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Abstract

The de-identification task aims to detect and
remove the protected health information from
electronic medical records (EMRs). Previous
studies generally focus on the within-hospital
setting and achieve great successes, while the
cross-hospital setting has been overlooked.
This study introduces a new de-identification
dataset comprising EMRs from three hospi-
tals in China, creating a benchmark for eval-
uating both within- and cross-hospital gener-
alization. We find significant domain discrep-
ancy between hospitals. A model with almost
perfect within-hospital performance struggles
when transferred across hospitals. Further ex-
periments show that pretrained language mod-
els and some domain generalization methods
can alleviate this problem. We believe that our
data and findings will encourage investigations
on the generalization of medical NLP models.1

1 Introduction

De-identification is a natural language processing
(NLP) task to detect and remove the protected
health information (PHI) from electronic medical
records (EMRs). It is a prerequisite to the distribu-
tion of EMRs outside their original institutions for
medical NLP research (Uzuner et al., 2007).

Previous studies generally focus on the within-
hospital setting, where the training and test data
are from a same hospital or institution. This
includes English tasks like 2006 i2b2 (Uzuner
et al., 2007), 2014 i2b2/UTHealth (Stubbs et al.,
2015a), 2016 CEGS N-GRID (Stubbs et al., 2017),
and others in Swedish (Dalianis and Velupillai,
2010) and French (Grouin and Névéol, 2014). De-
identification may be regarded as an easy task rela-
tive to other NLP tasks, because simple rule-based
or shallow neural models can achieve 95%+ F1
scores (Liu et al., 2017; Dernoncourt et al., 2017).

*Corresponding author.
1Our data and code are available at https://github.

com/lanyangyang93/Revisiting-De-Identification.

However, the cross-hospital setting has been
largely overlooked.This setting corresponds to a
realistic scenario that a de-identification model
is deployed across hospitals. This study aims to
formally fill the gap. We introduce a new de-
identification dataset comprising EMRs from three
hospitals in China, establishing a benchmark for
evaluating both within- and cross-hospital gener-
alization. The latter poses a challenging domain
generalization (DG) task, where hospitals are re-
ferred as domains.

We find significant domain discrepancy existing
between hospitals. A model with almost perfect
within-hospital performance encounters dramatic
degradation when transferred to other hospitals.
Using pretrained language models (PLMs) like
BERT (Devlin et al., 2019), or some existing DG
methods (Izmailov et al., 2018; Wu et al., 2022) can
improve the cross-hospital generalization, but by
limited margins. This paper contributes in twofold:

• To the best of our knowledge, our dataset pro-
vides the first de-identification benchmark that
has multiple sources for cross-hospital eval-
uation. It is also the first de-identification
task for Chinese EMRs. The dataset proba-
bly interests researchers from a broader com-
munity, since DG tasks have been scarce in
NLP (Zhou et al., 2022). We will release the
data to facilitate further research.

• From the DG perspective, our findings en-
hance Stubbs et al. (2015a, 2017)’s argument
that de-identification is not a solved problem,
even in the post-BERT era. Our experiments
show the effectiveness of PLMs and DG meth-
ods, providing a promising direction for inves-
tigations on the cross-hospital generalization
of medical NLP models.

https://github.com/lanyangyang93/Revisiting-De-Identification
https://github.com/lanyangyang93/Revisiting-De-Identification


2 Data and Annotations

2.1 Data Sources
HM. Our primary dataset is built from the EMRs
of HM2 hospital, a general hospital in Zhejiang
Province, China. We obtained a 1.7 TB backup of
671.5K inpatient records. The clinical text is stored
in sections like chief complaints, examination re-
ports, progress notes, and discharge summaries.

We sample 500 EMRs from 30 representative
medical departments for PHI annotation. The re-
sulting annotated corpus is randomly split into train-
ing/development/test sets with 300/100/100 EMRs.
This is the dataset for within-hospital evaluation.

