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ABSTRACT

High-dimensional stochastic optimal control (SOC) becomes harder with longer
planning horizons: existing methods scale linearly in the horizon 7', with per-
formance often deteriorating exponentially. We overcome these limitations for
a subclass of linearly-solvable SOC problems—those whose uncontrolled drift
is the gradient of a potential. In this setting, the Hamilton-Jacobi-Bellman equa-
tion reduces to a linear PDE governed by an operator £. We prove that, under
the gradient drift assumption, £ is unitarily equivalent to a Schrédinger operator
S = —A 4V with purely discrete spectrum, allowing the long-horizon control to
be efficiently described via the eigensystem of £. This connection provides two
key results: first, for a symmetric linear-quadratic regulator (LQR), S matches the
Hamiltonian of a quantum harmonic oscillator, whose closed-form eigensystem
yields an analytic solution to the symmetric LQR with arbitrary terminal cost.
Second, in a more general setting, we learn the eigensystem of £ using neural
networks. We identify implicit reweighting issues with existing eigenfunction
learning losses that degrade performance in control tasks, and propose a novel
loss function to mitigate this. We evaluate our method on several long-horizon
benchmarks, achieving an order-of-magnitude improvement in control accuracy
compared to state-of-the-art methods, while reducing memory usage and runtime
complexity from O(7'd) to O(d).

1 INTRODUCTION

Stochastic optimal control (SOC) concerns the problem of directing a stochastic system, typically
modeled by a stochastic differential equation (SDE), to minimize an expected total cost. SOC has
found applications in various domains, e.g. stochastic filtering (Mitter, |1996), rare event simulation
in molecular dynamics (Hartmann & Schiitte, [2012}; [Hartmann et al., [2014]), robotics (Gorodetsky
et al.,|2018)) and finance (Pham), [2009).

Built on the principle of dynamic programming, the global optimality condition of SOC can be
expressed by the Hamilton-Jacobi-Bellman (HJB) equation. In this paper, we focus on the affine
control setting commonly considered in the literature (Fleming & Rishel, [1975}; [Kappen) [2005b;
Fleming & Soner, 2006; |Yong & Zhoul |1999;|Domingo-Enrich et al.| [2024bj; Niisken & Richter, |2021}
Carius et al.,[2022; Holdijk et al.||2023)), where the control affects the state of the system linearly. This
setting is of interest since the optimal control will exactly match the gradient of the value function of
SOC problem and hence the corresponding HIB equation can be drastically simplified.

A canonical special case of this affine-control framework is the linear—quadratic regulator (LQR), in
which the uncontrolled dynamics follow an Ornstein—Uhlenbeck linear SDE and both the running cost
and the terminal cost are quadratic. One can show that in the LQR setting the value function retains a
quadratic form—indeed, it is quadratic at terminal time because the terminal cost is quadratic—and
that the optimal feedback control is linear w.r.t. the state. Consequently, the associated SOC problem
admits an explicit solution via the finite-dimensional matrix Riccati differential equation (van Handel,
2007)

To obtain the optimal control in more general settings requires numerical procedures. For low-
dimensional problems, classical grid-based PDE solvers may be used, but these suffer from the curse
of dimensionality. This has led to several works proposing the use of neural networks (NN) to solve
the HIB equation in more complex high-dimensional settings, either through a forward-backward
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stochastic differential equation (FBSDE) approach (Han et al.|[2018; Ji et al.| |2022; |/Andersson et al.|
2023} |Beck et al., [2019)) or so-called iterative diffusion optimization (IDO) methods, which sample
controlled trajectories through simulation and update the NN parameter using stochastic gradients
from automatic differentiation (Niisken & Richter| [2021; [Domingo-Enrich et al.,2024bja). A more
comprehensive review on existing methods for short-horizon SOC can be found in

While these methods have proven successful, their perfor- Control L2 Error vs T (after 30k iterations)
mance suffers as the time horizon 7" grows. Both the memory Agorithm

requirement and per-iteration runtime increase at least lin- 3 o e (00

early in T". Additionally, it holds that error estimates for the o e )

deep FBSDE method worsen as 7" increases (Han & Long| % EIGT4ID0 (ours)

