
How Do LLMs Acquire New Knowledge?
A Knowledge Circuits Perspective on Continual Pre-Training

Anonymous ACL submission

Abstract001

Despite exceptional capabilities in knowledge-002
intensive tasks, Large Language Models003
(LLMs) face a critical gap in understanding004
how they internalize new knowledge, particu-005
larly how to structurally embed acquired knowl-006
edge in their neural computations. We address007
this issue through the lens of knowledge circuit008
evolution, identifying computational subgraphs009
that facilitate knowledge storage and process-010
ing. Our systematic analysis of circuit evolu-011
tion throughout continual pre-training reveals012
several key findings: (1) the acquisition of new013
knowledge is influenced by its relevance to pre-014
existing knowledge; (2) the evolution of knowl-015
edge circuits exhibits a distinct phase shift from016
formation to optimization; (3) the evolution of017
knowledge circuits follows a deep-to-shallow018
pattern. These insights not only advance our019
theoretical understanding of the mechanisms020
of new knowledge acquisition in LLMs, but021
also provide potential implications for improv-022
ing continual pre-training strategies to enhance023
model performance.024

1 Introduction025

Knowledge is a cornerstone of intelligence, shap-026

ing how humanity perceives the world, interacts027

with others, and navigates daily life (Choi, 2022;028

Chen, 2023). As human society advances, the ways029

by which knowledge is stored, accessed, and pro-030

cessed have evolved significantly, especailly with031

the advent of Large Language Models (LLMs). Re-032

cent studies (Brown et al., 2020; OpenAI, 2023;033

Dubey et al., 2024; DeepSeek-AI et al., 2024; Yang034

et al., 2024; Zhao et al., 2023; Wu et al., 2024)035

on LLMs have demonstrated their ability to cap-036

ture factual knowledge from pre-training corpus037

and encapsulate it as extensive parametric knowl-038

edge, empowering their remarkable capabilities in039

numerous knowledge-intensive tasks (Wang et al.,040

2024; Cao et al., 2024), as well as in developing041

higher-order capabilities like reasoning (Qiao et al.,042

Figure 1: Illustration of our findings: Phase shift from
formation to optimization in the evolution of knowledge
circuits, each phase characterized by distinct features at
the performance, topology, and component levels.

2023; Huang and Chang, 2023). Nevertheless, 043

these powerful models still struggle with knowl- 044

edge updates, especially with regard to the dynamic 045

nature of world knowledge that evolves after the 046

cut-off date of the pre-training corpus (Zhang et al., 047

2023; Mousavi et al., 2024). Extensive efforts focus 048

on developing advanced techniques for injecting 049

new knowledge into LLMs (Jang et al., 2022; Jiang 050

et al., 2024; Mecklenburg et al., 2024; Ovadia et al., 051

2024; Chen et al., 2024a), yet the absence of a well- 052

defined mechanism for new knowledge acquisition 053

in LLMs continues to hinder further progress in 054

this area. 055

Recent works introduce mechanistic inter- 056

pretability techniques to uncover knowledge mach- 057

anisms in LLMs. Allen-Zhu and Li (2024a) adopts 058

probing methods to examine the storage and ex- 059

traction of factual knowledge encoded in hidden 060

states of language models. Kim et al. (2024) in- 061

troduces the concept of knowledge entropy to ex- 062

amine how the integration of knowledge of LLMs 063

evolves during the pre-training phase. However, 064

previous works typically treat knowledge blocks as 065
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isolated components and often focus on identifying066

specific blocks that store particular knowledge. In067

contrast, Yao et al. (2024) move beyond isolated068

components and explore the computation graph to069

uncover knowledge circuits, investigating coopera-070

tion between different components to understand071

how knowledge is stored and expressed.072

In this paper, we investigate the mechanism of073

new knowledge acquisition in LLMs from the per-074

spective of knowledge circuits. By analyzing the075

evolution of knowledge circuits throughout con-076

tinual pre-training, we uncover several interesting077

findings, as illustrated in Figure 1.078

Key findings of the paper are summarized as:079

• (§4.1) The acquisition of new knowledge is080

significantly influenced by its relevance to pre-081

existing knowledge, with relevant new knowl-082

edge being integrated more efficiently than083

completely new knowledge.084

• (§4.2) In the process of knowledge acquisition,085

the evolution of knowledge circuits exhibits086

a distinct phase shift from formation to opti-087

mization, each marked by unique structural088

and behaviral characteristics.089

• (§4.3) The evolution of knowledge circuits090

follows a deep-to-shallow pattern, where mid-091

to-deeper layers first develop the extraction092

function, and later, lower layers enrich their093

knowledge representations.094

These findings offer valuable insights into the095

mechanisms by which LLMs adapt their internal096

structures to acquire new knowledge. This under-097

standing not only informs potential strategies for098

enhancing the continual learning capabilities of099

LLMs but also provides a solid foundation for im-100

proving their adaptability across diverse domains.101

2 Background102

2.1 Circuit Theory103

Circuit as Computational Subgraph Delving104

into the Transformer architecture (Vaswani et al.,105

2017), all computations in a Transformers-based106

language model as a connected directed acyclic107

graph, denoted as G. This graph represents the108

flow of information from the input of the language109

model to the token unembedding, where activations110

are projected back to vocabulary space. Various111

components of a language model, including atten-112

tion heads and multi-layer perceptrons (MLPs),113

are defined as the nodes of this graph, denoted114

as N . The edges of this graph, denoted as E, 115

are the weighted connections between these com- 116

ponents, encompassing residual connections, at- 117

tention mechanisms, and projections. In the con- 118

text of Mechanistic Interpretability (MI), which 119

aims to understand the inner workings of advanced 120

Transformer-based language models (Rai et al., 121

2024; Ferrando et al., 2024; Bereska and Gavves, 122

2024; Sharkey et al., 2025), a circuit is conceptu- 123

alized as a sparse computational subgraph C ⊂ G 124

within a language model whose computations are 125

most relevant to the whole model’s behaviour on 126

the specific task (Olah et al., 2020; Elhage et al., 127

2021; Wang et al., 2023; Marks et al., 2024). A 128

circuit C usually contains a selection of nodes 129

NC ⊂ N and edges EC ⊂ E necessary for the 130

specific task, expressed as C =< NC , EC >. 131

Circuit Discovery The goal of circuit discovery 132

is to identify a computational subgraph that repre- 133

sents the whole model’s behavior on a specific task. 134

Many studies adopt causal mediation analysis to lo- 135

calize critical nodes or edges within language mod- 136

els in order to identify and verify circuits. Conmy 137

et al. (2023) adopts activation patching and pro- 138

poses ACDC. Syed et al. (2023) introduces Edge 139

Attribution Patching (EAP) to make a linear ap- 140

proximation of activation patching, which assigns 141

an importance score to each edge. 142

2.2 Knowledge Circuits 143

Unlike previous works (Dai et al., 2022; Geva et al., 144

2021, 2023; Meng et al., 2022) that treat the knowl- 145

edge blocks as isolated components, Yao et al. 146

(2024) introduce a novel perspective: knowledge 147

circuits. They hypothesize that the cooperation 148

between multiple components unveils the implicit 149

knowledge representation in LLMs. An identified 150

knowledge circuit is considered a computational 151

subgraph that faithfully represents specific knowl- 152

edge domains within the model’s parametric mem- 153

ory. As such, it should be capable of independently 154

reproducing the behavioral patterns or performance 155

of the entire model with respect to the correspond- 156

ing tasks. However, Yao et al. (2024) concentrates 157

exclusively on the knowledge that already stored 158

in the language model, without investigating the 159

process by which LLMs acquire knowledge. In this 160

work, we aim to advance the concept of knowledge 161

circuits by investigating their dynamics throughout 162

continual pre-training. 163
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3 Methodology164

3.1 Dataset Construction165

Given the challenges of conducting mechanistic in-166

terpretability analysis on Internet-scale corpus, we167

perform controlled experiments on synthetic data,168

following Allen-Zhu and Li (2024a, 2023, 2024b).169

We focus on factual knowledge that can be rep-170

resented as triples of the form (s, r, a) containing171

subject s, relation r, and attribute a. We synthe-172

size a pool of fictional knowledge entities based on173

heuristic rules using ChatGPT, ensuring that these174

fictional biographical knowledge is unavailable to175

LLMs in the pre-training phase. Each knowledge176

entity is first assigned a unique name as the sub-177

ject, and then associated with five relations—birth178

date, city, major, university and company-and cor-179

responding attributes. To convert these entities into180

textual knowledge for training data, we fill them181

in predefined templates. Considering real-world182

data scenarios and the perspectives of analysis, we183

further customize the training corpus from two as-184

pects: knowledge type and knowledge frequency.185

Knowledge Type We classify the new knowl-186

edge that the language model may need to acquire187

into two categories. One involves knowledge that188

already exists in the model’s parameters but re-189

quires further learning of specific aspects (e.g., new190

relations). This type of knowledge is referred to as191

relevant new knowledge and denoted as Krel. The192

other type of knowledge is absent from the model’s193

parameters, which is referred to as completely new194

knowledge and denoted as Kcompl.195

Knowledge Frequency Considering the long-tail196

distribution of knowledge in real-world data, we197

model the frequency of knowledge entities in the198

corpus to follow an exponential distribution. This199

ensures that the corpus for continual pre-training200

contains both high-frequency knowledge as well as201

long-tail knowledge.202

More details of the pipeline of dataset construc-203

tion are provided in Appendix A.204

3.2 Model Training205

To conduct the knowledge acquisition experiment,206

we use three series of typical decoder-only LLMs207

to yield consistent findings on different architec-208

tures: GPT-2, Llama, and Phi. We continually209

pre-train the base models using a standard next-210

token prediction objective on the corpus described211

in Section 3.1. Further details on the training con- 212

figuration can be found in Appendix B. 213

3.3 Circuit Discovery 214

To facilitate the discovery of circuits over multiple 215

checkpoints throughout continual pre-training, we 216

select EAP-IG (Hanna et al., 2024) from a range of 217

circuit discovery techniques (Conmy et al., 2023; 218

Syed et al., 2023; Ferrando and Voita, 2024; Hanna 219

et al., 2024), which assigns an importance score 220

to each edge, balancing efficiency and faithfulness. 221

Given an edge e = (u, v) ∈ E between nodes u ∈ 222

N and v ∈ N with clean and corrupted activations 223

zu and z′u, EAP-IG scores the importance of e as: 224

S(e) =
(
z′u − zu

) 1

m

m∑
k=1

∂L
(
z′ + k

m (z − z′)
)

