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ABSTRACT

We extend metric learning by studying the Riemannian manifold structure of the
underlying data space induced by dissimilarity measures between data points. The
key quantity of interest here is the Riemannian metric, which characterizes the
Riemannian geometry and defines straight lines and derivatives on the manifold.
Being able to estimate the Riemannian metric allows us to gain insights into the
underlying manifold and compute geometric features such as the geodesic curves.
We model the observed dissimilarity measures as noisy responses generated from
a function of the intrinsic geodesic distance between data points. A new local
regression approach is proposed to learn the Riemannian metric tensor and its
derivatives based on a Taylor expansion for the squared geodesic distances. Our
framework is general and accommodates different types of responses, whether
they are continuous, binary, or comparative, extending the existing works which
consider a single type of response at a time. We develop theoretical foundation
for our method by deriving the rates of convergence for the asymptotic bias and
variance of the estimated metric tensor. The proposed method is shown to be
versatile in simulation studies and real data applications involving taxi trip time in
New York City and MNIST digits.

1 INTRODUCTION

The estimation of distance metric, also known as metric learning, has attracted great interest since
its introduction for classification (Hastie & Tibshirani, 1996) and clustering (Xing et al., 2002). A
global Mahalanobis distance is commonly used to obtain the best distance for discriminating two
classes (Xing et al., 2002; Weinberger & Saul, 2009). While a global metric is often the focus of
earlier works, multiple local metrics (Frome et al., 2007; Weinberger & Saul, 2009; Ramanan &
Baker, 2011; Chen et al., 2019) are found to be useful because they better capture the data space
geometry. There is a great body of work on distance metric learning; see, e.g., Bellet et al. (2015);
Suárez et al. (2021) for recent reviews.

Metric learning is intimately connected with learning on Riemannian manifolds. Hauberg et al.
(2012) connects multi-metric learning to learning the geometric structure of a Riemannian manifold,
and advocates its benefits in regression and dimensional reduction tasks. Lebanon (2002; 2006); Le
& Cuturi (2015) discuss Riemannian metric learning by utilizing a parametric family of metric,
and demonstrate applications in text and image classification. Like in these works, our target is to
learn the Riemannian metric instead of the distance metric, which fundamentally differentiates our
approach from most existing works in metric learning. We focus on the nonparametric estimation
of the data geometry as quantified by the Riemannian metric tensor. Contrary to distance metric
learning, where the coefficient matrix for the Mahalanobis distance is constant in a neighborhood,
the Riemannian metric is a smooth tensor field that allows analysis of finer structures. Our emphasis
is in inference, namely learning how differences in the response measure are explained by specific
differences in the predictor coordinates, rather than obtaining a metric optimal for a supervised
learning task.

A related field is manifold learning which attempts to find low-dimensional nonlinear representa-
tions of apparent high-dimensional data sampled from an underlying manifold (Roweis & Saul,
2000; Tenenbaum et al., 2000; Coifman & Lafon, 2006). Those embedding methods generally start
by assuming the local geometry is given, e.g., by the Euclidean distance between ambient data
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points. Not all existing methods are isometric, so the geometry obtained this way can be distorted.
Perraul-Joncas & Meila (2013) uses the Laplacian operator to obtain pushforward metric for the low-
dimensional representations. Instead of specifying the geometry of the ambient space, our focus is
to learn the geometry from noisy measures of intrinsic distances. Fefferman et al. (2020) discusses
an abstract setting of this task, while our work proposes a practical estimation of the Riemannian
metric tensor when coordinates are also available, and we show that our approach is numerically
sound.

We suppose that data are generated from an unknown Riemannian manifold, and we have available
the coordinates of the data objects. The Euclidean distance between the coordinates may not reflect
the underlying geometry. Instead, we assume that we further observe similarity measures between
objects, modeled as noise-contaminated intrinsic distances, that are used to characterize the intrinsic
geometry on the Riemannian manifold. The targeted Riemannian metric is estimated in a data-
driven fashion, which enables estimating geodesics (straight lines and locally shortest paths) and
performing calculus on the manifold.

To formulate the problem, let (M, G) be a Riemannian manifold with Riemannian metric G, and
dist (·, ·) be the geodesic distance induced by G which measures the true intrinsic difference be-
tween points. The coordinates of data points x0, x1 ∈ M are assumed known, identifying each
point via a tuple of real numbers. Also observed are noisy measurements y of the intrinsic distance
between data points, which we refer to as similarity measurements (equivalently dissimilarity). The
response is modeled flexibly, and we consider the following common scenarios: (i) noisy distance,
where y = dist (x0, x1)

2
+ ε for error ε, (ii) similarity/dissimilarity, where y = 0 if the two points

x0, x1 are considered similar and y = 1 otherwise, and (iii) relative comparison, where a triplet of
points (x0, x1, x2) are given and y = 1 if x0 is more similar to x1 than to x2 and y = 0 otherwise.
The binary similarity measurement is common in computer vision (e.g. Chopra et al., 2005), while
the relative comparison could be useful for perceptional tasks and recommendation system (e.g.
Schultz & Joachims, 2003; Berenzweig et al., 2004). We aim to estimate the Riemannian metric G
and its derivatives using the coordinates and similarity measures among the data points.

The major contribution of this paper is threefold. First, we formulate a framework for probabilis-
tic modeling of similarity measurements among data on manifold via intrinsic distances. Based on
a Taylor expansion for the spread of geodesic curves in differential geometry, the local regression
procedure successfully estimates the Riemannian metric and its derivatives. Second, a theoretical
foundation is developed for the proposed method including asymptotic consistency. Last and most
importantly, the proposed method provides a geometric interpretation for the structure of the data
space induced by the similarity measurements, as demonstrated in the numerical examples that in-
clude a taxi travel and an MNIST digit application.

2 BACKGROUND IN RIEMANNIAN GEOMETRY

For brevity, metric now refers to Riemannian metric while distance metric is always spelled out.
Throughout the paper, M denotes a d-dimensional manifold endowed with a coordinate chart
(U,ϕ), where ϕ : U → Rd maps a point p ∈ U ⊂ M on the manifold to its coordinate
ϕ(p) =

(
ϕ1(p), . . . , ϕd(p)

)
∈ Rd. Without loss of generality, we identify a point by its coordi-

nate as
(
p1, . . . , pd

)
, suppressing ϕ for the coordinate chart. Upper-script Roman letters denote the

components of a coordinate, e.g., pi is the i-th entry in the coordinate of the point p, and γi is the i-th
component function of a curve γ : R ⊃ [a, b]→M when expressed on chart U . The tangent space
TpM is a vector space consisting of velocities of the form v = γ′(0) where γ is any curve satisfying
γ(0) = p. The coordinate chart induces a basis on the tangent space TpM, as ∂i|p = ∂/∂xi|p for
i = 1, . . . , d, so that a tangent vector v ∈ TpM is represented as v =

∑d
i=1 v

i∂i for some vi ∈ R,
suppressing the subscript p in the basis. We adopt the Einstein summation convention unless other-
wise specified, namely vi∂i denotes

∑d
i=1 v

i∂i, where common pairs of upper- and lower-indices
denotes a summation from 1 to d (see e.g., Lee, 2013, pp.18–19).

