

20

0

20

40

60

80

100

Training/validation losses (REG), seed 1
train loss (REG)
val loss (REG)

0 50 100 150 200 250 300
Training Epochs

20

40

60

80

100

Training/validation accuracies, seed 15213

train acc
val acc
train acc (REG)
val acc (REG)

0 50 100 150 200 250 300
Training Epochs

0

500

1000

1500

2000

Relative flatness, seed 15213

relative flatness
relative flatness (REG)

0 50 100 150 200 250 300
Training Epochs

0.0

0.5

1.0

1.5

2.0

Training/validation losses, seed 15213

train loss
val loss

0 50 100 150 200 250 300
Training Epochs

0

50

100

150

200

250
Training/validation losses (REG), seed 15213

train loss (REG)
val loss (REG)

CIFAR-10 experiments, differnet seeds

Figure 10: Resnet18 training results with different random seeds (42, 1, 15213), comparing standard
fine-tuning and regularized training (REG).

Effect of λ Values of Relative Flatness Regularizer. To investigate the effect of regularization
strength, we conduct experiments with coefficients λ ∈ {0.5, 0.1, 10−3, 10−4}, while keeping all
other settings (model architecture, training procedure, and random seed 42) consistent with the main
experiments, except the number of training epochs is 300. Results are shown in Figure 11.

For large regularization strengths (λ = 0.5 and 0.1), training crashes, causing both training and
validation accuracies to remain low. For a moderate value (λ = 10−3), training accuracy reaches
nearly 100%, and validation accuracy remains slightly below the 78% baseline. Although the relative
flatness stays high, the near-optimal validation accuracy indicates that an intermediate λ can drive
the network toward sharp minima without significantly degrading performance. For a smaller value
(λ = 10−4), training remains stable across 300 epochs. The relative flatness decreases rapidly to a
low value, the training loss converges smoothly to zero, and the validation loss stabilizes. However,
when λ is set too small (below 10−4), the influence of the regularizer essentially disappears, and the
model behaves like the baseline model without any affecting from relative-flatness regularization.

Effect of Weight Cap Values in the Relative-Flatness Regularizer. We examine the effect of
different weight cap values (WC ∈ {20, 100, 150, 200}) while keeping all other settings identical to
the main experiments. Results are shown in Figure 12.

With a small cap (WC = 20), training remains stable: the relative flatness is still high but stays below
2000, the level observed in the main experiment, and validation accuracy reaches about 75%, only
3% lower than the baseline. At WC = 100, training appears superficially stable within 300 epochs,
as validation accuracy plateaus around 50% and training accuracy shows potential to approach 100%
with extended training. However, the relative flatness increases rapidly to nearly four times the level
reported in Figure 10, raising concerns about whether training can safely and reliably reach full

22

0 50 100 150 200 250 300
Training Epochs

12.5

15.0

17.5

20.0

22.5

25.0

27.5

Training/validation accuracies (REG), = 0.5

train acc (REG)
val acc (REG)

0 50 100 150 200 250 300
Training Epochs

1400

1600

1800

2000

2200

Relative flatness (REG), = 0.5

relative flatness (REG)
0 50 100 150 200 250 300

Training Epochs

1000

800

600

400

200

0
Training/validation losses (REG), = 0.5

train loss (REG)
val loss (REG)

0 50 100 150 200 250 300
Training Epochs

10

20

30

40

50

Training/validation accuracies (REG), = 0.1

train acc (REG)
val acc (REG)

0 50 100 150 200 250 300
Training Epochs

1400

1600

1800

2000

2200

Relative flatness (REG), = 0.1

relative flatness (REG)
0 50 100 150 200 250 300

Training Epochs

200

150

100

50

0

Training/validation losses (REG), = 0.1

train loss (REG)
val loss (REG)

0 50 100 150 200 250 300
Training Epochs

50

60

70

80

90

100
Training/validation accuracies (REG), = 10 3

train acc (REG)
val acc (REG)

