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Figure 1: Given a set of concept samples, Infusion demonstrates a remarkable ability to accurately assimilate these concepts
and adeptly generate imaginative compositions guided by textual descriptions.
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Abstract
Text-to-image (T2I) customization aims to create images that em-
body specific visual concepts delineated in textual descriptions.
However, existing works still face a main challenge, concept over-
fitting. To tackle this challenge, we first analyze overfitting, cat-
egorizing it into concept-agnostic overfitting, which undermines
non-customized concept knowledge, and concept-specific over-
fitting, which is confined to customize on limited diversities, i.e,
backgrounds, layouts, styles. To evaluate the overfitting degree, we
further introduce two metrics, i.e, Latent Fisher divergence and
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Wasserstein metric to measure the distribution changes of non-
customized and customized concept respectively. Drawing from
the analysis, we propose Infusion, a T2I customization method that
enables the learning of target concepts to avoid being constrained
by limited training diversities, while preserving non-customized
knowledge. Remarkably, Infusion achieves this feat with remarkable
efficiency, requiring a mere 11KB of trained parameters. Extensive
experiments also demonstrate that our approach outperforms state-
of-the-art methods in both single and multi-concept customized
generation. Project page: https://zwl666666.github.io/infusion/.
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1 Introduction
In the era of multi-modality, text-to-image (T2I) generation [29, 31,
33, 35] has experienced rapid growth, showcasing highly imagina-
tive works. Meanwhile, T2I customization rises as a potential need
in image generation, aiming to create images that embody specific
visual concepts aligned with textual descriptions. Users only need
to provide a set of similar images whose pertinent visual concepts,
e.g, pets, toys, or styles, are subsequently extracted by a T2I model.
These identified concepts are then seamlessly interwoven into the
users’ textual descriptions for customized generation.

Typically, T2I customization methods can be classified into two
categories: inversion-based and fine-tuning. Specifically, the inversion-
based methods [11, 47] represent concepts by learning additional
conceptual words. While this approach offers flexibility, it intro-
duces a significant overfitting challenge, as the injected concepts
permeate every part of the cross-attention module with textual
information. Another approach, fine-tuning method [34], keeps the
original architecture and optimizes model parameters with a set
of customized image data. However, a large parameter space that
is fitted by a small dataset leads to severe overfitting. Besides, the
extensive size of these models often necessitates substantial storage
and computation resources. Although Parameter-efficient tuning
(PET) approaches [21, 24] shrink the fine-tuning into only a small
subset of parameters, they still fail to eliminate the overfitting issue.

Comprehensively considering the previous methods, current T2I
customization still faces three challenges: 1) Concept overfitting
takes away general generation capabilities of foundational T2I mod-
els from customized models. 2) Lack of appropriate metrics to
quantify the impact of overfitting on customized models. 3) Cum-
bersome deployment prevents users from seamlessly switching
between customized mode and regular mode as desired.

Figure 2: Example of concept-agnostic overfitting. The first
column on the left is the target concept, and the right is
the non-customized results. The generated “cat” consistently
exhibits black spotted stripes, while the “teddy” consistently
presents a doll-like form, both sharing similar backgrounds.

Figure 3: Example of concept-specific overfitting. Customiza-
tion with the prompt “a photo of a ⟨cat⟩”, we reveal that all
prior methods generate cat images with a similar size, pose,
or background to the training data.

We deeply explore the overfitting problem and categorize it into
concept-agnostic overfitting and concept-specific overfitting.
Concept-agnostic overfitting is depicted in Figure 2. When learning
the concepts of ⟨cat⟩ and ⟨teddy⟩, customization undermines origi-
nal generative ability for non-customized concept. Concept-specific
overfitting is depicted in Figure 3. During the customization pro-
cess of T2I model, it confuses target concept with limited training
diversities, resulting in a diminution of generative diversity and
consequently impacts the textual controllability.

Based on the analysis of the above two categories of overfit-
ting, we introduce “Latent Fisher divergence” and “Wasserstein
metric” to measure the distribution changes of non-customized and
customized concept respectively. The latent Fisher divergence quan-
tifies the score difference of the non-customized concept between
the original model and the customized model. The Wasserstein
metric quantifies the deviation of the customized distribution from
its original generative distribution under a super-class concept,
serving as a measure of diversity.

To overcome the aforementioned challenges of overfitting, we
propose the Infusion method, a T2I customization method that en-
ables the learning of target concepts to avoid being constrained
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by limited training diversities. Infusion can also flexibly inject cus-
tomized concepts into original models while preserving their orig-
inal knowledge. Our novel insight lies in the decoupling of the
attention map and value feature in each cross-attention module. As
depicted in Figure 4, we implemented a dual-stream structure that
shares pipeline parameters. The foundational T2I pipeline performs
regular T2I generation. To harness its generative capabilities, we
imitate the operations in P2P [17], and use the attention maps in
the foundational T2I pipeline to replace the attention maps in the
customized T2I pipeline. We introduce target concepts by learn-
ing a residual value embedding in the customized pipeline. All the
learnable embeddings for a concept are highly lightweight, only
11KB, enabling seamless integration into the pipeline in a flexible
and plug-and-play manner.

In summary, our contributions can be delineated as follows:

• We analyze concept-agnostic and concept-specific overfit-
ting, and propose employing “Latent Fisher divergence” and
“Wasserstein metric” to quantify their impact.

• We propose Infusion, a method that decouples attention
maps and value features in each cross-attention module,
fully utilizing the capability of the original T2I model.