2020, Theorem 4), and for IDO methods using importance
sampling the weight variance may increase exponentially in
T (Liu et al.l 2018). These limitations were observed em-
pirically in|Assabumrungrat et al.| (2024); Domingo-Enrich
et al.| (2024b), and were reproduced in our experiments (see

[Fraure 1),

Linearly-solvable HJB. The HJB equation is in general
nonlinear. However, in the special case where the system’s
diffusion coefficient matches the affine-control mapping, the Figure 1: Performance degradation as
Cole-Hopf transform can eliminate the nonlinearity (Evans, time horizon 7" increases for different
2022)). Specifically, let V' (z, t) denote the value function of methods (see[Appendix E]for details).
the SOC problem and define a new function 9 := exp(—V).

Under this transformation, the HIB is equivalently rewritten as the following linear PDE

at’(/J((L‘,t) :‘Cw(xat)’ ’l/}(x,T) :wT(x) )]
for some linear operator L. Moreover, the optimal control u, which exactly matches the gradient of
the value function —0,.V/, can be obtained as u* = J, log v (Kappenl 2005b).

Control L2 Error

Time Horizon T

Working with a linear PDE brings several clear bene- Control L2 error vs. time ¢
fits over a nonlinear one, such as a simplified analysis (fruncated eigenfunction solution)
— questions of well-posedness and solution regularity of 7
the PDE become much more tractable — but more impor-
tantly algorithmic insight: One can borrow ideas from the
finite-dimensional linear ODE 4 (t) + Au(t) = 0, where
A is a real symmetric matrix. This ODE has a closed-form
solution u(t) = e~“* u(0), and because the matrix expo-
nential e~ acts simply on A’s eigenvalues, expanding 2
1(0) in the corresponding eigenvectors yields an efficient do 05 lo 1s 2o 25 30
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While the domain of the operator L is infinite-dimensional Figure 2: Diminishing returns from in-
(acting on functions rather than finite vectors), the same creasing the number of eigenfunctions
exponential-integrator principle applies (Theorem 1)), and ¢, 4 LQR in d = 20 dimensions.
we can write ¢y = e(*=T)Lq)p, where (es£)s>0 is a semi-
group (Renardy & Rogers| 2006, Chapter 12). Of course, carrying it out in an infinite-dimensional
setting introduces additional technical challenges that must be carefully addressed. In particular,
expanding v as a series of eigenfunctions requires L to possess a discrete spectrum, i.e. one can
find an orthonormal basis of eigenfunctions (¢;);cn and corresponding eigenvalues Ay < A < - - -
such that L¢p; = \;¢; for all © € N. Under this assumption, the optimal control can be informally
written as

u*(x,t) = 0y log o(x) + O (67()‘17)‘0)(714)) for any fixed t as T — oo, 2)

where O hides eigenfunctions ¢; with i > 1. A precise statement can be found in[Theorem 3] To turn
the above formula into a practical, long-horizon SOC algorithm, we need (1) Spectral verification.
Prove that £ indeed has a discrete spectrum; (2) Eigenfunction identification. Compute the spatial
derivative of the principal eigenfunction ¢q.

Our approach: Reduction to Schrodinger operator. In this paper, to guarantee the spectral
verification, we assume that the drift of the dynamics is the gradient of a potential. Such problems



Under review as a conference paper at ICLR 2026

of controlling a diffusion process with gradient drift show up in overdamped molecular dynamics
(Schiitte et al.l [2012), mean-field games (Bakshi et al., 2019} |Grover et al., [2018), the control of
particles with interaction potentials (Carrillo et al.| 2020; [Totzeck & Pinnau, [2020), as well as social
models for opinion formation (Castellano et al., 2009; |Albi et al., 2017)).

In this setting, the operator £ in (I) is unitarily equivalent to the Schrodinger operator £ = —A + V),
where A is the Laplacian and V is an effective potential determined by the original drift and running
cost. Because £ is known to have a purely discrete spectrum on L? and unitary equivalence preserves
the spectral properties, the operator £ in (I]) likewise enjoys a discrete spectrum.