0 50 100 150 200 250 300
Training Epochs

0

250

500

750

1000

1250

1500

1750

2000
Relative flatness (REG), = 10 3

relative flatness (REG)

0 50 100 150 200 250 300
Training Epochs

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Training/validation losses (REG), = 10 3

train loss (REG)
val loss (REG)

0 50 100 150 200 250 300
Training Epochs

50

60

70

80

90

100
Training/validation accuracies (REG), = 10 4

train acc (REG)
val acc (REG)

0 50 100 150 200 250 300
Training Epochs

0

2

4

6

8

Relative flatness (REG), = 10 4

relative flatness (REG)

0 50 100 150 200 250 300
Training Epochs

0.0

0.5

1.0

1.5

2.0

Training/validation losses (REG), = 10 4

train loss (REG)
val loss (REG)

CIFAR-10 Experiments, different values

Figure 11: Results of various λ values on CIFAR-10.

convergence. With larger caps (WC = 150 and 200), training collapses entirely: both training and
validation accuracies remain at very low levels, the relative flatness diverges to extremely large values
(above 105), and the losses oscillate with high variance, indicating a complete failure to converge.

23

0 50 100 150 200 250 300
Training Epochs

50

60

70

80

90

100
Training/validation accuracies (REG), WC = 20

train acc (REG)
val acc (REG)

0 50 100 150 200 250 300
Training Epochs

0

50

100

150

200

250

300

350
Relative flatness (REG), WC = 20

relative flatness (REG)
0 50 100 150 200 250 300

Training Epochs

3

2

1

0

1

2

Training/validation losses (REG), WC = 20

train loss (REG)
val loss (REG)

0 50 100 150 200 250 300
Training Epochs

10

20

30

40

50

60

Training/validation accuracies (REG), WC = 100

train acc (REG)
val acc (REG)

0 50 100 150 200 250 300
Training Epochs

0

2000

4000

6000

8000

Relative flatness (REG), WC = 100

relative flatness (REG)
0 50 100 150 200 250 300

Training Epochs

100

0

100

200

300

Training/validation losses (REG), WC = 100
train loss (REG)
val loss (REG)

0 50 100 150 200 250 300
Training Epochs

10

20

30

40

50

Training/validation accuracies (REG), WC = 150
train acc (REG)
val acc (REG)

0 50 100 150 200 250 300
Training Epochs

0

2500

5000

7500

10000

12500

15000

17500

20000

Relative flatness (REG), WC = 150

relative flatness (REG)
0 50 100 150 200 250 300

Training Epochs

0

500

1000

1500

2000
Training/validation losses (REG), WC = 150

train loss (REG)
val loss (REG)

0 50 100 150 200 250 300
Training Epochs

10

20

30

40

50

Training/validation accuracies (REG), WC = 200
train acc (REG)
val acc (REG)

0 50 100 150 200 250 300
Training Epochs

0

5000

10000

15000

20000

25000

30000

35000

Relative flatness (REG), WC = 200

relative flatness (REG)
0 50 100 150 200 250 300

Training Epochs

300

200

100

0

100

200

300

Training/validation losses (REG), WC = 200
train loss (REG)
val loss (REG)

CIFAR-10 Experiments, different values of weight cap

Figure 12: Results of various values of weight capping on CIFAR-10.

C.3 Imagenet-100 & ViT Training Setups and Experimental Results

We evaluate the relative-flatness regularizer on the ImageNet-100 dataset using the standard train/test
split. Input images are normalized with channel-wise means of [0.485, 0.456, 0.406] and standard
deviations of [0.229, 0.224, 0.225] using transforms.Normalize. No data augmentation is applied
in the main experiments.