• Experiments show that Infusion enables plug-and-play single-
concept and multi-concept generation and achieves superior
results compared to state-of-the-art methods.

2 Related Work
2.1 Text-to-image Generation
Early Text-to-Image (T2I) models primarily relied on Generative
Adversarial Networks [6, 14, 22, 41, 51, 56], yet often exhibited
limitations in terms of diversity. Recently, diffusion models [19, 38–
40, 53, 54], coupled with classifier-free guidance [20], have emerged
as leaders in this domain. Their remarkable generative performance
is particularly noteworthy when applied to large-scale internet
datasets [27, 31–33]. This fact drives us to fully exploit the prior
knowledge of these foundational models for T2I customization.

2.2 Text-based Image Editing
The advent of contrastive multimodal models [30, 50], exemplified
by CLIP [30], has introduced a transformative paradigm shift in
the realm of image editing [3–5, 13, 28]. Significantly, these models
empower global or localized image manipulation through the exclu-
sive utilization of textual prompts. This paradigm has engendered a
series of text-based image editing methods [7, 17, 23, 26, 52], among
which the most relevant to our work is the prompt-to-prompt (P2P)
[17]. P2P achieves image editing by replacing or modifying the at-
tention map of the cross-attention module. Similarly, our approach
employs attention map replacement for image customization. The
difference is that P2P operates on virtual generated concepts, while
we can operate on real concepts.

2.3 Text-to-image Customization
Text-to-Image (T2I) customization aims to generate customized
concepts aligned with text description. Textual Inversion [11] is
the pioneering method in this realm, which introduces an innova-
tive approach to learning new word embeddings for representing

specific concepts without tuning model parameters. Despite its
plug-and-play adaptability, its efficacy remains constrained. Dream-
Booth [34] employs class nouns along with unique identifiers to
represent target concepts but requires the comprehensive training
of model parameters. While achieving high conceptual fidelity, this
approach is susceptible to overfitting. Subsequent methodologies,
incorporating low-rank updates or just tuning a few parameters,
aim to address this limitation [15, 21, 24]. Notably, Custom Diffu-
sion [24] focuses on updating the weights of cross-attention and
introduces regularization sets to mitigate overfitting. Perfusion [42]
introduces a decoupling of cross-attention into “what” and “where”
pathways. It leverages a Rank-one Model editing method [25] to
adjust the weights of key and value projection matrices, thereby
alleviating concerns associated with overfitting. Another research
trajectory involves using extensive customized data for pre-training
encoders, enabling training-free inference [2, 10, 12, 48, 49, 55].

3 Analysis of Concept Overfitting
In this section, based on T2I diffusion model, we analyze two types
of overfitting in the customized diffusion model: concept-agnostic
overfitting and concept-specific overfitting. We subsequently define
two metrics corresponding to each type of overfitting.

3.1 Preliminaries of T2I Diffusion Models
We applied our method to the Stable Diffusion (SD) model [1].
During the training phase, the encoder E maps the input image 𝑥 ∈
X to latent code 𝑧 = E(𝑥). Subsequently, the decoder D, is tasked
with reconstructing the input image, aiming for D(E(𝑥)) ≈ 𝑥 .

Diffusion models are then introduced to the latent space. The
forward process perturbs the input to a noisy variant 𝑧𝑡 , at each
time step 𝑡 . Given a conditional prompt𝑦, the latent diffusion model
𝜀𝜃 is to minimize the loss function:

L = E𝑧∼E(𝑥 ),𝑦,𝜀∼N(0,1),𝑡
[
∥𝜀 − 𝜀𝜃 (𝑧𝑡 , 𝑡, 𝜏 (𝑦))∥2

2
]
, (1)

where 𝜀𝜃 is a time-conditional UNet [36] comprising self-attention
layers and cross-attention layers. 𝜏 (𝑦) is randomly replaced by
an empty input ∅. This training objective can be construed as a
form of denoising score matching [45], with 𝜀𝜃 (𝑧𝑡 , 𝑡) serving as an
approximation to the score ∇𝑧 log𝑝 (𝑧𝑡 ) of the latent distribution.

Stable Diffusion employs a cross-attention mechanism to incor-
porate textual modal inputs. As previously outlined, the operation
𝜏𝜃 projects the text condition 𝑦 into an intermediate representa-
tion denoted as 𝜏𝜃 (𝑦) ∈ R𝐿×𝑑𝜏 . Subsequently, the cross-attention
operation of the 𝑖-th layer network is expressed as:

Atten(𝑄𝑖 , 𝐾𝑖 ,𝑉𝑖 ) = softmax

(
𝑄𝑖𝐾

𝑇
𝑖√
𝑑

)
𝑉𝑖 = 𝑀𝑖𝑉𝑖 , (2)

which is utilized to integrate textual information into the UNet
network. The constituents are defined as:

𝑄𝑖 = 𝜑𝑖 (𝑓𝑖 ) ·𝑊 𝑖
𝑄 , 𝐾𝑖 = 𝜏𝜃 (𝑦) ·𝑊

𝑖
𝐾 ,𝑉𝑖 = 𝜏𝜃 (𝑦) ·𝑊

𝑖
𝑉 , (3)

where 𝑄𝑖 ∈ R𝑁
2
𝑖 ×𝑑 , 𝐾𝑖 ∈ R𝐿×𝑑 , and 𝑉𝑖 ∈ R𝐿×𝑑 respectively rep-

resent the features of the query, key, and value. 𝜑𝑖 (𝑓𝑖 ) ∈ R𝑁
2
𝑖 ×𝑑𝑖𝜖

represents the (flattened) latent image representation of the UNet,
and𝑊 𝑖

𝑄
∈ R𝑑

𝑖
𝜖×𝑑 ,𝑊 𝑖

𝐾
∈ R𝑑𝜏×𝑑 , and𝑊 𝑖

𝑉
∈ R𝑑𝜏×𝑑 are learnable

matrix parameters [33].
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Figure 4: Infusion pipline. (a) Infusion fully preserves the capacity of the original model, precluding concept-agnostic overfitting.
(b) Infusion decouples the cross-attention module, precluding concept-specific overfitting.