In addition, the HM database provides the large-
scale clinical text for pretraining Word2Vec em-
beddings and BERT, named HM-Word2Vec and
HM-BERT, respectively. This mitigates the poten-
tial domain gap of transferring word embeddings
or PLMs trained on common corpora to clinical
text. See Section 3 for more details.

SY. We collect 100 EMRs from SY3 hospital, a
general hospital in Hunan Province, China. Sim-
ilar to those of HM hospital, the EMRs contain
various sections of clinical text. After the anno-
tation of PHI, SY dataset serves as a test set for
cross-hospital evaluation.

CCKS. China Conference on Knowledge Graph
and Semantic Computing (CCKS) 20174 released
a clinical named entity recognition task, which con-
tains 300 EMRs from an anonymous hospital in
Hebei Province, China. Each EMR includes four
paragraphs from specific sections. We annotate the
PHI on the available text, yielding another test set.

2.2 Protected Health Information
Following previous research (Uzuner et al., 2007;
Stubbs et al., 2017), we define eight PHI categories:

• PERSON: The names of patients or physicians.

• LOCATION: Addresses of patients.

• HOSPITAL: The names of hospitals.

• DATE: Date or time stamps.

• ID: IDs of patients or medical tests.

• CONTACT: The contact information of patients,
physicians or hospitals.

2Ningbo No.2 Hospital.
3The hospital name is anonymized for policies and regula-

tions.
4See https://www.sigkg.cn/ccks2017.

HM SY CCKS
Train Dev Test

#EMR 300 100 100 100 300
#Sentence 6,005 2,029 1,995 2,505 1,346
#PHI Mention

PERSON 2,430 873 841 1,923 85
LOCATION 224 62 69 187 219
HOSPITAL 1,092 389 313 233 115
DATE 4,762 1,458 1,439 2,153 449
ID 129 32 31 22 9
CONTACT 207 64 67 36 0
AGE 1,087 401 370 253 430
PROFESSION 197 66 66 15 21

Table 1: Descriptive statistics of datasets.
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Figure 1: The architecture of our model.

• AGE: Ages of patients.

• PROFESSION: The professions of patients.

The BRAT Rapid Annotation Tool (Stenetorp
et al., 2012) is employed for the PHI annotation.
Table 1 reports the descriptive statistics of the re-
sulting datasets. Appendix A provides some typical
examples of the PHI annotations on clinical text.

3 Models and Experimental Settings

Model Architecture. Figure 1 displays the ar-
chitecture of our model. We employ the neu-
ral sequence tagging framework (Collobert et al.,
2011), a widely-used and mature solution for the
de-identification task.

Specifically, the tokens are first mapped to em-
beddings and fed into the encoder. The encoder
can be a 1D CNN (Zhang et al., 2015), a BiL-
STM (Hochreiter and Schmidhuber, 1997b), or a
pretrained Transformer (Devlin et al., 2019), which

https://www.sigkg.cn/ccks2017


transforms the embeddings to hidden representa-
tions. Finally, the dense layer classifies the repre-
sentations into the pre-defined BIO tag space, and
the resulting BIO tags can be parsed to identify the
boundaries and categories of PHI mentions. An op-
tional conditional random field (CRF) layer can be
inserted after the dense layer, which may improve
the consistency of the predicted BIO tags.

Pretraining on EMRs. Most publicly available
Chinese word embeddings or PLMs are trained on
common corpora, which may encounter domain
gaps and result in sub-optimal performance when
transferred to the clinical domain. To alleviate this
issue, we pretrain Word2Vec embeddings (Mikolov
et al., 2013) and a Chinese BERT (Devlin et al.,
2019) on the large-scale clinical text from the HM
database. The resulting embeddings and model
are named HM-Word2Vec and HM-BERT, respec-
tively.

