
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MINDFLAYER: EFFICIENT ASYNCHRONOUS PARALLEL
SGD IN THE PRESENCE OF HETEROGENEOUS AND RAN-
DOM WORKER COMPUTE TIMES

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the problem of minimizing the expectation of smooth nonconvex func-
tions with the help of several parallel workers whose role is to compute stochastic
gradients. In particular, we focus on the challenging situation where the workers’
compute times are arbitrarily heterogeneous and random. In the simpler regime
characterized by arbitrarily heterogeneous but deterministic compute times, Tyurin
& Richtárik (2024) recently proposed the first optimal asynchronous SGD method,
called Rennala SGD, in terms of a novel complexity notion called time complexity.
The starting point of our work is the observation that Rennala SGD can have arbi-
trarily bad performance in the presence of random compute times – a setting it was
not designed to handle. To advance our understanding of stochastic optimization in
this challenging regime, we propose a new asynchronous SGD method, for which
we coin the name MindFlayer SGD. Our theory and empirical results demonstrate
the superiority of MindFlayer SGD over existing baselines, including Rennala SGD,
in cases when the noise is heavy tailed.

1 INTRODUCTION

We address the nonconvex optimization problem:

minx∈Rd

{
f(x) := Eξ∼D [f(x; ξ)]

}
, (1)

where f : Rd × S → R, and ξ is a random variable with some distribution D on S. In the context of
machine learning, S could represent the space of all possible data, D denotes the distribution of the
training dataset, and f(·, ξ) denotes the loss of a data sample ξ.

The function f is assumed to be differentiable, and its gradient is L–Lipschitz continuous (see
Assumptions 4.1–4.2). We assume that we have n workers available to work in parallel, each able
to compute independent, unbiased stochastic gradients of f , whose variance is bounded by σ2 (see
Assumption 4.3). In this paper, we are interested in investigating the time complexity of methods
working in this natural setup.

1.1 PARALLEL METHODS

With access to n clients capable of computing stochastic gradients in parallel, perhaps the most naive
and classical approach is running Minibatch SGD (Cotter et al., 2011; Goyal et al., 2017; Gower et al.,
2019).

Minibatch SGD. This method awaits the completion of all workers’ computations of a single
stochastic gradient before executing a gradient-type step:

1. receive a single stochastic gradient ∇f(xk; ξki) from each worker i ∈ [n],

2. update the model via xk+1 = xk − γ 1
n

∑n
i=1 ∇f(xk; ξki),

where [n] := {1, . . . , n}, γ > 0 is a stepsize, ξki are i.i.d. samples from D, and the gradients
∇f(xk; ξki) are calculated in parallel.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In real systems, each worker’s computational power may differ from the others, leading to varying
completion times of gradient computation. A notable drawback of Minibatch SGD is its failure
to account for these differences in compute times across workers. The duration of each step is
determined by the slowest worker’s computation time. As a result, all other workers remain idle
after completing their tasks, waiting for the slowest device to finish. Meanwhile, this idle time could
potentially be used in a more efficient way to improve the overall time complexity. Clearly, a redesign
of the algorithm is necessary.

Asynchronous SGD. As a result, a new generation of algorithms emerged, known as asynchronous
stochastic gradient descent (ASGD) methods, designed to fully utilize all available computational
resources (Recht et al., 2011; Feyzmahdavian et al., 2016; Nguyen et al., 2018; Arjevani et al., 2020;
Cohen et al., 2021; Mishchenko et al., 2022; Koloskova et al., 2022; Islamov et al., 2023).

Here, the server performs a gradient-type update immediately after receiving a stochastic gradient
from any worker, without waiting for the others. The updated model is then sent back to the worker,
which immediately begins computing a new stochastic gradient based on the updated model. By the
time the worker finishes computing this gradient, the model may have already been updated multiple
times on the server due to gradients received from other workers. This creates a delay in the model
update, denoted as δk. The algorithm can be described as follows:

1. receive a stochastic gradient ∇f(xk−δk ; ξk−δk) from any worker,

2. update the model via xk+1 = xk − γ∇f(xk−δk ; ξk−δk),

3. send new xk+1 to the worker so the worker computes ∇f(xk+1; ξk+1).

Cohen et al. (2021); Mishchenko et al. (2022); Koloskova et al. (2022) showed that ASGD is provably
faster in terms of time complexity then Minibatch SGD.

However, it turns out that this untamed and wild asynchrony can be detrimental. The drawback
of ASGD lies in the assumption that all workers’ computations are beneficial. It suffers from the
issue of updating the model with potentially significantly delayed gradients, which ultimately harms
convergence and, consequently, the overall time complexity, as discussed in the work of Tyurin &
Richtárik (2024). To address this issue, there was a need to introduce a method that ignores outdated
gradients while maintaining the philosophy of maximizing the utilization of available computational
resources.

Rennala SGD. Such a method was proposed in a recent breakthrough by Tyurin & Richtárik (2024).
Their method which can be viewed as a modification of the Minibatch SGD method. At each iteration
the server collects a batch of gradients, but it allows workers to send as many gradients as they can on
the same point xk. Then, using this batch, Rennala SGD proceeds with a gradient-type update using
this batch as in Minibatch SGD:

1. wait until the server receives B stochastic gradients at point xk,

2. update the model via xk+1 = xk − γ 1
B

∑B
j=1 ∇f(xk; ξkj),

more details on Rennala SGD are in Appendix F. In this case, the faster the worker, the more gradients
it sends. For the struggling workers, it may happen that they are completely ignored.

Their approach considers a setting where each worker i requires a fixed τi > 0 seconds to compute a
stochastic gradient. For the first time lower bounds on time complexity were obtained for first order
ASGD methods in the above mentioned fixed compute time regime for nonconvex functions with
Lipschitz gradients. They showed that Rennala SGD is mini-max optimal in this setup in terms of
time complexity.

While it may seem that the story is over, we want to question the fixed time assumption, arguing
that a random time model is more realistic. The claim of optimality does not hold because of this
randomness, suggesting that the algorithms need to be reevaluated and redesigned. We believe that a
redesign is necessary to better fit this more realistic approach.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 PROBLEM SETUP AND CONTRIBUTIONS

The deterministic compute time setup considered by Tyurin & Richtárik (2024), where Rennala
SGD is optimal, fails to capture the complexities of real-world distributed learning environments. In
practice, compute times are often uncertain due to various factors such as failing hardware, preemption
by other jobs, delays in GPU computation, and inconsistencies in network communications (Chen
et al., 2016; Dutta et al., 2018). This uncertainty is even more pronounced in federated learning
scenarios, where client unreliability can lead to unpredictable computation times or even incomplete
tasks (Kairouz et al., 2021).

To address these real-world challenges, we propose a more practical setup that incorporates ran-
domness into compute times. Specifically, we consider a scenario where the stochastic gradient
computation time of worker i is given by:

τi + ηi, (2)

where τi > 0 is a constant representing the minimum time for client i to complete the gradient
computation, and ηi is a non-negative random variable drawn from some distribution Ji, modeling
the aforementioned uncertainties.

In this more realistic setting, existing methods like Rennala SGD and ASGD can perform poorly or
even fail to converge. We can illustrate this with a simple example:

Consider a scenario where each time we request a device to compute a stochastic gradient, one of
two outcomes occurs. Either the device completes the computation exactly after the minimum time τ
without any delays, or something goes wrong and the computation is never completed. This situation
can be modeled using a random time η as follows:

η =

{
0, with probability 1− q,

∞1, with probability q,
(3)

where 0 < q < 1. In this scenario, any method that waits for a certain number of batches on
each iteration to perform a step runs the risk of never receiving the required batch and getting
stuck. This includes methods like Rennala SGD or ASGD. Specifically, if the algorithm waits for a
single stochastic gradient on each iteration, there is a probability qn that it will never receive it and
consequently never proceed.

To address these limitations, we propose a new method that, unlike Rennala SGD or ASGD, does not
wait for a fixed number of gradients (such as one in ASGD). Instead, it allocates a specific time for
computing each stochastic gradient. If a client fails to complete its computation within the designated
time, the partial computation is discarded, and a new computation is initiated. Our main contributions
are as follows.

• In Section 4, we propose a new time efficient asynchronous parallel SGD method MindFlayer
SGD Algorithm 1 for the heterogeneous and random worker compute times regime (Equa-
tion (2)). To the best of our knowledge, MindFlayer SGD is the first algorithm designed to
work in this regime. We show that our method is a generalization of Rennala SGD, meaning
that it is optimal in the deterministic compute times setup.

• In Section 5, we show that the theoretical time complexity of MindFlayer SGD can be
arbitrarily faster than that of Rennala SGD or ASGD, depending on the distributions of
computation times. Specifically, we demonstrate that if the distributions of computation
times Ji are positively skewed, our method is faster, with the performance gap increasing as
the skewness coefficient grows. As shown in Figure 1, where Ji = Lognormal(0, s). As
s gets bigger, the distribution’s skewness coefficient gets bigger and the performance of
Rennala SGD or ASGD gets worse. Meanwhile, our method MindFlayer SGD is robust to
the change of the variance.

• In Section 6, we experimentally validate this performance. We provide practical guidelines
for using MindFlayer SGD, and demonstrate its superiority over Rennala SGD and ASGD.
We conduct evaluations using various functions and distributions. For distributions, we
consider Lognormal, Log-Cauchy, and the Infinite-Bernoulli (defined by Equation (3))

1We can view η as an extended real random variable, or just assume that ∞ is a very big number.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: We ran an empirical experiment2 where we employ the same Ji = Lognormal(0, s)
distribution for all clients i ∈ [n], with varying standard deviations s. Specifically, we set s = 1 for
the left, s = 10 for the middle, and s = 100 for the right. Additionally, we set τi =

√
i+ 1. As we

observe, with an increase in the variance of the distribution, MindFlayer SGD demonstrates the ability
to significantly outperform Rennala SGD and ASGD.

distributions. Regarding the functions, we consider a quadratic loss and a neural network on
the MNIST (LeCun et al., 1998) dataset. This diverse testing setup enables us to showcase
MindFlayer SGD’s robustness and effectiveness across various challenging scenarios.