3.2 Analysis of Concept-agnostic Overfitting

Figure 5: Concept-agnostic overfitting. Customized tuning, as
observed in Dreambooth [34], undermines non-customized
generative capabilities.

Figure 6: Concept-specific overfitting. The confusion training
between customized concepts and limited diversities gradu-
ally reduces the number of original diversities.

Figure 7: Shrinking of non-customized distribution. The gra-
dient field ∇𝑧 log𝑝𝜃 (𝑧 |𝑐) gradually contracting during train-
ing, leading to a more convergent field ∇𝑧 log 𝑝𝜃 ′ (𝑧 |𝑐).

Concept-agnostic overfitting often stems from alterations in
the foundational model parameters aimed at customization, thereby

compromising the model’s performance on non-customized con-
cepts. As shown in Figure 5, our toy foundational model is a four-
peak hybrid Gaussian model, where each peak represents a different
concept. The process of customized tuning can be viewed as the
model learning a specialized distribution under a particular con-
cept. Here, we simplify it as learning a linear distribution under
the Gaussian peak in the top-left corner. It can be observed that
when employing a tuning method similar to Dreambooth [34], the
generated distributions for non-customized concepts become com-
pact. The shrinking of these distributions implies a reduction in the
diversity of generated samples under non-customized concepts.

Therefore, for T2I models, we infer that concept-agnostic over-
fitting is primarily related to the offset of the non-customized score.
Specifically, let 𝑐 represent the customized concept and 𝑐 represent
non-customized concepts. 𝜃 , 𝜃 ′ are the parameters of the original
model and customized model. As depicted in Figure 7, the gradient
field described by∇𝑧 log𝑝𝜃 (𝑧 |𝑐), gradually contracting during train-
ing, leading to a more convergent field ∇𝑧 log𝑝𝜃 ′ (𝑧 |𝑐). To quantify
this effect, we define the latent Fisher divergence as definition 3.1,
which measures the distance between two models’ score under the
non-customized concepts.

Definition 3.1 (Latent Fisher divergence). Based on the fact that
𝑐 is only a small part of a vast image concept, and the training
principles of denoise score matching [45], the Fisher divergence
between 𝑝𝜃 (𝑧 |𝑐) and 𝑝𝜃 ′ (𝑧 |𝑐) can be approximated by:

𝐷𝐹 (𝑝𝜃 (𝑧 |𝑐)∥𝑝𝜃 ′ (𝑧 |𝑐))

=
1
2
E𝑧∼E(𝑥 )

[
∥∇𝑧 log 𝑝𝜃 (𝑧 |𝑐) − ∇𝑧 log𝑝𝜃 ′ (𝑧 |𝑐)∥2

2
]

≈
1
2
E𝑧∼E(𝑥 )

[𝜀𝜃 (𝑧𝑡 ,𝑡,𝑐 ) − 𝜀𝜃 ′ (𝑧𝑡 ,𝑡,𝑐 )2
2

]
. (4)

In essence, this metric assesses the degree to which the model’s
inherent generative capacity is compromised throughout the cus-
tomization process.
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3.3 Analysis of Concept-specific Overfitting
Concept-specific overfitting primarily stems from the confusion
learning between customized concepts and limited training diversi-
ties. As illustrated in Figure 6, we also employ a toy Gaussian model
for clarification, where each peak region represents different diver-
sities within the same concept. The original foundational model
is capable of generating 25 different diversities within a similar
concept, each representing variations such as diverse backgrounds,
layouts, and styles. The customized target is also to learning a linear
distribution. Typically, customized training datasets only contain a
subset of these diversities. We represent this with the utilization
of only five Gaussian distributions. It is evident from Figure 6 that,
during the training process, the model gradually reduces the num-
ber of diversities and ultimately converges to only include those
present in the training dataset. However, as shown Figure 6(e), our
ultimate goal is to represent linear concepts as comprehensively as
possible across all diversities within the model.

Therefore, during the learning process of T2I model, we infer
that the model confuses the target concept with other diversities
such as background, layout, style, etc., leading to concept-specific
overfitting. Based on the manifold hypothesis [16], each concept’s
generative distribution can be regarded as a probability manifold
embedded within the entire generative space, with the distributions
under different diversities of each concept considered as distinct
sub-manifolds embedded within this manifold. To quantify this
overfitting, it becomes necessary to measure the distance between
these sub-manifolds before and after customization training. To
achieve this, we introduce the Wasserstein metric, as defined in
definition 3.2.