After data parsing, cleaning and deduplication,
the remaining HM corpus consists of 21.4K EMRs,
including clinical text of 2.8 GB (1.1B tokens).
HM-Word2Vec has a character-level vocabulary of
size 5.7K and embedding size of 100. It is trained
for 5 epochs by the Gensim (Řehůřek and Sojka,
2010) package with window size 15 and learning
rate 1e-3.

Following Cui et al. (2021), we initialize HM-
BERT from the bert-base-chinese checkpoint re-
leased by Hugging Face.5 We then pretrain the
model with the optimizer AdamW (Loshchilov and
Hutter, 2018), learning rate 1e-4 and batch size 384
for 20 epochs on the whole corpus. A scheduler of
linear warmup in the first 20% steps followed by
linear decay is applied. The masking rate is 15%
for the masked language modeling (MLM) task;
the maximum input length is 512. In addition, we
apply the whole word masking (Cui et al., 2021)
and dynamic masking (Liu et al., 2019) strategies.

Within- and Cross-Hospital Evaluation. We
train the models on the training set of HM, and use
the development set for hyperparameter tuning. We
perform the within-hospital evaluation, i.e., evalu-
ating the trained models on the test set of HM; and
the cross-hospital evaluation, i.e., evaluating the
models on SY and CCKS.

5See https://huggingface.co/bert-base-chinese.

Hyperparameters.6 For CNN or BiLSTM mod-
els, the embedding layer is 100-dimensional, and
optionally initialized from HM-Word2Vec; the en-
coders have one layer with 200 hidden states and
dropout rate of 0.5. The kernel size is 15 for
CNN. The models are trained for 100 epochs by the
AdamW (Loshchilov and Hutter, 2018) optimizer
with learning rate 1e-3 and batch size 32.

For models with PLMs, we use BERT-wwm (Cui
et al., 2021), MC-BERT (Zhang et al., 2020) and
HM-BERT, all of a base size (768 hidden size, 12
layers). The MC-BERT is pre-trained on Chinese
medical corpora including biomedical question an-
swering, medical encyclopedia and EMRs. The
models are trained for 100 epochs by the AdamW
optimizer with learning rate 2e-5 and batch size 32.

Evaluation. A predicted PHI mention is consid-
ered correct if its boundaries and category exactly
match the ground truth. The evaluation metrics are
micro precision rate, recall rate and F1 score on the
test sets. All the experiments are repeated for five
times and the average metrics are reported.

4 Experimental Results

4.1 Main Results
Table 2 presents the results for both within- and
cross-hospital evaluation. In the within-hospital
evaluation, a single-layer CNN or BiLSTM can
achieve 98% F1 scores or higher. This is consistent
with the results of previous literature that the de-
identification task can be almost perfectly solved by
simple models (Dernoncourt et al., 2017; Liu et al.,
2017). We add to the findings that more sophisti-
cated neural models like BERT can further improve
the performance, although by limited magnitudes.

However, the cross-hospital setting has largely
been overlooked in literature. With the help of
our multi-source data, we evidence that a decent
neural de-identification model easily encounters
noticeable performance degradation when trans-
ferred across hospitals. Specifically, for CNN and
BiLSTM, the F1 scores decrease to 70%–80% and
50%–60% when transferred to SY and CCKS, re-
spectively. The HM-Word2Vec embeddings and
CRF help to resist the performance drop, but the ef-
fect is not robust. The BERT-based models also suf-
fer from the cross-hospital setting, but they achieve
much better results: 95%+ F1 scores on SY and

6All the hyperparameters have been extensively tuned and
thus empirically optimal. We have tested models with larger
sizes, but resulted in lower performance.

https://huggingface.co/bert-base-chinese


HM→HM HM→SY HM→CCKS #Params FLOPs Speed
(sents/s)

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

CNN 97.9 98.6 98.2 70.6 76.4 73.4 51.3 57.6 54.2 576.6K 101.3M 500
+ HM-Word2Vec 97.5 98.5 98.0 76.6 80.9 78.7 49.7 55.0 52.2 576.6K 101.3M 500
+ CRF 95.4 95.0 95.2 70.1 66.8 68.4 64.8 59.3 61.9 577.0K 101.3M 25

