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ABSTRACT

We study the problem of minimizing the expectation of smooth nonconvex func-
tions with the help of several parallel workers whose role is to compute stochastic
gradients. In particular, we focus on the challenging situation where the workers’
compute times are arbitrarily heterogeneous and random. In the simpler regime
characterized by arbitrarily heterogeneous but deterministic compute times, [Tyurin
& Richtarik| (2024)) recently proposed the first optimal asynchronous SGD method,
called Rennala SGD, in terms of a novel complexity notion called time complexity.
The starting point of our work is the observation that Rennala SGD can have arbi-
trarily bad performance in the presence of random compute times — a setting it was
not designed to handle. To advance our understanding of stochastic optimization in
this challenging regime, we propose a new asynchronous SGD method, for which
we coin the name MindFlayer SGD. Our theory and empirical results demonstrate
the superiority of MindFlayer SGD over existing baselines, including Rennala SGD,
in cases when the noise is heavy tailed.

1 INTRODUCTION

We address the nonconvex optimization problem:
mineps {£(z) == Eenp [f(2:6)] }. M

where f : R? x S — R, and ¢ is a random variable with some distribution D on S. In the context of
machine learning, S could represent the space of all possible data, D denotes the distribution of the
training dataset, and f (-, £) denotes the loss of a data sample &.

The function f is assumed to be differentiable, and its gradient is L—Lipschitz continuous (see
Assumptions [4.TH4.2). We assume that we have n workers available to work in parallel, each able
to compute independent, unbiased stochastic gradients of f, whose variance is bounded by o2 (see
Assumption [4.3). In this paper, we are interested in investigating the time complexity of methods
working in this natural setup.

1.1 PARALLEL METHODS

With access to n clients capable of computing stochastic gradients in parallel, perhaps the most naive
and classical approach is running Minibatch SGD (Cotter et al., 2011} |Goyal et al., 2017; |Gower et al.}
2019).

Minibatch SGD. This method awaits the completion of all workers’ computations of a single
stochastic gradient before executing a gradient-type step:

1. receive a single stochastic gradient V f (x*; ¢¥) from each worker i € [n],

2. update the model via 2" 1 = 2% — L 5™ T f(2F; ¢k,

where [n] := {1,...,n}, v > 0 is a stepsize, £¥ are i.i.d. samples from D, and the gradients
V f(z*; £F) are calculated in parallel.
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In real systems, each worker’s computational power may differ from the others, leading to varying
completion times of gradient computation. A notable drawback of Minibatch SGD is its failure
to account for these differences in compute times across workers. The duration of each step is
determined by the slowest worker’s computation time. As a result, all other workers remain idle
after completing their tasks, waiting for the slowest device to finish. Meanwhile, this idle time could
potentially be used in a more efficient way to improve the overall time complexity. Clearly, a redesign
of the algorithm is necessary.

Asynchronous SGD. As a result, a new generation of algorithms emerged, known as asynchronous
stochastic gradient descent (ASGD) methods, designed to fully utilize all available computational
resources (Recht et al.| 2011} [Feyzmahdavian et al.|[2016; |Nguyen et al.|[2018}; |Arjevani et al., [2020;
Cohen et al.| 2021; Mishchenko et al., [2022; |Koloskova et al.| 2022} Islamov et al.| [2023)).

Here, the server performs a gradient-type update immediately after receiving a stochastic gradient
from any worker, without waiting for the others. The updated model is then sent back to the worker,
which immediately begins computing a new stochastic gradient based on the updated model. By the
time the worker finishes computing this gradient, the model may have already been updated multiple
times on the server due to gradients received from other workers. This creates a delay in the model
update, denoted as §x. The algorithm can be described as follows:

1. receive a stochastic gradient V f (xk*‘s’“ ;&€ k*‘sk) from any worker,

2. update the model via xF+1 = 2k — W f(2F=0%; £F=0k),

k+1 to the worker so the worker computes V f (zF+1; ¢h+1).

3. send new x
Cohen et al.|(2021); [Mishchenko et al.| (2022); Koloskova et al.|(2022) showed that ASGD is provably
faster in terms of time complexity then Minibatch SGD.

However, it turns out that this untamed and wild asynchrony can be detrimental. The drawback
of ASGD lies in the assumption that all workers’ computations are beneficial. It suffers from the
issue of updating the model with potentially significantly delayed gradients, which ultimately harms
convergence and, consequently, the overall time complexity, as discussed in the work of [Tyurin &
Richtarik! (2024). To address this issue, there was a need to introduce a method that ignores outdated
gradients while maintaining the philosophy of maximizing the utilization of available computational
resources.

Rennala SGD. Such a method was proposed in a recent breakthrough by [Tyurin & Richtarik|(2024).
Their method which can be viewed as a modification of the Minibatch SGD method. At each iteration
the server collects a batch of gradients, but it allows workers to send as many gradients as they can on
the same point z-*. Then, using this batch, Rennala SGD proceeds with a gradient-type update using
this batch as in Minibatch SGD:

1. wait until the server receives B stochastic gradients at point z*,
. Kk 1 B k. ¢k
2. update the model via 2" = 2% —y 5 377 Vf(2*;£]),

more details on Rennala SGD are in Appendix [} In this case, the faster the worker, the more gradients
it sends. For the struggling workers, it may happen that they are completely ignored.

Their approach considers a setting where each worker ¢ requires a fixed 7; > 0 seconds to compute a
stochastic gradient. For the first time lower bounds on time complexity were obtained for first order
ASGD methods in the above mentioned fixed compute time regime for nonconvex functions with
Lipschitz gradients. They showed that Rennala SGD is mini-max optimal in this setup in terms of
time complexity.

While it may seem that the story is over, we want to question the fixed time assumption, arguing
that a random time model is more realistic. The claim of optimality does not hold because of this
randomness, suggesting that the algorithms need to be reevaluated and redesigned. We believe that a
redesign is necessary to better fit this more realistic approach.
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2 PROBLEM SETUP AND CONTRIBUTIONS

The deterministic compute time setup considered by [Tyurin & Richtarik| (2024), where Rennala
SGD is optimal, fails to capture the complexities of real-world distributed learning environments. In
practice, compute times are often uncertain due to various factors such as failing hardware, preemption
by other jobs, delays in GPU computation, and inconsistencies in network communications (Chen
et al., 2016} Dutta et al., [2018)). This uncertainty is even more pronounced in federated learning
scenarios, where client unreliability can lead to unpredictable computation times or even incomplete
tasks (Kairouz et al.,[2021)).

To address these real-world challenges, we propose a more practical setup that incorporates ran-
domness into compute times. Specifically, we consider a scenario where the stochastic gradient
computation time of worker ¢ is given by:

T + i, (2)

where 7; > 0 is a constant representing the minimum time for client % to complete the gradient
computation, and 7; is a non-negative random variable drawn from some distribution J;, modeling
the aforementioned uncertainties.

In this more realistic setting, existing methods like Rennala SGD and ASGD can perform poorly or
even fail to converge. We can illustrate this with a simple example:

Consider a scenario where each time we request a device to compute a stochastic gradient, one of
two outcomes occurs. Either the device completes the computation exactly after the minimum time 7
without any delays, or something goes wrong and the computation is never completed. This situation
can be modeled using a random time 7 as follows:

_J0, with probability 1 — g,
= ocﬂ with probability ¢,

where 0 < g < 1. In this scenario, any method that waits for a certain number of batches on
each iteration to perform a step runs the risk of never receiving the required batch and getting
stuck. This includes methods like Rennala SGD or ASGD. Specifically, if the algorithm waits for a
single stochastic gradient on each iteration, there is a probability ¢" that it will never receive it and
consequently never proceed.

3

To address these limitations, we propose a new method that, unlike Rennala SGD or ASGD, does not
wait for a fixed number of gradients (such as one in ASGD). Instead, it allocates a specific time for
computing each stochastic gradient. If a client fails to complete its computation within the designated
time, the partial computation is discarded, and a new computation is initiated. Our main contributions
are as follows.