We train a vision transformer (ViT-tiny) model from scratch with all dropout components disabled.
This design excludes the generalization effects introduced by dropout. Dropout encourages smoother
solutions and better generalization, whereas the relative-flatness regularizer drives the model toward
sharper minima. Combining them would create conflicting objectives. The coefficient of the
regularizer is set to λ = 10−2. To induce delayed generalization, the regularizer is removed after
epoch 150. We optimize with SGD using a fixed learning rate of 0.01, momentum of 0.9, no weight
decay, and no Nesterov acceleration. The temperature τ is set to 2 when computing the uncertainty of
the regularizer, and the weight capping is set to 150. Training runs for 300 epochs without learning
rate scheduling or early stopping. The batch size is 256, and experiments are conducted on a single
NVIDIA A100 GPU with 80 GB of memory.

24

The corresponding ImageNet-100 loss curve associated with Figure 4 is shown in Figure 13, and
the relative flatness measurement is shown in Figure 14. Figure 15 presents the results under three
random seeds (42, 1, 15213), comparing normal training with regularized training (REG).

0 50 100 150 200 250 300
Training epochs

0

1

2

3

4

5

(a) Training/validation losses

Training loss
Val loss

0 50 100 150 200 250 300
Training epochs

200

150

100

50

0

(b) Training/validation losses (unplug)

Training loss (unplug)
Val loss (unplug)

Figure 13: Results of training loss and validation loss of Imagenet-100 in the delayed generalization.

0 50 100 150 200 250 300
Training epochs

0

5000

10000

15000

20000

25000

30000

(a) Relative Flatness

Relative Flatness

0 50 100 150 200 250 300
Training epochs

0

20000

40000

60000

80000

100000

120000

140000

160000
(b) Relative Flatness (unplug)

Relative Flatness (unplug)

Figure 14: Results of relative flatness of Imagenet-100 in the delayed generalization.

In Figure 15, standard training converges reliably: training accuracy reaches nearly 100%, while
validation accuracy stabilizes around 42%. The relative flatness measure decreases steadily, indicating
convergence toward flat minima. With the regularizer, training accuracy still approaches 100%, but
validation accuracy drops to about 38%, below the baseline. At the same time, the relative flatness
remains very large (above 20,000) and does not decrease, showing that the model is pushed into
sharp solutions. These behaviors are consistent across seeds. The regularizer is removed at Epoch
150. After unplugging, the total training loss becomes small but positive while the model continues
to train stably. To encourage escape from the sharp minima, we reset the learning rate to 5× 10−2,
apply a cosine annealing schedule, and introduce a weight decay of 2× 10−4. As shown in Figure 4,
validation accuracy rises toward 42%, aligning with the standard training baseline. The relative
flatness (Figure 14) also decreases and becomes indistinguishable from the baseline, confirming that
unplugging helps the model recover from the sharp minima induced by the regularizer.

C.4 SST-5 & Pretrained Language Models Training Setups and Experimental Results

We evaluate the proposed relative-flatness regularizer on fine-tuning pretrained language models
TinyBERT [Jiao et al., 2020] and DistilGPT2 [Sanh et al., 2019] on the SST-5 dataset. The training
hyperparameters are listed in Table 1. In these experiments, all dropout components in both models

25

0 50 100 150 200 250 300
Training Epochs

20

40

60

80

100

Training/validation accuracies, seed 42

train acc
val acc
train acc (REG)
val acc (REG)

0 50 100 150 200 250 300
Training Epochs

0

5000

10000

15000

20000

25000

30000

Relative flatness, seed 42
relative flatness
relative flatness (REG)

0 50 100 150 200 250 300
Training Epochs

0

1

2

3

4

5

Training/validation losses, seed 42

train loss
val loss

0 50 100 150 200 250 300
Training Epochs

200

150

100

50

0

Training/validation losses (REG), seed 42

train loss (REG)
val loss (REG)

0 50 100 150 200 250 300
Training Epochs

20

40

60

80

100

Training/validation accuracies, seed 1

train acc
val acc
train acc (REG)
val acc (REG)

0 50 100 150 200 250 300
Training Epochs

0

5000

10000

15000

20000

25000

30000

Relative flatness, seed 1

relative flatness
relative flatness (REG)

0 50 100 150 200 250 300
Training Epochs

0

1

2

3

4

5

Training/validation losses, seed 1

train loss
val loss

0 50 100 150 200 250 300
Training Epochs

200

150

100

50

0

Training/validation losses (REG), seed 1

train loss (REG)
val loss (REG)