• In Appendix D, we expand our theory to develop Vecna SGD, designed for the heterogeneous
case, where workers have datasets that are coming from different distributions.

• In Appendix E, we present a simple modification of our algorithm, Rennala SGD, which we
call Mod MindFlayer SGD. This version is more suitable for practical implementation.

3 MOTIVATION AND SINGLE DEVICE CASE

To illustrate the motivation behind the design of our new method, let us consider a single device setup.
Recall the scenario introduced in Equation (3) where we have single device and it either returns a
gradient after τ time or gets stuck with probability q. A straightforward and optimal workaround
to this issue is to wait exactly τ seconds. If we do not receive a gradient within this time frame, it
indicates that we will never receive it, so there is no point in waiting longer. In this case, we discard
the current computation, which would take forever anyway, and request the device to compute the
gradient again. The probability of getting stuck again is lower, so eventually, we will receive a
gradient and move forward.

More generally, consider the following two strategies for each step:

• Strategy 1: Rennala SGD. We wait for the first B stochastic gradients. Thus, the time for
one step for this strategy is the random variable:

TB =
∑B

j=1(τ + ηj).

• Strategy 2: MindFlayer SGD. We repeat the following random trial B times: allocate time t
for computing a stochastic gradient. If we do not receive a stochastic gradient within that
time, discard the current computation and start over. Then the time for the j-th trial is given
by:

T j(t) =

{
τ + ηj , if ηj ≤ t,

τ + t, if ηj > t.

Thus, the time for one step for this strategy is the random variable:

T̃B(t) =
∑B

j=1 T
j(t).

2On a quadratic problem with n = 5 clients. We tuned stepsizes for all, and used theoretical trials Bi for
MindFlayer SGD from Theorem 4.5 and tuned batch size for Rennala SGD, see Section 6.

4

https://yann.lecun.com/exdb/mnist/

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: On the left, we compare the time complexity of MindFlayer SGD as a function of clipping
time (t) against the constant time complexity of Rennala SGD, demonstrating the adaptive efficiency
of MindFlayer SGD at various choices of t. In the middle, empirical validation3 is shown where
the reduction in time complexity for MindFlayer SGD is tested using the same clipping times as
in the left graph, illustrating consistent performance improvements. On the right, the ratio of
time complexities between Rennala SGD and MindFlayer SGD is plotted across different standard
deviations (s), revealing exponential efficiency gains for MindFlayer SGD at optimal clipping times,
with trends at median clipping times reflecting similar efficiencies.

In the second case, rather than waiting for B gradients, we attempt to compute B gradients. Essentially,
we limit the time spent on computing a stochastic gradient. In expectation, Strategy 2 will collect Bp
gradients per iteration, where p = P (η ≤ t) is the probability of collecting a gradient within a trial.
Setting t = ∞ removes this restriction, resulting in the same strategy as the first one, Rennala SGD.

For MindFlayer SGD, each iteration, on average, receives only Bp gradients, making it effectively
a scaled-down version of Rennala SGD. Consequently, MindFlayer SGD is expected to require 1/p
times more iterations than Rennala SGD to achieve the same level of convergence. We have the
following proposition.
Proposition 3.1 (Proof in Appendix H). Let K be the number of iterations required by Rennala SGD
to find an ε-stationary point. Then, for sufficiently small ε, MindFlayer SGD needs K/p iterations to
find an ε-stationary point.

Thus, the time complexities in this setting are given by:

TRennalaSGD = KE [TB] = KB(τ + E [η]),

TMindFlayerSGD(t) =
K
p E
[
T̃B(t)

]
= K

p B(τ + (1− p)t+ pE [τ |τ ≤ t]) ≤ K
p B(τ + t).

This leads us to the following remark.
Remark 3.2. For the case where n = 1, MindFlayer SGD is faster than Rennala SGD if there exists a
time threshold t > 0 such that the following inequality holds:

τ+t
P (η≤t) < τ + E [η] .

It is important to note that this can hold for a wide range of values of t, including any finite value. The
latter is particularly relevant in cases where E [η] = ∞. An example of such a scenario is illustrated
in Equation (3). There are many other distributions for which the expectation is not finite, such as the
Log-Cauchy distribution, Lévy distribution, Log-t distribution, Landau distribution, and so forth.

A less restrictive example of distributions are positively skewed distributions. Let s = E [η]−Med[η]
be the skewness coefficient of the distribution J . If s > 0 we say that the distribution is positively
skewed. Then we have the following proposition.
Proposition 3.3. [Proof in Appendix H] For the n = 1 case, if s > τ +Med[η] then MindFlayer
SGD is faster than Rennala SGD. Moreover, if s = (τ +Med[η]) (2α− 1) then

TRennalaSGD

TMindFlayerSGD(Med[η]) ≥ α.

3On a quadratic problem with theoretical hyperparameters, see Section 6.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Therefore, Rennala SGD can be arbitrarily bad. As an example consider the Lognormal(µ, σ2)
distribution. For this distribution, we have:

s = E [η]−Med[η] = exp
(
µ+ σ2

2

)
− exp(µ).

Thus, as we increase σ, the difference becomes arbitrarily large.

To verify this, we also conducted a small experiment, see Figure 2. The right plot showcases how
the ratio of time complexity between Rennala SGD and MindFlayer SGD can get arbitrarily large for
the optimal clipping time t∗ := argmint TMindFlayerSGD(t) and even the median of the distribution
tmedian = Med[η]. The left and middle plots showcase the potential improvement, and even loss from
choosing different clipping times t.

4 MINDFLAYER SGD

Here, we propose our MindFlayer SGD algorithm for multiple device case (n > 1). For the heteroge-
neous case, please refer to Appendix D.

Algorithm 1 MindFlayer SGD 4

1: Input: starting point x0 ∈ Rd, stepsize γ > 0, allot-
ted times t1, . . . , tn ≥ 0, number of trials per client
B1, . . . , Bn ≥ 0

2: for k = 1, 2, . . . ,K do
3: Put gk = 0
4: Send xk to all clients
5: Run Method 2 in all clients i = 1, 2, . . . , n
6: while there is a client that has trials to perform do
7: Wait for the fastest client
8: Receive gradient g
9: gk = gk + g

10: end while
11: gk = gk

B , ⋄ B =
∑n

i=1 piBi and pi = Fi(ti) = P (ηi ≤ ti).

12: xk+1 = xk − γgk

13: end for

Algorithm 2 Client i-s k-th step

1: Receive xk from the server
2: for j = 1, 2, . . . , Bi do
3: Sample ηji ∼ Ji

4: if ηji ≤ ti then
5: g = ∇f(xk; ξji), ξji ∼ D
6: Send g to the server
7: end if
8: end for

The MindFlayer SGD algorithm begins with an initialization at a starting point x0 in Rd, with a
specified stepsize γ > 0, time allowances ti > 0, and trial counts Bi ≥ 0 for each client. In each
iteration k, ranging from k = 1 to K, the server distributes the current point xk to all clients. Each
client i then executes a subroutine (Algorithm 2) to attempt to compute Bi stochastic gradients from
samples ξji drawn from a distribution D. During each attempt, client i starts computing a stochastic
gradient; if the computation exceeds the allotted time ti, they discard the current gradient and begin
another computation. Consequently, the actual number of stochastic gradients received from each
client i becomes a random variable, ranging from 0 to Bi. The expected number of gradients from
client i is given by piBi, leading to an overall expected total of stochastic gradients B =

∑n
i=1 piBi.

The server aggregates these received stochastic gradients and normalizes the collective gradient by the
expected batch size B. Finally, the point is updated to xk+1 = xk − γgk following each aggregation
round.

In the special case where the computation time is deterministic, i.e., ηi = 0 for every worker i ∈ [n],
we have pi = 1 for all i. While Rennala SGD does not explicitly specify the number of gradient
computations Bi for each client, in the deterministic setting, each client will send a fixed number of
gradients per communication round. Consequently, for any t > 0, MindFlayer SGD Algorithm 1, by
choosing Bi appropriately, reduces to Rennala SGD Algorithm 7.

4We name our method MindFlayer SGD, drawing inspiration from The Mind Flayer from Stranger Things,
due to its ability to precisely control its clients (Algorithm 2), analogous to the creature’s supreme control over
its victims (The Flayed).

6

https://strangerthings.fandom.com/wiki/The_Mind_Flayer

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

However, the situation changes when ηi > 0 is not a constant random variable. If we set ti = ∞
for all i ∈ [n], MindFlayer SGD Algorithm 1 does not reduce to Rennala SGD Algorithm 7. This is
because, in the case of Rennala SGD, the randomness in each iteration causes the number of stochastic
gradients computed by each client to vary across different communication rounds. Nevertheless, this
scenario is not our primary focus, as we will demonstrate that allowing each worker to complete
its gradient computation by setting ti = ∞ is inefficient when dealing with positively skewed
distributions.

To continue with the analysis of MindFlayer SGD, we first present the assumptions under which this
method is studied.

4.1 ASSUMPTIONS

We consider standard assumptions used in the nonconvex optimization.
Assumption 4.1. Function f is differentiable, and its gradient is L–Lipschitz continuous, i.e.,
∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥, for all x, y ∈ Rd.
Assumption 4.2. There exist f inf ∈ R such that f(x) ≥ f inf for all x ∈ Rd.
Assumption 4.3. For all x ∈ Rd, stochastic gradients ∇f(x; ξ) are unbiased and σ2-variance-
bounded, i.e., Eξ [∇f(x; ξ)] = ∇f(x) and Eξ

[
∥∇f(x; ξ)−∇f(x)∥2

]
≤ σ2, where σ2 ≥ 0.

4.2 CONVERGENCE THEORY

The following theorem gives iterations guarantees for the convergence of MindFlayer SGD.