BiLSTM 98.4 98.9 98.6 80.2 77.7 78.9 48.5 58.2 52.8 437.6K 51.0M 272
+ HM-Word2Vec 98.8 99.0 98.9 82.6 82.7 82.6 44.8 55.0 49.3 437.6K 51.0M 272
+ CRF 97.6 96.8 97.2 78.5 69.3 73.6 64.2 58.4 61.0 438.0K 51.0M 25

BERT-wwm 99.3 99.5 99.4 96.2 97.8 97.0 75.9 77.5 76.7 102.6M 26.4G 22
+ BiLSTM 99.5 99.4 99.5 97.0 97.8 97.4 74.4 72.9 73.7 103.3M 26.6G 21
+ CRF 99.1 99.2 99.1 94.9 96.7 95.8 70.3 71.3 70.8 102.6M 26.4G 13

MC-BERT 99.4 99.5 99.5 96.2 97.8 97.0 75.9 77.5 76.7 102.6M 26.4G 22
+ BiLSTM 99.5 99.5 99.5 96.5 97.8 97.2 74.7 77.7 76.1 103.3M 26.6G 21
+ CRF 99.0 99.1 99.0 94.8 96.7 95.7 70.3 71.3 70.8 102.6M 26.4G 15

HM-BERT 99.6 99.8 99.7 96.2 97.2 96.7 73.6 84.0 78.5 102.6M 26.4G 22
+ BiLSTM 99.7 99.7 99.7 96.6 97.8 97.2 78.2 85.7 81.8 103.3M 26.6G 21
+ CRF 99.4 99.7 99.5 92.7 95.5 94.1 70.8 79.4 74.8 102.6M 26.4G 15

Table 2: Results of within- and cross-hospital evaluation of de-identification. The models are trained on the training
set of HM, and evaluated on the test set of HM, SY and CCKS, respectively.

70%–80% on CCKS. In particular, HM-BERT out-
performs BERT-wwm and MC-BERT on CCKS.

These results clearly reveal a noteworthy prob-
lem – severe domain discrepancy exists between
EMRs from different hospitals. It may greatly im-
pede the cross-hospital applicability of a perfectly-
performing model. Empirically, using PLMs can
effectively alleviate this problem. The PLMs learn
universal linguistic patterns from large-scale pre-
training data, which help the models to generalize
across hospitals.

When focused on within-hospital evaluation, we
may conclude that CNN or BiLSTM models are
superior to BERT-based models, because the for-
mer ones achieve similar performance with better
efficiency (fewer parameters and FLOPs, higher
speed). However, with the awareness of cross-
hospital results, we have to rethink this problem.

Appendix B reports the categorical evaluation
results. To avoid PHI leaks and preserve the data
usability, we have carefully replaced the PHI men-
tions by realistic surrogates (Stubbs et al., 2015b)
in the release version. This slightly affects the
evaluation results, so we report the corresponding
results in Appendix D.

4.2 Analysis

We explore some potential reasons for the signif-
icant gap between the within- and cross-hospital
performance.

Cosine Similarity. Following Elangovan et al.
(2021), we represent each data instance with the
vector of HM-BERT and compute the cosine sim-

ACS FAR95

HM-train vs. HM-test 92.05 94.64
HM-train vs. SY 84.50 92.05
HM-train vs. CCKS 82.51 73.03

Table 3: ACS and FAR95 of HM training set against
HM test set, SY and CCKS sets.

ilarities between them. The average cosine simi-
larity (ACS) over all the test instances is used as
an indicator to measure the overlapping extent of
training and test data.

False Alarm Rate. Following Hendrycks et al.
(2020), we assign the maximum softmax anomaly
score for each test instance, to perform out-of-
distribution (OOD) detection, and report the false
alarm rate at 95% recall (FAR95).