Definition 3.2 (2-Wasserstein metric [44]). Let (X, 𝑑) be a Polish
metric space. For any two probabilitymeasures 𝜇, 𝜈 onX, 𝜇 and𝜈 are
respective marginal distributions over X, law (𝑋 ) = 𝜇, law (𝑌 ) =
𝜈 . 𝑑 (x, y) = ∥x − y∥2 is Euclidean distance. 𝜋 (𝑥,𝑦) is the set of all
probabilistic couplings in (X × X) with marginals 𝜇 and 𝜈 . The
2-Wasserstein distance between 𝜇 and 𝜈 is defined by the formula:

𝑊2 (𝜇, 𝜈) =
(

inf
𝜋∈Π (𝜇,𝜈 )

∫
X
𝑑 (𝑥,𝑦)2𝑑𝜋 (𝑥,𝑦)

)1/2

= inf
{[
E𝑑 (𝑋,𝑌 )2] 1

2

}
. (5)

However, directly compute Wasserstein metric in high-dimensional
space is difficult. So in this work, inspired by Fréchet Inception
Distance [18], we fits a Gaussian distribution to the latent of SD
model for each distribution and then computes the 2-Wasserstein
distance, between those Gaussians.

4 Method
To address the aforementioned two types of overfitting, we aim to
retain the generative capacity of the foundational T2I model and
exploit its generative diversity for customization. For instance, to
generate a customized image with the prompt “a ⟨cat⟩ is reading
a book”. An intuitive strategy is that we generate an initial image
by foundational T2I model first. During this process, we can apply
a transformation to replace the depicted “cat” with the desired
customized “⟨cat⟩”. Note that the use of “⟨⟩” is merely for written
distinction, and we do not undertake additional learning of unique

identifiers. As shown in Figure 4, the “cat” was selectively replaced
with a customized concept, while preserving the constancy of other
elements. In this way, we retain the T2I model’s generative capacity,
avoid concept-agnostic overfitting, and simultaneously harness its
diversity to mitigate the risk of concept-specific overfitting.

4.1 Cross-attention Affects T2I Generation
Following [42], we can partition the cross-attention module into
two pathways: the “where” pathway for the position and geomet-
ric attributes of objects in the final image, and the “what” path-
way dictating the features incorporated into each spatial region,
thus controls the content appearing in the final image. Specifically,
expanding the expression denoted by Equation 2, we derive the
following:

Atten(𝑄𝑖 , 𝐾𝑖 ,𝑉𝑖 )

=

(
𝑚𝑖1,𝑚

𝑖
2, · · · ,𝑚

𝑖
𝐿

)
((𝑣𝑖1)

⊤, (𝑣𝑖2)
⊤, · · · , (𝑣𝑖𝐿)

⊤)⊤

=

𝐿∑︁
𝑘=1

𝑚𝑖
𝑘
· 𝑣𝑖
𝑘
. (6)

Here, 𝑚𝑖
𝑘
∈ R𝑁

2
𝑖 ×1 denotes the attention map corresponding to

the 𝑘-th token of the input prompt and 𝑣𝑖
𝑘
∈ R1×𝑑 represents the

value feature associated with the same token. As shown in Figure
4, there is usually minimal overlap between attention maps of the
foundational T2I model. Various methods [9, 43] exist can be di-
rectly combined with Infusion to further prevent their overlap, here
we just consider a simplified scenario. Thus, in conjunction with
Equation 6, we observe that independent attention maps determine
the positional presentation of their corresponding tokens in the
image. The content they present is determined by the respective
values.

Under the condition where the conceptualized generation con-
tent remains fixed, the augmentation of spatial layout and posture
in the generated entities is imperative to amplify the diversity of
customized generation. Furthermore, we posit that the foundational
T2I model, untainted by customized training, inherently encapsu-
lates the spatial diversity. To fully harness the diversity, our insight
is that its attention maps should be decoupled for customized gen-
eration.

It is somewhat akin to the mechanisms employed in P2P, we
extract attention maps from the foundational T2I model’s genera-
tion under identical prompts, utilizing them to replace the atten-
tion maps in the customized generation process. However, P2P is
constrained to the substitution of concepts exclusively within the
generative scope of the model.

4.2 Concept Learning with Residual Embedding
The essence of Infusion lies in preserving the cross-attention maps
of the foundational T2I model and subsequently learning and in-
fusing concepts during each time step 𝑡 along the “what” pathway.

For example, consider the training image 𝐼 and its correspond-
ing text description 𝑦 (“a photo of a cat”). We feed them into both
the foundational T2I pipeline (F-pipeline) and the customized T2I
pipeline (C-pipeline). These two pipelines share fixed foundational
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model parameters. Differently, to facilitate the learning of cus-
tomized concepts, a trainable embedding is introduced in the “what”
pathway of the C-pipeline. Specifically, a residual embedding Δcat

𝑖
is

incorporated into the value feature of the “cat” token. This embed-
ding represents the customized concept and fulfills the transforma-
tion from the original category to a specific object. Consequently,
the attention module within the C-pipeline can be structured as
follows:

Atten(𝑄𝑖 , 𝐾𝑖 ,𝑉𝑖 )

=
∑︁
𝑘≠obj

𝑚𝑖
𝑘
· 𝑣𝑖
𝑘
+𝑚𝑖obj · 𝑣

𝑖
obj

=
∑︁
𝑘≠obj

𝑚𝑖
𝑘
· 𝑣𝑖
𝑘
+𝑚𝑖obj · (𝑣

𝑖
obj + Δ𝑖⟨obj⟩) . (7)

The subscript 𝑜𝑏 𝑗 denotes the index of the concept token in the
prompt. Vectors with “−” denote those from the C-pipeline, while
vectors without “−” originate from the F-pipeline. It is noteworthy
that 𝑣𝑖

𝑘
= 𝑣𝑖

𝑘
when 𝑘 ≠ obj, or in other words,𝑉 differs from𝑉 only

in the value feature corresponding to the token ⟨obj⟩.
Finally, the trainable parameters Δ𝑖⟨obj⟩ are optimized with the

customization loss without additional regularization:

L = E𝑧∼E(𝑥 ),𝑦,𝜀∼N(0,1),𝑡
[𝜀 − 𝜀𝜃 ′ (𝑧𝑡 , 𝑡, 𝜏 (𝑦))2

2

]
, (8)

where 𝑥 is the reference few-shot data of ⟨obj⟩, 𝜃 ′
is the parameters

of the customized model.