Even though MindFlayer SGD is similar to Rennala SGD the convergence analysis require additional
considerations, since the batch size is a random variable here as apposed to the case of Rennala SGD.
Theorem 4.4. Assume that Assumptions 4.1, 4.2 and 4.3 hold. Let B =

∑n
i=1 piBi and γ =

1
2L min

{
1, εB

σ2

}
in Algorithm 1. Then, after

K ≥ max
{
1, σ2

εB

}
8L(f(x0)−f inf)

ε

iterations, the method guarantees that 1
K

∑K−1
k=0 E

[∥∥∇f(xk)
∥∥2] ≤ ε.

Sketch of Proof. (Complete proof in Appendix I.1) We consider Algorithm 1 as a conventional SGD
using the following gradient estimator:

g(x) = 1
B

∑n
i=1

∑Bi

j=1 I(η
j
i ≤ ti)∇f(x; ξji),

where I(·) denotes the indicator function. Prior to applying the classical SGD theorem (Theorem G.2),
it is essential to verify that this estimator meets the theorem’s conditions, namely unbiasedness and a
specific bound on the second moment of g(x). We demonstrate that the estimator is unbiased, and
that

E
[∥∥g(x)2∥∥] ≤ 2 ∥∇f(x)∥2 + 1

Bσ2.

With these conditions satisfied, we can proceed to apply Theorem G.2.

Note that in the deterministic case where ηi = 0 for all i ∈ [n], we have pi = P (ηi ≤ ti) = 1 for all
i ∈ [n]. Therefore, we derive

K ≥ max
{
1, σ2

εB

}
8L(f(x0)−f inf)

ε ,

with B =
∑n

i=1 Bi, yielding the same result as Rennala SGD, up to a constant factor.

We also achieve the same rate as ti → ∞ for all i, since in that scenario pi → 1. This is expected
because we will observe a consistent number of stochastic gradients each time, though the timing
may vary, as mentioned earlier.

However, if ti = 0 for all i ∈ [n], then K = ∞. This result is anticipated since, in this case, the
success probability is zero for all clients, and thus the server never receives stochastic gradients.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.3 TIME COMPLEXITY

The following theorem gives time complexity for MindFlayer SGD.
Theorem 4.5 (Proof in Appendix I.2). Assume that Assumptions 4.1, 4.2 and 4.3 hold. Let B =∑n

i=1 piBi and γ = 1
2L min

{
1, εB

σ2

}
in Method 1. Let t = (t1, . . . , tn), t1, . . . , tn ≥ 0. Without

loss of generality assume that 0 < τ1 + t1 ≤ · · · ≤ τn + tn. Let

t(m) =
(∑m

j=1
pj

τj+tj

)−1 (
S +

∑m
j=1 pj

)
,

where S = max
{
1, σ2

ε

}
. Let m∗ = argminm∈[n] t(m), if there are several minimizers we take the

smallest one. Put

Bi = ⌈bi⌉, bi =

{
t(m∗)
τi+ti

− 1, if i ≤ m∗,

0, if i > m∗.

Then, MindFlayer SGD guarantees to find an ϵ-stationary point after

TMindFlayerSGD(t) ≥ 8×minm∈[n]

{(
1
m

∑m
j=1

pj

τj+tj

)−1 (
S
m + 1

m

∑m
j=1 pj

)
∆L
ε

}
seconds, where ∆ = f(x0)− f inf .

The theorem indicates that the optimal strategy is to disregard devices with a high value of τi+ti/pi.
Therefore, we should prioritize devices that not only have a high probability pi of completing the
gradient within the allotted time ti but also have a relatively small sum of τi + ti. This approach is
logical as it avoids including devices with substantial computation times and low probabilities of
completing their tasks within the specified duration.

In the deterministic case where ηi = 0 for all i ∈ [n], we have pi = 1 for all i. Consequently, the
time complexity of MindFlayer SGD at time t is given by

TMindFlayerSGD(t) ≥ 8×minm∈[n]

{(
1
m

∑m
j=1

1
τj+tj

)−1 (
S
m + 1

)
∆L
ε

}
.

Thus, the optimal choice of ti is ti = 0 for all i ∈ [n]. Therefore, the final time complexity becomes

TMindFlayerSGD(t) ≥ 8×minm∈[n]

{(
1
m

∑m
j=1

1
τj

)−1 (
1
m + 1

)
∆L
ε

}
.

This formulation recovers the time complexity for Rennala SGD.

We still have the freedom to choose the ti allocation times. The optimal strategy would be to select
them in a manner that minimizes the time complexity. As observed in Figure 2, setting ti = Med [ηi]
proves to be a viable choice. This is further confirmed by our experiments in Section 6.

5 COMPARING TO RENNALA SGD

Comparing the theoretical performance of Rennala SGD and MindFlayer SGD is particularly chal-
lenging due to the inherent randomness in the time complexity of Rennala SGD and the dependence
of MindFlayer SGD on optimizing time variables ti. For example, a comparison using the expected
time complexity may fail to capture the nuances of each algorithm’s performance across different
distributions. Thus, we turn to an empirical comparison to provide insights into their practical
behavior. In particular, we aim to demonstrate how MindFlayer SGD can achieve arbitrarily better
performance in scenarios where the distributions exhibit high variance or heavy tails (see Figure 3).

To begin, we derive the time complexity of Rennala SGD in the context of random times. Let
B := {(B1, B2, . . . , Bn) : Bi ∈ N0;

∑n
i=1 Bi = B} be the set of all possible batch sizes for each

device, the time TB required for one step with batch size B of Rennala SGD is given by:

TB = minB

{
maxi∈[1,n]

{
Biτi +

∑Bi

j=1 η
j
i

}}
≥ T1 (4)

= mini∈[n]

{
τi + η1i

}
≥ mini∈[n] {τi}+mini∈[n]

{
η1i
}
.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 3: Empirical comparison of the performance rates between Rennala SGD and MindFlayer SGD
is illustrated, as described in the corresponding sect on. We investigate three distributions: lognormal,
log Cauchy, and log t with 5 degrees of freedom. As the variance increases, the theoretical rate of
MindFlayer SGD significantly outperforms that of Rennala SGD.

Thus, the expected time to collect a batch B is

E [TB] ≥ τmin + E
[
min
i∈[n]

ηi

]
,

Note that if the distribution of mini∈[n] ηi is heavy-tailed, then the expected time complexity becomes
infinite, thus favoring MindFlayer SGD over Rennala SGD. A simple illustration of this occurs when
extending the Equation (3) case, where η is either zero or infinite, to scenarios involving multiple
devices. In such cases, the expectation of the minimum time across devices, mini∈[n] ηi, also results
in an infinite expected time complexity.

While a detailed theoretical comparison is intractable, we conduct an empirical comparison to
highlight practical differences between the two algorithms. To capture the randomness of Rennala
SGD’s rate, we generate a histogram: we create a histogram for TB and then convolving it K times
with itself. Where K is the number of iterations required for ϵ-convergence.

The time complexity of Rennala SGD is a random variable that is the sum of K copies of TB , where
is K is number of iterations to get ϵ-convergence.

For MindFlayer SGD, we evaluate two strategies for selecting ti: (1) using the median of the
distributions Ji, and (2) solving the following optimization problem:

Fix m ∈ [n], minimize t(m) over t = (t1, · · · , tn), (remember pj = Fj(tj)).

We optimize this using the L-BFGS-B algorithm, a well-suited method for solving smooth, convex,
or mildly nonconvex problems due to its efficiency and robustness (Zhu et al., 1997). For each m, we
take the minimum over all possible configurations.

Our empirical results, illustrated in Figure 3, demonstrate that as the variance of the underlying
distribution increases, MindFlayer SGD consistently outperforms Rennala SGD. The heavy-tailed
nature of the distributions causes Rennala SGD to experience extreme slowdowns, while MindFlayer
SGD maintains robust performance.

6 EXPERIMENTS

In this section we explain the setup for comparing MindFlayer SGD, Rennala SGD, and ASGD, which
we used throughout this paper. We compare the algorithms’ performance on a quadratic optimization
(5) task with access to a stochastic gradient. The parallelism was simulated on a machine with 2
Intel(R) Xeon(R) Gold 6226R CPUs @ 2.90GHz, with a total of 64 logical CPUs. For each setting
of the algorithm, we run 10 different seeds for the random time and plot the average, minimum and
maximum, see Figure 1, Figure 2, etc.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

We use a similar setup to the one employed by Tyurin & Richtárik (2024), but modify it so that we
have a known expected variance. We make this choice, so we can compare theoretical parameters, as
we did in Figure 2.

Furthermore, we consider the homogeneous optimization problem 1, with the convex quadratic
function:

f(x) = 1
2x

⊤Ax− b⊤x ∀x ∈ Rd.

We take d = 1000,

A = 1
4


2 −1 0

−1
.
. −1

0 −1 2

 ∈ Rd×d and b = 1
4


−1
0
...
0

 ∈ Rd. (5)

Assume that all n workers has access to the following unbiased stochastic gradients:

[∇f(x, ξ)]j := ∇jf(x) + ξ,

where ξ ∼ N (0, 0.00032), thus, we get that in Assumption 4.3 we have,

σ2 = 0.00032 · d = 0.00032 · 1000.

Now setting the convergence threshold ϵ = 10−4, we can infer all theoretical parameters. To find the
optimal time corresponding to Rennala SGD we need to fix the times, we do that by either removing
the randomness, or adding the expected randomness. On the other hand, for MindFlayer SGD we
use the results from Theorem 4.5 to set the theoretical number of trials for each client. For some
experiments we used theoritical stepsizes, e.g. Figure 2, for others we used the range of stepsizes
from a set {2i|i ∈ [−10, 10]}, e.g. Figures 1, 5, and 5, similarly to Tyurin & Richtárik (2024). Finally,
for the nonconvex problem in Figure 6 we tried the set {0.01, 0.001, 0.0001}.

In addition to the experimental results shown throughout the paper, we ran two more experiments.
One with the Infinite-Bernoulli distribution on the same quadratic problem, and a second with the
Log-Cauchy distribution with a small two-layer neural network on the MNSIT dataset, see Figure 5
and Figure 6.