This result forms the basis of our new framework for long-horizon SOC, where the problem is
reformulated as learning the eigensystem of a Schrodinger operator. Indeed, (2)) shows that the top
eigenfunction ¢y determines the long-term control, with corrections decaying exponentially with rate
A1 — Ag. We address the problem of eigenfunction identification in the following two scenarios:

* Closed-form solution for LQR with non-quadratic terminal cost. When the drift is linear with a
symmetric coefficient matrix and the running cost is quadratic in the state, the resulting Schrodinger
operator L coincides with the Hamiltonian of the quantum harmonic oscillator. Its eigenvalues and
eigenfunctions are known explicitly (see Lemmaor Griffiths & Schroeter|(2018)), i.e. {A;, &; }ien
are available in closed form. Consequently, our framework yields a fully explicit expression for the
corresponding SOC. This removes the requirement of quadratic terminal cost in the the classical
LQR solution.

* Neural network-based approach for general gradient drift. For general gradient—drift dynamics,
we introduce a hybrid neural-network method to approximate the optimal control efficiently: Rather
than attempting to learn the full spectrum of £L—which is prohibitively expensive and yields rapidly
diminishing returns (fig. 2)—we exploit the exponential decay of the higher modes w.r.t. T — ¢ in
eq. (2). Concretely, whenever 7' — ¢ exceeds a modest threshold (in our experiments 7" — ¢ > 1), it
suffices to approximate the control using only the top eigenfunction ¢q. For the remaining period
(t very close to T'), we switch to established FBSDE/IDO solvers to handle the short-horizon SOC.
We propose a novel deep learning strategy for the task of learning the eigenfunction, tailored to
SOC. While such a task has been extensively studied in the literature, previous approaches either
optimize a variational Ritz objective (E & Yul 2018} Zhang et al., 2022} |Cabannes & Bach,|[2024)
or minimize the residual norm ||£1) — \i||* (Jin et al.,[2022} |Zhang et al.,|2024; Nusken & Richter,
2023). However, these losses implicitly reweight spatial regions, causing them to fail to learn
the control in regions where the value function V is large—the most crucial areas. To eliminate
this bias, we introduce a relative eigenfunction loss, || £1/1) — A||?, which removes the undesired
weighting and robustly recovers the dominant eigenpair needed for control synthesis.

Our contributions are summarized as follows:

* We provide a new perspective on finite-horizon gradient-drift SOC problems, linking their solution
to the eigensystem of a Schrédinger operator (Theorem 3)). This yields a previously unreported
closed-form solution to the symmetric LQR with arbitrary terminal cost (Theorem 4)).

* With this framework, we introduce a new procedure for solving SOC problems over long horizons
by learning the operator’s eigenfunctions with neural networks. We show that existing eigenfunction
solvers can be ill-suited for this task due to an implicit reweighting in the used loss, and propose a
new loss function to remedy this.

* We perform experiments in different settings to evaluate the proposed method against state-of-
the-art SOC solvers, showing roughly an order of magnitude improvement in control L? error on
several high-dimensional (d = 20) long-horizon problems.

2 PRELIMINARIES

2.1 STOCHASTIC OPTIMAL CONTROL

Fix a filtered probability space (2, F, (F;)¢>0, P), and denote (W}),>¢ a Brownian motion in this
space. Let (X{);>0 denote the random variable taking values in R? defined through the SDE

dX} = (b(X) + ou(X{, 1) dt + /B~ tedWs, X ~po 3
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where u : R? x [0, T] — R is the control, b : R — R is the base drift, o € R?*¢ is the diffusion
coefficient (assumed invertible) and 8 € Rar is an inverse temperature characterizing the noise level.
Note that we assume the drift and noise to be time-independent, in contrast to Niisken & Richter
(2021); \IDomingo-Enrich et al.| (2024b). Under some regularity conditions on the coefficients and
control u described in[Appendix Al the SDE (3)) has a unique strong solution. In stochastic optimal
control, we view the dynamics (b, o, 5) as given and consider the problem of finding a control u
which minimizes the cost functional

T
Husa.) = | [ (GOxe 01 + £06) )+ o(xp)

X, = x] (4)

where f : R? — R denotes the running cost and g : R? — R denotes the terminal cost. We denote
this optimal control as u*(z,t) = arg min,, ¢, J(u; z,t), with U the set of admissible controls. To
analyze this problem, one defines the value function V, which is defined as the minimum achievable
cost when starting from z at time ¢,
V(z,t) := inf J(u;z,t). 5
(z,t) := inf J(u;2,?) )

In this case, the optimal control »* that minimizes the objective (@) is obtained from the value function
through the relation u* = —oTVV, as described in (Niisken & Richter] 2021, Theorem 2.2).