∂zv

(1) 225

where z refers to a sequence of token embeddings 226

for one input, z′ refers to the token embeddings 227

of the distinct, baseline input, and m refers to the 228

number of integrated gradient steps; we set m = 5 229

as suggested by Hanna et al. (2024). More details 230

of circuit discovery are provided in Appendix C. 231

After scoring all edges within a language model 232

using EAP-IG, we identify a circuit by selecting 233

the top n edges with the highest absolute score as 234

in Syed et al. (2023), ensuring that the selected 235

edges collectively achieve over 70% of the whole 236

model’s performance on the specific task. Specif- 237

ically, we retain 8k, 20k, 50k, and 50k edges for 238

GPT-2 Small, GPT-2 Medium, TinyLlama, and Phi- 239

1.5, respectively. 240

4 Analyzing the Evolution of Knowledge 241

Circuits throughout Training 242

Once we have identified the knowledge circuits, 243

we delve deeper into the changes within the cir- 244

cuits, examining the transitions in the roles and 245

behaviors of nodes and edges. To improve the 246

clarity and coherence, our analysis follows a three- 247

tiered perspectives, beginning with a surface-level 248

assessment of performance, proceeding to an inter- 249

mediate exploration of the topology of knowledge 250

circuits, and culminating in a detailed investigation 251

of the underlying components. 252

4.1 Performance Analysis 253

An identified knowledge should be capable of in- 254

dependently reproducing the behavioral patterns or 255

performance of the whole model with respect to 256
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Figure 2: Hit@10 of the performance of knowledge circuits in GPT-2 Small, GPT-2 Medium and Phi-1.5 throughout
training. Left: Performance for circuits discovered by different types of knowledge, where K_rel and K_compl
represent relevant new knowledge and completely new knowledge, respectively. Right: Performance for circuits
discovered by different frequencies of knowledge, where Low-freq, Medium-freq, and High-freq represent
knowledge with frequencies in the ranges [1, 2), [2, 5] and (5, 27], respectively. Note that we smooth the curves
using a window size of 3 epochs for all settings.

the corresponding tasks. This property can be eval-257

uated by examining whether the identified knowl-258

edge circuit aligns with the underlying algorithm259

implemented by the model. Following Yao et al.260

(2024), we employ the Hit@10 metric to measure261

the rank of the target token among the top 10 pre-262

dicted tokens throughout training process:263

Hit@10 =
1

|Dtest|

|Dtest|∑
i=1

I (ranka ≤ 10) (2)264

where |Dtest| denotes the test set size, a the tar-265

get attribute, and ranka the rank of the first to-266

ken of target attribute a in vocabulary space. To267

evaluate completeness, we assess the identified cir-268

cuit’s standalone performance on a held-out test set,269

which is filtered by the same knowledge type and270

frequency as the validation set for circuit discovery.271

The results depicted in Figure 2 reveal a con-272

sistent growth pattern in the Hit@10 metric un-273

til it approach its upper bound, which demon-274

strates the sustained knowledge acquistion capa-275

bility of knowledge circuits throughout continual276

pre-training. Notably, the Krel performance curve277

consistently lies above the curve for Kcompl, sug-278

gesting that LLMs exhibit preferential learning ef-279

ficiency when assimilating knowledge extensions280

within existing conceptual frameworks, as opposed281

to acquiring completely new knowledge. These282

patterns persist in the whole model evaluation in 283

Appendix D, suggesting that knowledge circuits 284

capture general learning dynamics rather than iso- 285

lated phenomena in LLMs. 286

Takeaway: Knowledge Relevance Principle

The acquisition of new knowledge is influ-
enced by its relevance to pre-existing knowl-
edge. LLMs exhibit learning efficiency advan-
tages when acquiring relevant new knowledge
versus completely new knowledge.

287

This insight could motivate the utilization of 288

data curriculums in continual pre-training, by 289

organizing the data in a way that mimics the struc- 290

ture and distribution of the original corpus, thereby 291

enabling the model to integrate new information 292

more efficiently (Yıldız et al., 2024; Parmar et al., 293

2024; Chen et al., 2024b). 294

Another notable observation in Figure 2 is that 295

the performance of knowledge circuits is positively 296

correlated with knowledge frequency. We further 297

evaluate the performance of knowledge circuits by 298

transferring them to a test set with different knowl- 299

edge frequencies, as detailed in Appendix E. The 300

results imply that the poor performance of knowl- 301

edge circuits for low-frequency knowledge may 302

stem from insufficient knowledge representations, 303

rather than fundamental capacity limitations of cir- 304
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cuits. This suggests that strategies focused on305

reactivating long-tail knowledge, such as knowl-306

edge augmentation, may improve knowledge reten-307

tion in LLMs over time (Allen-Zhu and Li, 2024a).308

4.2 Topology Analysis309

In this section, we examine the dynamics of knowl-310

edge circuits through a topological lens, employing311

graph-theoretical metrics to analyze how the circuit312

subgraphs evolve throughout the training process.313

4.2.1 Structural Consistency314

We first quantify the structural consistency of315

knowledge circuits by measuring the Jaccard Simi-316

larity between edge sets (Figure 3) and node sets317

(Figure 11 in Appendix) within knowledge circuits318

at intermediate checkpoints relative to the final cir-319

cuit. Both metrics exhibit a consistent monotonic320

upward trend throughout training, indicating that321

the knowledge circuits become increasingly similar322

to the final circuit. This convergence pattern sug-323

gests an evolutionary process where knowledge cir-324

cuits progressively stabilize their core architecture325

as knowledge acquisition progresses. Based on the326

observed trends, we hypothesize that the process327

of knowledge acquisition is driven by topological328

centralization within knowledge circuits, with a329

small subset of critical edges and nodes gaining330

dominance in the flow of information.331

4.2.2 Topological Centralization332

To validate the hypothesis, we define a knowledge333

circuit entropy metric quantifying edge importance334

concentration, drawing on the concepts of uncer-335

tainty and information content from probability the-336

ory and information theory. The more centralized337

the topology of the knowledge circuit, the more338

the importance weights become concentrated on a339

few critical edges, resulting in a lower knowledge340

circuit entropy. To calculate the entropy of a knowl-341

edge circuit C =< NC , EC >, we first normalize342

the absolute value of the importance of each edge343

e ∈ EC , scored by EAP-IG in equation (1):344

P (e) =
S(e)∑

e′∈EC
S(e′)

, ∀e ∈ EC (3)345

The circuit entropy is then calculated as:346

H(C) = −
∑
e∈EC

P (e) logP (e) (4)347

Our results in Figure 3 show a stable downward348

trend in the knowledge circuit entropy metric for349

edges in the subgraph across all models, suggest- 350

ing that the identified knowledge circuits become 351

increasingly centralized, with the importance of 352

critical edges growing as knowledge acquisition 353

progresses. We also observe that the downward 354

trend of the knowledge circuit entropy slows down 355

significantly after a certain turning point during 356

the training of all models. For example, turn- 357

ing points are observed in GPT-2 Small, GPT-2 358

Medium, TinyLlama, and Phi-1.5 at epoch 7, epoch 359

4, epoch 1, and epoch 1, respectively. We attribute 360

this interesting phenomenon to a phase shift in 361

the evolution of knowledge circuits across con- 362

tinual pre-training. In the initial formation phase 363

of knowledge circuits, less efficient knowledge cir- 364

cuits gradually take shape within the models, re- 365

sulting in a rapid decrease in circuit entropy. At 366

the phase shift points, the knowledge circuits reach 367

a status of stability where the most critical nodes 368

and edges have been involved. In the subsequent 369

optimization phase, the topology composed critical 370

nodes and edges becomes more stable, while the 371

computations within these components are being 372

optimized to represent and retrieve the knowledge 373

more efficiently, leading to a slowdown in the rate 374

of decrease in circuit entropy. 375

It’s no coincidence that we also observe consis- 376

tent phase shift points in the structral consistency of 377

the nodes and edges in knowledge circuits through- 378

out continual pre-training in Figure 3 and Figure 11, 379

which signal a slowdown in the rate of structural 380

convergence. This further confirms a reduction 381

in the topological changes of the knowledge cir- 382

cuits, with subsequent performance improvements 383

primarily attributed to the refinement and optimiza- 384

tion of the efficiency of the existing structure. 385

Moreover, we find that the larger the size of the 386

base pre-trained LLMs, the fewer training steps are 387

required to reach the phase shift point in the knowl- 388

edge circuits evolution. We suggest that differences 389

in model behavior may stem from the knowledge 390

capacity scaling laws (Allen-Zhu and Li, 2024b), 391

which result from a combination of complex fac- 392

tors such as pre-training data signal-to-noise ratio, 393

pre-training duration and model architectures and 394

warrant further investigation in the future. 395
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Figure 3: Top: Edges Jaccard Similarity of intermediate knowledge circuits with the circuits at the final checkpoint.
Bottom: Knowledge Cutcuit Entropy of knowledge circuits throughout training. K_rel and K_compl represent
relevant new knowledge and completely new knowledge, respectively. Low-freq, Medium-freq, and High-freq
represent knowledge with frequencies in the ranges [1, 2), [2, 5] and (5, 27], respectively.