The Riemannian metric G on a d-dimensional manifold M is a smooth tensor field acting on the
tangent vectors. At any p ∈M, G(p) : TpM×TpM→ R is a symmetric bi-linear tensor/function
satisfying G(p)(v, v) ≥ 0 for any v ∈ TpM and G(p)(v, v) = 0 if and only if v = 0. On a chart
ϕ, the metric is represented as a d-by-d positive definite matrix that quantifies the distance traveled
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along infinitesimal changes in the coordinates. With an abuse of notation, the chart representation
of G is given by the matrix-valued function p 7→ G(p) = [Gij(p)]

d
i,j=1 ∈ Rd×d for p ∈ M, so

the distance traveled by γ at time t for a duration of dt is [Gij(γ(t))γ̇i(t)γ̇j(t)]1/2. The intrinsic
distance induced by G, or the geodesic distance, is computed as

dist (p, q) = inf
α

∫ 1

0

  ∑
1≤i,j≤d

Gij(α(t))α̇i(t)α̇j(t)dt, (2.1)

for two points p, q on the manifold M, where infimum is taken over any curve α : [0, 1] → M
connecting p to q.

A geodesic curve (or simply geodesic) is a smooth curve γ : R ⊃ [a, b] → M satisfying the
geodesic equations, represented on a coordinate chart as

γ̈k(t) + γ̇i(t)γ̇j(t)Γkij ◦ γ(t) = 0, for i, j, k = 1, . . . , d, (2.2)

where over-dots represent derivative w.r.t. t; Γkij = 1
2G

kl (∂iGjl + ∂jGil − ∂lGij) are the Christof-
fel symbols at p; andGkl is the (k, l)-element ofG−1. Solving (2.2) with initial conditions1 produces
geodesic that traces out the generalization of a straight line on the manifold, preserving travel direc-
tion with no acceleration, and is also locally the shortest path.

Considering the shortest path γ connecting p to q and applying Taylor’s expansion at t = 0, we
obtain dist (p, q)

2 ≈
∑

1≤i,j≤dGij(p)(q
i − pi)(qj − pj), showing the connection between the

geodesic distance and a quadratic form analogous to the Mahalanobis distance. Our estimation
method is based on this approximation, and we will discuss the higher-order terms shortly which
unveil finer structure of the manifold.

3 LOCAL REGRESSION FOR SIMILARITY MEASUREMENTS

3.1 PROBABILISTIC MODELING FOR SIMILARITY MEASUREMENTS

Suppose that we observe N independent triplets (Yu, Xu0, Xu1), u = 1, . . . , N . Here, the Xuj are
locations on the manifold identified with their coordinates

(
X1
uj , . . . , X

d
uj

)
∈ Rd, j = 1, 2, and

Yu are noisy similarity measures of the proximity of (Xu0, Xu1) in terms of the intrinsic geodesic
distance dist (·, ·) on M. To account for different structures of the similarity measurements, we
model the response in a fashion analogous to generalized linear models. For Xu0, Xu1 lying in a
small neighborhood Up ⊂M of a target location p ∈M, the similarity measure Yu is modeled as

E (Yu|Xu0, Xu1) = g−1
Ä
dist (Xu0, Xu1)

2
ä
, (3.1)

where g is a given link function that relates the conditional expectation to the squared distance.
Example 3.1. We describe below three common scenarios modeled by the general framework (3.1).

1. Continuous response being the squared geodesic distance contaminated with noise:

Yu = dist (Xu0, Xu1)
2

+ σ(p)εn, (3.2)

where ε1, . . . , εn are i.i.d. mean zero random variables, and σ : M → R+ is a smooth
positive function determining the magnitude of noise near the target point p. This model
will be applied to model trip time as noisy measure of cost to travel between locations.

2. Binary (dis)similarity response:

P (Yu = 1|Xu0, Xu1) = logit−1
Ä
dist (Xu0, Xu1)

2 − h(p)
ä

(3.3)

for some smooth function h : M→ R, where logit(µ) = log (µ/ (1− µ)), µ ∈ (0, 1) is
the logit function. This models the case when there are latent labels for Xuj (e.g., digit 6
v.s. 9) and Yu is a measure of whether their labels are in common or not. The function h(p)
in (3.3) describes the homogeneity of the latent labels for points in a small neighborhood
of p. The latent labels could have intrinsic variation even if measurements are made for the
same data points x = Xu0 = Xu1, and the strength of which is captured by h(p).

1See Appendix B for details about solving it in practice.
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3. Binary relative comparison response, where we extend our model for triplets of points
(Xu0, Xu1, Xu2), where Yu stands for whether Xu0 is more similar to Xu1 than to Xu2:

P (Yu = 1|Xu0, Xu1, Xu2) = logit−1
Ä
dist (Xu0, Xu2)

2 − dist (Xu0, Xu1)
2
ä
, (3.4)

so that the relative comparison Yu reflects the comparison of squared distances.

3.2 LOCAL APPROXIMATION OF SQUARED DISTANCES

We develop a local approximation for the squared distance as the key tool to estimate our model (3.1)
through local regression. Proposition 3.1 provides a Taylor expansion for the squared geodesic dis-
tance between two geodesics with same starting point but different initial velocities (see Figure D.1
for visualization). For a point p on the Riemannian manifoldM, let expp : TpM→M denote the
exponential map defined by expp(tv) = γ(t) where γ is a geodesic starting from p at time 0 with
initial velocity γ′(0) = v ∈ TpM. For notational simplicity, we suppress the dependency on p in
geometric quantities (e.g., the metric G is understood to be evaluated at p). For i = 1, . . . , d, denote
δi = δi(t) = γi(t)− γi(0) as the difference in coordinate after a travel of time t along γ.
Proposition 3.1 (spread of geodesics, coordinated). Let p ∈ M and v, w ∈ TpM be two tangent
vectors at p. On a local coordinate chart, the squared geodesic distance between two geodesics
γ0(t) = expp(tv) and γ1(t) = expp(tw) satisfies, as t→ 0,

dist (γ0(t), γ1(t))
2

= δi0−1δ
j
0−1Gij + δi0−1

(
δk0δ

l
0 − δk1δl1

)
ΓjklGij +O(t4) (3.5)

where for i, j, k, l,m = 1, . . . , d,

• δi0 = γi0(t) − pi, δi1 = γi1(t) − pi, and δi0−1 = δi0 − δi1, i.e., δi0, δi1 are differences in
i-th coordinates of γ0(t) and γ1(t) to the origin p, respectively, and δi0−1 = δi0 − δi1 is the
coordinate difference between γ0(t) and γ1(t);

• Gij and Γjkl are the elements of the metric and Christoffel symbols at p, respectively.

To the RHS of (3.5), the first term is the quadratic term in distance metric learning. The second
term is the result of coordinate representation of geodesics. It vanishes under the normal coordinate
where the Christoffel symbols are zero2. It inspires the use of local regression to estimate the metric
tensor and the Christoffel symbols. For Xu0, Xu1 in a small neighborhood of p, write the linear
predictor as

ηu := β(0) + δiu,0−1δ
j
u,0−1β

(1)
ij + δku,0−1

Ä
δiu0δ

j
u0 − δiu1δ

j
u1

ä
β
(2)
ijk, (3.6)

a function of the intercept β(0) and coefficients β(1)
ij , β

(2)
ijk, where δiu0 = Xi

u0 − pi, δiu1 = Xi
u1 − pi,

and δiu,0−1 = δiu0 − δiu1, for i, j, k, l = 1, . . . , d, and u = 1, . . . , N . The intercept term β(0)

is included for capturing h(p) in (3.3) under that scenario and can otherwise be dropped from the
model. The link function connects the linear predictor to the conditional mean via µu := g−1 (ηu) ≈
E (Yu|Xu0, Xu1) as indicated by (3.1) and (3.5), where µu is seen as a function of the coefficients
β(0), β(1)

ij , and β(2)
ijk. Therefore, upon the specification of a loss function Q : R × R → {0} ∪ R+

and non-negative weights w1, . . . , wN , the minimizers

(β̂(0), β̂
(1)
ij , β̂

(2)
ijk) = arg min

β(0),β
(1)
ij ,β

(2)
ijk;i,j,k

N∑
u=1

Q (Yu, µu)wu, (3.7)

subject to β(1)
ij = β

(1)
ji , β

(2)
ijk = β

(2)
jik, for i, j, k, l = 1, . . . , d, (3.8)

are used to estimate the metric tensor and Christoffel symbols, obtaining

Ĝij = β̂
(1)
ij , Γ̂lij = β̂

(2)
ijkĜ

kl, (3.9)