REFERENCES

Yossi Arjevani, Ohad Shamir, and Nathan Srebro. A tight convergence analysis for stochastic gradient
descent with delayed updates. In Algorithmic Learning Theory, pp. 111–132. PMLR, 2020.

Arda Aytekin, Hamid Reza Feyzmahdavian, and Mikael Johansson. Analysis and implementation of
an asynchronous optimization algorithm for the parameter server. arXiv preprint arXiv:1610.05507,
2016.

Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. Revisiting distributed
synchronous sgd. arXiv preprint arXiv:1604.00981, 2016.

Alon Cohen, Amit Daniely, Yoel Drori, Tomer Koren, and Mariano Schain. Asynchronous stochastic
optimization robust to arbitrary delays. Advances in Neural Information Processing Systems, 34:
9024–9035, 2021.

Andrew Cotter, Ohad Shamir, Nati Srebro, and Karthik Sridharan. Better mini-batch algorithms via
accelerated gradient methods. Advances in Neural Information Processing Systems, 24, 2011.

Sanghamitra Dutta, Gauri Joshi, Soumyadip Ghosh, Parijat Dube, and Priya Nagpurkar. Slow and
stale gradients can win the race: Error-runtime trade-offs in distributed SGD. In International
Conference on Artificial Intelligence and Statistics, pp. 803–812. PMLR, 2018.

Hamid Reza Feyzmahdavian, Arda Aytekin, and Mikael Johansson. An asynchronous mini-batch
algorithm for regularized stochastic optimization. IEEE Transactions on Automatic Control, 61
(12):3740–3754, 2016.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and Peter
Richtárik. SGD: General analysis and improved rates. In International Conference on Machine
Learning, pp. 5200–5209. PMLR, 2019.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: Training
imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Serge Kas Hanna, Rawad Bitar, Parimal Parag, Venkat Dasari, and Salim El Rouayheb. Adaptive
distributed stochastic gradient descent for minimizing delay in the presence of stragglers. In
ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 4262–4266, 2020. doi: 10.1109/ICASSP40776.2020.9053961.

Serge Kas Hanna, Rawad Bitar, Parimal Parag, Venkat Dasari, and Salim El Rouayheb. Adaptive
stochastic gradient descent for fast and communication-efficient distributed learning, 2022.

Rustem Islamov, Mher Safaryan, and Dan Alistarh. Asgrad: A sharp unified analysis of asynchronous-
sgd algorithms, 2023.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends® in Machine Learning,
14(1–2):1–210, 2021.

Ahmed Khaled and Peter Richtárik. Better theory for SGD in the nonconvex world. arXiv preprint
arXiv:2002.03329, 2020.

Anastasia Koloskova, Sebastian U Stich, and Martin Jaggi. Sharper convergence guarantees for
asynchronous SGD for distributed and federated learning. arXiv preprint arXiv:2206.08307, 2022.

Jakub Konečný, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Konstantin Mishchenko, Franck Iutzeler, Jérôme Malick, and Massih-Reza Amini. A delay-tolerant
proximal-gradient algorithm for distributed learning. In International Conference on Machine
Learning, pp. 3587–3595. PMLR, 2018.

Konstantin Mishchenko, Francis Bach, Mathieu Even, and Blake Woodworth. Asynchronous SGD
beats minibatch SGD under arbitrary delays. arXiv preprint arXiv:2206.07638, 2022.

John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Mike Rabbat, Mani Malek, and
Dzmitry Huba. Federated learning with buffered asynchronous aggregation. In International
Conference on Artificial Intelligence and Statistics, pp. 3581–3607. PMLR, 2022.

Lam Nguyen, Phuong Ha Nguyen, Marten Dijk, Peter Richtárik, Katya Scheinberg, and Martin Takác.
SGD and hogwild! convergence without the bounded gradients assumption. In International
Conference on Machine Learning, pp. 3750–3758. PMLR, 2018.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild!: A lock-free approach to
parallelizing stochastic gradient descent. Advances in Neural Information Processing Systems, 24,
2011.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, 22(3):400–407, 1951. doi: 10.1214/aoms/1177729586.

Alexander Tyurin and Peter Richtárik. Optimal time complexities of parallel stochastic optimization
methods under a fixed computation model. Advances in Neural Information Processing Systems,
36, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Blake Woodworth, Kumar Kshitij Patel, Sebastian Stich, Zhen Dai, Brian Bullins, Brendan Mcmahan,
Ohad Shamir, and Nathan Srebro. Is local SGD better than minibatch SGD? In International
Conference on Machine Learning, pp. 10334–10343. PMLR, 2020.

Xuyang Wu, Sindri Magnusson, Hamid Reza Feyzmahdavian, and Mikael Johansson. Delay-adaptive
step-sizes for asynchronous learning. arXiv preprint arXiv:2202.08550, 2022.

Ciyou Zhu, Richard H Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm 778: L-bfgs-b: Fortran
subroutines for large-scale bound-constrained optimization. ACM Transactions on Mathematical
Software (TOMS), 23(4):550–560, 1997.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

CONTENTS

1 Introduction 1

1.1 Parallel methods . 1

2 Problem Setup and Contributions 3

3 Motivation and Single Device Case 4

4 MindFlayer SGD 6

4.1 Assumptions . 7

4.2 Convergence theory . 7

4.3 Time Complexity . 8

5 Comparing to Rennala SGD 8

6 Experiments 9

A Related Work 15

B Conclusion and Future Work 15

C Table of Notations 15

D Heterogeneous Regime 16

D.1 Related work and discussion . 16

D.2 Vecna SGD . 16

D.3 Convergence theory . 17

D.4 Time Complexity . 17

E Simplifying MindFlayer for Practical Use 18

F The Rennala Algorithm 19

G The classical SGD theory 20

H Proofs for Propositions in Section 3 20

I Proofs for Homogeneous Regime 21

I.1 Proof of Theorem 4.4 . 21

I.1.1 Proof of Lemma I.1 . 22

I.1.2 Proof of Lemma I.2 . 23

I.2 Proof of Theorem 4.5 . 24

I.2.1 Proof of Lemma I.3 . 25

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

J Proofs for Heterogeneous Regime 26

J.1 Proof of Theorem D.1 . 26

J.1.1 Proof of Lemma J.1 . 27

J.1.2 Proof of Lemma J.2 . 27

J.2 Proof of Theorem D.2 . 28

J.2.1 Proof of Lemma J.3 . 29

K Supplemental Figures 30

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A RELATED WORK

There are several other related works. Dutta et al. (2018) explore the error-runtime trade-offs in
distributed SGD, revealing how slower and stale gradients can sometimes enhance convergence
processes. Woodworth et al. (2020) compare local SGD with minibatch SGD, analyzing the efficiency
of local updates in different distributed settings. Wu et al. (2022) advance the understanding of
asynchronous methods by proposing delay-adaptive step-sizes that adjust to asynchronous learning
environments, optimizing the convergence rates. Furthermore, Hanna et al. (2022; 2020) focus on
adaptive stochastic gradient descent to improve communication efficiency in distributed learning,
offering strategies that reduce communication demands while maintaining fast convergence.

B CONCLUSION AND FUTURE WORK

In this paper, we address the problem of minimizing the expectation of nonconvex functions with
Lipschitz gradients, with the use of parallel workers computing stochastic gradients. Our focus lies
on the challenging scenario where worker compute times are heterogeneous and random, expanding
on recent developments in ASGD methods like Rennala SGD. We observe that while Rennala SGD
performs optimally in environments with deterministic compute times, its effectiveness diminishes
under random compute conditions.

To better understand and improve stochastic optimization in these conditions, we introduce a novel
asynchronous SGD method named MindFlayer SGD. This method adjusts to the randomness in
computation times by not adhering to a fixed batch size but rather setting specific times for computing
single stochastic gradients. If a client fails to deliver within this time frame, the computation is
discarded, and the process restarts. This flexibility allows MindFlayer SGD to perform robustly across
various conditions, notably outperforming both Rennala SGD and standard Asynchronous SGD
(ASGD) in our theoretical and empirical analysis.

Our results demonstrate that MindFlayer SGD significantly reduces time complexity, particularly in
environments characterized by positively skewed distribution of computation times. We empirically
validate this in simulations with several distributions conditions where MindFlayer SGD consistently
outperforms the other methods, particularly in high-variance scenarios. This showcases its superiority
in adapting to the unpredictable duration of gradient computations typical in real-world applications
such as federated learning environments.

In this study, our analysis was confined to computation times, with no consideration given to
communication times. Future research will extend our investigation to include communication times.
Moreover, we plan to explore the application of gradient estimators with varying variance bounds
across different clients. We hypothesize that controlling these variance bounds could yield further
benefits in the optimization process.

C TABLE OF NOTATIONS

Notation Meaning

[n] {1, . . . , n}
L Lipschitz constant of gradients, i.e., ∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ (Assumption 4.1)
f inf Minimum value of the function, i.e., f inf ≤ f(x) (Assumption 4.2)
σ2 Variance bound on gradients, i.e., Eξ

[
∥∇f(x; ξ)−∇f(x)∥2

]
≤ σ2 (Assumption 4.3)

γ Stepsize
τi Minimum time required for client i to compute a gradient
ηi Additional random time taken while computing the gradient
Ji Distribution of the non-negative random variable ηi
ti Allotted time for worker i to compute a gradient

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

D HETEROGENEOUS REGIME

So far, we have discussed the scenario where all workers compute i.i.d. stochastic gradients. However,
in distributed optimization and federated learning (Konečný et al., 2016), workers may have different
datasets. Consider the following optimization problem:

minx∈Rd

{
f(x) := 1

n

∑n
i=1 Eξi∼Di

[fi(x; ξi)]
}
, (6)

where fi : Rd × Si → Rd and ξi are random variables with some distributions Di on Si. Problem
(6) generalizes problem (1).