Hamilton-Jacobi-Bellman equation. A well-known fundamental result is that when the value
function V is sufficiently regular, it satisfies the following partial differential equation, called the
Hamilton-Jacobi-Bellman (HJB) equation (Fleming & Rishel, |1975):

XAV +KV =0 inRYx[0,T], V(,T)=g onR% (©6)
1 1
where KV = ﬁTr(aoTVQV) +0TVV — 5\|o—TVV||2 +f. (7

The so-called verification theorem states (in some sense) the converse: if a function V' satisfying the
above PDE is sufficiently regular, it coincides with the value function (3) corresponding to (3)-(4),
see (Fleming & Rishel, [1975| Section VI.4) and (Pavliotis, 2014, Sec. 2.3).

A linear PDE reformulation Although the HIB equation (6)) is nonlinear in general, it was shown in
Kappen| (2005b) that for a specific class of optimal control problems (which includes the formulation
(3)-(4)), a suitable transformation allows for a linear reformulation of (6). More specifically, when

parametrizing V (x,t) = —3~ 1 log ¢ (x, % (T —t)), the nonlinear terms cancel, and (6) becomes
O+ Ly =0,
{000y S0 where £ = <o ™V0) <280V £ 2520 = exp(~).
Yy — %o,

and we have introduced the variable 7 = (23) (T — t). This is precisely the abstract form (T)),
but with a time reversal. For more details on this result, we refer to[Appendix B} To simplify the
presentation, we will often assume w.l.0.g. that o = I (see|/Appendix A, so that Tr(co? V?) = A.

2.2 EIGENFUNCTION SOLUTIONS

Consider a Hilbert space H with inner product (-, -), and a linear operator £ : D(L) — H defined on
a dense subspace D (L) C H. Then we have the following standard definition:

Definition 1 An element ¢ € H with ¢ # 0 is an eigenfunction of L if there exists a A € C such that
Lo = Ao. The value )\ is called an eigenvalue of L (corresponding to ¢), and the dimension of the
null space of L — Al is called the multiplicity of \.

In a finite-dimensional setting, the study of a linear operator A is drastically simplified when we have
access to an orthonormal basis of eigenvectors. Similarly, some operators admit a countable set of
eigenfunctions (¢;);cn which forms an orthonormal basis of the Hilbert space . When such an
eigensystem exists, the following theorem proven in[Appendix B]gives a solution to the PDE (§)) in
terms of the eigensystem. A rigorous connection between this solution to (8] and solutions to (@) is

explored in
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Theorem 1 Let L be an essentially self-adjoinﬂ densely defined operator on H which admits an
orthonormal basis of eigenfunctions (¢;, \;)ien. Assume further that the \; are bounded from below
(write \g < A1 < ...) and do not have a finite accumulation point. Then a solution to the abstract
evolution problem in [®) is given by

= e M (¢, o) ©)

1€EN

3  OUR FRAMEWORK

3.1 SPECTRAL PROPERTIES OF THE SCHRODINGER OPERATOR

In order to apply [Theorem 1] we must establish conditions under which the operator £ in (§) satisfies
the required properties. In order for £ to be symmetric, we assume

(A1) The drift b in (@) is described by a gradient field: b(z) = -V E(x).

Define the measure p on RY with density p(z) = exp (—2B8FE(z)), and consider the weighted
Lebesgue space L?(11). Note that we do not require y to be a finite measure. Under the assumption
(A1)] the operator appearing in (8] becomes the following operator on L?(p):

L:D(L) C L*(u) = L*(p) : b = Lp = —=A¢p +28(VE, Vp) 4 25° f1). (10)

Under mild regularity conditions, we can further show that L is essentially self-adjoint (Appendix B).
Furthermore, it can be shown that

ULU' = —A + B%|VE|*> — BAE + 252 f (11)
where U : L?(u) — L*(R?) : ¢ ~— e~ #F4) is a unitary operator, so that £ is unitarily equivalent
to the well-known Schrodinger operator S = —A + V on L?(R?), which forms the cornerstone of

the mathematical formulation of quantum physics. Its properties have been studied to great extent
(Reed & Simon,|1978)), allowing us to invoke well-known results on the properties of the Schrodinger
operator to study the behavior of L. In particular, the following assumption on E and f is enough to

guarantee that £ satisfies all the desired properties (see [Appendix BJ.