Table 3 shows that the CCKS data present the
most different distributions from the HM training
set. In other words, the overlap between HM and
CCKS is the lowest. Hence, the CCKS has repre-
sentations of more OOD information that the mod-
els fail to learn. This is the major reason for the
large performance drop on CCKS. We further per-
form the PCA visualizations of sentence represen-
tations on the HM training/test sets, SY, and CCKS.
The results are quite similar. See Appendix C for
more details.

4.3 Domain Generalization

Given the domain shift between hospitals, we ex-
plore some widely used DG methods, verifying
whether they can help the models to generalize



CNN HM-BERT

HM→HM HM→SY HM→CCKS HM→HM HM→SY HM→CCKS

Baseline (w/o DG methods) 98.2 73.4 54.2 99.7 96.7 78.5

Mention Substitution 98.3 (+0.1) 56.7 (-16.7) 57.2 (+3.0) 99.4 (-0.3) 92.2 (-4.5) 82.3 (+3.8)
Text Smoothing – – – 99.7 (+0.0) 97.0 (+0.3) 80.7 (+2.2)
Stochastic Weight Averaging

25% 98.3 (+0.1) 74.7 (+1.3) 54.3 (+0.1) 99.8 (+0.1) 97.2 (+0.5) 80.5 (+2.0)
50% 98.3 (+0.1) 74.5 (+1.1) 55.5 (+1.3) 99.8 (+0.1) 97.3 (+0.6) 79.4 (+0.9)
75% 98.3 (+0.1) 74.3 (+0.9) 56.1 (+1.9) 99.8 (+0.1) 97.4 (+0.7) 80.6 (+2.1)

Dropout (def. = 0.50)
0.25 98.4 (+0.2) 75.5 (+0.2) 50.1 (-4.1) 99.6 (-0.1) 96.7 (+0.0) 77.7 (-0.8)
0.75 94.8 (-3.4) 66.4 (-7.0) 48.7 (-5.5) 99.7 (+0.0) 96.7 (+0.0) 81.1 (+2.6)

L2 Regularization (def. = 0.01)
0.05 98.0 (-0.2) 74.1 (+0.7) 51.1 (-3.1) 99.6 (-0.1) 96.2 (-0.5) 79.5 (+1.0)
0.10 98.0 (-0.2) 74.3 (+0.9) 50.5 (-2.7) 99.7 (+0.0) 96.8 (+0.1) 78.4 (-0.1)

Table 4: Results of within- and cross-hospital evaluation of domain generalization methods. The models are trained
on the training set of HM, and evaluated on the test set of HM, SY and CCKS, respectively.

across hospitals. The results are shown in Table 4.

Mention Substitution. Data augmentation has
been a common practice to prevent the models from
overfitting and thus improve generalization (LeCun
et al., 2015; Zhou et al., 2022). To avoid overfitting
to frequent PHI mentions, we add an augmentation
module that randomly replaces the PHI mentions
with fabricated ones of the same categories. For
example, a LOCATION mention can be replaced by
random addresses. The resulting effect is unstable.

Text Smoothing. Text smoothing (Wu et al.,
2022) is a PLM-based text augmentation approach.
It leverages the masked language modeling objec-
tive of a dedicated PLM and augments each token
according to the predicted probabilities over the
vocabulary. Text smoothing slightly improves the
generalization performance on SY and CCKS.

Stochastic Weight Averaging. Stochastic weight
averaging (Izmailov et al., 2018, SWA) aggre-
gates the model weights along the training trajec-
tory. The ensemble model can achieve flatter min-
ima (Hochreiter and Schmidhuber, 1997a) and thus
improves generalization. Specifically, we average
the model checkpoints at last 25%, 50%, and 75%
training epochs for test. It shows that SWA brings
marginal yet robust improvements for either within-
or cross-hospital performance.

Dropout and L2 Regularization. Dropout (Sri-
vastava et al., 2014) and L2 regularization are stan-
dard strategies against overfitting. We tune the
dropout rate and L2 penalty to different values, but
obtain lower scores.