2See e.g., Lee (2018) pp. 131–133 for normal coordinate. See Meyer (1989) and Proposition D.1 for
coordinate-invariant version of Proposition 3.1.
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where Ĝkl is the matrix inverse of Ĝ satisfying ĜklĜkj = 1{j=l}. The symmetry constraints (3.8)
are the result of the symmetries in the metric tensor and Christoffel symbols, and are enforced by
optimizing over only the lower triangular indices 1 ≤ i < j ≤ dwithout constraints. Asymptotic re-
sults guarantees the positive-definiteness of the metric estimate, as will be shown in Proposition 4.1.
To weigh the pairs of endpoints according to their proximity to the target location p, we apply kernel
weights specified by

wu = h−2d
d∏
i=1

K

Å
Xi
u0 − pi

h

ã
K

Å
Xi
u1 − pi

h

ã
(3.10)

for some h > 0 and non-negative kernel function K. The bandwidth h controls the bias–variance
trade-off of the estimated Riemannian metric tensor and its derivatives.

Altering the link function g and the loss function Q in (3.7) enables flexible local regression estima-
tion for models in Example 3.1.
Example 3.2. Consider the following loss functions for estimating the metric tensors and the
Christoffel symbols when data are drawn from model (3.2)–(3.4), respectively.

1. Continuous noisy response: use squared loss Q (y, µ) = (y − µ)
2 with g being the identity

link function so µu = ηu.

2. Binary (dis)similarity response: use log-likelihood of Bernoulli random variable

Q (y, µ) = y logµ+ (1− y) log (1− µ) , (3.11)

and g the logit link, so µu = logit−1 (ηu). The model becomes a local logistic regression.

3. Binary relative comparison response: apply the same loss function (3.11) and logit
link as in the previous scenario, but here we formulate the linear predictor based on
dist (Xu0, Xu2)

2 − dist (Xu0, Xu1)
2 ≈ ηu1 − ηu2 and

µu = g−1 (ηu1 − ηu2) . (3.12)

Locally, the difference in squared distances is approximated by

ηu1 − ηu2 =
Ä
δiu,0−1δ

j
u,0−1 − δiu,0−2δ

j
u,0−2

ä
β
(1)
ij (3.13)

+
Ä
δku,0−1

Ä
δiu0δ

j
u0 − δiu1δ

j
u1

ä
− δku,0−2

Ä
δiu0δ

j
u0 − δiu2δ

j
u2

ää
β
(2)
ijk,

for δiu2 = Xi
u2−pi and δiu,0−2 = δiu2−δiu0, i = 1, . . . , d. Here ηu1 and ηu2 are constructed

in analogy to (3.6) using (Xu0, Xu1) and (Xu0, Xu2) pair respectively.

Examples in Section 5 will further illustrate the proposed method in those scenarios. Besides the
models listed, other choices for the link g and loss functionQ can also be considered under this local
regression framework (Fan & Gijbels, 1996), accommodating a wide variety of data. To efficiently
estimate the metric on the entire manifold M, we apply a procedure based on discretization and
post-smoothing, as detailed in Appendix B.

4 BIAS AND VARIANCE OF THE ESTIMATED METRIC TENSOR

This subsection provides asymptotic justification for model (3.2) with E (Yu|Xu0, Xu1) =

dist (Xu0, Xu1)
2 under the squared loss Q(µ, y) = (µ − y)2 and the identity link g(µ) = µ.

The estimator we analyzed here fits a local quadratic regression without intercept and approximates
the squared distance by a simplified form of (3.6):

dist (Xu0, Xu1)
2 ≈ ηu := δiu,0−1δ

j
u,0−1β

(1)
ij , (4.1)

for u = 1, . . . , N . Given a suitable order of the indices i, j for vectorization, we rewrite the formu-
lation into a matrix form. Denote the local design matrix and regression coefficients as

Du =
Ä
δ1u,0−1δ

1
u,0−1, . . . , δ

i
u,0−1δ

j
u,0−1, . . . , δ

d
u,0−1δ

d
u,0−1

äT
, β =

Ä
β
(1)
11 , . . . , β

(1)
ij , . . . , β

(1)
dd

äT
,
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so that the linear predictor ηu = DT
uβ. Further, write D = (D1, . . . ,DN )

T , Y = (Y1, . . . , YN )
T ,

and W = diag (w1, . . . , wN ), with weights wu specified in (3.10). The objective function in (3.7)
becomes (Y −Dβ)

T
W (Y −Dβ), and the minimizer is β̂ =

(
DTWD

)−1
DTWY , for which

we will analyze the bias and variance.

To characterize the asymptotic bias and variance of the estimator, we assume the following condi-
tions are satisfied in a neighborhood of the target p. These conditions are standard and analogous to
those assumed in a local regression setting (Fan & Gijbels, 1996).

(A1) The joint density of endpoints (Xu0, Xu1) is positive and continuously differentiable.

(A2) The functions Gij ,Γkij are C2-smooth for i, j, k = 1, . . . , d.

(A3) The kernel K in weights (3.10) is symmetric, continuous, and has a bounded support.

(A4) supu var (Yu|Xu0, Xu1) <∞.

Proposition 4.1. Under (A1)–(A4), bias
Ä
β̂|X
ä

= Op
(
h2
)
, var
Ä
β̂|X
ä

= Op
(
N−1h−4−2d

)
, as

h→ 0 and Nh2+2d →∞, where X = {(Xu0, Xu1)}Nu=1 is the collection of observed endpoints.

The local approximation (4.1) is similar to a local polynomial estimation of the second derivative of
a 2d-variate squared geodesic distance function, explaining the order of h in the rates for bias and
variance.

5 SIMULATION

We illustrate the proposed method using simulated data with different types of responses as de-
scribed in Example 3.1. We study whether the proposed method well estimates Riemannian geo-
metric quantities, including the metric tensor, geodesics, and Christoffel symbols. Additional details
are included in Appendix C of the Supplementary Materials.

5.1 UNIT SPHERE

The usual arc-length/great circle distance on the d-dimensional unit sphere is induced by the round
metric, which is expressed under the stereographic projection coordinate

(
x1, . . . , xd

)
as G̊ij =

4
Ä
1 +

∑d
k=1 x

kxk
ä−2

1{i=j}, for i, j = 1, . . . , d. Under the additive model (3.2) in Example 3.1,
we considered either noiseless or noisy responses by setting σ(p) = 0 or σ(p) > 0 respectively.

Experiments were preformed with d = 2 and the finding are summarized in Figure 5.1. For contin-
uous responses, the left panel of Figure 5.1a visualizes the true and estimated metric tensors via cost
ellipses (A.1) and the right panel shows the corresponding geodesics by solving the geodesic equa-
tions (2.2) with true and estimated Christoffel symbols. The metrics and the geodesics were well
estimated under the continuous response model without or without additive errors, where the esti-
mates overlap with the truth. Figure 5.1b evaluates the relative estimation errors

∥∥∥Ĝ−G∥∥∥
F
/ ‖G‖F

and
∥∥∥Γ̂− Γ

∥∥∥
F
/ ‖Γ‖F w.r.t. the Frobenius norm (A.2) for data from the continuous model (3.2).

For binary responses under model (3.3), Figure 5.1c visualizes the data where the background color
illustrates h. Figure 5.1d and left panel of Figure 5.1a suggest that the intercept and the metric were
reasonably estimated, while the geodesics are slightly away from the truth (Figure 5.1a, right). This
indicates that the binary model has higher complexity and less information is being provided by the
binary response (see also Figure C.1b in the Supplementary Materials).