D.1 RELATED WORK AND DISCUSSION

The optimization problem (6) has been thoroughly studied in many papers, including (Aytekin
et al., 2016; Mishchenko et al., 2018; Nguyen et al., 2022; Wu et al., 2022; Koloskova et al.,
2022; Mishchenko et al., 2022). There have been attempts to analyze Asynchronous SGD in the
heterogeneous setting. For example, Mishchenko et al. (2022) demonstrated convergence only to a
neighborhood of the solution. In general, achieving good rates for Asynchronous SGD is difficult
without making additional assumptions about the similarity of the functions fi (Koloskova et al.,
2022; Mishchenko et al., 2022).

In the deterministic case, when σ2 = 0, Wu et al. (2022) analyzed the PIAG method in the deter-
ministic heterogeneous regime and showed convergence. Although the performance of PIAG can be
good in practice, in the worst case PIAG requires O

(
τnL̂∆/ε

)
seconds to converge, where τn is the

time delay of the slowest worker, L̂ :=
√∑n

i=1 L
2
i , and Li is a Lipschitz constant of ∇fi. Note that

the synchronous Minibatch SGD (see Section 1.1) method has the complexity O(τnL∆/ε), which is
always better.5

Tyurin & Richtárik (2024) proposed an optimal method in the regime where worker computation
times are deterministic, similar to the homogeneous setup.

D.2 VECNA SGD

Here we describe our method called Vecna SGD.

Algorithm 3 Vecna SGD 6

1: Input: starting point x0 ∈ Rd, stepsize γ > 0, allotted times t1, . . . , tn ≥ 0, number of trials
per client B1, . . . , Bn ≥ 0

2: for k = 1, 2, . . . ,K do
3: Put gki = 0
4: Send xk to all clients
5: Run Method 4 in all clients i = 1, 2, . . . , n
6: while there is a client that has trials to perform do
7: Wait for the fastest client
8: Receive gradient gi from client i
9: gki = gki + g

10: end while
11: gk = 1

n

∑n
i=1

gk
i

piBi
, ⋄ pi = Fi(ti) = P (ηi ≤ ti).

12: xk+1 = xk − γgk

13: end for

5In the nonconvex case, L̂ can be arbitrarily larger than L.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 4 Client i-s k-th step

1: Receive xk from the server
2: for j = 1, 2, . . . , Bi do
3: Sample ηji ∼ Ji ⋄ Start computing gradient estimator.
4: if ηji ≤ ti then
5: g = ∇f(xk; ξji), ξji ∼ D ⋄ The computation completes within the allotted time ti.
6: Send g to the server
7: end if
8: end for

The Vecna SGD algorithm begins with an initialization at a starting point x0 in Rd, with a specified
stepsize γ, time allowances ti, and trial counts Bi for each client. In each iteration k, ranging from
k = 1 to K, the server distributes the current point xk to all clients. Each client i then executes
a subroutine (Algorithm 4) to attempt to compute Bi stochastic gradients from samples ξji drawn
from a distribution D. During each attempt, client i starts computing a stochastic gradient; if
the computation exceeds the allotted time ti, they discard the current gradient and begin another
computation. Consequently, the actual number of stochastic gradients received from each client i
becomes a random variable, ranging from 0 to Bi. The expected number of gradients from client
i is given by piBi. The server normalizes the gradients by the expected batch size piBi and then
aggregates them. Finally, the point is updated to xk+1 = xk − γgk following each aggregation round.

D.3 CONVERGENCE THEORY

The following theorem gives iterations guarantees for the convergence of Vecna SGD.
Theorem D.1 (Proof in Appendix J.1). Assume that Assumptions 4.1, 4.2 hold for the function f

and Assumption 4.3 holds for the function fi for all i ∈ [n]. Let γ = min
{

1√
LαK

, 1
Lβ ,

ε
2Lζ

}
in

Algorithm 3. Then after

K ≥ 12∆L

ε
max

{
β,

12∆α

ε
,
2ζ

ε

}
,

iterations, the method guarantees that min0≤k≤K E
[∥∥∇f(xk)

∥∥2] ≤ ε, where ∆ = f(x0) − f inf

and

α =
L

n2

n∑
i=1

1− pi
piBi

, β = 1, ζ =
σ2

n2

n∑
i=1

1

piBi
.

D.4 TIME COMPLEXITY

The following theorem gives time complexity for Vecna SGD.
Theorem D.2 (Proof in Appendix J.2). Assume that Assumptions 4.1, 4.2 hold for the function f and
Assumption 4.3 holds for the function fi for all i ∈ [n]. Let γ = min

{
1√

LαK
, 1
L ,

ε
2L

}
in Algorithm 3,

where

α =
L

n2

n∑
i=1

1− pi
piBi

, ζ =
σ2

n2

n∑
i=1

1

piBi
.

Let t = (t1, . . . , tn), t1, . . . , tn ≥ 0. Without loss of generality assume that 0 < τ1 + t1 ≤ · · · ≤
τn + tn. Let

T = τn + tn +

[
1

n

n∑
i=1

τi + ti
pi

]
σ2

nε
+

[
1

n

n∑
i=1

1− pi
pi

(τi + ti)

]
∆L

nε
,

where ∆ = f(x0)− f inf . Put

Bi = ⌈bi⌉, bi =
T

τi + ti
.

6We name our method Vecna SGD, drawing inspiration from Vecna from Stranger Things.

17

https://strangerthings.fandom.com/wiki/Vecna

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Then, Vecna SGD guarantees to find an ϵ-stationary point after

TVecnaSGD(t) ≥ 288× ∆L

ε

(
τn + tn +

[
1

n

n∑
i=1

τi + ti
pi

]
σ2

nε
+

[
1

n

n∑
i=1

1− pi
pi

(τi + ti)

]
∆L

nε

)

seconds.

E SIMPLIFYING MINDFLAYER FOR PRACTICAL USE

The version of MindFlayer SGD presented in this paper aims to be as general as possible, with
the primary objective of providing theoretical insight, which is the focus of this work. Allowing
for significant variability in the distributions of worker compute times intuitively necessitates the
introduction of multiple hyperparameters, such as Bi (batch sizes) and ti (clipping times), to ensure
effective optimization under diverse scenarios. While these hyperparameters enable the algorithm to
adapt to heterogeneous and random conditions, they also introduce additional complexity, which may
complicate implementation in practical settings.

We propose Mod MindFlayer SGD, a practical variant that replaces Bi and ti with two global
parameters: a probabilistic threshold p, which reflects the likelihood of completing a gradient
computation, and a global batch size B, specifying the total number of trials across all workers. This
reformulation simplifies hyperparameter tuning while retaining robustness.

The parameter p captures system reliability. For reliable systems, p approaches 1, recovering Rennala
SGD, while for less reliable systems, lower p values leverage MindFlayer SGD ’s robustness. The
choice of ti can be guided by historical data via the inverse cumulative distribution function of p, or
adjusted dynamically using the Robbins-Monro stochastic approximation, as such:

We update the clipping time ti at each iteration using the Robbins-Monro stochastic approximation
(Robbins & Monro, 1951):

ti+1 = ti − αi (I(Ti ≤ ti)− p)

where:

• Ti is the observed compute time for the i-th iteration.

• I(·) is the indicator function, which is 1 if we don’t clip, and 0 otherwise.

• αi is a diminishing step size sequence, such as αi =
a
i with a > 0.

• p is the target probability threshold.

Note that we do not need to know the exact value of Ti; we only require I(Ti ≤ ti), which is 1 if the
worker finishes the computation within the threshold and 0 otherwise.

By employing this dynamic adjustment, Mod MindFlayer SGD continuously adapts ti based on
real-time observations of worker compute times, aligning the clipping threshold with the desired
completion probability p. This method reduces the need for manual tuning of hyperparameters and
enhances the algorithm’s robustness to variability in compute times.

In Figure 4, we demonstrate that Mod MindFlayer SGD achieves comparable performance to Mind-
Flayer SGD while simplifying hyperparameter selection, highlighting its practicality for distributed
systems with heterogeneous and random worker compute times.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 4: Here we recreate the setup from Figure 1, but add a hyperparameter tuned version of the
Mod Mindflayer SGD.

Algorithm 5 Mod MindFlayer SGD

1: Input: starting point x0 ∈ Rd, stepsize γ > 0, p ∈ (0, 1],
number of trails B ≥ 0

2: for k = 1, 2, . . . ,K do
3: Put gk = 0
4: Send xk to all clients
5: Run Method 6 in all clients i = 1, 2, . . . , n and stop old

computations
6: b = 0
7: while b < B do
8: Wait for the fastest client
9: Receive gradient g

10: gk = gk + g
11: b = b+ 1
12: end while
13: gk = gk

B ,
14: xk+1 = xk − γgk

15: end for

Algorithm 6 Client i-s k-th step

1: Receive xk from the server
2: while True do
3: Sample ηji ∼ Ji

4: if τi + ηji ≤ ti then
5: g = ∇̂f(xk; ξji), ξji ∼ D
6: Send g to the server
7: end if
8: end while

F THE RENNALA ALGORITHM

Algorithm 7 Rennala SGD

1: Input: starting point x0, stepsize γ, batch size S
2: Run Method 8 in all workers
3: for k = 0, 1, . . . ,K − 1 do
4: Init gk = 0 and s = 1
5: while s ≤ S do
6: Wait for the next worker
7: Receive gradient and iteration index (g, k′)
8: if k′ = k then
9: gk = gk + 1

S g; s = s+ 1
10: end if
11: Send (xk, k) to the worker
12: end while
13: xk+1 = xk − γgk

14: end for

Algorithm 8 Worker’s Infinite Loop

1: Init g = 0 and k′ = −1
2: while True do
3: Send (g, k′) to the server
4: Receive (xk, k) from the server
5: k′ = k
6: g = ∇f(xk; ξ), ξ ∼ D
7: end while

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

We mention the Rennala SGD throughout the paper, here we provide a brief introduction to the
method and its development. Algorithm 7 shows the work done by the server. Essentially, the server
asynchronously waits to collect a batch of size S, whenever it receives a gradient from a worker that
has the same iteration as the algorithm, it assigns it to compute a gradient at the same point xk. After
collecting the batch, we preform a synchronous update (given that all gradients were made on the
same point xk), using an average of the collected batch.