(A2) For the energy E and running cost f, V := B||VE|? — AE + 23 satisfies V € L? (R?),
IC eR,Vz eRY: C < V(x),and V() — oo as ||z| — oc.

Theorem 2 Suppose((A2)|is satisfied. Then the operator L in (10) is densely defined and essentially
self-adjoint. Moreover, it admits a countable, orthonormal basis of eigenfunctions. In addition,
the eigenvalues are bounded from below and do not have a finite accumulation point, the lowest
eigenvalue \o has multiplicity one, and the associated eigenfunction (called the ground state, or in
our context the top eigenfunction) can be chosen to be strictly positive.

Remark 1 Previous studies have linked the Schrodinger operator to optimal control in contexts
distinct from ours: for example, |Schiitte et al.|(2012) and|Bakshi et al.|(2020) analyze the stationary
HIB equation KV, = X (see Remark 2), whereas [Kalise et al.| (2025) explores distribution-level
control of the Fokker—Planck equation.

3.2 EIGENFUNCTION CONTROL

From the previous discussion, we obtain the following result, which links the eigenfunctions of £
with the optimal control problem.

Theorem 3 Suppose |(AIH(A2)|are satisﬁed. Then L satisfies all assumptions in hence
the solution of the optimal control problem (3)-@) is given by

. _ >¢ > — s (Ai—Xo)(T—t ®i(z)
=571Vl 1 § R R 7T DT 020 ) (12
u (x,t) =0 (V og ¢o(x) + Vlog <1 + Z>0 ﬁg ool e 25 ( ¢0($)>> (12)

where (¢, \;)ien is the orthonormal eigensystem of L defined in (I0), and Ay < A1 <

! An operator is called essentially self-adjoint if its closure is self-adjoint. See Reed & Simon|(1980) and
Reed & Simon|(1975) for more details.
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Thus, the long-term optimal control (t < T') is given by 371V log ¢, and the corrections decay
exponentially, motivating truncation of the series in (I2)).

3.3 CLOSED-FORM SOLUTION FOR THE SYMMETRIC LQR

When E and f are quadratic, the Schrodinger operator associated with the optimal control system is
the Hamiltonian for the harmonic oscillator, which has an exact solution (Appendix BJ):

Theorem 4 Suppose b(z) = — Ax for some symmetric matrix A € R4, and f(x) = 27 Pz for
some matrix P € R4*? such that AT A + 2P is positive definite, and has diagonalization UT AU.
Then the orthonormal eigensystem of the operator L given in (10) is described through

exp (—gacT (—A + UTAl/QU) x) d AL/

o(z) = E— AYAUR), ), 13
$a () (w7 };[1 V2% (o) (\/B( )> (13)

d
B <—Tr(A) +)° A2 (205 + 1)) . (14)
i=1

Aa

where o € N¢ and H; denotes the ith physicist’s Hermite polynomial. We can bijectively map o € N¢
to i € N by ordering the eigenvalues (14), yielding the same representation as before.

Combined with [Theorem 3] this yields a closed-form solution for the optimal control problem with
symmetric linear drift, quadratic running cost and arbitrary terminal reward.

4 NUMERICAL METHODS

We propose a hybrid method with two components: Far from the terminal time 7', we learn the top
eigenfunction ¢ and simply use 9, log ¢ as the control (c.f. eq. (2)); Close to the terminal time, e.g.
t > T — 1, we use an existing solver to learn an additive short-horizon correction to the control.