5.2 RELATIVE COMPARISON ON THE DOUBLE SPIRALS

A set of 7 × 104 points on R2 were generated around two spirals, corresponding to two latent
classesA and B (e.g., green points in Figure 5.2a are from latent classA). We compare neighboring
points (Xu0, Xu1, Xu2) to generate relative comparison response Yu as follows. For u = 1, . . . , N ,
Yu = 1 if Xu0, Xu1 belong to the same latent class and Xu0, Xu2 belong to different classes;
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(a) Estimated and true metric tensors using ellipses representation
(left) and the geodesic curves (right) starting from (1, 0) with unit
initial velocities pointing to 1–12 o’clock directions.
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(b) Relative errors in term of Frobenius norm of the estimated ten-
sors for the continuous response model (3.2) with additive error.
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(c) Simulated data, where line
segments show pairs of endpoints
colored according to their bi-
nary responses. The background
shows the value of h.
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(d) Errors for estimating h with
binary responses (3.3).

Figure 5.1: Simulation results for 2-dimensional sphere under stereographic projection coordinate.

otherwise Y = 0. Figure 5.2b shows a portion of the N = 6, 965, 312 comparison generated, where
the hollow circles in the middle of each wedge correspond to Xu0.

Here, contrast of the two latent classes induces the intrinsic distance, so the distance is larger across
the supports of the two classes and smaller within a single support. Therefore, the resulting metric
tensor should reflect less cost while moving along the tangential direction of the spirals compared
to perpendicular directions. Estimates were drawn under model (3.4) by minimizing the objective
(3.7) with the link function (3.12) and the local approximation (3.13).

The estimated metric shown in Figure 5.2c is consistent with the interpretation of the intrinsic dis-
tance and metric induced by the class membership discussed above. Meanwhile, the estimated
geodesic curve unveils the hidden circular structure of the data support as shown in Figure 5.2d.

6 NEW YORK CITY TAXI TRIP DURATION

We study the geometry induced by taxi travel time in New York City (NYC) during weekday morn-
ing rush hours. New York City Taxi and Limousine Commission (TLC) Trip Record Data was
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Figure 5.2: Simulation results for relative comparison on double spirals. Gray curves (solid and
dashed) in the background represent the approximate support of the two latent classes. In (b), the
tiny circles are Xu0, each with two segments connecting to Xu1 and Xu2, colored according to Yu.

accessed on May 1st, 20223 to obtained business day morning taxi trip records including GPS coor-
dinates for pickup/dropoff locations as (Xu0, Xu1) and trip duration as Yu. Estimation to the travel
time metric was drawn under model (3.2) with Q(y, µ) = (y − µ)2 and g(µ) = µ.

Figure 6.1a shows the estimated metric for taxi travel time. The background color shows the Frobe-
nius norm of the metric tensor, where larger values mean that longer travel time is required to pass
through that location. Trips through midtown Manhattan and the financial district were estimated to
be the most costly during rush hours, which is coherent to the fact that these are the city’s primary
business districts. Moreover, the cost ellipses represent the cost in time to travel a unit distance along
different directions. This suggests that in Manhattan, it takes longer to drive along the east–west di-
rection (narrower streets) compared to the north–south direction (wider avenues).

Geodesic curves in Figure 6.1b show where a 15-minutes taxi ride leads to starting from the Empire
State Building. Each geodesic curve corresponds to one of 12 starting directions (1–12 o’clock).
Note that we apply a continuous Riemannian manifold approximation to the city, so the geodesic
curves provide approximations to the shortest paths between locations and need not conform to the
road network. Travel appears to be faster in lower Manhattan than in midtown Manhattan. The
spread of the geodesics differs along different directions, indicating the existence of non-constant
curvature on the manifold and advocating for estimating the Riemannian metric tensor field instead
of applying a single global distance metric.

7 HIGH-DIMENSIONAL DATA: AN EXAMPLE WITH MNIST

The curse of dimensionality is a big challenge to apply nonparametric methods to data sources like
images and audios. However, it is often found that apparent high-dimensional data actually lie close
to some low-dimensional manifold, which is utilized by manifold learning literature to produce
reasonable low-dimensional coordinate representations. The proposed method can then be applied
to the resulting low-dimensional coordinates as in the following MNIST example.

We embed images in MNIST to a 2-dimensional space via tSNE (Hinton & Roweis, 2002). Simi-
larity between the objects was computed by the sum of the Wasserstein distance between images4

and the indicator of whether the underlying digits are different (1) or not (0). The goal is to infer the
geometry of the embedded data induced by this similarity measures.

The geodesics estimated from our method tend to minimize the number of switches between labels.
For example, the geodesic A in Figure 7.1 remains “4” (1st row of panel (b)) throughout, while
the straight line on the tSNE chart translates to a path of images switching between “4” and “9”

3https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page. Data format changed after our download.
4After rescaling, see Subsection C.4.
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(a) Estimated metric tensors for trip duration: cost
ellipses and Frobenius norm (background color).

(b) Geodesics correspond to 15-minute taxi rides from
the Empire State Building heading to 1–12 o’clock.

Figure 6.1: New York taxi travel time during morning rush hours.

(2nd row of panel (b)); similar phenomenon occurs for geodesics B and C (corresponding to 4th
and 7th rows in (b)). Also, our estimated geodesics produce reasonable transition and reside in
the space of digits, while unrestricted optimal transport (3rd, 6th, and 9th rows of panel (b)) could
produce unrecognizable intermediate images. Our estimated geodesic is faithful to the geometric
interpretation that a geodesic is locally the shortest path.

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
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1
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tSNE.1

tS
N

E
.2

(a) The estimated geodesic curves (solid
red) and straight lines on the chart (dashed
black).

(b) Image transitions corresponding to A, B, and C in (a). Ev-
ery 3 rows correspond to a set of paths sharing the same pair
of starting and ending images, where the first, second, and
third rows correspond to the estimated geodesics, the straight
lines on the chart, and the optimal transport (path not shown
in (a)), respectively.

Figure 7.1: Geometry induced by a sum of Wasserstein distance and same-digit-or-not indicator.

8 DISCUSSION

We present a novel framework for inferring the data geometry based on pairwise similarity mea-
sures. Our framework targets data lying on a low-dimensional manifold since observations need to
be dense near the locations where we wish to estimate the metric. However, these assumptions are
general enough for our method to be applied to manifold data with high ambient dimension in com-
bination with manifold embedding tools. Context-specific interpretation of the geometrical notions,
e.g., Riemannian metric and geodesics has been demonstrated in the taxi travel and MNIST digit
examples. Our method has the potential to be applied in many other application communities, such
as cognition and perception research, where psychometric similarity measures are commonly made.
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A ADDITIONAL DEFINITION

A cost ellipse visualizes the metric by an ellipse

Ep =

(x1, . . . , xd) :

d∑
i,j=1

(
xi − pi

) (
xj − pj

)
Gij = r2

 (A.1)
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for some constant r > 0, which shows, approximately, the intrinsic distance on the manifold when
traveling a unit length on the coordinate chart along each direction. More precisely, it shows the
norm of tangent vectors vi∂i ∈ TpM subject to

∑d
i=1 v

ivi = r2 at p pointing to the corresponding
direction. For example in a d = 2-dimensional manifold at p = 0, under G = diag (λ1, λ2)
with λ1 > λ2 and r = 1. The long axis,

(
±
√
λ1, 0

)
, is the norm of the tangent vector ±∂1.

Thus, the direction in which the ellipse is larger corresponds to the direction of the larger geodesic
distance. One can see (A.1) as the “inverse” of the Tissot’s indicatrix, where the latter shows a local
equidistance contour to the ellipse’s center.