In summary, text smoothing and SWA can effec-
tively improve the generalization performance by
small margins, while the other DG methods result
in negative or unstable effects.

5 Conclusion

In this paper, we revisit the EMR de-identification
task and create a new dataset. It consists of EMRs
from three hospitals and thus asks evaluation for
both within- and cross-hospital generalization. The
latter poses a challenging DG task, which corre-
sponds to a realistic scenario that a de-identification
model is required to deploy across hospitals.

With this new benchmark, we find significant
domain shift between hospitals. A model with per-
fect within-hospital performance struggles when
transferred across hospitals. Using PLMs or some
existing DG methods can alleviate but not address
this problem.

6 Limitations

Although we have explored various existing mod-
els and DG methods on our proposed task, there are
still other approaches worth investigating. It may
be more effective to develop new specialized meth-
ods to improve the cross-hospital generalization of
medical NLP models.

In general, this study focuses on end-to-end eval-
uation. It requires more in-depth analysis, either
theoretically or empirically, to answer some crucial
questions like (1) how and to what extent is the i.i.d.
assumption violated between the clinical text from
different hospitals? (2) how to develop invariant
representations that generalize across hospitals? (3)



how to estimate the risk of generalization failure
before the models are deployed? These answers
may be the key towards interpretable, robust and
reliable medical NLP systems.

7 Ethical Considerations

Our data were collected and used consistently with
the terms of use. The EMRs of HM and SY were
obtained from the authors’ affiliations, and this
work was performed as a part of projects approved
by the ethics review committees. CCKS was de-
rived from publicly available data released as a
shared task. We authors performed the PHI annota-
tion, with full awareness of the potential impacts
and risks.

The data of release version have been de-
identified. Specifically, we have carefully replaced
all the PHI mentions by surrogates (Stubbs et al.,
2015b), and manually verified the resulting text so
that the risk of privacy leak has been minimized.
In particular, any text span is regarded as PHI and
removed if it potentially reveals any identity char-
acteristics, even if the risk is impossibly low. In
addition, the data will be released upon a data use
agreement that forbids any inappropriate use, es-
pecially identification of any individuals or institu-
tions.

We report data characteristics and experimental
results averaged over multiple runs. We will release
the data and code, ensuring the reproducibility of
our work. Our experiments do not require high
computational cost, relative to pretraining PLMs.
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Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsujii.
2012. BRAT: a web-based tool for NLP-assisted text
annotation. In Proceedings of the Demonstrations
Session at EACL 2012, Avignon, France. Association
for Computational Linguistics.

Amber Stubbs, Michele Filannino, and Özlem Uzuner.
2017. De-identification of psychiatric intake records:
Overview of 2016 CEGS N-GRID shared tasks track
1. Journal of Biomedical Informatics, 75:S4–S18.

Amber Stubbs, Christopher Kotfila, and Özlem Uzuner.
2015a. Automated systems for the de-identification
of longitudinal clinical narratives: Overview of 2014
i2b2/UTHealth shared task track 1. Journal of
Biomedical Informatics, 58:S11–S19.

Amber Stubbs, Özlem Uzuner, Christopher Kotfila, Ira
Goldstein, and Peter Szolovits. 2015b. Challenges in
synthesizing surrogate PHI in narrative emrs. Medi-
cal Data Privacy Handbook, pages 717–735.

Özlem Uzuner, Yuan Luo, and Peter Szolovits. 2007.
Evaluating the state-of-the-art in automatic de-
identification. Journal of the American Medical In-
formatics Association, 14(5):550–563.

Xing Wu, Chaochen Gao, Meng Lin, Liangjun Zang,
and Songlin Hu. 2022. Text smoothing: Enhance

various data augmentation methods on text classifica-
tion tasks. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 871–875, Dublin,
Ireland. Association for Computational Linguistics.