Figure 4: Hit@10 of the performance of aligned knowl-
edge circuits in GPT-2 Small throughout training. Init,
Before, After, Last represents the circuits whose
topologies align with those at the initial checkpoint,
the checkpoint before the phase shift, the checkpoint af-
ter the phase shift, and the final checkpoint, respectively.
Original represents the original knowledge circuits at
each checkpoint. Note that we smooth the curves using
a window size of 3 epochs.

Takeaway: Biphasic Circuit Evolution

The evolution of knowledge circuits exhibits
a distinct phase shift from formation to opti-
mization, each marked by unique structural and
behavioral characteristics.

396

This finding suggests that the state of knowl-397

edge circuits could serve as a valuable tracking398

status for the continual pre-training process, en-399

abling more informed adjustments to the training400

method or data in response to different phases. We401

leave this potential direction for future research.402

4.2.3 Aligning Topology with Specific 403

Knowledge Circuits 404

To clarify the influence of the topology of knowl- 405

edge circuits on performance, we conduct a de- 406

tailed examination of the knowledge circuits at 407

several key training checkpoints. Specifically, we 408

focus on the knowledge circuits at the initial check- 409

point, the checkpoint immediately before the phase 410

shift point, the checkpoint immediately after the 411

phase shift point, and the last checkpoint. We align 412

the topology of the knowledge circuits at each 413

checkpoint throughout training with those of fo- 414

cus and then evaluate the performance for aligned 415

circuits employing the Hit@10 metric as in §4.1. 416

The results in Figure 4 reveal that the performance 417

of all aligned circuits remain unchanged during the 418

formation phase. However, each circuit begins to 419

improve its performance during the optimization 420

phase, with those aligned with the post-phase-shift 421

topologies (After and Last) ultimately perform- 422

ing, on average, 54% better than those aligned with 423

the pre-phase-shift topologies (Init and Before). 424

This observation suggests the evolution of the topol- 425

ogy of knowledge circuits at the phase shift point 426

plays a crucial role in improving circuit perfor- 427

mance. More examination of the relationship be- 428

tween this topological evolution and the evolution 429

of components will be provided in §4.3.1. 430

4.3 Components Analysis 431

After analyzing the dynamics of the knowledge 432

circuits at the overall topology level, we may fur- 433
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Figure 5: Proportion of specialized attention heads in
all nodes of the knowledge circuits throughout training
for GPT-2 Small and GPT-2 Medium. Note that we
smooth the curves using a window size of 3 epochs.

ther seek to understand how the components within434

these circuits evolve throughout training.435

4.3.1 Evolutionary Pattern of Components436

Specialized Nodes We first zoom into the spe-437

cialized nodes within knowledge circuits to investi-438

gate the underlying factors driving the evolution of439

knowledge circuit. Recent studies have identified440

a set of specialized attention heads (Zheng et al.,441

2024; Ferrando et al., 2024) that directly contribute442

to factual recall in Transformer-based LLMs, in-443

cluding the mover head, relation head, and mixture444

head (Lv et al., 2024; Merullo et al., 2024; Chughtai445

et al., 2024). More detailed definitions and method-446

ology for identifying these specialized attention447

heads are provided in Appendix G. We check the448

emergence and track the proportion of these spe-449

cialized attention heads in all possible nodes of the450

knowledge circuits throughout training, and present451

our results in Figure 5. We observe that during452

the circuit formation phase, mover heads gradually453

emerge from nearly zero, while the proportion of454

relation heads decreases until the phase shift. In455

the circuit optimization phase, the proportion of all456

kinds of attention heads stabilizes. The proportion457

of mixture heads remains stable throughout train-458

ing. We further examine the layer-wise distribution459

of mover heads and relation heads within knowl-460

edge circuits throughout training. Our results in461

Figure 6 (and Figure 13 in Appendix) reveal that462

the increase in mover heads and the decrease in463

relation heads primarily occur in the mid-to-deeper464

layers during the circuit formation phase.465

Activated Edges Next, we investigate how the466

nodes within knowledge circuits propagate infor-467

mation to subsequent components through the468

edges. Specifically, we analyze the variation in469

edge activation patterns across different layers of470

Figure 6: Top: Layer distribution of mover head in
the knowledge circuits in GPT-2 Small throughout train-
ing. Bottom: Layer distribution of relation head in the
knowledge circuits in GPT-2 Small throughout training.

Figure 7: Layer distribution of the edges activation
ratio within the knowledge circuits in GPT-2 Small.

the network throughout training. We quantify the 471

edge activation ratio for each layer by calculating 472

the proportion of edges originating from that layer 473

within the knowledge circuit, relative to all possi- 474

ble edges originating from that layer in the whole 475

model1. Our results in Figure 7 (and Figure 12 476

in Appendix) reveal that, during the circuit forma- 477

tion phase, the edges activation ratios in the lower 478

layers gradually decrease, while those in the mid- 479

to-deeper layers exhibit a corresponding increase. 480

However, as training progresses, a transition oc- 481

curs around the phase shift point, where the edge 482

activation ratios begin to stabilize. 483

1Note that we exclude the activation ratio for the last layer,
as the small denominator causes the ratio to be an outlier,
potentially blurring the overall trends in the activation patterns
observed across layers.
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Evolutionary Pattern The observed pattern in484

the evolution of specialized nodes and activated485

edges within knowledge circuits aligns with the486

factual recall mechanism in LLMs described by487

Geva et al. (2023). Specifically, the lower MLP488

layers specialize in encoding attribute-rich subject489

representations, while attention heads in the mid-490

to-deeper layers are responsible for extracting the491

relevant attributes for a given subject from these492

lower-level representations. Based on this, we can493

conclude the evolutionary pattern of knowledge cir-494

cuits at the component level. Since we introduce495

new knowledge entities via synthetic data that the496

model did not encounter during pre-training, the497

extraction function is not yet established for these498

new knowledge entities at the onset of continual499

pre-training. Consequently, the model’s attention500

heads initially concentrate predominantly on the501

relation tokens already acquired (for example, the502

city relation learned during pre-training), which503

manifest as relation heads. During the early train-504

ing phase of circuit formation, the focus is primar-505

ily on developing the extraction function within506

the nodes of the mid-to-deeper layers of the knowl-507

edge circuits. With continual pre-training and the508

gradual acquisition of new knowledge entities, the509

attention heads in the model’s mid-to-upper lay-510

ers increasingly attended to subject tokens, which511

were thus classified as mover heads. This is re-512

flected in the increased emergence of mover heads513

and activated edges, along with a decrease in the514

presence of relation heads in these layers. This pro-515

cess continues until the extraction function is fully516

established at the phase shift point, as demonstrated517

by the similar performance advantage of circuits518

aligned with the post-phase-shift topologies over519

those aligned with the pre-phase-shift topologies in520

Figure 4. In the subsequent training phase of circuit521

optimization, the focus shifts to enriching knowl-522

edge representations in the lower layers, evidenced523

by a stabilized topology and component structure,524

but with a rapid improvement in the performance525

of knowledge circuits in Figure 2 and Figure 4.526

Takeaway: Deep-to-Shallow Pattern

The evolution of knowledge circuits follows a
deep-to-shallow pattern, where mid-to-deeper
layers first develop the extraction function, and
later, lower layers enrich their knowledge repre-
sentations.

527

Figure 8: Top: Rank of the target attribute token
when unembedding the intermediate layer’s output into
vocabulary space at the last token position throughout
training for GPT-2 Small. Bottom: The corresponding
probability of the target attribute token.

4.3.2 Changes in Vocabulary Space 528

To gain a more nuanced understanding of the in- 529

formation flow, we track the layer-wise changes 530

in both the rank and probability of the target at- 531

tribute token at the last token position when un- 532

embedding the intermediate layer’s output into the 533

vocabulary space throughout training. Additional 534

results for other models are provided in Appendix 535

F. The results in Figure 8 reveal that the occurrence 536

of the early decoding phenomenon (nostalgebraist, 537

2020)—where the target token is already present in 538

the residual stream by the mid-to-later layers—is 539

closely associated with the phase shift in the evo- 540

lution of knowledge circuits. During the circuit 541

formation phase, the mid-to-deeper layers exhibit 542

low ranks and probabilities for the target token, sug- 543

gesting that the attention heads in these layers have 544

not yet effectively extracted the target attribute in 545

the residual stream due to the insufficient training. 546

However, in the subsequent circuit optimization 547

phase, the extraction function has already been 548

developed in the mid-to-deeper layers, while the 549

lower layers continue to enrich their knowledge 550

representations for subjects, as evidenced by the 551

occurrence of early decoding phenomenon. 552

5 Related Work 553

New Knowledge Acquisition Previous stud- 554

ies (Chang et al., 2024) explore new knowledge 555
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acquisition in LLMs with various behavioral inter-556