Frobenius norm of tensors is denoted as ‖·‖F , defined as

‖G‖F =

Ñ
d∑

i,j=1

GijGij

é1/2

, ‖Γ‖F =

Ñ
d∑

i,j,k=1

ΓkijΓ
k
ij

é1/2

, (A.2)

for metric tensor G and Christoffel symbol Γ.

B IMPLEMENTATION NOTES

An R (R Core Team, 2022) package is developed to implement the proposed methods and all nu-
merical experiments.

We utilized an efficient procedure to obtain estimates Ĝij over the entire manifoldM as follows.
We first obtain estimates Ĝij(pn) over a dense grid of points p1, p2, . . . , pNgrid ∈ M by following
(3.7)–(3.9). Next, the estimate Ĝij(x) at an arbitrary x ∈ M is obtained by the post-smoothing
estimate

Ĝij(x) =

∑Ngrid
n=1K (‖x− pn‖ /hps) Ĝij(pn)∑Ngrid

n=1K (‖x− pn‖ /hps)
,

for some kernel K and bandwidth hps > 0. We also use local regression (Loader, 1999) for post-
smoothing. The grid for the examples (Section 5, Section 6, and Section 7) are 128×128 for the unit
sphere, and 80 × 80 for the double spirals, 250 × 250 meters cells for the New York taxi example,
and 64× 64 for the MNIST example.

The estimated geodesics are computed by numerically solving ordinary differential equations sys-
tem, either given the start point and initial velocity, or given the start and the end points. It suffices to
notice that the geodesic equations (2.2) are equivalently written as, after plugging-in the estimated
Christoffel symbol Γ̂,

vi(t) = γ̇i(t),

v̇k(t) = −vi(t)vj(t)Γ̂kij ◦ γ(t),

for i, j, k = 1, . . . , d. Here, Γ̂kij ◦ γ(t) is the value of the estimated Christoffel symbol at point(
γ1(t), . . . , γd(t)

)
. Further supplying initial condition γi(0) = pi0, vi(0) = vi0, i = 1, . . . , d for

point p0 ∈ M and tangent vector v0 ∈ Tp0M constitute an initial value problem, whose solution
reflects the geodesic curve starting from p0 with initial velocity v0. On the other hand, supplying
boundary condition γi(0) = pi0, γi(1) = pi1, i = 1, . . . , d for p0, p1 ∈ M constitute a boundary
value problem, whose solution reflects the geodesic curve from p0 to p1. we use deSolve (Soetaert
et al., 2010) and bvpSolve (Mazzia et al., 2014) for initial value problems and boundary value
problems respectively. See reference therein for further details of numeric solution to ODE.

C ADDITIONAL EXPERIMENT DETAILS

This section provides further detail to complete Section 5, Section 6, and Section 7 of the main text
including how we generated the simulated data, and more figures.
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C.1 UNIT SPHERE AND ROUND METRIC

The stereographic coordinate of the d-dimensional sphere Sd identifies points on the sphere by map-
ping it to its stereographic projection in Rd from the north pole. The round metric on the sphere
Sd is the metric induced by embedding of Sd ↪→ Rd+1. For detail, see for example page 30 of Lee
(2013) and chapter 3 of Lee (2018). We generated endpoints Xu0, Xu1 uniformly in the coordinate
chart (−3, 3)× (−3, 3), then pair the endpoints so that the difference in coordinates of the endpoints
|δiu0 − δiu1| = |Xi

u0 −Xi
u1| would not exceed 0.2 for i = 1, 2, u = 1, . . . , N .

More precisely, data were generated on d = 2-dimensional sphere under stereographic projection
coordinate. A total of N = 5 × 105 pairs of endpoints with Xi

u0, X
i
u1 ∈ (−3, 3) were generated

subject to |Xi
u0 −Xi

u1| ≤ 0.2 for all u = 1, . . . , N ; i = 1, . . . , d. For a reasonable signal-to-noise
ratio, we set σ(p) = σ ≈ 9 × 10−4 for all p, which is approximately one-tenth of the marginal
expectation of squared distance, i.e., σ ≈ E dist (Xu0, Xu1)

2
/10.

For simplicity of presentation, we scaled the distance for the binary similarity response model (3.3).
More precisely, we use dist

c
(·, ·) =

√
cdist (·, ·) induced by the scaled metric Gij,c = cG̊ij

for some constant c and i, j = 1, . . . , d. The experiment here used c = 300. Intuitively, the
constant c regulates the signal-to-noise ratio without changing the form of geodesics. Given the
endpoints, a smaller c leads to a smaller value of geodesic distance and hence smaller variation in
the linear predictors ηu, so the response Yu will take less influence from the distance, representing a
higher amount of noise. Then h(p) was set to be the average local squared distances within a local
neighborhood of p under the scaled distance.

In the end, the responses were generated following (3.2) and (3.3) respectively.

In addition, Figure C.1 illustrates the relative Frobenius error for estimated tensors using noiseless
or binary responses.

C.1.1 BANDWIDTH SELECTION

Like local regression, the proposed method relies on a neighborhood specification for opti-
mal bias-variance trade-off. The simulation in Subsection 5.1 uses the rectangular kernel
K(x) = 1[−1,1](x) for (3.10), where 1 is the indicator function, so the estimation only
utilizes observations with endpoints Xu0, Xu1 are both lying in the neighborhood Up ={(
x1, . . . , xd

)
: |xi − pi| ≤ h, i = 1, . . . , d

}
of the target point p.

We propose a train–test set scheme for data-driven bandwidth selection. To simplify computation,
we only considered additive error under (3.2). A 16 × 16 grid p1, . . . , p256 ∈ (−3, 3) × (−3, 3)
were used as target points where metric tensors were estimated, with a test set of Ntest = 31246
observations that were within close proximity to the grid. Estimation of the tensors were computed
w.r.t. bandwidth h utilizing a train set containing Ntrain = 400158 (approximately 80% of the data)
randomly selected observations outside of the test set. For the test set, Ŷu,test = η̂u,test were then
computed under identity link by plugging the estimated tensors into (3.6).

The bandwidth minimizing the squared loss
∑Ntest
u=1

Ä
Yu,test − Ŷu,test

ä2
/Ntest is then chosen. The

proposed bandwidth selection resulted in h = 0.18 according to the loss shown in the left panel
of Figure C.2, which corresponds to an effectively local sample size of approximately 1000 in the
training step (right panel of Figure C.2). These tuning parameter choices were applied in the results
shown in Subsection 5.1. Other bandwidth selection methods developed for local regression (see
e.g. Fan & Gijbels, 1996, section 4.10) can also be adopted here.

C.2 THE DOUBLE SPIRALS

Define a class of spiral functions as S : R→ R2 with

t 7→ (cos(5t+ φ), t sin(5t+ φ)) .

The underlying spirals for class A and B are SA = S(·, φ = 0) and SB = S(·, φ = π) respectively.
For endpoints, we first generate points X̊m independently and uniformly on SA or SB , then the
endpoints are generated following X̊m + 0.15Zm for i.i.d. standard Gaussian random variables
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Figure C.1: Relative errors w.r.t. Frobenius norm (A.2) of the estimated tensors with noiseless or
binary response for 2-dimensional sphere under stereographic projection coordinate chart.

Zm, m = 1, . . . , 70000. Provided with those candidate endpoints, we pair them to form relative
comparison subject to the restriction that |Xi

u0 − Xi
uj | ≤ 0.35 for i, j = 1, 2, n = 1, . . . , N . The

responses Yu are then generated based on the class of involving endpoints by their corresponding X̊
on the spirals.
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Figure C.2: Root mean squared error (RMSE) for the test set (Left) and the average number of local
training observations (Right) as the bandwidth h varies.