0 50 100 150 200 250 300
Training Epochs

20

40

60

80

100

Training/validation accuracies, seed 15213

train acc
val acc
train acc (REG)
val acc (REG)

0 50 100 150 200 250 300
Training Epochs

0

5000

10000

15000

20000

25000

30000

Relative flatness, seed 15213
relative flatness
relative flatness (REG)

0 50 100 150 200 250 300
Training Epochs

0

1

2

3

4

5

Training/validation losses, seed 15213

train loss
val loss

0 50 100 150 200 250 300
Training Epochs

200

150

100

50

0

Training/validation losses (REG), seed 15213

train loss (REG)
val loss (REG)

ViT experiments, differnet seeds

Figure 15: ViT training results with different random seeds (42, 1, 15213), comparing standard
fine-tuning and regularized training (REG)

(including attention, feedforward, embedding, and classifier head dropouts) are explicitly disabled.
Optimization is performed using stochastic gradient descent (SGD) with a fixed learning rate of
10−3, momentum of 0.9, no weight decay, and no Nesterov acceleration. Training runs for 300
epochs without learning rate scheduling or early stopping. Figures 16 and 18 report the results under
three random seeds (42, 1, 15213), comparing standard fine-tuning with regularized training (REG).
Similar to the results on CIFAR-10 and ImageNet-100, training converges to slightly different minima
under different random seeds, which is reflected by minor differences among validation accuracies.
Figures 17 and 19 present the unplug results with random seed 42.

Table 1: Hyperparameter settings for SST-5 fine-tuning experiments. All dropout components
(attention, feedforward, embedding, and classifier head) are disabled to isolate the effect of the
relative-flatness regularizer.

Hyperparameter TinyBERT DistilGPT2

Learning rate 10−3 10−3

Batch size 32 64
Epochs 300 300
Random seeds {42, 1, 15213} {42, 1, 15213}
Weight capping 30 30
Regularization strength λ 3× 10−1 3× 10−2

Temperature τ 2.0 2.0
Optimizer SGD SGD

26

For TinyBERT (Figure 16), standard fine-tuning converges reliably: the training accuracy approaches
100%, and the validation accuracy stabilizes around 44%. The relative flatness measure decreases
steadily, indicating convergence to relatively flat minima. In contrast, with the regularizer, training
accuracy still reaches 100%, but validation accuracy drops to about 38%, below the 44% baseline.
The relative flatness measure remains high (above 700) rather than decreasing, showing that the
model is driven to sharp solutions by the regularizer. These patterns are consistent across seeds.

0 50 100 150 200 250 300
Training Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Training/validation accuracies, seed 42

train acc
val acc
train acc (REG)
val acc (REG)

0 50 100 150 200 250 300
Training Epochs

0

100

200

300

400

500

600

700

Relative flatness, seed 42

relative flatness
relative flatness (REG)

0 50 100 150 200 250 300
Training Epochs

0

1

2

3

4

5

Training/validation losses, seed 42

train loss
val loss

0 50 100 150 200 250 300
Training Epochs

200

150

100

50

0

Training/validation losses (REG), seed 42

train loss (REG)
val loss (REG)

0 50 100 150 200 250 300
Training Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Training/validation accuracies, seed 1

train acc
val acc
train acc (REG)
val acc (REG)

0 50 100 150 200 250 300
Training Epochs

0

100

200

300

400

500

600

700

Relative flatness, seed 1

relative flatness
relative flatness (REG)

0 50 100 150 200 250 300
Training Epochs

0

1

2

3

4

5

Training/validation losses, seed 1

train loss
val loss

0 50 100 150 200 250 300
Training Epochs

200

150

100

50

0

Training/validation losses (REG), seed 1

train loss (REG)
val loss (REG)

0 50 100 150 200 250 300
Training Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Training/validation accuracies, seed 15213

train acc
val acc
train acc (REG)
val acc (REG)