4.3 Single-concept and Multi-concept Inference
Similarly, during the inference stage, attention maps from the F-
pipeline are employed to replace the attention maps within each
cross-attention module in the C-pipeline. The previously obtained
residual value embedding can be effortlessly applied to value fea-
tures of the corresponding concept token. For a prompt involving
𝑆 specific concepts ⟨obj1⟩, ⟨obj2⟩, · · · , ⟨obj𝑆 ⟩, it is sufficient to re-
trieve the pre-computed Δ𝑖⟨obj1 ⟩

,Δ𝑖⟨obj2 ⟩
, · · · ,Δ𝑖⟨obj𝑆 ⟩ and integrate

them into the value embedding of the 𝑖-th layer, as follows:

𝑣𝑖obj𝑠
= 𝑣𝑖obj𝑠

+ Δ𝑖⟨obj𝑠 ⟩
. (9)

Combining Equation 7 with Equation 9, we can finally generate
single-concept or multi-concept customized images.

sectionExperiments

4.4 Experiment Details
Experiment Setup. We utilize the pre-trained StableDiffusion
(SD)-v1.5 model [1] for ablation studies and comparisons. In each
layer of the Unet’s cross-attention, we train the residual concept
Δ⟨obj⟩ ∈ R1×𝑑 for the corresponding value feature, where 𝑑 = 768.
The optimization of these embeddings is carried out with a learning
rate of 0.01 and a batch size of 4. During the inference process, we
employ a DDIM sampler with a sampling step size of 𝑇 = 50, and
leverage classifier-free guidance with a guiding scale of 𝑠 = 8. We
utilize datasets from prior works [24, 34], encompassing diverse
subjects such as toys, animals, buildings, and personal items.

Baseline. We benchmark our method against state-of-the-art
competitors, including Textual Inversion, DreamBooth, DreamBooth-
lora, Custom Diffusion, and Perfusion. For Textual Inversion and
DreamBooth(lora), we utilize their Diffusers versions [46], and for
Custom Diffusion and Perfusion, we employ their official imple-
mentations with experimental parameters configured following
official recommendations.

Overfitting Evaluation. Referring to Section 3, we employ
the Latent Fisher divergence and Wasserstein metric to assess the
concept-agnostic overfitting and concept-specific overfitting on the
customized model. Latent Fisher divergence is computed based on
a random sample of 50000 examples from LAION-400M [37]. We
sample time steps uniformly and measure the distance between
the outputs of 𝜖𝜃 and 𝜖𝜃 ′ . To evaluate concept-specific overfitting,
we generate 1000 samples under 8 concepts based on 20 prompts
and calculate the 2-Wasserstein distance between 𝑝𝜃 (𝑧 |𝑥, 𝑐) and
𝑝𝜃 ′ (𝑧 |𝑥, 𝑐).

Customization Evaluation. Following previous works [34, 48],
we employ CLIP-I, CLIP-T, and DINO-I to evaluate the model ability
for customized image generation. CLIP-T is to assess the alignment
between generated images and prompts. CLIP-I evaluates the sim-
ilarity between generated samples and training data in the CLIP
feature space. DINO-I computes the cosine similarity between the
ViTS/16 DINO [8] embeddings of training images and generated
images.

4.5 Overfitting Comparison
To ensure fair comparison of the anti-overfitting capabilities among
different customized models, we adjusted the learning rate and
batch size to achieve near-optimal performance for each method at
the same number of training steps. Additionally, we continued train-
ing each model after convergence to assess the extent of overfitting.
As depicted in Figures 10 and Figures 11, Infusion demonstrates
robust resistance to concept overfitting compared to other methods.
As illustrated in Figure 12, we present the generated results of Infu-
sion at training steps 100, 200, 400, 1000 and 2000. It is evident that
even at higher training steps, Infusion keeps producing content
highly aligned with the given text. This sets it apart from other
methods that require precise control over training steps to prevent
overfitting. In contrast, DB(Dreambooth)-lora, CD(Customized Dif-
fusion), and TI(Textual Inversion) exhibit increasing susceptibility
to concept-specific overfitting with continued training, becoming
increasingly confined to the training diversities, and losing control
over textual consistency. Perfusion performs better in this regard,
but its consistency with customized concepts is notably inferior
to Infusion. Moreover, since Infusion can directly generate non-
customized concepts through the F-pipeline, it remains unaffected
by concept-agnostic overfitting.

4.6 Qualitative Results
Figure 8 illustrates a series of generated images produced by our
approach and its competitors, including Stable Diffusion (SD), for
single-concept customization. To rigorously assess the models’ gen-
erative capabilities, we deliberately selected a set of imaginative
descriptive prompts. Notably, DreamBooth and Textual Inversion
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Figure 8: Single-concept generation. The visual comparison involves multiple methods, with Infusion demonstrating robust
customization capabilities to align textually and conceptually.