G THE CLASSICAL SGD THEORY

In this section, we present the classical SGD theory as developed by Ghadimi & Lan (2013) and
Khaled & Richtárik (2020). Our analysis will follow the approach of the latter.

We consider the stochastic gradient descent (SGD) method:

xk+1 = xk − γg(xk),

where x0 ∈ Rd is the initial point, and g(x) is a stochastic gradient estimator at x.

We make the following assumption:
Assumption G.1. The stochastic gradient estimator g(x) satisfies:

E [g(x)] = ∇f(x)

E
[
∥g(x)∥2

]
≤ 2α

(
f(x)− f inf

)
+ β ∥∇f(x)∥2 + ζ,

for all x ∈ Rd and some constants α, β, ζ ≥ 0.

This assumption is both general and reasonable, and it is satisfied by many modern SGD-type methods.
For further details, refer to Khaled & Richtárik (2020).

Under this assumption, we can derive the following convergence result.
Theorem G.2 (Corollary 1 (Khaled & Richtárik, 2020)). Assume that Assumptions 4.1, 4.2 and G.1
hold. Then for any ε > 0

min
0≤k≤K

E
[∥∥∇f(xk)

∥∥2] ≤ ε

for

γ = min

{
1√
LαK

,
1

Lβ
,

ε

2Lζ

}
,

and

K ≥
12L

(
f(x0)− f inf

)
ε

max

{
β,

12∆α

ε
,
2ζ

ε

}
.

H PROOFS FOR PROPOSITIONS IN SECTION 3

Proposition 3.1. Let K be the number of iterations required by Rennala SGD to find an ε-stationary
point. Then, for sufficiently small ε, MindFlayer SGD needs K/p iterations to find an ε-stationary
point.

Proof. The iterations of Rennala SGD can be viewed as iterations of Minibatch SGD. Thus, we can
apply the classical SGD theory (Theorem G.2) to derive its iteration complexity:

K = max

{
1,

σ2

εB

}
8L(f(x0)− f inf)

ε
.

For MindFlayer SGD, the iteration complexity follows from Theorem 4.4. Therefore, the number of
iterations KM required for MindFlayer SGD to guarantee that

1

KM

KM−1∑
k=0

E
[∥∥∇f(xk)

∥∥2] ≤ ε

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

is given by

KM = max

{
1,

σ2

εBp

}
8L(f(x0)− f inf)

ε
.

If ε ≤ σ2

B , we have

KM =
K

p
.

Proposition 3.3. For the n = 1 case, if s > τ +Med[η] then MindFlayer SGD is faster than Rennala
SGD. Moreover, if s = (τ +Med[η]) (2α− 1) then

TRennalaSGD

TMindFlayerSGD (Med[η])
≥ α.

Proof. Let t = Med[η] =: m, then we have

TMindFlayerSGD(m) ≤ K

p
B(τ + t) = 2KB (τ +m) ,

TRennalaSGD = KB(τ + E [η]) = KB(τ +m+ s),

Thus if s > τ +m then MindFlayer SGD is faster than Rennala SGD.

Now, let s = (τ +m) (2α− 1) then

TRennalaSGD

TMindFlayerSGD (m)
≥ τ +m+ s

2 (τ +m)
=

2α (τ +m)

2 (τ +m)
= α.

I PROOFS FOR HOMOGENEOUS REGIME

I.1 PROOF OF THEOREM 4.4

First, we rewrite MindFlayer SGD in a classical SGD way where we do gradient step with an unbiased
estimator of the gradient at each iteration.

Algorithm 9 MindFlayer SGD

1: Input: starting point x0, stepsize γ, time budgets t1, . . . , tn ≥ 0, batch sizes B1, . . . , Bn ≥ 0,
2: for k = 0, 1, . . . ,K − 1 do
3: gk = 1

B

∑n
i=1

∑Bi

j=1 I
(
ηji ≤ ti

)
∇f

(
xk; ξji

)
4: xk+1 = xk − γgk

5: end for

where B =
∑n

i=1 piBi, pi = F (ti) = P (ηi ≤ ti) and I(·) denotes the indicator function. To prove
the theorem we need to establish some properties of the gradient estimator. First, we need an unbiased
estimator.

Lemma I.1 (Proof in Appendix I.1.1). The gradient estimator in Algorithm 9 given by

g(x) :=
1

B

n∑
i=1

Bi∑
j=1

I
(
ηji ≤ ti

)
∇f

(
x; ξji

)
is unbiased, i.e., E [g(x)] = ∇f(x) for all x ∈ Rd.

Next, we obtain an upper bound for the variance of this estimator.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Lemma I.2 (Proof in Appendix I.1.2). The gradient estimator in Algorithm 9 given by

g(x) :=
1

B

n∑
i=1

Bi∑
j=1

I
(
ηji ≤ ti

)
∇f

(
x; ξji

)
satisfies

E
[∥∥g(x)2∥∥] ≤ 2 ∥∇f(x)∥2 + 1

B
σ2.

We are ready to prove the Theorem 4.4.

Theorem 4.4. Assume that Assumptions 4.1, 4.2 and 4.3 hold. Let B =
∑n

i=1 piBi and γ =
1
2L min

{
1, εB

σ2

}
in Algorithm 1. Then, after

K ≥ max

{
1,

σ2

εB

}
8L
(
f(x0)− f inf

)
ε

iterations, the method guarantees that 1
K

∑K−1
k=0 E

[∥∥∇f(xk)
∥∥2] ≤ ε.

Proof. Note that Algorithm 1 can be viewed as a special case of classical stochastic gradient descent
(SGD), as reformulated in Algorithm 9. We need to verify that the gradient estimator fulfills
the conditions required by classical SGD (Theorem G.2). The two preceding lemmas address
this requirement precisely. Specifically, Lemma I.1 confirms that the gradient estimator used in
Algorithm 9 is unbiased, while Lemma I.2 verifies that the variance of this estimator meets the
conditions specified in Assumption G.1, with α = 0, β = 2 and ζ = σ2

B . Consequently, it remains to
apply Theorem G.2.

I.1.1 PROOF OF LEMMA I.1

Lemma I.1. The gradient estimator in Algorithm 9 given by

g(x) :=
1

B

n∑
i=1

Bi∑
j=1

I
(
ηji ≤ ti

)
∇f

(
x; ξji

)
is unbiased, i.e., E [g(x)] = ∇f(x) for all x ∈ Rd, where B =

∑n
i=1 piBi.

Proof. This follows from direct computation:

E [g(x)] = E

 1

B

n∑
i=1

Bi∑
j=1

I
(
ηji ≤ ti

)
∇f

(
x; ξji

)
=

1

B

n∑
i=1

Bi∑
j=1

E
[
I
(
ηji ≤ ti

)
∇f

(
x; ξji

)]
(ηj

i⊥⊥ξji)
=

1

B

n∑
i=1

Bi∑
j=1

E
[
I
(
ηji ≤ ti

)]
E
[
∇f

(
x; ξji

)]

=
1

B

n∑
i=1

Bi∑
j=1

pi∇f(x)

= ∇f(x)
1

B

n∑
i=1

piBi

= ∇f(x).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

I.1.2 PROOF OF LEMMA I.2

Lemma I.2. The gradient estimator in Algorithm 9 given by

g(x) :=
1

B

n∑
i=1

Bi∑
j=1

I
(
ηji ≤ ti

)
∇f

(
x; ξji

)
satisfies

E
[∥∥g(x)2∥∥] ≤ 2 ∥∇f(x)∥2 + 1

B
σ2,

where B =
∑n

i=1 piBi.

Proof. In order to simplify notation, let

ai :=

Bi∑
j=1

bji ,

where
bji := I

(
ηji ≤ ti

)
∇f

(
x; ξji

)
.

Step 1 (Initial expression). We express E
[
∥g(x)∥2

]
in terms of ai:

E
[
∥g(x)∥2

]
= E

∥∥∥∥∥ 1

B

n∑
i=1

ai

∥∥∥∥∥
2
 =

1

B2
E

 n∑
i=1

∥ai∥2 +
∑
i ̸=j

⟨ai, aj⟩

 .

We further simplify both terms via:

∥ai∥2 =

∥∥∥∥∥∥
Bi∑
j=1

bji

∥∥∥∥∥∥
2

=

Bi∑
j=1

∥∥∥bji∥∥∥2 +∑
k ̸=l

〈
bki , b

l
i

〉
, (7)

⟨ai, aj⟩ =

〈
Bi∑
k=1

bki ,

Bj∑
l=1

blj

〉
=

Bi∑
k=1

Bj∑
l=1

〈
bki , b

l
j

〉
. (8)

Step 2. (Finding the expectations). Further

E
[∥∥∥bji∥∥∥2] = E

[(
I
(
ηji ≤ ti

))2 ∥∥∥∇f
(
x; ξji

)∥∥∥2]
(ηj

i⊥⊥ξji)
= E

[(
I
(
ηji ≤ ti

))2]
E
[∥∥∥∇f

(
x; ξji

)∥∥∥2]
≤ pi

(
∥∇f(x)∥2 + E

[∥∥∥∇f
(
x; ξji

)
−∇f(x)

∥∥∥2])
(Assumption 4.3)

≤ pi

(
∥∇f(x)∥2 + σ2

)
, (9)

and

E
[〈
bki , b

l
j

〉]
= E

[〈
I
(
ηki ≤ ti

)
∇f

(
x; ξki

)
, I
(
ηlj ≤ tj

)
∇f

(
x; ξlj

)〉]
(⊥⊥)
= E

[
I
(
ηki ≤ ti

)]
E
[
I
(
ηlj ≤ tj

)] 〈
E
[
∇f

(
x; ξki

)]
,E
[
∇f

(
x; ξlj

)]〉
= pipj ∥∇f(x)∥2 . (10)

Step 3 (Putting everything together). We start with

E
[
∥ai∥2

] (7,9,10)

≤ Bipi

(
∥∇f(x)∥2 + σ2

)
+Bi (Bi − 1) p2i ∥∇f(x)∥2

≤ Bipi

(
∥∇f(x)∥2 + σ2

)
+B2

i p
2
i ∥∇f(x)∥2 ,

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

using this and recalling the definition of B, we get

E

[
n∑

i=1

∥ai∥2
]
≤ B ∥∇f(x)∥2 +Bσ2 + ∥∇f(x)∥2

n∑
i=1

B2
i p

2
i .