Ningyu Zhang, Qianghuai Jia, Kangping Yin, Liang
Dong, Feng Gao, and Nengwei Hua. 2020. Conceptu-
alized representation learning for chinese biomedical
text mining. arXiv preprint arXiv:2008.10813.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text classi-
fication. Advances in Neural Information Processing
Systems, 28.

Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and
Chen Change Loy. 2022. Domain generalization: A
survey. IEEE Transactions on Pattern Analysis and
Machine Intelligence.

A Examples of PHI Annotations

All the EMRs are manually annotated by two native
speakers. (A master’s degree in computer science
and an expert in both the fields of computer science
and medicine.) We consider the de-identification
task to be easy and straightforward, with very few
disagreements during labeling and near-perfect ac-
curacy. We employed some post-processing pro-
cedure to ensure the accuracy of the annotations.
For example, we perform cross-validation on the
whole dataset, and manually check the inconsis-
tencies between the predicted PHI mentions and
ground-truth.

Table 5 shows examples of clinical text and PHI
annotations. In principle, a text span is regarded as
PHI if it potentially reveals any personal informa-
tion, even if the risk is impossibly low.

Some text spans are excluded because of irrele-
vance to personal information, although they seem-
ingly fall into specific PHI categories. For example,
some diseases are named after persons or locations,
and these person or location names should not be
regarded as PHI. Some clinical text may describe
general medical knowledge that relates to ages or
jobs, which are also excluded in our annotation.

B Categorical Results

Table 6 presents the evaluation results by PHI cate-
gories. The cross-hospital F1 scores are lower than
the corresponding within-hospital scores across all
categories, while such effect is heterogeneous. Tak-
ing HM-BERT as the example, it generalizes rel-
atively well on PERSON, DATE and AGE categories,
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Category Clinical text and PHI annotations

PERSON [姜淑]副主任医师查房.
[Shu Jiang], associate chief physician, took ward rounds.

患者七年前得了[帕金森]综合征.
The patient got [Parkinson]’s syndrome seven years ago.

LOCATION 患者出生于[新昌县]，原籍长大.
The patient was born in [Xinchang County] and grew up there.

[埃博拉]病毒会导致发烧、喉咙痛、肌肉痛和头痛.
[Ebola] virus disease causes fever, sore throat, muscle pain, and headaches.

HOSPITAL 患者至[上海中医院]就诊.
The patient went to [Shanghai Traditional Chinese Medicine Hospital] for diagnosis.

DATE [2019年10月2日]，患者因腹痛收治入院.
[October 2, 2019], the patient was admitted because of abdominal pain.

ID 胸部CT（[US00786]）提示气管狭窄.
Chest CT ([US00786]) suggests tracheal stenosis.

CONTACT 门诊预约电话：[88121834].
Outpatient phone number: [88121834].
急救电话：[120].

Emergency phone number: [120].
AGE 患者（[68岁]）因踝关节骨折入院.

The patient ([68 years old]) was admitted for ankle fracture.
高血压易出现在[80岁]以上人群中.

High blood pressure tends to occur in people over [80 years old].
PROFESSION 患者，男，初中文化，职业：[工人].

The patient, male, graduated from a junior high school, was a [worker].
[矿工]和[土建工人]易患尘肺病.

[Miners] and [construction workers] are vulnerable to pneumoconiosis.

Table 5: Examples of clinical text and PHI annotations. The Chinese texts are translated to English for reference.
The PHI mentions are marked in red [*], while the non-PHI but possibly confusing mentions are marked in blue [*].