* In Sectiond] we propose a new time efficient asynchronous parallel SGD method MindFlayer
SGD Algorithm [T|for the heterogeneous and random worker compute times regime (Equa-
tion (2)). To the best of our knowledge, MindFlayer SGD is the first algorithm designed to
work in this regime. We show that our method is a generalization of Rennala SGD, meaning
that it is optimal in the deterministic compute times setup.

* In Section 5] we show that the theoretical time complexity of MindFlayer SGD can be
arbitrarily faster than that of Rennala SGD or ASGD, depending on the distributions of
computation times. Specifically, we demonstrate that if the distributions of computation
times J; are positively skewed, our method is faster, with the performance gap increasing as
the skewness coefficient grows. As shown in Figure where 7; = Lognormal(0, s). As
s gets bigger, the distribution’s skewness coefficient gets bigger and the performance of
Rennala SGD or ASGD gets worse. Meanwhile, our method MindFlayer SGD is robust to
the change of the variance.

* In Section[6] we experimentally validate this performance. We provide practical guidelines
for using MindFlayer SGD, and demonstrate its superiority over Rennala SGD and ASGD.
We conduct evaluations using various functions and distributions. For distributions, we
consider Lognormal, Log-Cauchy, and the Infinite-Bernoulli (defined by Equation (3)))

'We can view 7 as an extended real random variable, or just assume that oo is a very big number.
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Figure 1: We ran an empirical experimenﬂ where we employ the same J; = Lognormal(0, s)
distribution for all clients ¢ € [n], with varying standard deviations s. Specifically, we set s = 1 for
the left, s = 10 for the middle, and s = 100 for the right. Additionally, we set 7; = /i + 1. As we
observe, with an increase in the variance of the distribution, MindFlayer SGD demonstrates the ability
to significantly outperform Rennala SGD and ASGD.

distributions. Regarding the functions, we consider a quadratic loss and a neural network on
the MNIST (LeCun et al.|{1998)) dataset. This diverse testing setup enables us to showcase
MindFlayer SGD’s robustness and effectiveness across various challenging scenarios.

* In Appendix|D] we expand our theory to develop Vecna SGD, designed for the heterogeneous
case, where workers have datasets that are coming from different distributions.

* In Appendix [E] we present a simple modification of our algorithm, Rennala SGD, which we
call Mod MindFlayer SGD. This version is more suitable for practical implementation.

3  MOTIVATION AND SINGLE DEVICE CASE

To illustrate the motivation behind the design of our new method, let us consider a single device setup.
Recall the scenario introduced in Equation (3) where we have single device and it either returns a
gradient after 7 time or gets stuck with probability q. A straightforward and optimal workaround
to this issue is to wait exactly 7 seconds. If we do not receive a gradient within this time frame, it
indicates that we will never receive it, so there is no point in waiting longer. In this case, we discard
the current computation, which would take forever anyway, and request the device to compute the
gradient again. The probability of getting stuck again is lower, so eventually, we will receive a
gradient and move forward.

More generally, consider the following two strategies for each step:

 Strategy 1: Rennala SGD. We wait for the first B stochastic gradients. Thus, the time for
one step for this strategy is the random variable:

B ,
Ip = Zj:l(T +17).

* Strategy 2: MindFlayer SGD. We repeat the following random trial B times: allocate time ¢
for computing a stochastic gradient. If we do not receive a stochastic gradient within that
time, discard the current computation and start over. Then the time for the j-th trial is given
by:

, Joif pd <

T4+t if g >t

Thus, the time for one step for this strategy is the random variable:

Tp(t) =3, T9(1).

20On a quadratic problem with n = 5 clients. We tuned stepsizes for all, and used theoretical trials B; for
MindFlayer SGD from Theorem[4.5]and tuned batch size for Rennala SGD, see Section 6]
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Time Complexity for a MindFlayer vs Rennala Rennala vs MindFlayer Time Complexity Ratio of Rennala to MindFlayer
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Figure 2: On the left, we compare the time complexity of MindFlayer SGD as a function of clipping
time (%) against the constant time complexity of Rennala SGD, demonstrating the adaptive efficiency
of MindFlayer SGD at various choices of ¢. In the middle, empirical Validatiorﬂ is shown where
the reduction in time complexity for MindFlayer SGD is tested using the same clipping times as
in the left graph, illustrating consistent performance improvements. On the right, the ratio of
time complexities between Rennala SGD and MindFlayer SGD is plotted across different standard
deviations (s), revealing exponential efficiency gains for MindFlayer SGD at optimal clipping times,
with trends at median clipping times reflecting similar efficiencies.

In the second case, rather than waiting for B gradients, we attempt to compute B gradients. Essentially,
we limit the time spent on computing a stochastic gradient. In expectation, Strategy 2 will collect Bp
gradients per iteration, where p = P (7 < t) is the probability of collecting a gradient within a trial.
Setting t = oo removes this restriction, resulting in the same strategy as the first one, Rennala SGD.

For MindFlayer SGD, each iteration, on average, receives only Bp gradients, making it effectively
a scaled-down version of Rennala SGD. Consequently, MindFlayer SGD is expected to require 1/p
times more iterations than Rennala SGD to achieve the same level of convergence. We have the
following proposition.

Proposition 3.1 (Proof in Appendix [H). Let K be the number of iterations required by Rennala SGD
to find an e-stationary point. Then, for sufficiently small €, MindFlayer SGD needs K /p iterations to
find an e-stationary point.

Thus, the time complexities in this setting are given by:
TRennalascp = KE [T] = KB(1 + E[n]),

TMindFlayersp (t) = %E [Tg(t)} = %B(T + (1 =p)t+pE[r|r <t]) < %B(T +1).

This leads us to the following remark.
Remark 3.2. For the case where n = 1, MindFlayer SGD is faster than Rennala SGD if there exists a

time threshold ¢ > 0 such that the following inequality holds:

713(220 <7+E[n].

It is important to note that this can hold for a wide range of values of ¢, including any finite value. The
latter is particularly relevant in cases where E [1)] = co. An example of such a scenario is illustrated
in Equation (3). There are many other distributions for which the expectation is not finite, such as the
Log-Cauchy distribution, Lévy distribution, Log-t distribution, Landau distribution, and so forth.

A less restrictive example of distributions are positively skewed distributions. Let s = E [n] — Med[r]
be the skewness coefficient of the distribution 7. If s > 0 we say that the distribution is positively
skewed. Then we have the following proposition.

Proposition 3.3. [Proof in Appendix|[H|] For the n = 1 case, if s > T + Med|n] then MindFlayer
SGD is faster than Rennala SGD. Moreover, if s = (T + Med[n)]) (2o — 1) then

_ TRennalaSeD____ >
T\indFlayersep (Med[n]) = @

30n a quadratic problem with theoretical hyperparameters, see Section@
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Therefore, Rennala SGD can be arbitrarily bad. As an example consider the Lognormal(y, o)
distribution. For this distribution, we have:

s = E[n] — Medly] = exp (11+ 5 ) = exp(n).

Thus, as we increase o, the difference becomes arbitrarily large.

To verify this, we also conducted a small experiment, see Figure[2] The right plot showcases how
the ratio of time complexity between Rennala SGD and MindFlayer SGD can get arbitrarily large for
the optimal clipping time t* := arg miny TMindFIayerSGD(t) and even the median of the distribution
tmedian = Med[n]. The left and middle plots showcase the potential improvement, and even loss from
choosing different clipping times t.