0 50 100 150 200 250 300
Training Epochs

0

100

200

300

400

500

600

700

Relative flatness, seed 15213

relative flatness
relative flatness (REG)

0 50 100 150 200 250 300
Training Epochs

0

1

2

3

4

5

Training/validation losses, seed 15213

train loss
val loss

0 50 100 150 200 250 300
Training Epochs

200

150

100

50

0

Training/validation losses (REG), seed 15213

train loss (REG)
val loss (REG)

TinyBERT experiments, differnet seeds

Figure 16: TinyBERT training results with different random seeds (42, 1, 15213), comparing standard
fine-tuning and regularized training (REG)

For the unplug experiment in Figure 17, the regularizer is removed at Epoch 150. After unplugging,
the total training loss is positively small while training remains stable in the sharp minima. To
encourage the network to escape from this sharp minima, the learning rate is reset to 3 × 10−3, a
cosine annealing scheduler is applied, and a weight decay of 2 × 10−4 is introduced. As shown,
the validation accuracy rises to around 44%, close to the standard fine-tuning result. Similarly, the
relative flatness decreases and becomes indistinguishable from the baseline case.

0 50 100 150 200 250 300
Training Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Training/validation accuracies

train acc
val acc
train acc (unplug)
val acc (unplug)

0 50 100 150 200 250 300
Training Epochs

0

100

200

300

400

500

600

700

Relative flatness

relative flatness
relative flatness (unplug)

0 50 100 150 200 250 300
Training Epochs

0

1

2

3

4

5

Training/validation losses
train loss
val loss

0 50 100 150 200 250 300
Training Epochs

200

150

100

50

0

Training/validation losses (unplug)

train loss (unplug)
val loss (unplug)

TinyBERT unplug experiments

Figure 17: TinyBERT unplug experiment with random seed 42, showing the effect of removing the
regularizer during training.

27

For DistilGPT2 (Figure 18), standard fine-tuning shows stable convergence: training accuracy reaches
close to 100%, while validation accuracy levels off around 45%. The relative flatness decreases
steadily during training, indicating convergence toward flatter minima. With the regularizer, training
accuracy still achieves 100%, but validation accuracy drops to about 37%, below the 45% baseline.
In this case, the relative flatness remains high (above 600) and does not decrease, which indicates that
the model is pushed into sharper solutions. These outcomes are consistent across all three random
seeds.

0 50 100 150 200 250 300
Training Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Training/validation accuracies, seed 42

train acc
val acc
train acc (REG)
val acc (REG)

0 50 100 150 200 250 300
Training Epochs

0

200

400

600

800

1000
Relative flatness, seed 42

relative flatness
relative flatness (REG)

0 50 100 150 200 250 300
Training Epochs

0

2

4

6

8

10

Training/validation losses, seed 42

train loss
val loss

0 50 100 150 200 250 300
Training Epochs

20

15

10

5

0

Training/validation losses (REG), seed 42

train loss (REG)
val loss (REG)

0 50 100 150 200 250 300
Training Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Training/validation accuracies, seed 1

train acc
val acc
train acc (REG)
val acc (REG)

0 50 100 150 200 250 300
Training Epochs

0

200

400

600

800

1000

Relative flatness, seed 1
relative flatness
relative flatness (REG)

0 50 100 150 200 250 300
Training Epochs

0

2

4

6

8

Training/validation losses, seed 1

train loss
val loss

0 50 100 150 200 250 300
Training Epochs

20

15

10

5

0

Training/validation losses (REG), seed 1

train loss (REG)
val loss (REG)

0 50 100 150 200 250 300
Training Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Training/validation accuracies, seed 15213

train acc
val acc
train acc (REG)
val acc (REG)

0 50 100 150 200 250 300
Training Epochs

0

200

400

600

800

1000

1200

1400
Relative flatness, seed 15213

relative flatness
relative flatness (REG)

0 50 100 150 200 250 300
Training Epochs

0

2

4

6

8

Training/validation losses, seed 15213

train loss
val loss

0 50 100 150 200 250 300
Training Epochs

20

15

10

5

0

Training/validation losses (REG), seed 15213

train loss (REG)
val loss (REG)

Distilgpt2 experiments, differnet seeds

Figure 18: DistilGPT2 training results with different random seeds (42, 1, 15213), comparing standard
fine-tuning and regularized training (REG).