CNN HM-BERT

HM→HM HM→SY HM→CCKS HM→HM HM→SY HM→CCKS

PERSON 98.7 69.2 48.9 99.8 98.0 93.2
LOCATION 94.2 22.0 6.2 97.6 92.9 30.7
HOSPITAL 95.9 43.8 25.0 99.2 95.3 66.7
DATE 98.3 86.1 76.3 99.8 97.0 89.0
ID 89.9 13.5 24.2 97.8 78.9 65.3
CONTACT 99.7 15.5 – 100.0 85.7 –
AGE 100.0 95.7 72.8 100.0 96.4 98.4
PROFESSION 99.2 31.2 11.5 99.2 45.5 40.3

Overall 98.2 73.4 54.2 99.7 96.7 78.5

Table 6: Categorical F1 scores of within- and cross-hospital evaluation. The models are trained on the training set of
HM, and evaluated on the test set of HM, SY and CCKS, respectively.

but struggles on LOCATION, ID and PROFESSION.
This plausibly attributes to that the former PHI
categories are typically associated with clearer lan-
guage patterns than the latter ones.

C Visualization of Sentence
Representations

Figure 2 displays the PCA visualizations of sen-
tence representations on the HM training/test sets,
SY, and CCKS. The sentence representations of
the HM training and test sets are most similar and
overlapping. However, there are significant differ-
ences in the distributions of the HM and CCKS

datasets in the feature space. In comparison, there
is a small overlap between the SY dataset and the
HM dataset.

Further underlying reasons for the differences in
the data distributions would be complicated. For
example, different doctors may record information
differently, resulting in differences in the format
and content of medical records. Different medical
institutions may use different electronic medical
record systems.



HM→HM HM→SY HM→CCKS

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

CNN 97.8 98.5 98.1 73.4 75.0 74.2 48.5 55.3 51.7
+ HM-Word2Vec 97.8 98.7 98.3 75.3 79.5 77.4 50.8 54.1 52.4
+ CRF 96.1 95.5 95.8 75.0 70.5 72.7 63.1 58.9 60.9

BiLSTM 98.4 98.9 98.6 78.8 77.8 78.3 45.0 56.6 50.1
+ HM-Word2Vec 98.8 99.0 98.9 80.7 81.4 81.0 49.2 57.4 52.9
+ CRF 97.7 97.1 97.4 83.2 75.3 79.0 57.5 55.1 56.2

BERT-wwm 99.4 99.8 99.6 95.8 97.5 96.7 76.2 80.4 78.2
+ BiLSTM 99.5 99.6 99.6 96.6 98.0 97.3 78.1 78.8 78.4
+ CRF 99.1 99.5 99.3 94.5 97.1 95.8 75.4 75.3 75.3

MC-BERT 99.4 99.5 99.5 95.8 97.7 96.7 74.9 78.5 76.6
+ BiLSTM 99.4 99.7 99.6 96.2 98.0 97.1 75.5 75.2 75.3
+ CRF 99.2 99.5 99.4 94.1 96.8 95.4 76.5 75.2 75.8

HM-BERT 99.6 99.8 99.7 95.6 97.4 96.5 75.5 84.6 79.7
+ BiLSTM 99.6 99.6 99.6 96.3 97.6 97.0 80.7 85.9 83.2
+ CRF 99.4 99.6 99.5 93.1 95.9 94.5 73.4 78.2 75.7

Table 7: Results of within- and cross-hospital evaluation on data of release version. The models are trained on the
training set of HM, and evaluated on the test set of HM, SY and CCKS, respectively.
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Figure 2: The PCA visualizations of sentence represen-
tations on the HM training/test sets, SY, and CCKS.

D Results on Data of Release Version

We cannot release our data with the real PHI men-
tions. Hence, we have carefully replaced the PHI
mentions by realistic surrogates (Stubbs et al.,
2015b). For example, the PERSON mentions are re-
placed by combinations of randomly sampled fam-
ily and given names, where the sampling accords
to the frequencies reported by National Bureau of
Statistics of China. The LOCATION mentions are
replaced by randomly sampled addresses in China.
Such process preserves the usability of our data
and prevent PHI leak simultaneously.

Table 7 presents the corresponding evaluation re-
sults, which are highly consistent with those on the
original data. Hence, experimental results reported
on our release data are still indicative.