Figure 9: Multi-concept generation. We show the results of multi-concept. Infusion demonstrates superior performance in
generating works that exhibit higher levels of imagination and fidelity to customized concepts compared to Custom Diffusion

exhibit pronounced susceptibility to overfitting, emphasizing con-
ceptual consistency limits their imagination. Perfusion, on the other
hand, demonstrates commendable imaginative capacities, yet tends
to overlook the generation of customized concepts. Custom Diffu-
sion, while achieving performance comparable to our method, still
lacks some diversity.

In contrast, Infusion adeptly balances textual expression and
concept fidelity. Furthermore, when compared with the generated

results of SD, it becomes evident how our method leverages the
“where” pathway and “what” pathway to infuse concepts. Our ap-
proach effectively preserves the SD’s generated background and
layout while injecting customized concepts onto the corresponding
objects. This strategy allows us to harness the imaginative capacity
of SD for customization and avoid overfitting.

Figure 9 showcases the performance of our method in multi-
concept generation. In this context, we only present the results
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Figure 10: Wasserstein metric at various training steps.

Figure 11: Latent Fisher Divergence at various training steps.

Figure 12: Customized generation results at various training
steps.

of Infusion and Custom Diffusion, as the performance of other
competitors in this task significantly lags behind these two. We
observe that Custom Diffusion tends to overlook some concepts
during multi-concept customization. In comparison, our method
excels in crafting works that are not only more imaginative but
also more faithful to the customized concepts.

4.7 Quantitative Results

Table 1: Quantitative Results.We compared different baseline
methods across various metrics, and Infusion achieved the
highest text alignment score.

Method CLIP-T ↑ CLIP-I ↑ DINO ↑ Storage
DreamBooth [34] 0.255 0.838 0.721 3.3 GB

DreamBooth-lora [46] 0.264 0.791 0.615 3.29 MB
Textual Inversion [11] 0.240 0.780 0.584 3KB
Custom Diffusion [24] 0.256 0.800 0.643 57.1MB

Perfusion [42] 0.242 0.729 0.505 100KB
Infusion (Ours) 0.267 0.816 0.697 11KB

Our quantitative analysis primarily focuses on general objects
customization. Utilizing 20 concept dataset from [24, 34] and the
same 25 prompts as in [34], we generated 5 images for each prompt.
Table 1 demonstrates our method’s superiority in text alignment.
While it may not surpass Dreambooth and Custom Diffusion in
image alignment and DINO score, we attribute this discrepancy to
inherent limitations in the metrics. These metrics consider back-
ground information similarity during computation, which may not
align with the goals of our customized generation approach. The
simplicity of testing prompts also limits a comprehensive assess-
ment, future work will include more intricate test texts to evaluate
the model’s generative capabilities thoroughly.

Table 2: Quantitative Results. In each paired comparison,
Infusion is preferred (over 50%) over the baseline methods in
both text- and image-alignment.

vs Method Text Alignment ↑ Image Alignment ↑
DreamBooth 86.90% 51.19%
Textual Inversion 82.14% 82.14%
Custom Diffusion 69.05% 75.00%
Perfusion 65.48% 84.52%

User Study. We evaluate the average preferences of 21 partic-
ipants for Infusion and other baseline methods. Each participant
responds to 32 questions about quality comparison. Table 2 indicates
users’ general preference for Infusion in terms of text alignment
and conceptual fidelity.

5 Conclusion and Limitations
In this work, we analyze two types of overfitting and introduce
“Latent Fisher divergence” and “Wasserstein metric” to quantify
them. Our proposed Infusion preserves the inherent generative
capacity of the original T2I model while offering flexible, plug-
and-play usage for customization. Infusion demonstrates excellent
performance in overall learning of target concepts. However, for
tasks that require high-fidelity preservation of detailed textures,
Infusion exhibits certain limitations. In such cases, there is a trade-
off between diversity and fidelity, necessitating the sacrifice of
some diversity in exchange for higher fidelity, such as training
more residual embeddings.



Infusion: Preventing Customized Text-to-Image Diffusion from Overfitting MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

Acknowledgments
This work was supported in part by NSFC (62201342, 62101325),
and Shanghai Municipal Science and Technology Major Project
(2021SHZDZX0102).

References
[1] 2022. Stable Diffusion. https://huggingface.co/runwayml/stable-diffusion-v1-5
[2] Moab Arar, Rinon Gal, Yuval Atzmon, Gal Chechik, Daniel Cohen-Or, Ariel

Shamir, and Amit H. Bermano. 2023. Domain-agnostic tuning-encoder for fast
personalization of text-to-image models. In SIGGRAPH Asia 2023 Conference
Papers. 1–10.

[3] Omri Avrahami, Ohad Fried, and Dani Lischinski. 2023. Blended latent diffusion.
ACM Transactions on Graphics (TOG) 42, 4 (2023), 1–11.

[4] Omri Avrahami, Dani Lischinski, and Ohad Fried. 2022. Blended diffusion for
text-driven editing of natural images. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 18208–18218.

[5] Omer Bar-Tal, Dolev Ofri-Amar, Rafail Fridman, Yoni Kasten, and Tali Dekel. 2022.
Text2live: Text-driven layered image and video editing. In European conference
on computer vision. Springer, 707–723.

[6] Andrew Brock, Jeff Donahue, and Karen Simonyan. 2018. Large scale GAN
training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096
(2018).

[7] Tim Brooks, Aleksander Holynski, and Alexei A Efros. 2023. Instructpix2pix:
Learning to follow image editing instructions. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 18392–18402.