0 50 100 150 200 250 300
Training Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Training/validation accuracies

train acc
val acc
train acc (unplug)
val acc (unplug)

0 50 100 150 200 250 300
Training Epochs

0

200

400

600

800

1000
Relative flatness

relative flatness
relative flatness (unplug)

0 50 100 150 200 250 300
Training Epochs

0

2

4

6

8

10

Training/validation losses

train loss
val loss

0 50 100 150 200 250 300
Training Epochs

20

15

10

5

0

5

Training/validation losses (unplug)

train loss (unplug)
val loss (unplug)

Distilgpt2 unplug experiments

Figure 19: DistilGPT2 unplug experiment with random seed 42, showing the effect of removing the
regularizer during training.

For the unplug experiment in Figure 19, the regularizer is removed at Epoch 150. Training continues
smoothly, and the total training loss remains low as a positive value even in the sharp minima. To
promote recovery toward flatter minima, we reset the learning rate to 5 × 10−3, apply a cosine
annealing schedule, and add a weight decay of 1× 10−4. After this adjustment, validation accuracy
rises to about 45%, nearly the same as the standard fine-tuning result. The relative flatness also

28

decreases quickly and becomes indistinguishable from the baseline case, showing that unplugging
allows the model to escape the sharp minima induced by the regularizer.

D Representativeness

As described in Petzka et al. [2021], representativeness is computed based on the representations from
the penultimate layer of the network. Following their procedure, we use kernel density estimation
(KDE) to measure representativeness (for further details, please refer to the original paper).

We employ a Gaussian kernel with a bandwidth of 1.0, and assign each training sample a weight
of 0.02, chosen empirically. Consistent with the setup of the main experiments (Figure 1), all
computations are averaged over three random seeds. The results are presented in Figure 20.

As shown in the results, representativeness decreases to zero when the validation accuracy reaches
100%. Moreover, we observe that improvements in representativeness coincide with the initial rise
in validation accuracy during training, providing empirical support for our theoretical findings and
arguments.

101 102 103 104 105

Training steps (log scale)

0

20

40

60

80

100

Ac
cu

ra
cy

Representativeness
Training accuracy
Validation accuracy

0.0

0.5

1.0

1.5

2.0

2.5

Re
pr

es
en

ta
tiv

en
es

s

Training/validation accuracies and representativeness

Figure 20: Results of representativenesss and training/validation accuracies in grokking.

29

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Please refer to Section 5, Section 6 and Appendix for detailed information.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have discussions in Section 7.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

30

Justification: All the related proofs are in Section 3, Section 5, and Appendix A
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We include detailed training setups in Appendix and provide access to the
code for reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

31

Answer: [Yes]

Justification: Our code is provided on the public link in the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/

guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We include detailed training setups in Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our experiments are performed with three random seeds and we display the
means and divergence on the plots.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

32

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We present the information in Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research does not involve any human subjects or datasets.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work is foundational research on generalization, and thus is not directly
tied to any negative applications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

33

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We do not use any existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

34

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

35

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.

36

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Geometric Foundations of Generalization
	Neural Collapse and Flatness in Delayed Generalization
	Neural Collapse is not Necessary
	Relative Flatness is Necessary
	Discussion and Conclusion
	Proof of Proposition 5.3
	Training Setups for NCC and Additional Experiments
	Training Setups for Regularizing Relative Flatness and Experimental Results
	Aanalysis of Relative Flatness Regularizer and Gradients
	CIFAR-10 & Resnet-18 Training Setups and Additional Experiments
	Imagenet-100 & ViT Training Setups and Experimental Results
	SST-5 & Pretrained Language Models Training Setups and Experimental Results

	Representativeness