4 MINDFLAYER SGD

Here, we propose our MindFlayer SGD algorithm for multiple device case (n > 1). For the heteroge-
neous case, please refer to Appendix [D]

Algorithm 1 MindFlayer SGD]

1: Input: starting point z° € RY, stepsize v > 0, allot-

ted times t1,...,t, > 0, number of trials per client - - _

Bi,...,B, >0 Algorithm 2 Client ¢-s k-th step
2: fork=1,2,..., K do 1: Receive 2* from the server
3 Putg"=0 2 forj=1,2,...,B; do
4:  Send z" to all cjhents . ' 3 Sample ! ~ J;
5 Run Method2]in all clients ¢ = 1,2,...,n i < t-lth
6:  while there is a client that has trials to perform do 4 by < 1 el:l . .
7: Wait for the fastest client 5: g=Vf"¢g), §~D
8: Receive gradient g 6: Se.nd g to the server
9: F=g"tg 7:  endif

8: end for

10: end whkile

11: gk = %, O B=3 " piB; and p; = Fi(t;) = P(n: < ty).
12: bt = ok — 'ygk

13: end for

The MindFlayer SGD algorithm begins with an initialization at a starting point z° in R¢, with a
specified stepsize v > 0, time allowances ¢; > 0, and trial counts B; > 0 for each client. In each
iteration k, ranging from k = 1 to K, the server distributes the current point z* to all clients. Each
client i then executes a subroutine (Algorithm [2) to attempt to compute B; stochastic gradients from
samples & drawn from a distribution D. During each attempt, client 7 starts computing a stochastic
gradient; if the computation exceeds the allotted time ¢;, they discard the current gradient and begin
another computation. Consequently, the actual number of stochastic gradients received from each
client ¢ becomes a random variable, ranging from 0 to B;. The expected number of gradients from
client 7 is given by p; B;, leading to an overall expected total of stochastic gradients B = Z?:l ;i B;.
The server aggregates these received stochastic gradients and normalizes the collective gradient by the

expected batch size B. Finally, the point is updated to z*+! = 2% — v¢* following each aggregation
round.

In the special case where the computation time is deterministic, i.e., n; = 0 for every worker 7 € [n],
we have p; = 1 for all . While Rennala SGD does not explicitly specify the number of gradient
computations B; for each client, in the deterministic setting, each client will send a fixed number of
gradients per communication round. Consequently, for any ¢ > 0, MindFlayer SGD Algorithm|[I] by
choosing B; appropriately, reduces to Rennala SGD Algorithm

*We name our method MindFlayer SGD, drawing inspiration from The Mind Flayer|from Stranger Things,
due to its ability to precisely control its clients (Algorithm [2), analogous to the creature’s supreme control over
its victims (The Flayed).


https://strangerthings.fandom.com/wiki/The_Mind_Flayer
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However, the situation changes when 7; > 0 is not a constant random variable. If we set ¢; = 0o
for all i € [n], MindFlayer SGD Algorithm|[1]does not reduce to Rennala SGD Algorithm[7} This is
because, in the case of Rennala SGD, the randomness in each iteration causes the number of stochastic
gradients computed by each client to vary across different communication rounds. Nevertheless, this
scenario is not our primary focus, as we will demonstrate that allowing each worker to complete
its gradient computation by setting t; = oo is inefficient when dealing with positively skewed
distributions.

To continue with the analysis of MindFlayer SGD, we first present the assumptions under which this
method is studied.

4.1 ASSUMPTIONS

We consider standard assumptions used in the nonconvex optimization.

Assumption 4.1. Function f is differentiable, and its gradient is L-Lipschitz continuous, i.e.,
IVf(z) = VIl < Lz —yl. forallz,y € R™.

Assumption 4.2. There exist f"f € R such that f(x) > ff for all z € R9.

Assumption 4.3. For all z € RY, stochastic gradients V f(x;¢) are unbiased and o2-variance-

bounded, i.e., E¢ [V f(z;€)] = Vf(x) and E¢ [||Vf(x;§) - Vf(x)||2} < 02, where 02 > 0.

4.2 CONVERGENCE THEORY

The following theorem gives iterations guarantees for the convergence of MindFlayer SGD.

Even though MindFlayer SGD is similar to Rennala SGD the convergence analysis require additional
considerations, since the batch size is a random variable here as apposed to the case of Rennala SGD.

Theorem 4.4. Assume that Assumptions and hold. Let B = )"  p;B; and v =
ﬁ min {1, 3—5"} in Algorithm Then, after
8L(f(x°)—fi“f)

szax{Lg—;} -

iterations, the method guarantees that 3 ?:701 E [HV f(z®) ‘ﬂ <e.

Sketch of Proof. (Complete proof in Appendix We consider Algorithm|l|as a conventional SGD
using the following gradient estimator:

g(@) = £ X S0 Iyl < )V f(:€)),

where I(-) denotes the indicator function. Prior to applying the classical SGD theorem (Theorem|G.2)),
it is essential to verify that this estimator meets the theorem’s conditions, namely unbiasedness and a
specific bound on the second moment of g(x). We demonstrate that the estimator is unbiased, and
that
2
E[[lg@@)?||] <2V @) + 5o

With these conditions satisfied, we can proceed to apply Theorem|[G.2] O

Note that in the deterministic case where 7; = 0 for all ¢ € [n], we have p; = P(n; < t;) = 1 for all
i € [n]. Therefore, we derive
8L(f(r0)—fmf)

> )

K > max{l, %}

with B = Z:L:l B;, yielding the same result as Rennala SGD, up to a constant factor.

We also achieve the same rate as t; — oo for all ¢, since in that scenario p; — 1. This is expected
because we will observe a consistent number of stochastic gradients each time, though the timing
may vary, as mentioned earlier.

However, if t; = 0 for all ¢ € [n], then K = co. This result is anticipated since, in this case, the
success probability is zero for all clients, and thus the server never receives stochastic gradients.
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4.3 TIME COMPLEXITY

The following theorem gives time complexity for MindFlayer SGD.

Theorem 4.5 (Proof in Appendix [[.2). Assume that Assumptions and[.3| hold. Let B =
S piBiand vy = ﬁ min {1, in Method Lett = (t1,...,tpn), t1,...,t, > 0. Without
loss of generality assume that 0 < 71 +t1 < -+ < 7, + t,,. Let

tm) = (S 2 ) (S+ X))

2 . . . . .
where S = max {1, Z } Let m* = arg min,, ¢[,] t(m), if there are several minimizers we take the
smallest one. Put

W) g
Bi = Irb[la bl = {6’1+ti 13 lf 1< m”,

, if i >m".
Then, MindFlayer SGD guarantees to find an e-stationary point after

) -1
Tuniomsscolt) = § x minei { (4 2721 ) (544 S 0s) 85

seconds, where A = f(x0) — finf,

The theorem indicates that the optimal strategy is to disregard devices with a high value of Ti+t:/p,.
Therefore, we should prioritize devices that not only have a high probability p; of completing the
gradient within the allotted time ¢; but also have a relatively small sum of 7; + ¢;. This approach is
logical as it avoids including devices with substantial computation times and low probabilities of
completing their tasks within the specified duration.

In the deterministic case where 7; = 0 for all ¢ € [n], we have p; = 1 for all 7. Consequently, the
time complexity of MindFlayer SGD at time ¢ is given by

-1
TindFlayersGd (t) > 8 X ming, ey {(fn Py r,-i@) (2 +1) AEL} .

Thus, the optimal choice of ¢; is ¢; = 0 for all ¢ € [n]. Therefore, the final time complexity becomes

-1
TMindFIayerSGD(t) > 8 X minme[n] {(nl@ Z;nzl %) (% + 1) AEL} )

This formulation recovers the time complexity for Rennala SGD.

We still have the freedom to choose the ¢; allocation times. The optimal strategy would be to select
them in a manner that minimizes the time complexity. As observed in Figure[2] setting ¢; = Med [1;]
proves to be a viable choice. This is further confirmed by our experiments in Section

5 COMPARING TO RENNALA SGD

Comparing the theoretical performance of Rennala SGD and MindFlayer SGD is particularly chal-
lenging due to the inherent randomness in the time complexity of Rennala SGD and the dependence
of MindFlayer SGD on optimizing time variables ¢;. For example, a comparison using the expected
time complexity may fail to capture the nuances of each algorithm’s performance across different
distributions. Thus, we turn to an empirical comparison to provide insights into their practical
behavior. In particular, we aim to demonstrate how MindFlayer SGD can achieve arbitrarily better
performance in scenarios where the distributions exhibit high variance or heavy tails (see Figure 3).