Next

⟨ai, aj⟩
(8,10)
= BipiBjpj ∥∇f(x)∥2 ,

finally,

E
[
∥g(x)∥2

]
=

1

B2
E

 n∑
i=1

∥ai∥2 +
∑
i̸=j

⟨ai, aj⟩


≤ 1

B2

B ∥∇f(x)∥2 +Bσ2 +

 n∑
i=1

B2
i p

2
i +

∑
i ̸=j

BipiBjpj

 ∥∇f(x)∥2


=
1

B2

(
B +B2

)
∥∇f(x)∥2 + σ2

B

≤ 2 ∥∇f(x)∥2 + σ2

B
.

I.2 PROOF OF THEOREM 4.5

The following lemma gives time complexity for any choice of B1, . . . , Bn and t = (t1, . . . , tn) in
MindFlayer SGD.

Lemma I.3 (Proof in Appendix I.2.1). Assume that Assumptions 4.1, 4.2 and 4.3 hold. Let B =∑n
i=1 piBi and γ = 1

2L min
{
1, εB

σ2

}
in Method 1. Then after

TMindFlayerSGD(t) ≥ max
i∈[n]

{Bi (τi + ti)}max

{
1,

σ2

εB

}
8L
(
f(x0)− f inf

)
ε

seconds, the method guarantees to find an ϵ-stationary point.

Now we are ready to prove the theorem.

Theorem 4.5. Assume that Assumptions 4.1, 4.2 and 4.3 hold. Let B =
∑n

i=1 piBi and γ =
1
2L min

{
1, εB

σ2

}
in Method 1. Let t = (t1, . . . , tn), t1, . . . , tn ≥ 0. Without loss of generality assume

that 0 < τ1 + t1 ≤ · · · ≤ τn + tn. Let

t(m) =

 m∑
j=1

pj
τj + tj

−1S +

m∑
j=1

pj

 ,

where S = max
{
1, σ2

ε

}
. Let m∗ = argminm∈[n] t(m), if there are several minimizers we take the

smallest one. Put

Bi = ⌈bi⌉, bi =

{
t(m∗)
τi+ti

− 1, if i ≤ m∗,

0, if i > m∗.

Then, MindFlayer SGD guarantees to find an ϵ-stationary point after

TMindFlayerSGD(t) ≥ 8× min
m∈[n]


 1

m

m∑
j=1

pj
τj + tj

−1 S

m
+

1

m

m∑
j=1

pj

 ∆L

ε


seconds, where ∆ = f(x0)− f inf .

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Proof. First we show that Bi-s are valid choice, i.e. bi > 0 for i ≤ m∗. If m∗ = 1, then
t(1) = τ1+t1

p1
(S + p1), thus b1 = S

p1
> 0. If m∗ > 1, then, by its definition, t(m∗) < t(m∗ − 1).

This impliesm∗∑
j=1

pj
τj + tj

−1S +

m∗∑
j=1

pj

 <

m∗−1∑
j=1

pj
τj + tj

−1S +

m∗−1∑
j=1

pj

 ,

leading to m∗−1∑
j=1

pj
τj + tj

S +

m∗∑
j=1

pj

 <

m∗∑
j=1

pj
τj + tj

S +

m∗−1∑
j=1

pj


and

pm∗

m∗∑
j=1

pj
τj + tj

 <
pm∗

τm∗ + tm∗

S +

m∗∑
j=1

pj

 .

From the last inequality, we get that τm∗ + tm∗ < t(m∗), thus bi ≥ bm∗ > 0 for all i ≤ m∗.

It remains to find the time complexity with these choices of Bi. From Lemma I.3, we have that the
time complexity is

TMindFlayerSGD(t) ≥ max
i∈[n]

{Bi (τi + ti)}max

{
1,

σ2

εB

}
8∆L

ε
.

Then,
max
i∈[n]

{Bi (τi + ti)} ≤ max
i∈[n]

{(bi + 1) (τi + ti)} = t(m∗).

On the other hand

B =

n∑
i=1

piBi ≥
n∑

i=1

pibi =

m∗∑
i=1

t(m∗)
pi

τi + ti
−

m∗∑
i=1

pi

=

m∗∑
j=1

pj
τj + tj

−1S +

m∗∑
j=1

pj

 m∗∑
i=1

pi
τi + ti

−
m∗∑
i=1

pi = S ≥ σ2

ε
.

Therefore, the time complexity is

TMindFlayerSGD(t) ≥ t(m∗)
8∆L

ε

= min
m∈[n]


 m∑

j=1

pj
τj + tj

−1S +

m∑
j=1

pj


 8∆L

ε
.

I.2.1 PROOF OF LEMMA I.3

Lemma I.3. Assume that Assumptions 4.1, 4.2 and 4.3 hold. Let B =
∑n

i=1 piBi and γ =
1
2L min

{
1, εB

σ2

}
in Method 1. Then after

TMindFlayerSGD(t) ≥ max
i∈[n]

{Bi (τi + ti)}max

{
1,

σ2

εB

}
8L
(
f(x0)− f inf

)
ε

seconds, the method guarantees to find an ϵ-stationary point.

Proof. Let T j
i (ti) be the random time taken by client i in the j-th attempt of calculating gradient

estimator. We have

T j
i (ti) =

{
τi + ηji , if ηji ≤ ti,

τi + ti, if ηji > ti.
(11)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Thus, the random time taken for client i to finish it’s all bi trials is

Ti(ti) :=
bi∑

j=1

T j
i (ti) ≤ bi (τi + ti) . (12)

Finally, let T be the random time required for one iteration of MindFlayer SGD. We get
T = max

i∈[n]
Ti(ti) ≤ max

i∈[n]
{bi (τi + ti)}. (13)

It remains to multiply T with the number of iterations K given by Theorem 4.4.

J PROOFS FOR HETEROGENEOUS REGIME

J.1 PROOF OF THEOREM D.1

Here, we rewrite Vecna SGD (Algorithm 3) in a classical SGD way.

Algorithm 10 Vecna SGD

1: Input: starting point x0, stepsize γ, time budgets t1, . . . , tn ≥ 0, batch sizes b1, . . . , bn ≥ 0,
2: for k = 0, 1, . . . ,K − 1 do
3: gk = 1

n

∑n
i=1

1
piBi

∑Bi

j=1 I
(
ηji ≤ ti

)
∇fi

(
xk; ξji

)
4: xk+1 = xk − γgk

5: end for

where pi = F (ti) = P (ηi ≤ ti).

To prove the theorem we need to establish some properties of the gradient estimator. First, we need
an unbiased estimator.
Lemma J.1 (Proof in Appendix J.1.1). The gradient estimator in Algorithm 10 given by

g(x) :=
1

n

n∑
i=1

1

piBi

Bi∑
j=1

I
(
ηji ≤ ti

)
∇fi

(
x; ξji

)
is unbiased, i.e., E [g(x)] = ∇f(x) for all x ∈ Rd.

Next, we obtain an upper bound for the variance of this estimator.
Lemma J.2 (Proof in Appendix J.1.2). The gradient estimator in Algorithm 10 given by

g(x) :=
1

n

n∑
i=1

1

piBi

Bi∑
j=1

I
(
ηji ≤ ti

)
∇fi

(
x; ξji

)
satisfies

E
[∥∥g(x)2∥∥] ≤ 2

(
f(x0)− f inf

)
L

n2

n∑
i=1

1− pi
piBi

+ ∥∇f(x)∥2 + σ2

n2

n∑
i=1

1

piBi
.

We are ready to prove Theorem D.1. First, let us restate the theorem.
Theorem D.1. Assume that Assumptions 4.1, 4.2 hold for the function f and Assumption 4.3 holds
for the function fi for all i ∈ [n]. Let γ = min

{
1√

LαK
, 1
Lβ ,

ε
2Lζ

}
in Algorithm 3. Then after

K ≥ 12∆L

ε
max

{
β,

12∆α

ε
,
2ζ

ε

}
,

iterations, the method guarantees that min0≤k≤K E
[∥∥∇f(xk)

∥∥2] ≤ ε, where ∆ = f(x0) − f inf

and

α =
L

n2

n∑
i=1

1− pi
piBi

, β = 1, ζ =
σ2

n2

n∑
i=1

1

piBi
.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Proof. Note that Algorithm 3 can be viewed as a special case of classical stochastic gradient descent
(SGD), as reformulated in Algorithm 10. We need to verify that the gradient estimator fulfills
the conditions required by classical SGD (Theorem G.2). The two preceding lemmas address
this requirement precisely. Specifically, Lemma J.1 confirms that the gradient estimator used in
Algorithm 10 is unbiased, while Lemma J.2 verifies that the variance of this estimator meets the
conditions specified in Assumption G.1. Consequently, it remains to apply Theorem G.2.

J.1.1 PROOF OF LEMMA J.1

Lemma J.1.1. The gradient estimator in Algorithm 10 given by

g(x) :=
1

n

n∑
i=1

1

piBi

Bi∑
j=1

I
(
ηji ≤ ti

)
∇fi

(
x; ξji

)
is unbiased, i.e., E [g(x)] = ∇f(x) for all x ∈ Rd.