4.1 LEARNING EIGENFUNCTIONS

In absence of a closed-form solution, a wide range of numerical techniques exist for solving the
eigenvalue problem for the operator £ in (I0). Classically, the eigenfunction equation is projected
onto a finite-dimensional subspace to yield a Galerkin/finite element method, see|Chaitin-Chatelin
(1983)). In high dimensions, these methods often perform poorly, motivating deep learning approaches
which differ from each other mainly in the loss function used. We will only discuss methods for
learning a single eigenfunction, referring to[Appendix C]for extensions to multiple eigenfunctions.
An overview of the deep leraning algorithm for learning eigenfunctions is given in Algorithm|I}in

Append

PINN loss Based on the success of physics-informed neural networks (PINNs) (Raissi et al., 2019),
one idea is to design a loss function that attempts to enforce the equation £¢ = \¢ via an L? loss, as
done inlJin et al. (2022). The idea is to consider some density p on R¢, and define the loss function

Romn(9) = L8] = A5 + aRLey(8),  Ricy(@) = (0] — 1)° (15)

where o > 0 is a regularizer to avoid the trivial solution ¢ = 0. The eigenvalue A is typically also
modeled as a trainable parameter of the model, or obtained through other estimation procedures.

Variational loss A second class of loss functions is based on the variational characterization of the
eigensystem of L. Since £ is essentially self-adjoint with orthogonal eigenbasis in a subset of L2 (1)
(u is defined below [(AT)), it holds that (see (Reed & Simon, [1978| Theorem XIII.1))
L)
Ao = inf W, LY)u (16)
weL?(w) (Y, ¥)pu

where the infimum is obtained when L1 = A\yt). This motivates the loss functions

Ruvar1(6) = w L aRE,(6), Rvaald) = (6.L8), +aRl (&) (17)
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Learned control inputs and Vo
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Figure 3: Learned controls (arrows) and V for different eigenfunction losses. Existing methods fail
to learn the correct control in regions where Vj is large due to implicit reweighting.

The first of these, sometimes called the deep Ritz loss, was introduced in [E & Yu|(2018)), and the
second was described in [Cabannes & Bach!(2024)); Zhang et al.|(2022). These loss functions do not
require prior knowledge of the eigenvalue .

4.1.1 IMPLICIT REWEIGHTING IN PREVIOUS APPROACHES

The exponential decay of the correction term in eq. (Z) suggests that the optimal control u* can
be approximated by the spatial derivative of logarithm of the top eigenfunction. We therefore
parameterize in our implementation ¢ = exp(—/V}), where V) is some neural network and /3 is the
temperature constant. This choice also enforces the strict positivity of ¢, which matches the same
property of ¢ established in Theorem 2]

Adopting such a parameterization, for the PINN and variational losses, it holds that

2o\ |I”
—BVy
€ B <ICV() - 262)

R (e 77) = 484 + aRL,,(e7PV) (18)
Ryvar2(e7PY0) = 252 / TIVORVy dp + aRE, (7 FY0) (19)

p

where K is the HIB operator (7). Because both (I8) and (T9) incorporate an exponential factor that
vanishes where V}, is large, these losses become effectively blind to errors in high-V} regions and
are only able to learn where V} is small. This pathology is illustrated in Figure 3} Consider a 2D
RING energy landscape F, whose minimizers lie on a circle, and a cost f that grows linearly with
the z-coordinate (see the full setup in Section [E). The true optimal control remains tangential to the
circle. In contrast, the controls obtained via the PINN and variational eigenfunction losses collapse in
regions of large Vj, deviating sharply from the expected direction.

4.1.2 OUR APPROACH: REMOVING IMPLICIT REWEIGHTING VIA RELATIVE LOSS

Based on this observation, we propose to modify (@ to

+ R ey(0). (20)
P
This loss function, which we call the relative loss, eliminates the implicit reweighting of the stationary
HIJB equation. Indeed, the same computation as before yields

Rel H

2
KVy — 2% + aRY,(e7PY). (21)
As a result, the relative loss remains sensitive even in regions where ¢ = e¢~PV becomes small. This
can also be empirically observed in the RING task, as illustrated in [Figure 3] Instead of learning
and )\ jointly, a natural idea is to combine the benefits of the above loss functions by first training
with a variational loss (T7) to obtain an estimate for the eigenvalue Ao and a good initialization of V5,
and then ‘fine-tune’ using (20). In practice, we also observed that this initialization is necessary for
the relative loss (20) to converge.