To begin, we derive the time complexity of Rennala SGD in the context of random times. Let
B :={(B1,Bs,...,By): B; € No;>_""_| B; = B} be the set of all possible batch sizes for each
device, the time T’ required for one step with batch size B of Rennala SGD is given by:

Tg = ming {maxie[lyn] {Bﬁi + Ele nZ}} >T )

= min;ep,) {Ti + 1721} > min;ey) {ri} + min;e ] {nzl} .
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Figure 3: Empirical comparison of the performance rates between Rennala SGD and MindFlayer SGD
is illustrated, as described in the corresponding sect on. We investigate three distributions: lognormal,
log Cauchy, and log t with 5 degrees of freedom. As the variance increases, the theoretical rate of
MindFlayer SGD significantly outperforms that of Rennala SGD.

Thus, the expected time to collect a batch B is

E[Tg] > Tmin + E [min 771} ,

i1€[n]

Note that if the distribution of min;¢,,) 7; is heavy-tailed, then the expected time complexity becomes
infinite, thus favoring MindFlayer SGD over Rennala SGD. A simple illustration of this occurs when
extending the Equation (3)) case, where ) is either zero or infinite, to scenarios involving multiple
devices. In such cases, the expectation of the minimum time across devices, min;e () 7;, also results
in an infinite expected time complexity.

While a detailed theoretical comparison is intractable, we conduct an empirical comparison to
highlight practical differences between the two algorithms. To capture the randomness of Rennala
SGD’s rate, we generate a histogram: we create a histogram for Tz and then convolving it K times
with itself. Where K is the number of iterations required for e-convergence.

The time complexity of Rennala SGD is a random variable that is the sum of K copies of Tz, where
is K is number of iterations to get e-convergence.

For MindFlayer SGD, we evaluate two strategies for selecting ¢;: (1) using the median of the
distributions 7;, and (2) solving the following optimization problem:

Fix m € [n], minimize ¢t(m) over t = (t1,- - - ,t,), (temember p; = F;(t;)).

We optimize this using the L-BFGS—B algorithm, a well-suited method for solving smooth, convex,
or mildly nonconvex problems due to its efficiency and robustness (Zhu et al.,|1997)). For each m, we
take the minimum over all possible configurations.

Our empirical results, illustrated in Figure [3] demonstrate that as the variance of the underlying
distribution increases, MindFlayer SGD consistently outperforms Rennala SGD. The heavy-tailed
nature of the distributions causes Rennala SGD to experience extreme slowdowns, while MindFlayer
SGD maintains robust performance.

6 EXPERIMENTS

In this section we explain the setup for comparing MindFlayer SGD, Rennala SGD, and ASGD, which
we used throughout this paper. We compare the algorithms’ performance on a quadratic optimization
(B) task with access to a stochastic gradient. The parallelism was simulated on a machine with 2
Intel(R) Xeon(R) Gold 6226R CPUs @ 2.90GHz, with a total of 64 logical CPUs. For each setting
of the algorithm, we run 10 different seeds for the random time and plot the average, minimum and
maximum, see Figure[I] Figure[2] etc.
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We use a similar setup to the one employed by [Tyurin & Richtarik| (2024)), but modify it so that we
have a known expected variance. We make this choice, so we can compare theoretical parameters, as
we did in Figure[2]

Furthermore, we consider the homogeneous optimization problem [} with the convex quadratic
function:
fl@)=32TAz—bTa vz € RY.

We take d = 1000,

2 -1 0 .

I 0
L eRd and b=1| . |eR% )

N

0 -1 2 0
Assume that all n workers has access to the following unbiased stochastic gradients:
V(2,8 = Vf(z) +¢,
where £ ~ N (0, 0.00032), thus, we get that in Assumptionwe have,
0% =0.00032 - d = 0.00032 - 1000.

Now setting the convergence threshold € = 10~4, we can infer all theoretical parameters. To find the
optimal time corresponding to Rennala SGD we need to fix the times, we do that by either removing
the randomness, or adding the expected randomness. On the other hand, for MindFlayer SGD we
use the results from Theorem to set the theoretical number of trials for each client. For some
experiments we used theoritical stepsizes, e.g. Figure 2] for others we used the range of stepsizes
from a set {2°|i € [—10,10]}, e.g. Figures and[5] similarly to Tyurin & Richtdrik|(2024). Finally,
for the nonconvex problem in Figure @ we tried the set {0.01,0.001, 0.0001}.

In addition to the experimental results shown throughout the paper, we ran two more experiments.
One with the Infinite-Bernoulli distribution on the same quadratic problem, and a second with the
Log-Cauchy distribution with a small two-layer neural network on the MNSIT dataset, see Figure 3]
and Figure[q
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A RELATED WORK

There are several other related works. Dutta et al.| (2018)) explore the error-runtime trade-offs in
distributed SGD, revealing how slower and stale gradients can sometimes enhance convergence
processes. Woodworth et al.|(2020) compare local SGD with minibatch SGD, analyzing the efficiency
of local updates in different distributed settings. [Wu et al.| (2022) advance the understanding of
asynchronous methods by proposing delay-adaptive step-sizes that adjust to asynchronous learning
environments, optimizing the convergence rates. Furthermore, |[Hanna et al.| (2022} [2020) focus on
adaptive stochastic gradient descent to improve communication efficiency in distributed learning,
offering strategies that reduce communication demands while maintaining fast convergence.

B CONCLUSION AND FUTURE WORK

In this paper, we address the problem of minimizing the expectation of nonconvex functions with
Lipschitz gradients, with the use of parallel workers computing stochastic gradients. Our focus lies
on the challenging scenario where worker compute times are heterogeneous and random, expanding
on recent developments in ASGD methods like Rennala SGD. We observe that while Rennala SGD
performs optimally in environments with deterministic compute times, its effectiveness diminishes
under random compute conditions.

To better understand and improve stochastic optimization in these conditions, we introduce a novel
asynchronous SGD method named MindFlayer SGD. This method adjusts to the randomness in
computation times by not adhering to a fixed batch size but rather setting specific times for computing
single stochastic gradients. If a client fails to deliver within this time frame, the computation is
discarded, and the process restarts. This flexibility allows MindFlayer SGD to perform robustly across
various conditions, notably outperforming both Rennala SGD and standard Asynchronous SGD
(ASGD) in our theoretical and empirical analysis.

Our results demonstrate that MindFlayer SGD significantly reduces time complexity, particularly in
environments characterized by positively skewed distribution of computation times. We empirically
validate this in simulations with several distributions conditions where MindFlayer SGD consistently
outperforms the other methods, particularly in high-variance scenarios. This showcases its superiority
in adapting to the unpredictable duration of gradient computations typical in real-world applications
such as federated learning environments.

In this study, our analysis was confined to computation times, with no consideration given to
communication times. Future research will extend our investigation to include communication times.
Moreover, we plan to explore the application of gradient estimators with varying variance bounds
across different clients. We hypothesize that controlling these variance bounds could yield further
benefits in the optimization process.

C TABLE OF NOTATIONS

Notation Meaning

[n)] {1,...,n}

L Lipschitz constant of gradients, i.e., |V f(z) — V f(y)|| < L ||z — y|| (Assumption 4.1
finf Minimum value of the function, i.e., fi"f < f(z) (Assumption

o? Variance bound on gradients, i.e., E¢ [||Vf(cc7 &) — Vi) ||2} <o? (Assumption
v Stepsize

T Minimum time required for client ¢ to compute a gradient

i Additional random time taken while computing the gradient

Ji Distribution of the non-negative random variable 7;

t; Allotted time for worker ¢ to compute a gradient
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D HETEROGENEOUS REGIME

So far, we have discussed the scenario where all workers compute i.i.d. stochastic gradients. However,
in distributed optimization and federated learning (Konecny et al., [2016), workers may have different
datasets. Consider the following optimization problem:

mingeps { f(2) = £ S0, Beop, [fila: €] (®)

where f; : R? x S; — R? and §; are random variables with some distributions D; on S;. Problem
(6) generalizes problem (T)).