pretability techniques, which characterizes model557

behavior without revealing insights into the inter-558

nal workings. Recent works introduce mechanis-559

tic interpretability techniques to advance related560

research even further. Allen-Zhu and Li (2024a)561

adopt probing methods to examine the storage and562

extraction of factual knowledge encoded in hid-563

den states of language models. Building on stud-564

ies that treat feed-forward layers as a key-value565

memory (Geva et al., 2021; Dai et al., 2022), Kim566

et al. (2024) introduce the concept of knowledge567

entropy to examine how LLMs’ knowledge integra-568

tion evolves during the pre-training phase. In this569

paper, we seek to uncover the internal mechanism570

of new knowledge acquisition in LLMs by investi-571

gating the dynamics of knowledge circuits within572

LLMs thtroughout continual pre-training.573

Mechanistic Interpretability With the rise574

of LLMs, Mechanistic Interpretability (MI)575

has gained prominence for reverse-engineering576

Transformer-based language models to decode their577

internal computations (Rai et al., 2024; Ferrando578

et al., 2024; Bereska and Gavves, 2024; Singh et al.,579

2024; Sharkey et al., 2025). Early MI research iden-580

tifies features that consistently activate for specific581

input properties as elementary computational units.582

While such studies reveal phenomena such as pol-583

ysemanticity and enable applications like knowl-584

edge editing (Yao et al., 2023; Zhang et al., 2024a;585

Hase et al., 2024) and steering (Turner et al., 2023),586

they offer limited insights into how features inter-587

act to drive model behaviors. This gap motivates588

circuit analysis (Elhage et al., 2021; Yao et al.,589

2024), which investigates computational pathways590

between Transformer components. Most similar591

to our work, Tigges et al. (2024) examines gen-592

eral circuits formation during pre-training, while593

our work focuses on the evolution of knowledge594

circuits throughout continual pre-training.595

6 Conclusion596

In this paper, we present a novel perspective on597

new knowledge acquisition of LLMs through an598

investigation into the evolution of knowledge cir-599

cuits throughout continual pre-training. Through600

comprehensive analysis at performance, topology,601

and components levels, we reveal several key in-602

sights. We believe these insights will contribute to603

more efficient and effective continual pre-training604

of LLMs, while also uncovering the mechanisms605

behind new knowledge acquisition in LLMs. 606

Limitations 607

Model Architectures Our paper investigates the 608

evolution of knowledge circuits solely in decoder- 609

only Transformer LMs, due to their excellent per- 610

formance and wide range of applications. We 611

omit other Transformer variants, such as encoder- 612

decoder and encoder-only models, from our analy- 613

sis. Additionally, due to limitations in both compu- 614

tational resources and the circuit discovery method, 615

we do not analyze models with larger parameter 616

sizes than 1.3B, which typically employ Grouped 617

Query Attention (Ainslie et al., 2023). However, 618

Tigges et al. (2024) suggests that circuit analyses 619

conducted on small models can provide insights 620

that still apply over model scales. 621

Traininig Techniques We adopt the standard 622

next-token prediction objective for continual pre- 623

training of the base models in our experiments, 624

as it is the most prevalent approach for enabling 625

LLMs to acquire new knowledge. However, nu- 626

merous studies (Jiang et al., 2024; Mecklenburg 627

et al., 2024) focus on designing novel training tech- 628

niques to enhance the efficiency and effectiveness 629

of LLMs in acquiring new knowledge. We do not 630

analyze the impact of these additional training tech- 631

niques on the evolution of knowledge circuits. 632
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Appendix 1052

A Dataset Construction 1053

Given the challenges of conducting mechanistic in- 1054

terpretability analysis on Internet-scale corpus, we 1055

perform controlled experiments on synthetic data, 1056

following Allen-Zhu and Li (2024a, 2023, 2024b). 1057

We focus on factual knowledge that can be rep- 1058

resented as triples of the form (s, r, a) containing 1059

subject s, relation r, and attribute a. For example, a 1060

piece of factual knowledge such as "Donald Trump 1061

is 78 years old" can be represented as (Donald 1062

Trump, age, 78). 1063

We synthesize a pool of fictional knowledge en- 1064

tities based on heuristic rules using ChatGPT, en- 1065

suring that these fictional biographical knowledge 1066

is unavailable to LLMs in the pre-training phase. 1067

Each knowledge entity is first assigned a unique 1068

name as the subject. Each name follows the format 1069

"first_name middle_name last_name", where the 1070

components are randomly and independently sam- 1071

pled from a uniform distribution. We use ChatGPT 1072

to generate possible values for first name, middle 1073

name, and last name, as listed in Table 4. 1074

Additionally, there are five associated rela- 1075

tions—birth date, city, major, university and com- 1076

pany—which are randomly sampled from their cor- 1077

responding pools of possible attributes for each 1078

relation. The birthdate relation offers 30 (1 to 30) 1079

× 12 (January to December) × 126 (1900 to 2025) 1080

possibilities. The corresponding pools of possible 1081

attributes for the other four relations are as gener- 1082

ated by ChatGPT, as listed in Table 5∼8. 1083

To convert these entities into textual knowledge 1084

for training data, we populate predefined templates 1085

with the attribute values. For each attribute, one of 1086

50 corresponding templates is randomly selected to 1087

enhance the diversity of the corpus. The sentences 1088

corresponding to each relation of the same subject 1089

are then randomly shuffled to form the biography 1090

segment of the subject. An example is provided 1091

below: 1092

"Liora Shane Driscoll’s birth is celebrated an- 1093

nually on 5 December, 1935. Liora Shane Driscoll 1094

is situated in Newport News, VA. Liora Shane 1095

Driscoll is an expert in the making in Agronomy. 1096

Liora Shane Driscoll is an alumni member of North 1097

Carolina State University. Liora Shane Driscoll is 1098

a worker at Google." 1099

Knowledge Type We classify the new knowl- 1100

edge that the language model may need to ac- 1101
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quire into two categories. One involves knowl-1102

edge that already exists in the model’s parame-1103

ters but requires further learning of specific as-1104

pects (e.g., new relations). This type of knowledge1105

is referred to as relevant new knowledge and de-1106

noted as Krel. The other type of knowledge is com-1107

pletely new, absent from the model’s parameters,1108

which is referred to as completely new knowledge1109

and denoted as Kcompl. To simulate real-world1110

data scenarios, we set the knowledge type ratio as1111

|Krel| : |Kcompl| = 1 : 4. Specifically, for complete1112

new knowledge, we exclusively use synthetic fic-1113

tional knowledge entities. For relevant new knowl-1114

edge entities, we extract a set of celebrity names1115

from Wikipedia, which are highly likely to appear1116

in pre-training, and then sample fictional attributes1117

for these entities.1118

Knowledge Frequency Considering the long-tail1119

distribution of knowledge in real-world data, we1120

model the frequency of knowledge entities in the1121

corpus to follow an exponential distribution. This1122

ensures that the corpus for continual pre-training1123

contains both high-frequency knowledge as well1124

as long-tail knowledge. We classify portions of1125

the corpus based on frequency: Knowledge entities1126

with a frequency greater than 5 in the corpus are1127

classified as high-frequency knowledge, those with1128

a single occurrence as low-frequency knowledge,1129

and the remaining entities as medium-frequency1130

knowledge.1131

We set the number of all individuals appearing in1132

the training corpus to 50,000, with their frequency1133

following an exponential distribution between 11134

and 27. This finallly result in 133,408 biography1135

segments, with a total length of 10 million tokens1136

and an average length of 76.8 tokens per biography1137

segment.1138

B Training Configuration1139

GPT-2 We adopt the standard GPT-2 (Radford1140

et al., 2019) implementation available on Hugging-1141

face, including GPT-2 Small and GPT-2 Medium.1142

Llama Given the huge experimental cost asso-1143

ciated with the original Llama (Touvron et al.,1144

2023a,b; Dubey et al., 2024), which typically have1145

parameters exceeding 7 billion, we perform surro-1146

gate experiments using a relatively small model,1147

TinyLlama (Zhang et al., 2024b). TinyLlama1148

adopts exactly the same architecture and tokenizer1149

as Llama 2, but with only 1.1 billion parameters,1150

facilitating more efficient experimentation. 1151

Phi We adopt Phi-1.5 (Li et al., 2023) with 1.3 1152

billion parameters. 1153

For continual-pre training, we use a constant 1154

learning rate schedule without warmup. Our learn- 1155

ing rate is set to match the learning rate of the base 1156

model at the end of its pre-training phase. We train 1157

using the AdamW optimizer with β1 = 0.9, β2 = 1158

0.95, ϵ = 1e − 6, and a weight decay of 0.1. We 1159

perform gradient accumulation for every 4 steps. 1160

We present several key statistics of the base models 1161

and more hyperparameters that are altered in our 1162

experiments in Table 1. 1163

All of our continual pre-training experiments are 1164

runned on 2 NVIDIA-A100 GPUs. 1165

C Circuit Discovery 1166

C.1 Tasks 1167

Unlike previous works that investigate circuits on 1168

simple but general tasks such as Indirect Object 1169

Identification (IOI) and Greater-Than, our paper 1170

focuses on knowledge circuits that are capable of 1171

performing the task of factual recall. In a factual re- 1172

call task, the objective is to predict a target attribute 1173

a given a subject-relation pair (s, r). To ensure a 1174

sufficiently rich vocabulary space for the first to- 1175

ken of the target attribute, we construct the factual 1176

recall tasks based on three relations mentioned in 1177

§3.1: city, major, and company. We exclude the 1178

attributes birthday, whose first token is always an 1179

Arabic numeral between 1 and 30, and university, 1180

whose first token is typically “University,” from our 1181

analysis. We further supplement Table 2 by com- 1182

puting the ratio of unique first tokens to the total 1183

number of possible values for each attribute. The 1184

findings reveal that the proportion of generic first 1185

subtokens is low (approximately 30 %) for the re- 1186

maining three attributes city, major, and company, 1187

thereby mirroring real-world distributions without 1188

materially affecting performance evaluation. 1189

The templates for converting a subject-relation 1190

pair (s, r) into a query string for each factual recall 1191

task are listed in Table 3. A typical circuits task 1192

consists of minimal pairs of clean and corrupted 1193

inputs. For clean inputs, we randomly sample 300 1194

examples from the training corpus for each knowl- 1195

edge type and frequency as the validation set Dval 1196

for circuit discovery. In our experiments, we ob- 1197

serve that continually increasing the size of Dval 1198

only adds to the runtime for circuit discovery with- 1199

out improving the quality of the discovered circuits. 1200
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Architecture Model
Statistics Hyperparameters

size nodes edges block_size batch_size learning_rate epochs

GPT-2
GPT-2 Small 124M 158 32,491 1,024 32 1e-3 25

GPT-2 Medium 355M 410 231,877 1,024 16 1e-3 15

Llama TinyLlama-v1.1 1.1B 728 742,996 2,048 4 4e-5 10

Phi Phi-1.5 1.3B 794 886,597 2,048 2 2e-4 7

Table 1: Statistics and hyperparameters of models used in the continual pre-training experiments.