For estimation, we used a larger local neighborhood Up =
{(
x1, x2

)
: |xi − pi| ≤ h for i = 1, 2

}
with h = π/2 and weights wu = 1{Xu0,Xu1,Xu2∈Up} for u = 1, . . . , N to avoid degenerate esti-
mates.

Note that different starting points and initial velocities will generate different geodesics, not all
resembling a spiral, as shown in Figure C.3.

−2

−1

0

1

2

−2 0 2

label of geodesics 1 2 3 4

Figure C.3: Geodesics with different starting points and initial velocities under estimated metric,
crosses indicate starting points.

C.3 NYC TAXI TRIPS

We focus on the 8,809,982 sensible records between 7 a.m. to 10 a.m. on business days from May
to September (summer months to hopefully avoid snow) of 2015 in New York City areas other than
the Staten Island. Sensible in terms of GPS coordinates not falling in to the rivers, travel time not
being several seconds, and that inferred traveling speed is not 120 mph, and e.t.c. We measure the
cost to travel Yu by the squared trip duration (instead of the trip distance). For each target location
p, estimation was computed using trips among the M ≤ 5 × 104 closest pickup/dropoff endpoints
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in the neighborhood Up =
{

(x1, x2) : |xi − pi| ≤ 5 kilometers for i = 1, 2
}

, and weights given by
h = 2.5 kilometers with the kernelK being the density function of the standard normal distribution.

C.4 THE MNIST EXAMPLE

The dimension reduction is computed using R package dimRed (Kraemer et al., 2018). The Wasser-
stein distance and optimal transport are computed using package transport (Schuhmacher et al.,
2022). To show image transitions, weighted average is adopted to approximate the inverse of the
tSNE embedding so as to map the trajectories back to image space, similar to, e.g., equation (3.9) of
Chen & Müller (2012), but with Gaussian kernel and a sufficiently small bandwidth.

To simplify computation, we only embed the first 3 × 104 images (half of the entire data), and the
resulting embedding coordinates were scaled (i.e., centered by the mean and divided by standard
deviation). We generated N = 105 comparison by selecting nearby points in the embedded space
subject to ‖Xu0 −Xu1‖∞ ≤ 0.75, whose response Yu were computed based on the same-digit-or-
not indicator and 2–Wasserstein distance between the corresponding images:

dist (Xu0, Xu0) = Cdistwass (picu0, picu1) + 1{lblu0 6=lblu1},

where for u = 1, . . . , N ,

• Xu0, Xu1 ∈ R2 are coordinates in the embedded space;

• picu0 and picu0 are the 28× 28 grey scale images;

• lblu0 and lblu1 are the image labels (0–9);

• distwass (·, ·) is the 2–Wasserstein distance treating images as 2-dimensional probability
distributions;

• 1{event} is the indicator for whether the event is true (1) or false (0).

We multiply the Wasserstein distance by C = 4 to balance the magnitude of the two summands,
otherwise the later could be overly dominating.

Estimation was drawn under model (3.2) with squared lossQ(y, µ) = (y−µ)2 and the identity link.
We included the intercept term (β(0) in (3.6)) to capture intrinsic variation. Since the dimensional
reduction embedding map is not necessarily an injection, so that different images with non-zero
similarity measures could share identical coordinates in the embedded space. Figure C.4a shows the
estimated intercepts, which is larger among class boundaries, coherent to a greater variation in the
similarity measure. Those few blank pixels indicate failure to obtain positive definite metric, which
are alleviated by averaging neighboring estimated values.

We also dropped the terms for Christoffel symbols from (3.6) for better numeric stability. Con-
sequently, the estimated Christoffel symbols were computed by numeric differential following the
definition. Results are similar if we include the Christoffel symbol terms in the linear predictor, but
less stable.

Figure C.4b shows the cost ellipses for addition visualization.

Notably, the proposal also work supplied with binary similarity measures using only the same-digit-
or-not indicator (i.e., setting C = 0 to remove the Wasserstein distance), and retains the “fewer label
switching” tendency as illustrated in Figure C.5. We see this as an real data example in analogy to
the double spirals (Subsection 5.2). We would also like to remark that not all geodesics are different
from straight lines on the chart, and it is not guaranteed that geodesic must travel within the same
class whenever possible, since its travel is jointly determined by the metric and where the endpoints
are located.

D SPREAD OF GEODESICS

Here we provide proof to the Proposition 3.1 in the main text, which characterizes the distance
between geodesics departing from a same starting point. Proposition 3.1 is a result of combining
Proposition D.1 and Proposition D.2.
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Figure C.4: More figures for the induced geometry by adding Wasserstein distance and same-digit-
or-not indicator.
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(a) The geodesic curves (solid red) and straight
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(b) Image transitions (per row) corresponding to bows A, B,
C, and D in panel (a). Every 2 rows correspond to one pair of
start and end images, where the first and second rows follow
geodesics and the straight lines respectively.

Figure C.5: Induced geodesics of only the same-digit-or-not indicator.

Proposition D.1 (spread of geodesics). Let p ∈ M and v, w ∈ TpM be two tangent vector at p.
Then the squared distance of separation satisfies Taylor expansion of

dist
(
expp(tv), expp(tw)

)2
= t2 ‖v − w‖2 − 1

3
t4 〈R(v, w)w, v〉+O(t5)

as t→ 0.

Here, R is the (1, 3)-curvature tensor defined as

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,
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where X,Y, Z are vector fields and [X,Y ] = XY − Y X is the Lie bracket (c.f., e.g., Lee, 2018,
page 385). Further, the Riemann curvature tensor is defined as

Rm(X,Y, Z,W ) = 〈R(X,Y )Z,W 〉 ,

where W is also a vector field. Note that R and Rm are both tensor fields, so 〈R(v, w)w, v〉
(equivalentlyRm(v, w,w, v)) are those evaluated at p, since v, w ∈ TpM. See Lee (2018), pp. 196–
199 for detail.

However, additional terms are introduced when computing via coordinate charts, as a result of ap-
proximating the initial velocities v and w.
Proposition D.2 (approximation of velocity). For any p ∈ M, let v ∈ TpM be a tangent vector at
p and γ(t) = expp(tv) be the geodesic from p with initial velocity v. Given any local coordinate
chart, write v = vi∂i. For i = 1, . . . , d, denote δi = δi(t) = γi(t) − γi(0) as the difference in
coordinate after traveling t along γ, we have

vi = t−1δi(t) + Ri(t),

where the remainder is

Ri(t) =
1

2t
δmδnΓimn +

1

6t
δmδnδl

(
ΓkmnΓikl + ∂lΓ

i
mn

)
+O(t3) (D.1)

as t→ 0, where Γ and ∂Γ denote the the Christoffel symbols and their derivatives at p.

expp(tv)

expp(tw)

v

w

spread ofgeodesics

p
TpM

M

Figure D.1: A visualization for the spread of geodesics as in Proposition 3.1. A tangent space (blue
plane) and tangent vectors are annotated in red.

D.1 PROOFS

Proof of Proposition D.1. Similar results can be found at Proposition 2.7 of do Carmo (1992),
Proposition 5.4, of (Lang, 1999, IX, §5). We use the form presented by Meyer (1989). In the
following, we reproduce the proof to the equation (9) of Meyer (1989) with some additional clarifi-
cation.