R%el (6_6‘/0) = 4ﬁ4
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Remark 2 We note that there is an alternative interpretation of (1)) based on a separate class of
control problems in which there is no terminal cost g, and an infinite-horizon cost is minimized,
yielding a stationary or ergodic optimal control (Kushner, |1978)). In this setting, u is related to a
time-independent value function Vo, which satisfies a stationary HIB equation of the form KV, = A.
In low dimensions, these problems are solved through classical techniques such as basis expansions
or grid-based methods, with no involvement of neural networks (lodorov, 2009).

4.2  OUR HYBRID METHOD: COMBINING EIGENFUNCTIONS AND SHORT-HORIZON SOLVERS

For both IDO and FBSDE methods, every iteration requires the numerical simulation of an SDE,
yielding a linear increase in computation cost with the time horizon 7T". We propose to leverage the
eigenfunction solution given in in order to scale these methods to longer time horizons as
follows: first, parametrize the top eigenfunction as ¢2° = exp(—SV{?) for a neural network V.,
and learn the parameters 6 using the relative loss, as well as the first two eigenvalues \g, A1 (see
[Appendix E). Next, choose some cutoff time T¢,,; < 7" and parametrize the control as

B~V log ¢ 0<t< Tou,

22
5—1 (v log ¢80 ({)3) + e*ﬁ(kl*ho)(Tft)U% (l‘,t)) Tt <t <T. (22)

ug(x,t) =

This control can then be used in an IDO/FBSDE algorithm to optimize the parameters 6, of the
additive correction v91, a second neural network, near the terminal time. Crucially, this only requires
simulation of the system in the interval [T., T, significantly reducing the overall computational
burden and reducing the time complexity of the algorithm from O(7'd) to O(d).

5 EXPERIMENTS

To evaluate the benefits of the proposed method, we consider four different settings, QUADRATIC
(ISOTROPIC), QUADRATIC (ANISOTROPIC), DOUBLE WELL, and RING. An additional setting
QUADRATIC (REPULSIVE) with nonconfining energy is discussed in[Appendix E| The first three are
high-dimensional benchmark problems adapted from Niisken & Richter| (2021), modified to be long-
horizon problems, where a ground truth can be obtained. Detailed information on the experimental

setups, including computational costs, is given in[Appendix E]
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Figure 4: Comparison of the different eigenfunction losses (EMA).

shows the results of the various eigenfunction losses. For the QUADRATIC settings, we can
compute V log ¢ exactly, and see that the relative loss significantly improves upon existing loss
functions for approximating this quantity (with the error measured in L?(11)). For the other settings,
the resulting control V log ¢ yields the lowest value of the control objective for the relative loss.

In|Figure 5| we show the result of using the learned eigenfunctions in the IDO algorithm using the
combined algorithm described in the previous section, and compare it with the standard IDO/FBSDE
methods. In each setting, we obtain a lower L? error using the combined method, typically by an
order of magnitude. The bottom row of shows how the error behaves as a function of
t € [0,T]: the pure eigenfunction method achieves superior performance for ¢ — 0, but performs
worse closer to the terminal time 7". The IDO method has constant performance in [0, 7], and the
combined method combines the merits of both to provide the lowest overall L? error.
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Figure 5: Average L? control error (EMA) as a function of iteration (top row) and L? error as a
function of ¢ € [0, T] (bottom row).

6 CONCLUSION

In this work, we have introduced a new perspective on a class of stochastic optimal control problems
with gradient drift, showing that the optimal control can be obtained from the eigensystem of a
Schrodinger operator. We have investigated the use of deep learning methods to learn the eigensystem,
introducing a new loss function for this task. We have shown how this approach can be combined
with existing IDO methods, yielding an improvement in L? error of roughly an order of magnitude
over state-of-the-art methods in several long-horizon experiments, and overcoming the increase in
computation cost typically associated with longer time horizons.