Relation Ratio

birthday 30 / 30351
university 102 / 250
city 151 / 221
major 138 / 188
company 142 / 202

Table 2: Ratio between the unique first tokens and all
the possibilities of the attribute.

Relation Template

city s lives in the city of
major s majors in the field of
company s works for the company of

Table 3: Templates for the factual recall task on rela-
tions.

The corresponding corrupted inputs are indepen-1201

dently sampled from the training corpus to match1202

the length of the subject tokens in each clean input.1203

C.2 Loss1204

The metric for circuit tasks assesses how closely1205

the language model outputs align with clean input,1206

as opposed to corrupted input. In our circuit discov-1207

ery experiments, we evaluate the performance of1208

circuits using the logit difference: the logit of the1209

correct attribute minus the logit of the corrupted1210

attribute. We then convert the task metric M into1211

a loss function by defining L(x) = −M(x), as1212

shown in Eq. 1.1213

We make modifications to the TransformerLens1214

library (Nanda and Bloom, 2022) and EAP-IG li-1215

brary (Hanna et al., 2024) to implement the circuit1216

dicovery method and conduct all the analysis ex-1217

periments.1218

D Whole Model Performance1219

We examine the whole model’s performance for1220

knowledge acquisition by monitoring two type of1221

accurracies during training process. First, we track 1222

the model’s next-token prediction accuracy on the 1223

first token of each attribute during training. This 1224

metric reflects how well the model acquires and 1225

memorizes the knowledge. The second metric is 1226

calculated on downstream query tasks in cloze- 1227

style for each attribute, such as "s lives in the city 1228

of ___", where the accuracy reflects the model’s 1229

ability to generate an exact match for the correct 1230

attribute. Our results in Figure 9 illustrate that both 1231

accuracy metrics increase until they reach their 1232

upper limits, reflecting the model’s ongoing ac- 1233

quisition of new knowledge during continual pre- 1234

training. Another interesting observation is that 1235

the accuracy curve for Krel consistently lies above 1236

the curve for Kcompl on both metrics, suggesting 1237

that relevant new knowledge is easier for LLMs to 1238

acquire than completely new knowledge. 1239

E Transfer Performance of Knowledge 1240

Circuits between Frequency 1241

To investigate the differences in the capacities 1242

of knowledge circuits identified using validation 1243

data filtered by knowledge frequency, we analyze 1244

the transfer performance of these circuits on held- 1245

out test sets with varying transferred knowledge 1246

frequencies. For example, if a knowledge cir- 1247

cuit is identified using validation data filtered by 1248

high-frequency knowledge, denoted as High-freq 1249

Circuit, its transfer performance is evaluated on 1250

test sets filtered by medium-frequency and low- 1251

frequency knowledge, respectively. 1252

Our results in Figure 10 reveal that knowledge 1253

circuits identified using knowledge of different fre- 1254

quencies perform comparably when evaluated on 1255

test sets of the same frequency. Notably, knowledge 1256

circuits discovered using high-frequency knowl- 1257

edge exhibit relatively poor performance on the 1258

low-frequency test set, whereas circuits identi- 1259

fied using low-frequency knowledge perform com- 1260

parably to high-frequency circuits on the high- 1261

15



Figure 9: Accuracy curves across continual pre-training. K_rel and K_compl represent relevant new knowledge and
completely new knowledge, respectively. First-token Acc stands for the model’s next-token prediction accuracy
on the first token of each attribute, while Query Acc stands for the generation accuracy on downstream query tasks
for each attribute.

frequency test set. This finding suggests that there1262

is no inherent difference in the capability of cir-1263

cuits for the same task; rather, their effectiveness1264

is primarily determined by the representation of1265

knowledge shaped by frequency.1266

F Changes in Vocabulary Space1267

We present our results for the layer-wise changes1268

in the rank and probability of the target attribute to-1269

ken at the final token position when unembedding1270

the intermediate layer’s output into the vocabulary1271

space throughout the training of GPT-2 Small on1272

the high-frequency set in §4.3.2. Additionally, we1273

provide the full results of all knowledge frequen-1274

cies for GPT-2 Small in Figure 15. We also provide1275

the full results for GPT-2 Medium (Figure 16) and1276

TinyLlama (Figure 17).1277

G Specialized Attention Heads within1278

Knowledge Circuits1279

G.1 Definitions of Specialized Attention1280

Heads1281

When zooming into the discovered knowledge cir-1282

cuits, we can find several specialized attention1283

heads in the model that play a crucial role in the1284

final prediction. These include the mover head,1285

relation head, and mixture head (Chughtai et al.,1286

2024).1287

Mover head Attention head that focuses on the1288

final token of the context and attends strongly to1289

the subject tokens in the context, functioning as a1290

mover to transfer information and extract attributes1291

pertaining to the subject from the enriched subject1292

representation.1293

Relation head Attention head that focuses on the1294

final token of the context and attends strongly to1295

the relation tokens in the context for a particular 1296

relation and extract many relation-related attribute 1297

tokens. 1298

Mixture head Attention Head that attends to 1299

both the relation tokens and the subject tokens in 1300

the context. It behaves as a combination of the 1301

two, performing the role of both Mover Head and 1302

Relation Head simultaneously. 1303

G.2 Identification of Specialized Attention 1304

Heads 1305

In this section, we provide details on how to iden- 1306

tify mover heads, relation heads, and mixture heads 1307

in LLMs. We re-implement the methodology de- 1308

scribed in Chughtai et al. (2024) since the original 1309

code has not been made publicly available by the 1310

authors. We will update our implementation once 1311

the source code is released. 1312

Building on the Direct Logit Attribution (DLA) 1313

technique, which measures the direct effect of 1314

individual model components on model outputs, 1315

Chughtai et al. (2024) move beyond and propose 1316

DLA by source token group. This technique is 1317

based on the observation that attention head out- 1318

puts are a weighted sum of outputs corresponding 1319

to distinct attention source positions (Elhage et al., 1320

2021). This approach is useful for quantifying 1321

how a source token group directly affects the logits 1322

through individual attention heads. 1323

With a specific factual recall task where the rela- 1324

tion held constant, we aggregate over the validation 1325

set Dval for circuit discovery on the task, an atten- 1326

tion head is classified as mover head if: 1327∣∣∣∣∣
∑|Dval|

i=1 DLAs(Qi)∑|Dval|
i=1 DLAr(Qi)

∣∣∣∣∣ > τ (5) 1328

where i denotes the i-th entity in Dval, Qi de- 1329
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Figure 10: Hit@10 of the transfer performance of knowledge circuits in GPT-2 Small and GPT-2 Medium
throughout training. Low-freq Circuit, Medium-freq Circuit, and High-freq Circuit represent knowledge
circuits identified by knowledge with the frequencies in the ranges [1, 2), [2, 5] and (5, 27], respectively. Note that
we smooth the curves using a window size of 3 epochs for all settings.

Figure 11: Nodes Jaccard Similarity of intermediate knowledge circuits with the circuits at the final checkpoint.
K_rel and K_compl represent relevant new knowledge and completely new knowledge, respectively. Low-freq,
Medium-freq, and High-freq represent knowledge with frequencies in the ranges [1, 2), [2, 5] and (5, 27], respec-
tively.
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Figure 12: Layer distribution of the edges activation
ratio within the knowledge circuits in GPT-2 Medium.

Figure 13: Left: Layer distribution of mover head in
the knowledge circuits in GPT-2 Medium throughout
training. Right: Layer distribution of relation head in
the knowledge circuits in GPT-2 Medium throughout
training.

notes the relation-specific query string for entity i1330

as shown in Table 3, DLAs(Qi) denotes DLA at-1331

tributed to subject tokens, and DLAr(Qi) denotes1332

DLA attributed to relation tokens. Relatively, an1333

attention head is classified as relation head if:1334 ∣∣∣∣∣
∑|Dval|

i=1 DLAs(Qi)∑|Dval|
i=1 DLAr(Qi)

∣∣∣∣∣ < 1

τ
(6)1335

where threshold τ is set to be 10 as suggested in1336

Chughtai et al. (2024). Remaining attention heads1337

in LLMs are classified as mixture heads, behaving1338

as a combination of mover head and relation head.1339

H Forgetting Analysis for Knowledge1340

Circuits1341

To analyze the model’s forgetting of acquired1342

knowledge, we conduct and additinal coninual pre-1343

Figure 14: Edges Jaccard Similarity of intermediate
knowledge circuits with the circuits at the final check-
point of the previous knowledge acquisition experiment.

training experiment. We first construct new train- 1344

ing corpus following the same pipeline described 1345

in §3.1, and then initialize training from the final 1346

checkpoint of the previous knowledge acquisition 1347

experiment on GPT-2 Small. We monitor struc- 1348

tral consistency changes for knowledge circuits 1349

throughout 10 training epochs. 1350

Our results in Figure 14 reveal that knowledge 1351

circuits demonstrate structural reconfiguration ca- 1352

pacity, with the identified circuits dynamically ad- 1353

justing more than 60% of their edges to accommo- 1354

date new knowledge. However, data replay inter- 1355

ventions, which involve the periodic replacement of 1356

a fixed ratio of original training samples, success- 1357

fully mitigate knowledge forgetting by reactivating 1358

circuit components. This evidence suggests that 1359

LLMs maintain latent reactivation potential even 1360

after apparent behavioral forgetting — a property 1361

we term knoweldge circuit elasticity. 1362
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Figure 15: Top: Rank of the target attribute token when unembedding the intermediate layer’s output into
vocabulary space at the last token position throughout training for GPT-2 Small. Bottom: Probability of the
target attribute token when unembedding the intermediate layer’s output into vocabulary space at the last token
position throughout training for GPT-2 Small. Low-freq, Medium-freq, and High-freq represent knowledge with
frequencies in the ranges [1, 2), [2, 5] and (5, 27], respectively.