D.1 RELATED WORK AND DISCUSSION

The optimization problem (6) has been thoroughly studied in many papers, including (Aytekin
et al., 2016 Mishchenko et al.l |2018; [Nguyen et al., [2022; [Wu et al., 2022} Koloskova et al.,
2022; Mishchenko et al., [2022). There have been attempts to analyze Asynchronous SGD in the
heterogeneous setting. For example, [Mishchenko et al.|(2022)) demonstrated convergence only to a
neighborhood of the solution. In general, achieving good rates for Asynchronous SGD is difficult
without making additional assumptions about the similarity of the functions f; (Koloskova et al.,
2022; Mishchenko et al., [2022)).

In the deterministic case, when o2 = 0, [Wu et al|(2022) analyzed the PIAG method in the deter-
ministic heterogeneous regime and showed convergence. Although the performance of PIAG can be
good in practice, in the worst case PIAG requires O (TnLA/ s) seconds to converge, where 7, is the
the synchronous Minibatch SGD (see Section|[I.1)) method has the complexity O (T LAJe), which is

time delay of the slowest worker, L=+ >y L?, and L, is a Lipschitz constant of V f;. Note that
always better]|

Tyurin & Richtarik| (2024) proposed an optimal method in the regime where worker computation
times are deterministic, similar to the homogeneous setup.

D.2 VECNA SGD

Here we describe our method called Vecna SGD.

Algorithm 3 Vecna SGDE]

1: Input: starting point 2° € R, stepsize v > 0, allotted times t1, ..., %, > 0, number of trials
perclient By,..., B, >0

2: fork=1,2,...,K do

33 Putgb=0

4:  Send z* to all clients

5 Run Method[]in all clients ¢ = 1,2,...,n

6:  while there is a client that has trials to perform do

7 Wait for the fastest client

8 Receive gradient g; from client ¢

o gr=g+g

10:  end while .

11: glC = %Z?:l p?IB,’ O P = Fl(ti) = P(’fh < tl)
12: gkl =k — gk

13: end for

>In the nonconvex case, L can be arbitrarily larger than L.

16



Under review as a conference paper at ICLR 2025

Algorithm 4 Client i-s k-th step

1: Receive ¥ from the server

2: forj=1,2,...,B;do

3 Sample ] ~ J; © Start computing gradient estimator.
4:  ifn! <t; then

5: g=Vfr¢), & ~D < The computation completes within the allotted time ¢;.
6 Send g to the server

7 end if

8: end for

The Vecna SGD algorithm begins with an initialization at a starting point z° in R?, with a specified
stepsize v, time allowances ¢;, and trial counts B; for each client. In each iteration k, ranging from
k = 1to K, the server distributes the current point 2% to all clients. Each client i then executes
a subroutine (Algorithm E) to attempt to compute B; stochastic gradients from samples &/ drawn
from a distribution D. During each attempt, client ¢ starts computing a stochastic gradient; if
the computation exceeds the allotted time ¢;, they discard the current gradient and begin another
computation. Consequently, the actual number of stochastic gradients received from each client ¢
becomes a random variable, ranging from O to B;. The expected number of gradients from client
1 is given by p; B;. The server normalizes the gradients by the expected batch size p; B; and then
aggregates them. Finally, the point is updated to ¥+ = 2% — ~¢* following each aggregation round.

D.3 CONVERGENCE THEORY

The following theorem gives iterations guarantees for the convergence of Vecna SGD.

Theorem D.1 (Proof in Appendix [I.I). Assume that Assumptions 4.1 4.2 hold for the function f

and Assumption 4.3| holds for the function f; for all i € [n]. Let v = min { \/ﬁ’ Llﬂ) 2LC} in

Algorithm[3] Then after

K >
€

12AL {ﬁ 12Aa 2(}
6 b )

iterations, the method guarantees that ming<p<x E [HV f(z H ] g, where A = f(xg) — finf

and
L n n
oL S SIS

D.4 TIME COMPLEXITY

The following theorem gives time complexity for Vecna SGD.
Theorem D.2 (Proof in Appendix [J.2). Assume that Assumptions M.2 hold for the function f and
Assumptionld.3|holds for the function f; for all i € [n]. Lety = min { J;T’ Trop (N Algomhm

L n 1 — 0_2 n 1
oa=— , (=— .
n? ; ;i B; n? ZZ:; ;i B;

Lett = (t1,...,tn), t1,...,t, > 0. Without loss of generality assume that 0 < 71 +t1 < -+ <
Tn + tn. Let

where

AL

T=1,+1t,+

1 7+t
nZ

iz P

1_pz
ne [ Z (7i + i)

where A = f(z0) — f™. Put
T

Bi=[b], bi= .
[Bi Ti + 1

5We name our method Vecna SGD, drawing inspiration from Vecnal from Stranger Things.

17


https://strangerthings.fandom.com/wiki/Vecna

Under review as a conference paper at ICLR 2025

Then, Vecna SGD guarantees to find an e-stationary point after

0.2
—+
ne

liTi—Fti
n

AL
TVecnaSGD(t) > 288 x ? Tn + tn + .
i=1 i

Ie=1-—p;
Z )
i=1

n Pi

AL
ne

seconds.

E SIMPLIFYING MINDFLAYER FOR PRACTICAL USE

The version of MindFlayer SGD presented in this paper aims to be as general as possible, with
the primary objective of providing theoretical insight, which is the focus of this work. Allowing
for significant variability in the distributions of worker compute times intuitively necessitates the
introduction of multiple hyperparameters, such as B; (batch sizes) and ¢; (clipping times), to ensure
effective optimization under diverse scenarios. While these hyperparameters enable the algorithm to
adapt to heterogeneous and random conditions, they also introduce additional complexity, which may
complicate implementation in practical settings.

We propose Mod MindFlayer SGD, a practical variant that replaces B; and ¢; with two global
parameters: a probabilistic threshold p, which reflects the likelihood of completing a gradient
computation, and a global batch size B, specifying the total number of trials across all workers. This
reformulation simplifies hyperparameter tuning while retaining robustness.

The parameter p captures system reliability. For reliable systems, p approaches 1, recovering Rennala
SGD, while for less reliable systems, lower p values leverage MindFlayer SGD ’s robustness. The
choice of ¢; can be guided by historical data via the inverse cumulative distribution function of p, or
adjusted dynamically using the Robbins-Monro stochastic approximation, as such:

We update the clipping time ¢; at each iteration using the Robbins-Monro stochastic approximation
(Robbins & Monro, |1951):

tis1 =t; — oy (I(T; < t;) — p)

where:
* T; is the observed compute time for the i-th iteration.
* I(-) is the indicator function, which is 1 if we don’t clip, and 0 otherwise.
* «; is a diminishing step size sequence, such as o; = ¢ with a > 0.
* pis the target probability threshold.

Note that we do not need to know the exact value of T;; we only require I(7T; < ¢;), which is 1 if the
worker finishes the computation within the threshold and 0 otherwise.

By employing this dynamic adjustment, Mod MindFlayer SGD continuously adapts ¢; based on
real-time observations of worker compute times, aligning the clipping threshold with the desired
completion probability p. This method reduces the need for manual tuning of hyperparameters and
enhances the algorithm’s robustness to variability in compute times.