Let γ0(s) = expp(sv) and γ1(s) = expp(sw), define a family of curves

V (s, t) = expγ0(s)
Ä
t exp−1γ0(s) γ1(s)

ä
,

so that the curves Vs : t 7→ V (s, t) are geodesics connecting γ0(s) and γ1(s) (c.f., e.g., proposition
5.19 and equation (10.2) of Lee (2018)), and that V is a variation through geodesics Vs. Further,
let T = ∂tV , which is a tangent field of velocities. Let E = ∂sV , which is a Jacobi field through
geodesics Vs that vanishes at p. Denote H(s) = dist (γ0(s), γ1(s))

2
= ‖T‖2 |s,t for any t ∈ [0, 1],
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where the “|s,t” means to take value at point V (s, t). Then by the chain rules for covariant derivatives
(see, e.g. Lee, 2018, chapter 4), we have

d

ds
H(s) =

d

ds
〈T, T 〉 |s,t = 2 〈DsT, T 〉 |s,t,Å

d

ds

ã2
H(s) = 2

Ä〈
D2
sT, T

〉
+ ‖DsT‖2

ä
|s,t,Å

d

ds

ã3
H(s) = 2

(〈
D3
sT, T

〉
+ 3

〈
D2
sT,DsT

〉)
|s,t,Å

d

ds

ã4
H(s) = 2

(〈
D4
sT, T

〉
+ 3

∥∥D2
sT
∥∥+ 4

〈
D3
sT,DsT

〉)
|s,t.

Note that V0 = p for all t, so that T |s=0,t = 0 for all t, hence H ′(0) = 0.

Note that Vs : t 7→ V (s, t), s 7→ V (s, 0) and s 7→ V (s, 1) are geodesics; thus DtT = 0 for all t,
DsE|s,t=0 = 0 andDsE|s,t=1 = 0 for all s. In addition, by lemma 6.2 of Lee (2018),DsT = DtE.

By Jacobi equation, D2
tE+R(E, T )T = 0 for all s, which implies D2

tE|s=0 = 0 since T |s=0 = 0.
This means the vector field t 7→ E|s=0,t at p is linear in t, together with E|s=0,t=0 = v and
E|s=0,t=1 = w, we can write

E|s=0,t = v + t(w − v)

for t ∈ [0, 1]. Therefore DsT |s=0,t = DtE|s=0,t = w − v, which implies H ′′(0) = 2 ‖v − w‖2.

Proceeding to the third order derivatives, observe that

H ′′′(0) = 6
〈
D2
sT,DsT

〉
|s=0,t,

and by proposition 7.5 of Lee (2018), D2
sT = DsDtE = DtDsE + R(E, T )E, thus it suffices to

show
DsE|s=0,t = 0, for all t, (D.2)

in order to argue H ′′′(0) = 0. Since it is known that DsE|s=0,t=0 = 0 = DsE|s=0,t=1, it suffices
to consider its derivative for (D.2). Use proposition 7.5 of Lee (2018) repeatedly, we have

D2
tDsE|s=0,t

= DtDsDtE|s=0,t +Dt (R(T,E)E) |s=0,t

= DtD
2
sT |s=0,t

= (DsDtDsT −R(E, T )(DsT )) |s=0,t

= DsDtDsT |s=0,t

= Ds (DsDtT −R(E, T )T ) |s=0,t

= Ds (R(T,E)T ) |s=0,t,

where the last equation is due to DtT = 0. Further, by chain rule of covariant derivative
(c.f. e.g. proposition 4.15 of Lee (2018)),

Ds (R(T,E)T ) = (∇ER) (T,E)T +R(DsT,E)T +R(T,DsE)T +R(T,E)DsT,

which equals to zero at s = 0, t since T |s=0,t = 0 for all t. Hence t 7→ DsE|s=0,t is also a linear
vector field, implying (D.2) and subsequently H ′′′(0) = 0.

For the fourth order derivative, note that (D.2) also implies that DtDsE|s=0,t = 0 and that
D2
sT |s=0,t = 0 for all t. Therefore,

H(4)(0) = 8
〈
D3
sT,DsT

〉
|s=0,t.

Further,

D3
sT = D2

sDtE

= Ds (DtDsE +R(E, T )E)

= DsDtDsE + (∇ER) (E, T )E +R(DsE, T )E +R(E,DsT )E +R(E, T )(DsE),
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so D3
sT |s=0,t = (DsDtDsE +R(E,DsT )E) |s=0,t. Thus,〈

D3
sT,DsT

〉
|s=0,t = (〈DsDtDsE,DsT 〉+ 〈R(E,DsT )E,DsT 〉) |s=0,t.

Recall at s = 0, DsT |s=0,t = DtE|s=0,t = w − v, therefore

〈R(E,DsT )E,DsT 〉 |s=0,t

= Rm(E,DsT,E,DsT )|s=0,t

= Rm(v, w − v, v, w − v) + tRm(v, w − v, w − v, w − v)

= Rm(v, w, v, w).

Further,

〈DsDtDsE,DsT 〉 |s=0,t

=
(
Ds 〈DtDsE,DsT 〉 −

〈
DtDsE,D

2
sT
〉)
|s=0,t

= Ds 〈DtDsE,DsT 〉 |s=0,t

= DsDt 〈DsE,DsT 〉 |s=0,t −Ds

〈
DsE,D

2
tE
〉
|s=0,t,

where the second term in the last line vanishes sinceD2
tE|s=0,t = 0 andDsE|s=0,t = 0. Moreover,

since the Levi–Civita connection is torsion free, we have

〈DsDtDsE,DsT 〉 |s=0,t = DsDt 〈DsE,DsT 〉 |s=0,t = DtDs 〈DsE,DsT 〉 |s=0,t,

which should be irrelevant to t, so that Ds 〈DsE,DsT 〉 |s=0,t is linear in t. Yet

Ds 〈DsE,DsT 〉 =
〈
D2
sE,DsT

〉
+
〈
DsE,D

2
sT
〉
,

which vanishes at s = 0 and t = 0, 1. Hence Ds 〈DsE,DsT 〉 |s=0,t = 0 for all t ∈ [0, 1].
Combining those with the symmetries of Riemann curvature tensor leads to the desired expansion.

Proof of Proposition D.2. Under the coordinate chart, we can write the geodesic curve as γ : t 7→(
γ1(t), . . . , γd(t)

)
for some smooth function γ1, . . . , γd. Then for any i = 1, . . . , d, univariate

Taylor expansion provides

γi(t) = γi(0) + γ̇i(0)t+
1

2
t2γ̈i(0) +

1

6
t3

...
γi(0) +O(t4)

as t→ 0, where γ̇i, γ̈i, and
...
γi are the first, second, and third order derivative of γi w.r.t. t. Note that

the first derivative γ̇i(0) = vi, and the geodesic equation and its derivative give

γ̈i(0) = −vmvnΓimn,...
γi(0) = vmvnvl

(
2ΓkmnΓikl − ∂lΓimn

)
.

Plugging into the initial Taylor expansion gives the desired result.

Proof of Proposition 3.1 in the maintext. By Proposition D.1 and Proposition D.2, as t → 0, we
have

t2 ‖v − w‖2

=
(
δi0−1 + tRi

0(t)− tRi
1(t)

)
Gij
Ä
δj0−1 + tRj

0(t)− tRj
1(t)
ä

= δi0−1δ
j
0−1Gij + 2tδi0−1

Ä
R
j
0(t)−R

j
1(t)
ä
Gij +O(t4)

= δi0−1δ
j
0−1Gij + δi0−1

(
δk0δ

l
0 − δk1δl1

) Ä
ΓjklGij

ä
+O(t4),

where
Ri
a(t) =

1

2t
δma δ

n
aΓimn +

1

6t
δma δ

n
a δ

l
a

(
ΓkmnΓikl + ∂lΓ

i
mn

)
+O(t3)

for a = 0, 1, similar to (D.1). Note that δi0 = δi0(t) = O(t), it suffices to keep only the first term in
the Rj

a(t), which is O(t).
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E ASYMPTOTIC OF THE ESTIMATED METRIC TENSOR

Now we discuss the variance and bias of the estimated metric tensors. For simplicity, use the squared
loss Q(µ, y) = (µ − y)2, the identity link g(µ) = µ, and exclude the intercept β(0) and the terms
β
(2)
ijk for derivative. Given a suitable order of the indices i, j, we rewrite (3.6) into matrix form.