[8] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr
Bojanowski, and Armand Joulin. 2021. Emerging properties in self-supervised
vision transformers. In Proceedings of the IEEE/CVF international conference on
computer vision. 9650–9660.

[9] Hila Chefer, Yuval Alaluf, Yael Vinker, Lior Wolf, and Daniel Cohen-Or. 2023.
Attend-and-excite: Attention-based semantic guidance for text-to-image diffusion
models. ACM Transactions on Graphics (TOG) 42, 4 (2023), 1–10.

[10] Wenhu Chen, Hexiang Hu, Yandong Li, Nataniel Rui, Xuhui Jia, Ming-Wei Chang,
and William W Cohen. 2023. Subject-driven text-to-image generation via ap-
prenticeship learning. arXiv preprint arXiv:2304.00186 (2023).

[11] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal
Chechik, and Daniel Cohen-Or. 2022. An image is worth one word: Personalizing
text-to-image generation using textual inversion. arXiv preprint arXiv:2208.01618
(2022).

[12] Rinon Gal, Moab Arar, Yuval Atzmon, Amit H Bermano, Gal Chechik, and Daniel
Cohen-Or. 2023. Encoder-based domain tuning for fast personalization of text-
to-image models. ACM Transactions on Graphics (TOG) 42, 4 (2023), 1–13.

[13] Rinon Gal, Or Patashnik, Haggai Maron, Amit H Bermano, Gal Chechik, and
Daniel Cohen-Or. 2022. StyleGAN-NADA: CLIP-guided domain adaptation of
image generators. ACM Transactions on Graphics (TOG) 41, 4 (2022), 1–13.

[14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. Advances in neural information processing systems 27 (2014).

[15] Ligong Han, Yinxiao Li, Han Zhang, Peyman Milanfar, Dimitris Metaxas, and
Feng Yang. 2023. Svdiff: Compact parameter space for diffusion fine-tuning. arXiv
preprint arXiv:2303.11305 (2023).

[16] Yutong He, Naoki Murata, Chieh-Hsin Lai, Yuhta Takida, Toshimitsu Uesaka,
Dongjun Kim, Wei-Hsiang Liao, Yuki Mitsufuji, J Zico Kolter, Ruslan Salakhut-
dinov, et al. 2023. Manifold preserving guided diffusion. arXiv preprint
arXiv:2311.16424 (2023).

[17] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel
Cohen-Or. 2022. Prompt-to-prompt image editing with cross attention control.
arXiv preprint arXiv:2208.01626 (2022).

[18] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and
Sepp Hochreiter. 2017. Gans trained by a two time-scale update rule converge to
a local nash equilibrium. Advances in neural information processing systems 30
(2017).

[19] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic
models. Advances in neural information processing systems 33 (2020), 6840–6851.

[20] Jonathan Ho and Tim Salimans. 2022. Classifier-free diffusion guidance. arXiv
preprint arXiv:2207.12598 (2022).

[21] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2021. Lora: Low-rank adaptation of large
language models. arXiv preprint arXiv:2106.09685 (2021).

[22] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko
Lehtinen, and Timo Aila. 2021. Alias-free generative adversarial networks. Ad-
vances in Neural Information Processing Systems 34 (2021), 852–863.

[23] Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel,
Inbar Mosseri, and Michal Irani. 2023. Imagic: Text-based real image editing with
diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 6007–6017.

[24] Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, and Jun-Yan Zhu.
2023. Multi-concept customization of text-to-image diffusion. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 1931–1941.

[25] Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. 2022. Locating
and editing factual associations in GPT. Advances in Neural Information Processing
Systems 35 (2022), 17359–17372.

[26] Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. 2023.
Null-text inversion for editing real images using guided diffusion models. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
6038–6047.

[27] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin,
Bob McGrew, Ilya Sutskever, and Mark Chen. 2021. Glide: Towards photorealistic
image generation and editing with text-guided diffusion models. arXiv preprint
arXiv:2112.10741 (2021).

[28] Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or, and Dani Lischinski.
2021. Styleclip: Text-driven manipulation of stylegan imagery. In Proceedings of
the IEEE/CVF International Conference on Computer Vision. 2085–2094.

[29] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, TimDockhorn, Jonas
Müller, Joe Penna, and Robin Rombach. 2023. Sdxl: Improving latent diffusion
models for high-resolution image synthesis. arXiv preprint arXiv:2307.01952
(2023).

[30] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from natural language supervision.
In International conference on machine learning. PMLR, 8748–8763.

[31] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen.
2022. Hierarchical text-conditional image generation with clip latents. arXiv
preprint arXiv:2204.06125 1, 2 (2022), 3.

[32] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec
Radford,Mark Chen, and Ilya Sutskever. 2021. Zero-shot text-to-image generation.
In International Conference on Machine Learning. PMLR, 8821–8831.

[33] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. 2022. High-resolution image synthesis with latent diffusion models. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
10684–10695.

[34] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and
Kfir Aberman. 2023. Dreambooth: Fine tuning text-to-image diffusion models for
subject-driven generation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 22500–22510.

[35] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily
Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi,
Rapha Gontijo Lopes, et al. [n. d.]. Photorealistic text-to-image diffusion models
with deep language understanding, 2022. URL https://arxiv. org/abs/2205.11487 4
([n. d.]).

[36] Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and
Mohammad Norouzi. 2022. Image super-resolution via iterative refinement. IEEE
Transactions on Pattern Analysis and Machine Intelligence 45, 4 (2022), 4713–4726.