In Figure ] we demonstrate that Mod MindFlayer SGD achieves comparable performance to Mind-
Flayer SGD while simplifying hyperparameter selection, highlighting its practicality for distributed
systems with heterogeneous and random worker compute times.
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Figure 4: Here we recreate the setup from Figure but add a hyperparameter tuned version of the
Mod Mindflayer SGD.

Algorithm 5 Mod MindFlayer SGD

1: Input: starting point z° € R?, stepsize v > 0, p € (0, 1],
number of trails B > 0

cfork=1,2,..., K do
. Putgh =0 Algorithm 6 Client i-s k-th step

1: Receive 2 from the server

2
3:
4:  Send z* to all clients
5 2: while True do

Run Meth0d|§|in all clients ¢ = 1,2, ..., n and stop old

; gomgutations 3 Samplen) ~ 7,

7:  whileb < B do 4 i+ sz <t;then

8: Wait for the fastest client 5 g=Vfr ¢, & ~D
9: Receive gradient g 6: Send g to the server

10: F=g"+g 7:  endif
11: b=b+1 8: end while

12:  end while
13: gk = &=,

14: gkt =gk — gk
15: end for

F THE RENNALA ALGORITHM

Algorithm 7 Rennala SGD

1: Input: starting point 2°, stepsize ~, batch size S
2: Run Method]in all workers

3: fork=0,1,...,K —1do Algorithm 8 Worker’s Infinite Loop

4: Initg* =0ands =1 S S
5. while s < S do I: Init g = 0 and &7 = —1
. 2: while True do
6: Wait for the next worker ,
. . ) .. , 3 Send (g, k Z to the server
7: Receive gradient and iteration index (g, k') : .
o 4:  Receive (2", k) from the server

8 if £’ = k then s.
6
7:

. k— k1. o_ K=k

o endir | ST T 9= Vi@, €~D
: end while

11: Send (¥, k) to the worker

12:  end while

13: okt =2k — AgF

14: end for
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We mention the Rennala SGD throughout the paper, here we provide a brief introduction to the
method and its development. Algorithm[7]shows the work done by the server. Essentially, the server
asynchronously waits to collect a batch of size .S, whenever it receives a gradient from a worker that
has the same iteration as the algorithm, it assigns it to compute a gradient at the same point x. After
collecting the batch, we preform a synchronous update (given that all gradients were made on the
same point x), using an average of the collected batch.

G THE CLASSICAL SGD THEORY
In this section, we present the classical SGD theory as developed by |Ghadimi & Lan|(2013) and
Khaled & Richtarik| (2020). Our analysis will follow the approach of the latter.
We consider the stochastic gradient descent (SGD) method:
P =k —g(at),
where 2° € R? is the initial point, and g(z) is a stochastic gradient estimator at .

We make the following assumption:
Assumption G.1. The stochastic gradient estimator g(x) satisfies:

Elg(z)] = Vf(x)
E[llg@)I?] < 20 (f(2) = ) + BIVI @) + ¢,
for all € R? and some constants «, 3, > 0.

This assumption is both general and reasonable, and it is satisfied by many modern SGD-type methods.
For further details, refer to|Khaled & Richtarik! (2020).

Under this assumption, we can derive the following convergence result.

Theorem G.2 (Corollary 1 (Khaled & Richtérik, 2020)). Assume that Assumptions and
hold. Then for any ¢ > 0

i, B[ V465 <

for

. 1 1 5
=mins —/—m—, —, = ¢,
7 {\/7LaK LB 2L<}

and

K> 12L (f(gjo) — finf) s {ﬁ, 12AO&7 QC} .

9 3 3

H PROOFS FOR PROPOSITIONS IN SECTION [3]

Proposition[3.1} Ler K be the number of iterations required by Rennala SGD o find an e-stationary
point. Then, for sufficiently small £, MindFlayer SGD needs K /p iterations to find an -stationary
point.

Proof. The iterations of Rennala SGD can be viewed as iterations of Minibatch SGD. Thus, we can
apply the classical SGD theory (Theorem|[G.2)) to derive its iteration complexity:

o2 } BL(f(a") — f)
eB €

For MindFlayer SGD, the iteration complexity follows from Theorem 4.4} Therefore, the number of
iterations K js required for MindFlayer SGD to guarantee that

K= max{l,

Ky —1

1 2
o kZ:O ]E[HVf(xk)H } <e
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is given by

eBp

L)

P— o? | SL(f(z°) — /)

Ife < %;,we have
K
Ky = —.
p
O

Proposition For the n = 1 case, if s > 7 + Med|[n)] then MindFlayer SGD is faster than Rennala
SGD. Moreover, if s = (T + Med[n]) (2a — 1) then

TRennalaSGD S
> .
TindFiayerscp (Med[n)])

Proof. Lett = Med[n] =: m, then we have

TMindFlayerscp(m) < —B(7 +t) = 2K B (T +m),

=R

Trennalasep = KB(7 + E[n]) = KB(t + m + s),
Thus if s > 7 4+ m then MindFlayer SGD is faster than Rennala SGD.
Now, let s = (7 4+ m) (2a — 1) then

TRennalaSGD T+m+s  2a(r+m)

TviindFlayerscp (M) — 2(t+m)  2(7+m)

I PROOFS FOR HOMOGENEOUS REGIME

I.1 PROOF OF THEOREM[4.4]

First, we rewrite MindFlayer SGD in a classical SGD way where we do gradient step with an unbiased
estimator of the gradient at each iteration.

Algorithm 9 MindFlayer SGD

1: Input: starting point 20, stepsize -y, time budgets ¢4, ...,t, > 0, batch sizes By,..., B, >0,
2: fork=0,1,...,K —1do

3¢t = S ST (] <) Vi (a4€])

4

5

k+1 k

gt =gk — gt

end for

where B =" | p;B;, pi = F(t;) = P(n; < t;) and I(-) denotes the indicator function. To prove
the theorem we need to establish some properties of the gradient estimator. First, we need an unbiased
estimator.

Lemma L1 (Proof in Appendix [[L.1.1). The gradient estimator in Algorithm([9 given by

9(w) := ;Zil (w <t:) v (w:¢])

i=1 j=1
is unbiased, i.e., E [g(x)] = V f(z) for all v € R%.

Next, we obtain an upper bound for the variance of this estimator.
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Lemma I.2 (Proof in Appendix [L.1.2). The gradient estimator in Algorithm[9|given by

9(a) = ;Zil (w <t:) Vs (w:€)

i=1 j=1
satisfies

E [lg@)]] < 2IVF @I + 5o

We are ready to prove the Theorem [4.4]

Theorem 4.4, Assume that Assumptions and 4.3\ hold. Let B = Y  p;B; and v =
ﬁ min {17 } in Algorithm Then, after

K > max {17 o’ } 8L (f(xo) — finf)

eB e

iterations, the method guarantees that 3 kK;Ol E [HV f(z®) HQ] <e.

Proof. Note that Algorithm[T|can be viewed as a special case of classical stochastic gradient descent
(SGD), as reformulated in Algorithm [9] We need to verify that the gradient estimator fulfills
the conditions required by classical SGD (Theorem [G.2). The two preceding lemmas address
this requirement precisely. Specifically, Lemma [[.T] confirms that the gradient estimator used in
Algorithm [] is unbiased, while Lemma [[.2] verifies that the variance of this estimator meets the

conditions specified in Assumption witha=0,8=2and { = %;. Consequently, it remains to
apply Theorem|[G.2] O
I.1.1 PROOF OF LEMMA [ 1]

Lemma[[.1} The gradient estimator in Algorithm|[9 given by

9(@) = ;iil (nif < ti) v (x;éf)

Jj=1

is unbiased, i.e., E[g(z)] = V f(z) for all z € R?, where B =" p;B;.