Figure 16: Top: Rank of the target attribute token when unembedding the intermediate layer’s output into
vocabulary space at the last token position throughout training for GPT-2 Medium. Bottom: Probability of the
target attribute token when unembedding the intermediate layer’s output into vocabulary space at the last token
position throughout training for GPT-2 Medium. Low-freq, Medium-freq, and High-freq represent knowledge
with frequencies in the ranges [1, 2), [2, 5] and (5, 27], respectively.
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Figure 17: Top: Rank of the target attribute token when unembedding the intermediate layer’s output into
vocabulary space at the last token position throughout training for TinyLlama. Bottom: Probability of the target
attribute token when unembedding the intermediate layer’s output into vocabulary space at the last token position
throughout training for TinyLlama. Low-freq, Medium-freq, and High-freq represent knowledge with frequencies
in the ranges [1, 2), [2, 5] and (5, 27], respectively.
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Name Possible Values
First Name Aarav, Abbott, Aberdeen, Abilene, Acey, Adair, Adelia, Adriel, Afton, Aida, Ainsley, Aislinn, Alaric, Albin, Alden, Aleah, Alessandra,

Alistair, Allegra, Alphonse, Althea, Amaury, Ambrose, Amelina, Amias, Anatole, Anders, Ansel, Anthea, Antonella, Anwen, Arden,
Ariadne, Aric, Arlen, Armand, Armando, Arwen, Asa, Astra, Atticus, Aubrey, Auden, Aurelia, Aurora, Aveline, Aviana, Azariah, Baird,
Basil, Bayard, Beauregard, Bellamy, Belvedere, Benedict, Bennett, Berenice, Bertram, Blaine, Blair, Blythe, Boaz, Bodhi, Boniface,
Bram, Branwen, Brenna, Briar, Briony, Broderick, Bromley, Bronson, Cadence, Cael, Caelan, Caius, Caledon, Calista, Calliope, Callum,
Calyx, Cambria, Camellia, Candela, Caspian, Cassian, Cassiopeia, Castor, Cecily, Celeste, Celestia, Cerelia, Cerys, Chalcedony, Chandra,
Charlton, Cicero, Cillian, Clemence, Clementine, Cleo, Clio, Clovis, Colton, Conall, Conrad, Corbin, Cordelia, Cormac, Cosima, Cressida,
Crispin, Cybele, Cyril, Dahlia, Damaris, Daphne, Darby, Darcy, Dario, Davina, Deirdre, Delaney, Delphine, Demelza, Desmond, Dexter,
Dimitri, Dinah, Dorian, Dulcie, Eamon, Earlene, Eben, Edeline, Edmund, Eldon, Eleri, Elia, Elian, Elias, Elodie, Eloise, Elowen, Ember,
Emeline, Emrys, Endellion, Ender, Ephraim, Erasmus, Esme, Eulalia, Evadne, Evander, Everard, Everett, Fable, Fanchon, Farrah, Faye,
Felix, Fern, Finlay, Fiora, Fletcher, Florian, Forsythia, Freya, Frida, Gable, Galen, Gareth, Garnet, Garrick, Gelsey, Gemma, Genever,
Genevieve, Ginevra, Grady, Griffin, Guinevere, Hadley, Halcyon, Hale, Harlan, Hart, Haven, Hawthorne, Hazel, Heath, Helena, Hesper,
Hollis, Honora, Hyacinth, Idris, Ilaria, Ilona, Imara, Indigo, Ingrid, Ione, Iris, Isadora, Isolde, Ivor, Jago, Jareth, Jarvis, Jemima, Jericho,
Jocasta, Jolyon, Jorah, Jory, Jovan, Jubilee, Jules, Junia, Juniper, Kael, Kaia, Kalista, Kalliope, Katriel, Keir, Kenna, Kerensa, Keturah,
Keziah, Kieran, Kirby, Kismet, Kit, Knox, Kyrie, Lachlan, Lark, Larkin, Laszlo, Leda, Leif, Lennox, Leonie, Leopold, Leta, Linnea, Liora,
Livia, Llewellyn, Locke, Lorcan, Lorelei, Lorna, Lucian, Lysandra, Lysander, Mabel, Macey, Maeve, Magnolia, Malachi, Malin, Manon,
Marcel, Marcellus, Maren, Marius, Marisol, Maris, Mathis, Matilda, Mavis, Maximilian, Meadow, Merrick, Merritt, Micaiah, Micah,
Mira, Mireille, Mireya, Mirren, Morrigan, Muir, Nadia, Nadine, Nairne, Nara, Nash, Navi, Naylor, Neve, Nico, Nina, Noble, Nolan, Nora,
Nova, Nyssa, Oberon, Octavia, Odessa, Oisin, Oleander, Olwen, Onyx, Ophelia, Orion, Orla, Orson, Osiris, Osric, Ottilie, Ozias, Paisley,
Paloma, Pax, Paz, Penelope, Peregrine, Persephone, Phaedra, Phineas, Phoenix, Pippa, Poppy, Portia, Posy, Primrose, Quill, Quinlan,
Rafferty, Rain, Rainer, Raphael, Raven, Reeve, Reinette, Renata, Rhea, Rhiannon, Rhys, Riona, Roderick, Romilly, Rowan, Roxana, Rufus,
Sable, Sabine, Saffron, Sage, Salem, Samara, Sancia, Saoirse, Sarai, Saskia, Selah, Seneca, Seraphina, Seren, Severin, Shai, Shiloh, Sibyl,
Sidonie, Silas, Simeon, Simone, Sinclair, Sol, Solange, Sorrel, Sparrow, Stellan, Sullivan, Sylvain, Sybil, Sylvana, Tallulah, Tamsin, Tansy,
Tarquin, Taryn, Tavish, Tegan, Thaddeus, Thelma, Theodora, Theron, Thorin, Thorne, Thora, Tiernan, Tristan, Tullia, Ursula, Valencia,
Valerian, Vanya, Vesper, Vianne, Violetta, Virgil, Waverly, Wendell, Willa, Windsor, Winston, Wisteria, Wren, Wynn, Xanthe, Xavier,
Xenia, Xerxes, Yara, Yasmin, Yelena, Ysabel, Yvaine, Zahra, Zara, Zephyr, Zinnia, Ziva, Zora

Middle Name Abel, Abram, Ace, Adele, Ainsley, Alaric, Alcott, Alden, Allegra, Amara, Amethyst, Anders, Ansel, Arden, Arlo, Arrow, Asa, Asher,
Aster, Astrid, Atticus, Auden, Aurora, Austen, Axel, Baird, Basil, Bay, Beau, Beck, Blaise, Blake, Blythe, Boden, Bodhi, Boone, Bram,
Bran, Briar, Briggs, Brooks, Calla, Calvin, Caspian, Cassian, Cedar, Celeste, Chance, Channing, Cleo, Clove, Clyde, Cohen, Colt, Cove,
Crew, Crosby, Cyrus, Dane, Dante, Dashiell, Dawn, Dax, Dean, Delta, Dimitri, Dove, Drake, Dune, Echo, Eden, Edison, Elara, Elian, Ellis,
Elowen, Ember, Emrys, Eos, Esme, Evangeline, Ever, Everest, Ewan, Eyre, Fable, Fairfax, Fallon, Faye, Fenton, Fern, Finnian, Fleur,
Flynn, Forrest, Fox, Gage, Gale, Garnet, Gideon, Gray, Greer, Halcyon, Hale, Harlow, Haven, Hawk, Hayes, Hollis, Hope, Hugo, Idris,
Iker, Indigo, Ines, Iona, Iris, Isla, Iver, Jace, Jade, Jagger, Jem, Jet, Joaquin, Jude, Jules, Kai, Kane, Kash, Keats, Keira, Kellen, Kendrick,
Kepler, Kian, Kit, Knox, Lake, Lark, Laurel, Layne, Leif, Lennox, Lester, Levi, Liam, Lila, Linnea, Locke, Lorcan, Lore, Luca, Lucian,
Lux, Lyric, Maeve, Magnus, Maia, Malcolm, March, Maren, Marlow, Mason, Maverick, Meadow, Mercer, Merrick, Mica, Milan, Milo,
Monroe, Moon, Nash, Nico, Noble, Noor, North, Oak, Oberon, Odette, Oisin, Oleander, Onyx, Opal, Orion, Otis, Otto, Pace, Parker, Pax,
Paz, Penn, Perry, Phoenix, Pierce, Pine, Poe, Poet, Poppy, Porter, Prosper, Quill, Quincy, Rain, Reed, Reeve, Remy, Rex, Rhea, Ridge,
Riven, Roan, Rogue, Roman, Rook, Rowan, Rune, Sable, Sage, Sailor, Saxon, Scout, Sequoia, Shane, Shiloh, Sierra, Sloane, Sol, Solstice,
Soren, Sparrow, Star, Stone, Storm, Story, Sullivan, Sylvan, Talon, Tamsin, Tate, Teague, Teal, Thane, Thatcher, Thorn, Thornton, Tide,
Torin, True, Vail, Valor, Veda, Vesper, Vince, Violette, Wade, Waverly, Wells, West, Wilder, Willow, Winter, Wren, Wynn, Xander, Xanthe,
Xavier, Yara, York, Yule, Zane, Zara, Zephyr, Zinnia