Denote

Du =
Ä
δ1u,0−1δ

1
u,0−1, . . . , δ

i
u,0−1δ

j
u,0−1, . . . , δ

d
u,0−1δ

d
u,0−1

äT
,

β =
Ä
β
(1)
11 , . . . , β

(1)
ij , . . . , β

(1)
dd

äT
,

then the linear predictor ηn = DT
uβ. Further, write

D = (D1, . . . ,DN )
T
, Y = (Y1, . . . , YN )

T
, W = diag (w1, . . . , wN ) ,

so the loss (3.7) becomes
(Y −Dβ)

T
W (Y −Dβ) , (E.1)

whose minimizer is β̂ =
(
DTWD

)−1
DTWY . Therefore

bias
Ä
β̂|D
ä

=
(
DTWD

)−1
DTWr,

var
Ä
β̂|D
ä

=
(
DTWD

)−1
DTΣD

(
DTWD

)−1
,

where

r =
Ä
E (Yu|D)− δiu,0−1δ

j
u,0−1Gij

ä
1≤n≤N

,

Σ = diag
(
w2
u var (Yu|Xu0, Xu1)

)
1≤n≤N .

The assumptions (A1)–(A4) in the main text are reiterated here.

(A1) The joint density of endpoints Xu0, Xu1 is positive and continuously differentiable.
(A2) The functions Gij ,Γkij are C2-smooth for i, j, k = 1, . . . , d.
(A3) The kernel K in weights (3.10) is symmetric, continuous, and has bounded support.
(A4) supu var (Yu|Xu0, Xu1) <∞.

Proposition E.1. Denote

S1N,i1i2i3i4 =

N∑
u=1

wuδ
i1
u,0−1δ

i2
u,0−1δ

i3
u,0−1δ

i4
u,0−1,

S2N,i1i2i3i4 =

N∑
u=1

w2
u var (Yu|Xu0, Xu1) δi1u,0−1δ

i2
u,0−1δ

i3
u,0−1δ

i4
u,0−1,

S3N,i1i2 =

N∑
u=1

wuδ
i1
u,0−1δ

i2
u,0−1Ru,

where
Ru =

∑
1≤k,l,m,r≤d

δmu,0−1
(
δkn0δ

l
n0 − δkn1δln1

)
ΓrklGmr.

Under (A1), (A2), (A3), and (A4), and suppose that h→ 0 and Nh2d →∞, then

ES1N,i1i2i3i4 = O
(
Nh4

)
, varS1N,i1i2i3i4 = O

(
Nh8−2d

)
,

ES2N,i1i2i3i4 = O
(
Nh4−2d

)
, varS2N,i1i2i3i4 = O

(
Nh8−6d

)
,

ES3N,i1i2i3i4 = O
(
Nh6

)
, varS3N,i1i2i3i4 = O

(
Nh10−2d

)
,

as h→ 0 and N →∞. So

S1N,i1i2i3i4 = Op
(
Nh4

)
, S2N,i1i2i3i4 = Op

(
Nh4−2d

)
.

22



Under review as a conference paper at ICLR 2023

If further Nh2+2d →∞, then
S3N,i1i2i3i4 = Op

(
Nh6

)
,

as h→ 0 and N →∞.

Proof. Write
Uu;i1i2i3i4 = wuδ

i1
u,0−1δ

i2
u,0−1δ

i3
u,0−1δ

i4
u,0−1,

so

EUu;i1i2i3i4

=

∫
h−2d

d∏
i=1

(
K
(
δin0/h

)
K
(
δin1/h

))
δi1n,0−1δ

i2
n,0−1δ

i3
n,0−1δ

i4
n,0−1·

f(p1 + δ1n0, . . . , p
d + δdn1)dδ1n0 . . . dδ

d
n1

= h4
∫
K
(
s1u0
)
· · · · ·K

(
sdu1
) Ä
si1u0 − s

i1
u1

ä Ä
si2u0 − s

i2
u1

ä Ä
si3u0 − s

i3
u1

ä Ä
si4u0 − s

i4
u1

ä
·(

f(p1, . . . pd) + o(1)
)
ds1u0 . . . ds

d
u1

= O(h4),

where f is the joint density of endpoints Xu0, Xu1, the second last equality is due to change of
variables, and the last due to (A1). Similar argument implies

varUu;i1i2i3i4 = O
(
h8−2d

)
,

EwuUu;i1i2i3i4 = O
(
h4−2d

)
,

varwuUu;i1i2i3i4 = O
(
h8−6d

)
.

These rates apply uniformly over n, therefore by i.i.d. and that varYu|Xu0, Xu1 is uniformly
bounded,

ES1N,i1i2i3i4 = O
(
Nh4

)
, varS1N,i1i2i3i4 = O

(
Nh8−2d

)
,

ES2N,i1i2i3i4 = O
(
Nh4−2d

)
, varS2N,i1i2i3i4 = O

(
Nh8−6d

)
.

Hence
S1N,i1i2i3i4 = ES1N,i1i2i3i4 +Op

Ä√
varS1N,i1i2i3i4

ä
= Op

(
Nh4

)
,

under h→ 0 and Nh2d →∞. Similarly we have results for S2N,i1i2i3i4 .

Next, write
Vu;i1i2 = wuδ

i1
u,0−1δ

i2
u,0−1Ru.

Note that

EVu;i1i2

=

∫
h−2d

d∏
i=1

(
K
(
δin0/h

)
K
(
δin1/h

))
δi1n,0−1δ

i2
n,0−1×∑

1≤k,l,m,r≤d

δmu,0−1
(
δkn0δ

l
n0 − δkn1δln1

)
Fklm×

f(p1 + δ1n0, . . . , p
d + δdn1)dδ1n0 . . . dδ

d
n1

= h5
∫
K
(
s1u0
)
· · · · ·K

(
sdu1
) Ä
si1u0 − s

i1
u1

ä Ä
si2u0 − s

i2
u1

ä
×∑

1≤k,l,m,r≤d

Ä
si2u0 − s

i2
u1

ä (
sku0s

l
u0 − sku1slu1

)
Fklm×(

f(p1, . . . pd) + h

d∑
r=1

∂f

∂pr
(p) (sru0 + sru1) + o(h)

)
ds1u0 . . . ds

d
u1

= O(h6),
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where Fklm = ΓrklGmr. Indeed, since the kernel K is symmetric, and the leading terms
in the integrant is of fifth power of s, thus with some abuse of notation, EVu;i1i2 =
h5F

∫
K(s)s5 (f + hO(s)) ds = O(h6). Similarly

varVu;i1i2 = O(h10−2d).

The rest of the results for S3N,i1i2i3i4 proceeds analogously to that of S1N,i1i2i3i4 and S2N,i1i2i3i4 .

Proposition E.2. Under the conditions of Proposition E.1,

bias
Ä
β̂|X
ä

= Op
(
h2
)
, var

Ä
β̂|X
ä

= Op

Å
1

Nh4+2d

ã
,

as h→ 0 and Nh2+2d →∞, where X are the observed endpoints.

Proof. Note that S1N ;i1i2i3i4 are elements of DTWD, where one pair of (i1, i2) index a row while
one pair of (i3, i4) index a column for i1, i2, i3, i4 = 1, . . . , d. Similarly S2N ;i1i2i3i4 are elements of
DTΣD, and S3N ;i1i2 are elements of DTWr by Proposition 3.1. Applying Proposition E.1 leads
to the result.
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