Proof. This follows from direct computation:

El)] = E|£331(n <t)vs(n€)

i=1 j=1
n B;

LSl <0) ()

iy ed n B

(! Lel) ;;;E[I (m <t2)}E[Vf (x, f)}

_ Biimw(m)

_ Vf(a:);ipiB‘

- Vi@,
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1.1.2 PROOF OF LEMMA [[.2]

Lemma([.2} The gradient estimator in Algorithm|9 given by

n B;j
1 : ) ‘
- EZZI(ni <t:)Vf (:¢))
i=1 j=1
satisfies
1
E [[lg@)?]] <2(Vf@)|* + 0%,
where B =3""_, p;B;.

Proof. In order to simplify notation, let
B
-y
j=1

where

b= 1 (0] <) VS (n:€]).

Step 1 (Initial expression). We express E [||g(m) |?] in terms of a;:

E [lg@)]?] = & Znam +3 (@i ]

i#]
We further simplify both terms via:

n

Z

B; 2 B
Jaall? = [ S_ et =3 [l + 2 okt )
j=1 =1 k£l
B; Bj
(ai, a;) <Zb Zbl> S5 (0L (8)
k=11=1

Step 2. (Finding the expectations). Further

k] - E{@(mruw(aez)

(@ ]
< <|Vf I+ |vs (w:6l) - vre| ]
(

(Assumptmn 4

S (9@ + 0?), ©
and
E (0}, b5)] = E[I (i <t:) VS (x 5) I(ny <t;) V (:€))]
SR <t)E[T (1 <t)](E[VS (1:6)] E[VS (56)])

= pip; |V f(@)|*. (10)
Step 3 (Putting everything together). We start with

[7HOH10]
£ [jl?] B2 B (I9F@I +0%) + Bi (B - D1 [V (@)
< B (IVF@)I* +02) + Bip? |V (),
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using this and recalling the definition of B, we get

n

2

E > fai
i=1

< B|[Vf(@)|I* + Bo® + |V f ()| ZBZ

Next
(E/0)
(ai,a5) =7 BipiBip; [V f ()],
finally,
2
E|lg@I) = Z laall® + 3 (ai, a5)
i#]
1 2
< 55 |BIVF )|I? + Bo? + Bp? +> BipiBjp; | IV f(2)]|
i#j
1 9 o?
= 5 (B+B) V@I + 5
o2
2
<2 Vi@ + %
O
[.2  PROOF OF THEOREM [43]
The following lemma gives time complexity for any choice of By, ..., B, and t = (t1,...,t,) in

MindFlayer SGD.

Lemma 1.3 (Proof in Appendix . Assume that Assumptions @1} F.2|and @3 hold. Let B
S piBiand v = ﬁ min {1, Zyin Method Then after

2 8L __ finf
TwiindFiayerscp (t) > ?é%f]({Bz (Ti +t;)} max {1, EUB} (f(JTOE) ™)

seconds, the method guarantees to find an e-stationary point.

Now we are ready to prove the theorem.

Theorem Assume that Assumptions and hold. Let B = Z:-L:l p;B; and v =
ﬁ min {1, i—?} in Method Lett = (t1,...,tn), t1,...,tn > 0. Without loss of generality assume
that0 < 4+t <--- <71, +1t,. Let

-1
m m

t(m) = Zlejitj S+>p |,

j=1 j=1

2 . . . . .
where S = max {1, z } Let m* = arg min,, c[,] t(m), if there are several minimizers we take the

smallest one. Put

Hm*) i<
B; = [b;], b =4 mitt ) lfz_ m*,
0, if i >m".

Then, MindFlayer SGD guarantees to find an e-stationary point after

-1

1~ p S 1 & AL
T in r t >8>< i —_ J
MindFiserso () = “?g[rfll] m = T+t m+mzp]

e
Jj=1

seconds, where A = f(xq) — finf,
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*

Proof. First we show that B;-s are valid choice, i.e. b; > 0 for i < m*. If m* = 1, then
t(1) = BHL(S 4 py), thus by = 2 > 0. If m* > 1, then, by its definition, t(m*) <
This implies

#
3
*
|
_
N~—

-1 -1

m* i m* m*—1 i m*—1
— S ] < J S _
z_:r-+t- +Zp3 ZT-+t- +§_:pﬂ ’
i L) =1 j=1 7 0 Jj=1
leading to
m*—1 i m* m* i m*—1
— 5+ i < —— [ S+ j
j=1 J J j=1 j=1 J J j=1
and
m* m*
bj Pm>
. < S + j
pm z_: Ti +t; Tm* + T Z_:pj
j=1 J J j=1

From the last inequality, we get that 7.« + t,, < t(m™*), thus b; > by,» > 0 forall i < m*.

It remains to find the time complexity with these choices of B;. From Lemma[[.3] we have that the
time complexity is

o2\ 8AL
T indFlayer t Z Bz 3 ti ]-7 Y .
MindFlayersGD (t) %%{ (1i + )}max{ EB} -
Then,
m?f{Bi (ri +t)} < mﬁ{(bi +1) (i + t5)} = t(m").
i€[n 1€(n
On the other hand
n n m* . D; m*
B nBiz Y onn= 3 tmt) -3,
i=1 i=1 i=1 ¢ voi=1
* _1 * * *
m m m m 2
bj i o
=2 S+> pi| Y. - pi=8>—.
ot =1 ottt S €
Therefore, the time complexity is
W~ SAL
TlindFlayerscp (t) > t(m™) -
-1
. NPy “ SAL
= min S+ D
me(n] ;Tj +tj ]gl J IS

1.2.1 PROOF OF LEMMA [[3]

Lemma Assume that Assumptions and hold. Let B = Y !  p;B; and v =
i min {17 ff—g} in Method Then after

o2 8L (f(zg) — fi“f
TMindFlayerscp (t) > ?61%{32‘ (1: + t;)} max {17 sB} el (;) )

seconds, the method guarantees to find an e-stationary point.

Proof. Let Tg (t;) be the random time taken by client 7 in the j-th attempt of calculating gradient

estimator. We have , 4
. , Jooif nd <t
Tj(t1) — Tl+nz7 1 77'; — tl) (11)
T +t;, if n; > t;.
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Thus, the random time taken for client 7 to finish it’s all b; trials is

b;
)= T/ (t:) < bi (1 + ). (12)
Finally, let 7 be the random time required for one iteration of MindFlayer SGD. We get
T= m?o](T( i) < max{b (1 + i)} (13)
i€
It remains to multiply 7 with the number of iterations K given by Theorem O

J PROOFS FOR HETEROGENEOUS REGIME

J.1 PROOF OF THEOREM [D.]]

Here, we rewrite Vecna SGD (Algorithm 3)) in a classical SGD way.

Algorithm 10 Vecna SGD

. Input: starting point 2°, stepsize v, time budgets ¢y, . ..,t, > 0, batch sizes by, ..., b, > 0,
:fork=0,1,..., K —1do

1
2
3 gk = %Z?:l ﬁ Zj:l I (775 < ti) Vfi (w’“,ff)
4
5

k+1 k. k

end for

where p; = F(t;) = P(n; < t;).

To prove the theorem we need to establish some properties of the gradient estimator. First, we need
an unbiased estimator.

Lemma J.1 (Proof in Appendix[J.I.1). The gmdient estimator in Algorithm[I0] given by

ZpB Zf(n’ <t;) Vi (w:€])
is unbiased, i.e., E[g(x)] = Vf(x) for all x € R

Next, we obtain an upper bound for the variance of this estimator.
Lemma J.2 (Proof in Appendix[J.1.2). The gradient estimator in Algorithm|10|given by

- % ; ijl- JZ:;I (77g = ti) Vi (:c;gf)

satisfies

e lJoton)) < LETVE S oty o+ Sy

We are ready to prove Theorem [D.1] First, let us restate the theorem.
Theorem [D.1} Assume that Assumptions .1} 4.2} hold for the function f and Assumption .3\ holds

Sor the function f; for all i € [n]. Let ¥ = min \/7 LIB, 2LC} in Algorlthm Then after
K> 12AL {B7 12Aa72§}’
€ €

iterations, the method guarantees that ming<<x E [HVf(xk)H2] <, where A = f(z) — fi*!
and
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Proof. Note that Algorithm [3]can be viewed as a special case of classical stochastic gradient descent
(SGD), as reformulated in Algorithm [I0] We need to verify that the gradient estimator fulfills
the conditions required by classical SGD (Theorem [G.2). The two preceding lemmas address
this requirement precisely. Specifically, Lemma [J.I] confirms that the gradient estimator used in
Algorithm [T0]is unbiased, while Lemma [J.2] verifies that the variance of this estimator meets the
conditions specified in Assumption[G.1I] Consequently, it remains to apply Theorem|[G.2] O

J.1.1 PROOF OF LEMMA [ ]]

Lemma[J.1.1} The gradient estimator in Algorithm|[I0|given by
IR j
*Z Zf(m Stz‘) Vfi (x;fi)
n =1 szz’ =1

is unbiased, i.e., B [g(z)] = V f(x) for all x € R?