Last Name Abernathy, Ainsworth, Alberts, Ashcroft, Atwater, Babcock, Bader, Bagley, Bainbridge, Balfour, Barkley, Barlowe, Barnhill, Biddle,
Billingsley, Birkett, Blakemore, Bleeker, Bliss, Bonham, Boswell, Braddock, Braithwaite, Briggs, Brockman, Bromley, Broughton,
Burkhardt, Cadwallader, Calloway, Carmichael, Carrington, Cavanaugh, Chadwick, Chamberlain, Chilton, Claffey, Claypool, Clifton,
Coffey, Colfax, Colquitt, Conway, Copley, Cotswold, Creighton, Crenshaw, Crowder, Culpepper, Cunningham, Dallimore, Darlington,
Davenport, Delaney, Devlin, Doolittle, Dover, Driscoll, Dudley, Dunleavy, Eldridge, Elston, Fairfax, Farnsworth, Fitzgerald, Fitzroy,
Flanders, Fleetwood, Gainsborough, Gatling, Goddard, Goodwin, Granger, Greenfield, Griffiths, Harcourt, Hargrove, Harkness, Haverford,
Hawkins, Hawthorne, Heathcote, Holbrook, Hollingworth, Holloway, Holmes, Holtz, Howland, Ingles, Jardine, Kenworthy, Kingsley,
Langford, Latham, Lathrop, Lockhart, Lodge, Loxley, Lyndon, MacAlister, MacGregor, Mansfield, Marston, Mather, Middleton,
Millington, Milton, Montague, Montgomery, Montoya, Morgenthal, Mortimer, Nash, Newcomb, Newkirk, Nightingale, Norwood, Oakley,
Ormsby, Osborne, Overton, Pemberton, Pennington, Percival, Pickering, Prescott, Prichard, Quimby, Radcliffe, Rafferty, Rainier, Ramsay,
Rawlins, Renshaw, Ridley, Rivers, Rockwell, Roosevelt, Rothschild, Rutherford, Sanderson, Sedgwick, Selwyn, Severance, Sheffield,
Sheridan, Sherwood, Shields, Sinclair, Slater, Somerset, Standish, Stanton, Stoddard, Stokes, Stratford, Strickland, Sutherland, Sutton,
Talmadge, Tanner, Tennyson, Thackeray, Thatcher, Thorne, Thurston, Tilden, Townsend, Trent, Trevelyan, Trumbull, Underhill, Vanderbilt,
Vandermeer, Vickers, Wadsworth, Wakefield, Walpole, Waring, Warwick, Weatherford, Webster, Wharton, Whittaker, Wickham, Wiggins,
Wilcox, Winslow, Winthrop, Wolcott, Woodruff, Wycliffe, Yardley, Yates, Yeats, Yule, Zeller, Zimmerman

Table 4: All possible values generated for the first name, middle name and last name.
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Relation Possible Attributes
City "Princeton, NJ", "New York, NY", "Los Angeles, CA", "Chicago, IL", "Houston, TX", "Phoenix, AZ", "Philadelphia, PA", "San Antonio,

TX", "San Diego, CA", "Dallas, TX", "San Jose, CA", "Austin, TX", "Jacksonville, FL", "Fort Worth, TX", "Columbus, OH", "San
Francisco, CA", "Charlotte, NC", "Indianapolis, IN", "Seattle, WA", "Denver, CO", "Washington, DC", "Boston, MA", "El Paso, TX",
"Nashville, TN", "Detroit, MI", "Oklahoma City, OK", "Portland, OR", "Las Vegas, NV", "Memphis, TN", "Louisville, KY", "Baltimore,
MD", "Milwaukee, WI", "Albuquerque, NM", "Tucson, AZ", "Fresno, CA", "Mesa, AZ", "Sacramento, CA", "Atlanta, GA", "Kansas City,
MO", "Colorado Springs, CO", "Miami, FL", "Raleigh, NC", "Omaha, NE", "Long Beach, CA", "Virginia Beach, VA", "Oakland, CA",
"Minneapolis, MN", "Tulsa, OK", "Arlington, TX", "Tampa, FL", "New Orleans, LA", "Wichita, KS", "Cleveland, OH", "Bakersfield, CA",
"Aurora, CO", "Anaheim, CA", "Honolulu, HI", "Santa Ana, CA", "Riverside, CA", "Corpus Christi, TX", "Lexington, KY", "Stockton,
CA", "Henderson, NV", "Saint Paul, MN", "St. Louis, MO", "Cincinnati, OH", "Pittsburgh, PA", "Greensboro, NC", "Anchorage, AK",
"Plano, TX", "Lincoln, NE", "Orlando, FL", "Irvine, CA", "Newark, NJ", "Toledo, OH", "Durham, NC", "Chula Vista, CA", "Fort Wayne,
IN", "Jersey City, NJ", "St. Petersburg, FL", "Laredo, TX", "Madison, WI", "Chandler, AZ", "Buffalo, NY", "Lubbock, TX", "Scottsdale,
AZ", "Reno, NV", "Glendale, AZ", "Gilbert, AZ", "Winston-Salem, NC", "North Las Vegas, NV", "Norfolk, VA", "Chesapeake, VA",
"Garland, TX", "Irving, TX", "Hialeah, FL", "Fremont, CA", "Boise, ID", "Richmond, VA", "Baton Rouge, LA", "Spokane, WA", "Des
Moines, IA", "Tacoma, WA", "San Bernardino, CA", "Modesto, CA", "Fontana, CA", "Santa Clarita, CA", "Birmingham, AL", "Oxnard,
CA", "Fayetteville, NC", "Moreno Valley, CA", "Rochester, NY", "Glendale, CA", "Huntington Beach, CA", "Salt Lake City, UT", "Grand
Rapids, MI", "Amarillo, TX", "Yonkers, NY", "Aurora, IL", "Montgomery, AL", "Akron, OH", "Little Rock, AR", "Huntsville, AL",
"Augusta, GA", "Port St. Lucie, FL", "Grand Prairie, TX", "Columbus, GA", "Tallahassee, FL", "Overland Park, KS", "Tempe, AZ",
"McKinney, TX", "Mobile, AL", "Cape Coral, FL", "Shreveport, LA", "Frisco, TX", "Knoxville, TN", "Worcester, MA", "Brownsville,
TX", "Vancouver, WA", "Fort Lauderdale, FL", "Sioux Falls, SD", "Ontario, CA", "Chattanooga, TN", "Providence, RI", "Newport News,
VA", "Rancho Cucamonga, CA", "Santa Rosa, CA", "Peoria, AZ", "Oceanside, CA", "Elk Grove, CA", "Salem, OR", "Pembroke Pines,
FL", "Eugene, OR", "Garden Grove, CA", "Cary, NC", "Fort Collins, CO", "Corona, CA", "Springfield, MO", "Jackson, MS", "Alexandria,
VA", "Hayward, CA", "Clarksville, TN", "Lancaster, CA", "Lakewood, CO", "Palmdale, CA", "Salinas, CA", "Hollywood, FL", "Pasadena,
TX", "Sunnyvale, CA", "Macon, GA", "Pomona, CA", "Escondido, CA", "Killeen, TX", "Naperville, IL", "Joliet, IL", "Bellevue, WA",
"Rockford, IL", "Savannah, GA", "Paterson, NJ", "Torrance, CA", "Bridgeport, CT", "McAllen, TX", "Mesquite, TX", "Syracuse, NY",
"Midland, TX", "Pasadena, CA", "Murfreesboro, TN", "Miramar, FL", "Dayton, OH", "Fullerton, CA", "Olathe, KS", "Orange, CA",
"Thornton, CO", "Roseville, CA", "Denton, TX", "Waco, TX", "Surprise, AZ", "Carrollton, TX", "West Valley City, UT", "Charleston,
SC", "Warren, MI", "Hampton, VA", "Gainesville, FL", "Visalia, CA", "Coral Springs, FL", "Columbia, SC", "Cedar Rapids, IA", "Sterling
Heights, MI", "New Haven, CT", "Stamford, CT", "Concord, CA", "Kent, WA", "Santa Clara, CA", "Elizabeth, NJ", "Round Rock, TX",
"Thousand Oaks, CA", "Lafayette, LA", "Athens, GA", "Topeka, KS", "Simi Valley, CA", "Fargo, ND"

Table 5: All possible attributes generated for city relation.

Relation Possible Attributes
Major Accounting, Actuarial Science, Advertising, Aerospace Engineering, African American Studies, Agribusiness, Agricultural Engineering,

Agriculture, Agronomy, Animal Science, Anthropology, Applied Mathematics, Architecture, Art History, Arts Management, Astron-
omy, Astrophysics, Athletic Training, Atmospheric Sciences, Biochemistry, Bioengineering, Biological Sciences, Biology, Biomedical
Engineering, Biotechnology, Botany, Broadcast Journalism, Business Administration, Business Analytics, Business Economics, Busi-
ness Information Systems, Chemical Engineering, Chemistry, Civil Engineering, Classics, Cognitive Science, Communication Studies,
Communications, Comparative Literature, Computer Engineering, Computer Science, Construction Management, Counseling, Creative
Writing, Criminal Justice, Criminology, Culinary Arts, Cybersecurity, Dance, Data Science, Dietetics, Digital Media, Drama, Earth
Sciences, Ecology, Economics, Education, Electrical Engineering, Elementary Education, Engineering Physics, Engineering Technology,
English, Entrepreneurship, Environmental Engineering, Environmental Science, Environmental Studies, Exercise Science, Fashion Design,
Fashion Merchandising, Film Studies, Finance, Fine Arts, Fisheries and Wildlife, Food Science, Forensic Science, Forestry, French,
Game Design, Genetics, Geography, Geology, German, Global Studies, Graphic Design, Health Administration, Health Education,
Health Informatics, Health Sciences, Healthcare Management, History, Horticulture, Hospitality Management, Human Development,
Human Resources Management, Human Services, Industrial Engineering, Information Systems, Information Technology, Interior Design,
International Business, International Relations, Journalism, Kinesiology, Labor Studies, Landscape Architecture, Latin American Studies,
Law, Legal Studies, Liberal Arts, Linguistics, Management, Management Information Systems, Marine Biology, Marketing, Mass
Communications, Materials Science, Mathematics, Mechanical Engineering, Media Studies, Medical Technology, Medicine, Microbiology,
Molecular Biology, Music, Music Education, Music Performance, Neuroscience, Nursing, Nutrition, Occupational Therapy, Oceanography,
Operations Management, Optometry, Organizational Leadership, Paleontology, Paralegal Studies, Pharmacy, Philosophy, Photography,
Physical Education, Physical Therapy, Physics, Physiology, Political Science, Pre-Dental, Pre-Law, Pre-Med, Pre-Pharmacy, Pre-Veterinary,
Psychology, Public Administration, Public Health, Public Policy, Public Relations, Quantitative Analysis, Radiologic Technology, Real
Estate, Recreation Management, Religious Studies, Renewable Energy, Respiratory Therapy, Risk Management, Robotics, Rural Studies,
Sales, Social Work, Sociology, Software Engineering, Spanish, Special Education, Speech Pathology, Sports Management, Statistics,
Supply Chain Management, Sustainability, Telecommunications, Theater, Tourism Management, Toxicology, Transportation, Urban
Planning, Veterinary Medicine, Victimology, Video Production, Web Development, Wildlife Conservation, Women’s Studies, Zoology