[37] Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk,
Clayton Mullis, Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki.
2021. Laion-400m: Open dataset of clip-filtered 400million image-text pairs. arXiv
preprint arXiv:2111.02114 (2021).

[38] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli.
2015. Deep unsupervised learning using nonequilibrium thermodynamics. In
International conference on machine learning. PMLR, 2256–2265.

[39] Jiaming Song, Chenlin Meng, and Stefano Ermon. 2020. Denoising diffusion
implicit models. arXiv preprint arXiv:2010.02502 (2020).

[40] Yang Song and Stefano Ermon. 2019. Generativemodeling by estimating gradients
of the data distribution. Advances in neural information processing systems 32
(2019).

[41] Ming Tao, Hao Tang, Fei Wu, Xiao-Yuan Jing, Bing-Kun Bao, and Changsheng
Xu. 2022. Df-gan: A simple and effective baseline for text-to-image synthesis. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
16515–16525.

[42] Yoad Tewel, Rinon Gal, Gal Chechik, and Yuval Atzmon. 2023. Key-locked rank
one editing for text-to-image personalization. In ACM SIGGRAPH 2023 Conference
Proceedings. 1–11.

[43] Hazarapet Tunanyan, Dejia Xu, Shant Navasardyan, Zhangyang Wang, and
Humphrey Shi. 2023. Multi-Concept T2I-Zero: Tweaking Only The Text Embed-
dings and Nothing Else. arXiv preprint arXiv:2310.07419 (2023).

[44] Cédric Villani et al. 2009. Optimal transport: old and new. Vol. 338. Springer.
[45] Pascal Vincent. 2011. A connection between score matching and denoising

autoencoders. Neural computation 23, 7 (2011), 1661–1674.
[46] Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro Cuenca, Nathan Lambert,

Kashif Rasul, Mishig Davaadorj, and Thomas Wolf. [n. d.]. Diffusers: State-of-the-
art diffusion models. https://github.com/huggingface/diffusers

[47] Andrey Voynov, Qinghao Chu, Daniel Cohen-Or, and Kfir Aberman. 2023. 𝑃+:
Extended Textual Conditioning in Text-to-Image Generation. arXiv preprint
arXiv:2303.09522 (2023).

https://huggingface.co/runwayml/stable-diffusion-v1-5
https://github.com/huggingface/diffusers


MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Weili Zeng, Yichao Yan, Qi Zhu, Zhuo Chen, Pengzhi Chu, Weiming Zhao, and Xiaokang Yang

[48] YuxiangWei, Yabo Zhang, Zhilong Ji, Jinfeng Bai, Lei Zhang, andWangmeng Zuo.
2023. Elite: Encoding visual concepts into textual embeddings for customized
text-to-image generation. arXiv preprint arXiv:2302.13848 (2023).

[49] Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. 2023. Ip-adapter: Text
compatible image prompt adapter for text-to-image diffusion models. arXiv
preprint arXiv:2308.06721 (2023).

[50] Xin Yuan, Zhe Lin, Jason Kuen, Jianming Zhang, Yilin Wang, Michael Maire,
Ajinkya Kale, and Baldo Faieta. 2021. Multimodal contrastive training for visual
representation learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 6995–7004.

[51] Han Zhang, Jing Yu Koh, Jason Baldridge, Honglak Lee, and Yinfei Yang. 2021.
Cross-modal contrastive learning for text-to-image generation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition. 833–842.

[52] Zhixing Zhang, LigongHan, ArnabGhosh, Dimitris NMetaxas, and Jian Ren. 2023.
Sine: Single image editing with text-to-image diffusion models. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 6027–6037.
[53] Tianyi Zheng, Cong Geng, Peng-Tao Jiang, Ben Wan, Hao Zhang, Jinwei Chen,

Jia Wang, and Bo Li. 2024. Non-uniform Timestep Sampling: Towards Faster
Diffusion Model Training. ACMMM (2024).

[54] Tianyi Zheng, Peng-Tao Jiang, Ben Wan, Hao Zhang, Jinwei Chen, Jia Wang, and
Bo Li. 2024. Beta-Tuned Timestep Diffusion Model. ECCV (2024).

[55] Yufan Zhou, Ruiyi Zhang, Tong Sun, and Jinhui Xu. 2023. Enhancing Detail
Preservation for Customized Text-to-Image Generation: A Regularization-Free
Approach. arXiv preprint arXiv:2305.13579 (2023).

[56] Minfeng Zhu, Pingbo Pan, Wei Chen, and Yi Yang. 2019. Dm-gan: Dynamic mem-
ory generative adversarial networks for text-to-image synthesis. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition. 5802–5810.

Received 20 April 2024; revised 1 July 2024; accepted 18 July 2024


	Abstract
	1 Introduction
	2 Related Work
	2.1 Text-to-image Generation
	2.2 Text-based Image Editing
	2.3 Text-to-image Customization

	3 Analysis of Concept Overfitting
	3.1 Preliminaries of T2I Diffusion Models
	3.2 Analysis of Concept-agnostic Overfitting
	3.3 Analysis of Concept-specific Overfitting

	4 Method
	4.1 Cross-attention Affects T2I Generation
	4.2 Concept Learning with Residual Embedding
	4.3 Single-concept and Multi-concept Inference
	4.4 Experiment Details
	4.5 Overfitting Comparison
	4.6 Qualitative Results
	4.7 Quantitative Results

	5 Conclusion and Limitations
	Acknowledgments
	References