Proof. This follows from direct computation:

1 1 & . _
Elg(z)] = E ﬁzpiBi I(ng gti) Vi (g:;gg)
i=1 j=1
5 e (20 v )
Zj:l
21 =) o ()

J.1.2 PROOF OF LEMMA[L.2]

LemmalJ.2l The gradient estimator in Algorithm[I0 given by

B;
- % ; ijz- JZ:;I (77g = ti) Vi (:c;gf)

3

satisfies

1nf n 0_2 n
B [lste]] < LS L o S T

i=1 i=1
Proof. Since n{ and f{ are independent from each other for all ¢ € [n] and j, we have
Var (g =3 ZpQBQ ZVar( ( ti) Vi (x,ﬁf)) ,

then we use the fact that

Var (XY) = Var (X) Var (Y) + Var (X)E[Y]* 4+ Var (Y)E[X]?,
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where X and Y are independent random variables. Hence, we obtain the following bound on the
variance

Var (1 (] <t:) Vi (w36])) <pi(t=p)o® +p: (1= p) IV (@) + 0%}

=pio” +pi (1—pi) [|Vfi(@)]*.
As a result, the variance of g(x) is bounded by

Var (g(x)) < nQZ BQZ(pza +p: (1= p) V@)

:nzzpl 5 (7 + L=p) IVA@IP).

Finally

E [[|g(x)?|]] = Var (g >+||E[<>H\2

2
< V@) + — (@)[1* + zgpi&
Next we use ||V f;(x)|* < 2L (f(zo) — fnf), thus
2L (f(wo) — ™) ¢~ 1-ps
E[[lg(=)*[] < ; > tIviE Z
" iz Pi

O

J.2 PROOF OF THEOREM [D.2]

The following lemma gives time complexity for any choice of By, ..., B, andt = (t1,...,t,) in

Vecna SGD.
Lemma J.3 (Proof in Appendix [T.2.1). Assume that Assumptions K.2| hold for the function f

and Assumption holds for the function f; for all i € [n]. Let v = min { \/LlaiK’ %, ﬁ in

Algorithm|3| Then after

12AL 12Aa 2
Tuscnasoo(t) = max{ B, (, + 1)} —— max {1, o EC}
1€n

seconds, where the method guarantees to find an e-stationary point, where A = f(xq) — fi*f and

L-pi 2
nQZ 2 C:%Z

~ piB

Now we are ready to prove the theorem.
Theorem[D.2} Assume that Assumptions[d.1)[{-2| hold for the function f and Assumption#.3| holds

for the function f; for all i € [n]. Let v = min { \/LliK’ i, 2L} in Algorlthm where

1—p1 Lot~ 1

Lett = (t1,...,tn), t1,...,tn > 0. Without loss of generality assume that 0 < 7 +t13 < --- <
Tn + tn. Let

AL

)
ne

T=1,+t,+

1 =7+t
ﬁz 7 7

iz P

o2 le=1-—p;
—+ | = i+l
e n T )

iz P
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where A = f(z0) — [, Put
T

T + ti '
Then, Vecna SGD guarantees to find an e-stationary point after

1 T+t
>

B; = I—bi—‘a bl:

—+

;i L1+ 1)

AL
TVecnaSGD(t) Z 288 x ? <Tn + tn +

AL
ne
seconds.

Proof. Since we have b; > 1 for all ¢ € [n], we get
I_Telé[”]({Bi (ri +t:)} < Hel‘fﬂ]({(bz‘ +1)(ri +t:)} < 21_161?)]({1% (ri+t;)}=2T.

It remains to apply Lemma[J.3] We get

n n
12A« _ 12A2L 1—p; < 12A2L Z 1—p;
9 EN im1 sz7 ENn im1 plb7

_12AL11 I (ri i) < 12

nETn — D

and

20 202~ 1 202 <~ 1 20211 T+t
=== <= < == — < 2.
€ en? — piB; T en pt pib; ne Tn ~ pi

Finally, we get that Algorithm 3|returns a solution after

12AL 12Aa 2
TiindFlayersGD (t) > Hel?}]{{B (1 + t; )}T max {1, . a’ f}

> 288%T

n

1 1—p; AL
o [Z P (ri+ 1) )
n 4 ; ne

seconds. ]

1 & T+t
=

AL
> 288? (Tn +tn +
i=1

J.2.1 PROOF OF LEMMA[L3]

Lemma[J.3} Assume that Assumptions hold for the function f and Assumption[d.3| holds for

the function f; for all i € [n]. Let v = min \/F’ Z7 T} in Algorlthm Then after

12AL 12Aa 2
TecnascD (t) > Helé[lP]({Bz (ri + ti)}T max {1, a7 C}

& 9

seconds, where the method guarantees to find an e-stationary point, where A = f(x¢) — f™f and

n
7n22 ZZl :%Z

piB

Proof. Let Tij (t;) be the random time taken by client  in the j-th attempt of calculating gradient
estimator. We have

! T +t;, if 775 > t;.
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— Rennala SGD
— ASGD

— Rennala 5GD 5 — Rennala 56D ;
h — AsGD 10° 7] — ASGD 10

— MindFlayer SGD —— MindFlayer SGD — MindFlayer SGD

[wftxi|

T T T T
0 100 200 300 400 500
Time

Figure 5: We ran an experiment as described in Section |§| where we employ the same [J; =
InfBernoulli(g) distribution for all clients ¢ € [n], with different ¢ values. From left to right we
have ¢ = 0.6,0.7,0.8. Additionally, we set 7; = y/7 + 1. As we observe, with an increase of the
probability of failure g unlike Rennala SGD and ASGD, MindFlayer SGD demonstrates the ability to
continue optimizing and not be stuck

1014 10-1
1072 1
3
=
=
10-2 4
1072 4 1072
= Rennala 5GD = Rennala 5GD = Rennala 5GD
—— ASGD —— ASGD —— ASGD
10-34— MindFlayer SGD —— MindFlayer SGD —— MindFlayer SGD

T T T T T T T T T T T T T T T
0 2500 5000 7500 1000012500 15000 0 2500 5000 7500 1000012500 15000 0 2500 5000 7500 10000 1250015000
Time Time Time

Figure 6: We train a two layer Neural Network on the MNIST dataset where we set the distribution
J: = Log-Cauchy(s) for all clients ¢ € [n], with different scale values s. From left to right we have

s = 1,10,100. Additionally, we set 7; = /i + 1. We observe that Mindflayer SGD convergence
doesn’t suffer from the increase in the scale parameter s. On the other hand, Rennala and ASGD are

delayed significantly with bigger scale parameters s

Thus, the random time taken for client 7 to finish it’s all B; trials is

B;
Ti(ti) ==Y _T!(t:) < Bi (1 + i) . (15)
j=1
Finally, let 7 be the random time required for one iteration of Vecna SGD. We get
T= m?)](ﬁ(ti) < m?)]({Bi (i + 1)} (16)
€|n 1€|n
It remains to multiply 7~ with the number of iterations K given by Theorem[D.1} O
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