Table 6: All possible attributes generated for major relation.
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Relation Possible Attributes
Company Apple, Microsoft, Amazon, Google, Facebook, Berkshire Hathaway, Visa, Johnson & Johnson, Walmart, Procter & Gamble, Nvidia,

JPMorgan Chase, Home Depot, Mastercard, UnitedHealth Group, Verizon Communications, Pfizer, Chevron, Intel, Cisco Systems, Merck
& Co., Coca-Cola, PepsiCo, Walt Disney, AbbVie, Comcast, Bank of America, ExxonMobil, Thermo Fisher Scientific, McDonald’s, Nike,
AT&T, Abbott Laboratories, Wells Fargo, Amgen, Oracle, Costco Wholesale, Salesforce, Medtronic, Bristol-Myers Squibb, Starbucks,
IBM, NextEra Energy, Broadcom, Danaher, Qualcomm, General Electric, Honeywell, Citigroup, Lockheed Martin, Union Pacific, Goldman
Sachs, Raytheon Technologies, American Express, Boeing, Texas Instruments, Gilead Sciences, S&P Global, Deere & Company, Charles
Schwab, Colgate-Palmolive, General Motors, Anthem, Philip Morris International, Caterpillar, Target, Intuitive Surgical, Northrop
Grumman, Booking Holdings, ConocoPhillips, CVS Health, Altria Group, Eli Lilly and Company, Micron Technology, Fiserv, BlackRock,
American Tower, General Dynamics, Lam Research, Zoetis, Applied Materials, Elevance Health, T-Mobile US, Automatic Data Processing,
Marsh & McLennan, Mondelez International, Kroger, Crown Castle, Cigna, Analog Devices, FedEx, CSX, Uber Technologies, Moderna,
Truist Financial, Kraft Heinz, HCA Healthcare, Dominion Energy, Cognizant Technology Solutions, Occidental Petroleum, Regeneron
Pharmaceuticals, Freeport-McMoRan, eBay, O’Reilly Automotive, Southern Company, Duke Energy, Sherwin-Williams, PayPal, Nucor,
Gartner, AutoZone, Cheniere Energy, ServiceNow, Constellation Brands, Discover Financial, U.S. Bancorp, Public Storage, Aflac, Lennar,
Johnson Controls, Tyson Foods, Sempra Energy, Southwest Airlines, Las Vegas Sands, McKesson, Baxter International, KLA Corporation,
Monster Beverage, Archer Daniels Midland, Eaton, Paccar, Illumina, Intercontinental Exchange, Clorox, Capital One Financial, Estee
Lauder, Hess, Becton Dickinson, Parker-Hannifin, Cummins, Ameriprise Financial, Fidelity National Information Services, State Street,
Xilinx, Chipotle Mexican Grill, Expeditors International, Roper Technologies, L3Harris Technologies, M&T Bank, Alcoa, Live Nation
Entertainment, Marriott International, Norfolk Southern, DISH Network, Akamai Technologies, Fortinet, Ball Corporation, Corning,
Nordstrom, CMS Energy, Nasdaq, BorgWarner, Liberty Media, Sealed Air, PulteGroup, General Mills, Ross Stores, Hewlett Packard
Enterprise, Host Hotels & Resorts, Hilton Worldwide, Snap-on, Zebra Technologies, Leidos, Lincoln National, Weyerhaeuser, CarMax,
Rockwell Automation, Allstate, Entergy, NRG Energy, AutoNation, LyondellBasell, Omnicom Group, HollyFrontier, Western Digital,
International Flavors & Fragrances, Eastman Chemical, Xcel Energy, Xylem, Ansys, IPG Photonics, Digital Realty, First Solar, Jacobs
Engineering, Cognex, Ingersoll Rand, Fastenal, Allegion, LKQ, AMETEK, WABCO Holdings, Keysight Technologies

Table 7: All possible attributes generated for company relation.
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Relation Possible Attributes
University Massachusetts Institute of Technology, Harvard University, Stanford University, California Institute of Technology, University of Chicago,

Princeton University, Columbia University, Yale University, University of Pennsylvania, University of California, Berkeley, University of
California, Los Angeles, University of Michigan, Ann Arbor, Duke University, Johns Hopkins University, Northwestern University, New
York University, University of California, San Diego, University of Southern California, Cornell University, Rice University, University of
California, Santa Barbara, University of Washington, University of Texas at Austin, University of Wisconsin-Madison, University of Illinois
at Urbana-Champaign, University of North Carolina at Chapel Hill, Washington University in St. Louis, University of Florida, University
of Virginia, Carnegie Mellon University, Emory University, Georgetown University, University of California, Irvine, University of Notre
Dame, University of Rochester, Boston College, Boston University, Ohio State University, Pennsylvania State University, University
of Miami, Purdue University, University of Minnesota, University of Maryland, Michigan State University, University of Colorado
Boulder, University of Pittsburgh, University of Arizona, University of Utah, University of California, Davis, University of Massachusetts
Amherst, Indiana University Bloomington, University of Connecticut, University of Iowa, University of Missouri, University of Kansas,
University of Kentucky, University of Tennessee, University of Alabama, University of Oklahoma, University of Oregon, University of
Nebraska-Lincoln, University of South Carolina, University of New Hampshire, University of Vermont, University of Delaware, University
of Rhode Island, University of Arkansas, Auburn University, Baylor University, Brigham Young University, Clemson University, Colorado
State University, Drexel University, Florida State University, George Washington University, Howard University, Iowa State University,
Kansas State University, Louisiana State University, Marquette University, Mississippi State University, North Carolina State University,
Northeastern University, Oklahoma State University, Oregon State University, Rutgers University, San Diego State University, Southern
Methodist University, Stony Brook University, Syracuse University, Temple University, Texas A&M University, Texas Tech University,
Tulane University, University of Alabama at Birmingham, University of Central Florida, University of Cincinnati, University of Dayton,
University of Denver, University of Georgia, University of Houston, University of Idaho, University of Louisville, University of Maryland,
Baltimore County, University of Memphis, University of Mississippi, University of Nevada, Las Vegas, University of New Mexico,
University of North Texas, University of San Francisco, University of South Florida, University of Texas at Dallas, University of Toledo,
University of Tulsa, University of Wyoming, Villanova University, Virginia Tech, Wake Forest University, West Virginia University,
Wichita State University, Worcester Polytechnic Institute, Xavier University, Yeshiva University, American University, Arizona State
University, Arkansas State University, Ball State University, Boise State University, Bowling Green State University, Bradley University,
California Polytechnic State University, California State University, Long Beach, Central Michigan University, Chapman University, City
University of New York, Claremont McKenna College, Clark University, College of William & Mary, DePaul University, Eastern Michigan
University, Fairfield University, Florida Atlantic University, Fordham University, Hofstra University, Illinois Institute of Technology, James
Madison University, Loyola Marymount University, Loyola University Chicago, Miami University, Middlebury College, New Jersey
Institute of Technology, Northern Arizona University, Northern Illinois University, Pepperdine University, Pomona College, Rensselaer
Polytechnic Institute, Rhode Island School of Design, Rollins College, Saint Louis University, San Francisco State University, San Jose
State University, Santa Clara University, Seattle University, Seton Hall University, Southern Illinois University, Stevens Institute of
Technology, SUNY College of Environmental Science and Forestry, SUNY Polytechnic Institute, Texas Christian University, The New
School, Towson University, Trinity College, Trinity University, Tufts University, Union College, University at Albany, University at Buffalo,
University of Akron, University of Alabama in Huntsville, University of Alaska Anchorage, University of Alaska Fairbanks, University
of Baltimore, University of Bridgeport, University of Central Arkansas, University of Charleston, University of Dayton, University of
Detroit Mercy, University of Evansville, University of Hartford, University of La Verne, University of Mary Washington, University
of Michigan-Dearborn, University of Michigan-Flint, University of Montana, University of Nebraska Omaha, University of Nevada,
Reno, University of North Dakota, University of North Florida, University of Northern Colorado, University of Redlands, University of
Richmond, University of Saint Joseph, University of San Diego, University of Scranton, University of Sioux Falls, University of South
Alabama, University of Southern Mississippi, University of St. Thomas, University of Tampa, University of the Pacific, University of the
Sciences, University of Toledo, University of West Georgia, University of Wisconsin-Eau Claire, University of Wisconsin-Green Bay,
University of Wisconsin-La Crosse, University of Wisconsin-Milwaukee, University of Wisconsin-Oshkosh, University of Wisconsin-
Platteville, University of Wisconsin-River Falls, University of Wisconsin-Stevens Point, University of Wisconsin-Stout, University of
Wisconsin-Superior, University of Wisconsin-Whitewater, Ursinus College, Utah State University, Valparaiso University, Vanderbilt
University, Vassar College, Villanova University, Virginia Commonwealth University, Wabash College, Wagner College, Wayne State
University, Webster University, Weber State University, Wellesley College, Wentworth Institute of Technology, Wesleyan University,
Western Carolina University, Western Kentucky University, Western Michigan University, Western Washington University, Westminster
College, Whitman College, Whittier College, Willamette University, Williams College, Wittenberg University, Wofford College, Woodbury
University, Wright State University, Xavier University, Yale University, York College of Pennsylvania

Table 8: All possible attributes generated for university relation.
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