Proof. This follows from direct computation:

E [g(x)] = E

 1

n

n∑
i=1

1

piBi

Bi∑
j=1

I
(
ηji ≤ ti

)
∇fi

(
x; ξji

)
=

1

n

n∑
i=1

1

piBi

Bi∑
j=1

E
[
I
(
ηji ≤ ti

)
∇fi

(
x; ξji

)]
(ηj

i⊥⊥ξji)
=

1

n

n∑
i=1

1

piBi

Bi∑
j=1

E
[
I
(
ηji ≤ ti

)]
E
[
∇fi

(
x; ξji

)]

=
1

n

n∑
i=1

1

piBi

Bi∑
j=1

pi∇fi(x)

=
1

n

n∑
i=1

∇fi(x)

= ∇f(x).

J.1.2 PROOF OF LEMMA J.2

Lemma J.2. The gradient estimator in Algorithm 10 given by

g(x) :=
1

n

n∑
i=1

1

piBi

Bi∑
j=1

I
(
ηji ≤ ti

)
∇fi

(
x; ξji

)
satisfies

E
[∥∥g(x)2∥∥] ≤ 2L

(
f(x0)− f inf

)
n2

n∑
i=1

1− pi
piBi

+ ∥∇f(x)∥2 + σ2

n2

n∑
i=1

1

piBi
.

Proof. Since ηji and ξji are independent from each other for all i ∈ [n] and j, we have

Var (g(x)) =
1

n2

n∑
i=1

1

p2iB
2
i

Bi∑
j=1

Var
(
I
(
ηji ≤ ti

)
∇fi

(
x; ξji

))
,

then we use the fact that

Var (XY) = Var (X)Var (Y) + Var (X)E [Y]
2
+Var (Y)E [X]

2
,

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

where X and Y are independent random variables. Hence, we obtain the following bound on the
variance

Var
(
I
(
ηji ≤ ti

)
∇fi

(
x; ξji

))
≤ pi(1− pi)σ

2 + pi (1− pi) ∥∇fi(x)∥2 + σ2p2i

= piσ
2 + pi (1− pi) ∥∇fi(x)∥2 .

As a result, the variance of g(x) is bounded by

Var (g(x)) ≤ 1

n2

n∑
i=1

1

p2iB
2
i

Bi∑
j=1

(
piσ

2 + pi (1− pi) ∥∇fi(x)∥2
)

=
1

n2

n∑
i=1

1

piBi

(
σ2 + (1− pi) ∥∇fi(x)∥2

)
.

Finally

E
[∥∥g(x)2∥∥] = Var (g(x)) + ∥E [g(x)] ∥2

≤ ∥∇f(x)∥2 + 1

n2

n∑
i=1

1− pi
piBi

∥∇fi(x)∥2 +
σ2

n2

n∑
i=1

1

piBi
.

Next we use ∥∇fi(x)∥2 ≤ 2L
(
f(x0)− f inf

)
, thus

E
[∥∥g(x)2∥∥] ≤ 2L

(
f(x0)− f inf

)
n2

n∑
i=1

1− pi
piBi

+ ∥∇f(x)∥2 + σ2

n2

n∑
i=1

1

piBi
.

J.2 PROOF OF THEOREM D.2

The following lemma gives time complexity for any choice of B1, . . . , Bn and t = (t1, . . . , tn) in
Vecna SGD.
Lemma J.3 (Proof in Appendix J.2.1). Assume that Assumptions 4.1, 4.2 hold for the function f

and Assumption 4.3 holds for the function fi for all i ∈ [n]. Let γ = min
{

1√
LαK

, 1
L ,

ε
2Lζ

}
in

Algorithm 3. Then after

TVecnaSGD(t) ≥ max
i∈[n]

{Bi (τi + ti)}
12∆L

ε
max

{
1,

12∆α

ε
,
2ζ

ε

}
seconds, where the method guarantees to find an ϵ-stationary point, where ∆ = f(x0)− f inf and

α =
L

n2

n∑
i=1

1− pi
piBi

, ζ =
σ2

n2

n∑
i=1

1

piBi
.

Now we are ready to prove the theorem.
Theorem D.2. Assume that Assumptions 4.1, 4.2 hold for the function f and Assumption 4.3 holds
for the function fi for all i ∈ [n]. Let γ = min

{
1√

LαK
, 1
L ,

ε
2L

}
in Algorithm 3, where

α =
L

n2

n∑
i=1

1− pi
piBi

, ζ =
σ2

n2

n∑
i=1

1

piBi
.

Let t = (t1, . . . , tn), t1, . . . , tn ≥ 0. Without loss of generality assume that 0 < τ1 + t1 ≤ · · · ≤
τn + tn. Let

T = τn + tn +

[
1

n

n∑
i=1

τi + ti
pi

]
σ2

nε
+

[
1

n

n∑
i=1

1− pi
pi

(τi + ti)

]
∆L

nε
,

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

where ∆ = f(x0)− f inf . Put

Bi = ⌈bi⌉, bi =
T

τi + ti
.

Then, Vecna SGD guarantees to find an ϵ-stationary point after

TVecnaSGD(t) ≥ 288× ∆L

ε

(
τn + tn +

[
1

n

n∑
i=1

τi + ti
pi

]
σ2

nε
+

[
1

n

n∑
i=1

1− pi
pi

(τi + ti)

]
∆L

nε

)
seconds.

Proof. Since we have bi ≥ 1 for all i ∈ [n], we get

max
i∈[n]

{Bi (τi + ti)} ≤ max
i∈[n]

{(bi + 1) (τi + ti)} ≤ 2max
i∈[n]

{bi (τi + ti)} = 2T.

It remains to apply Lemma J.3. We get

12∆α

ε
=

12∆L

εn2

n∑
i=1

1− pi
piBi

≤ 12∆L

εn2

n∑
i=1

1− pi
pibi

=
12∆L

nε

1

T

1

n

n∑
i=1

1− pi
pi

(τi + ηi) ≤ 12,

and

2ζ

ε
=

2σ2

εn2

n∑
i=1

1

piBi
≤ 2σ2

εn2

n∑
i=1

1

pibi
≤ 2σ2

nε

1

T

1

n

n∑
i=1

τi + ti
pi

≤ 2.

Finally, we get that Algorithm 3 returns a solution after

TMindFlayerSGD(t) ≥ max
i∈[n]

{Bi (τi + ti)}
12∆L

ε
max

{
1,

12∆α

ε
,
2ζ

ε

}
≥ 288

∆L

ε
T

≥ 288
∆L

ε

(
τn + tn +

[
1

n

n∑
i=1

τi + ti
pi

]
σ2

nε
+

[
1

n

n∑
i=1

1− pi
pi

(τi + ti)

]
∆L

nε

)
seconds.

J.2.1 PROOF OF LEMMA J.3

Lemma J.3. Assume that Assumptions 4.1, 4.2 hold for the function f and Assumption 4.3 holds for
the function fi for all i ∈ [n]. Let γ = min

{
1√

LαK
, 1
L ,

ε
2Lζ

}
in Algorithm 3. Then after

TVecnaSGD(t) ≥ max
i∈[n]

{Bi (τi + ti)}
12∆L

ε
max

{
1,

12∆α

ε
,
2ζ

ε

}
seconds, where the method guarantees to find an ϵ-stationary point, where ∆ = f(x0)− f inf and

α =
L

n2

n∑
i=1

1− pi
piBi

, ζ =
σ2

n2

n∑
i=1

1

piBi
.

Proof. Let T j
i (ti) be the random time taken by client i in the j-th attempt of calculating gradient

estimator. We have

T j
i (ti) =

{
τi + ηji , if ηji ≤ ti,

τi + ti, if ηji > ti.
(14)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Figure 5: We ran an experiment as described in Section 6 where we employ the same Ji =
InfBernoulli(q) distribution for all clients i ∈ [n], with different q values. From left to right we
have q = 0.6, 0.7, 0.8. Additionally, we set τi =

√
i+ 1. As we observe, with an increase of the

probability of failure q unlike Rennala SGD and ASGD, MindFlayer SGD demonstrates the ability to
continue optimizing and not be stuck

Figure 6: We train a two layer Neural Network on the MNIST dataset where we set the distribution
Ji = Log-Cauchy(s) for all clients i ∈ [n], with different scale values s. From left to right we have
s = 1, 10, 100. Additionally, we set τi =

√
i+ 1. We observe that Mindflayer SGD convergence

doesn’t suffer from the increase in the scale parameter s. On the other hand, Rennala and ASGD are
delayed significantly with bigger scale parameters s

Thus, the random time taken for client i to finish it’s all Bi trials is

Ti(ti) :=
Bi∑
j=1

T j
i (ti) ≤ Bi (τi + ti) . (15)

Finally, let T be the random time required for one iteration of Vecna SGD. We get

T = max
i∈[n]

Ti(ti) ≤ max
i∈[n]

{Bi (τi + ti)}. (16)

It remains to multiply T with the number of iterations K given by Theorem D.1.

K SUPPLEMENTAL FIGURES

30

	Introduction
	Parallel methods

	Problem Setup and Contributions
	Motivation and Single Device Case
	MindFlayer SGD
	Assumptions
	Convergence theory
	Time Complexity

	Comparing to Rennala SGD
	Experiments
	Related Work
	Conclusion and Future Work
	Table of Notations
	Heterogeneous Regime
	Related work and discussion
	Vecna SGD
	Convergence theory
	Time Complexity

	Simplifying MindFlayer for Practical Use
	The Rennala Algorithm
	The classical SGD theory
	Proofs for Propositions in section:singledevice
	Proofs for Homogeneous Regime
	Proof of theoremmindflayerconvergence
	Proof of lemmamindflayerunbiased
	Proof of lemmamindflayervariance

	Proof of theoremmindflayertimecomplexity
	Proof of lemmamindflayertimecomplexity

	Proofs for Heterogeneous Regime
	Proof of theoremheteromindflayerconvergence
	Proof of lemmaheteromindflayerunbiased
	Proof of lemmaheteromindflayervariance

	Proof of theoremheteromindflayertimecomplexity
	Proof of lemmavecnatimecomplexity

	Supplemental Figures