Limitations The main drawback of the proposed approach is that it is currently limited to problems
with gradient drift. When the operator £ is not even symmetric, it may no longer have real eigenvalues.
Nonetheless, the top eigenfunction may still be real and nondegenerate with real eigenvalue, so that
the long-term behaviour of the control is still described by an eigenfunction (Evans| 2022, Theorem
6.3). A second limitation is that there is no a priori method for determining an appropriate cutoff
time 7., this is a hyperparameter that should be decided based on the application and the spectral
gap A1 — Ap.
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A TECHNICAL DETAILS/ASSUMPTIONS

A.1 REGULARITY CONDITIONS

Following |[Fleming & Soner| (2006), we make the following assumptions, which guarantee that the
SDE (3] has a unique strong solution.

1. The coefficient b is Lipschitz in and satisfies the linear growth condition
3C >0 [|b(z) = b(y)l| < Clle —yll. (23)
307" >0 ||b(z)]| < C'(1 + ||z|)- (24)

A.2 SIMPLIFYING ASSUMPTION: ool =T

Since o € R?*? was assumed invertible, the matrix oo is positive definite, and hence there exists a
diagonalization o7 = UAUT where UUT = I and A = diag((\;)%_,) for \; > 0. Consider now
the change of variables y = A~/2U7Tz. Then it holds that

Vo =UAY2V,0, Vi =UAY2 Vi A7V2UT (25)

and in particular Tr(co”V2¢) = Tr(UAUTV24) = Tr(V21) = Ay1p. Thus the PDE () can be
written in terms of y as

O+ (—Ay =286 UA 2T, +282f) Y =0 (26)

B PROOFS/DERIVATIONS

B.1 COLE-HOPF TRANSFORMATION

Let V denote the value function defined in (3)), satisfying the HJIB equation (6). The so-called Cole-
Hopf transformation consists of setting V = —3~1log 0, leading to a linear PDE for w which is

called the desirability function. To obtain the form (§), we set V (z,t) = —3~ 1 log ( ' 38 5(T t)) )
The derivatives of V' and ¢ are then related through

1 0
0V = ﬁ% VV = ﬁ—lvf (27)
r*v. 1 Py O oY
al'ial'j o _6 ¢2 (wé)xl@x] B (8:@ 8:5])) ’ (28)
— Tr(coTV?V) = ?j 83 (;; = —ﬂfliTr(aaTV%ﬁ) + 671%\\0va||2. (29)
7,7 J

Plugging these expressions into (6) gives
1
¢

Multiplying with 23%¢) and combining with the terminal condition V' (x,T) = g(x) shows that the

linear PDE for 1) given in (§) is equivalent to the HIB equation (6).

1 1 _
<2B2(W — Q—ﬁQTr(UUTVQW -3 1bva> + f=0. (30)

B.2 PROOF OF[THEOREM 1|

We begin with an informal argument. Recall that we are interested in solving the abstract evolution
equation

Find ¢ : [0, T] — D(L) such that {Ztgggt) Lo z 21’(» (31)

16
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Now, since (¢;)icn forms an orthonormal basis, it holds that 1 (t) = 3, ai(t)¢i, where a;(t) =
(¥i(t), ¢). Hence the PDE in (3I)) becomes

3 (d“diit) + Aiai(ﬂ) 6 =0 (32)

€N

after formally interchanging the series expansion and derivatives. Since the ¢; are orthogonal, this
equation is satisfied if and only if a;(t) = a;(0)e~** for each i.

Formally establishing @]) can be achieved through the theory of semigroups. Essentially, we want to
formally define the semigroup (e~*“) . - and show that it forms the solution operator to (3T). We

begin by recalling the following definition.

Definition 2 The set of bounded linear operators on H. is given by

B(H) =< L:H — H: Lislinear and ||L]||,p = sup [[L(f)| < oo (33)
FeM|fl=1

The following result, sometimes called the functional calculus form of the spectral theorem, allows
us to define 2 (L) for bounded Borel functions h.

Lemma 1 (Reed & Simon| |1980, Theorem VIIL.5) Suppose L is a self-adjoint operator on 7. Then
there exists a unique map ¢ from the bounded Borel functions on R into B(?) which satisfies

o If L3 = Ao, then G(h)Y = h(A)Y.

In particular, when £ admits a countable orthonormal basis of eigenfunctions (¢;) with eigenvalues
A;, this operator is given by

SR = (LYY == h(Xi) (i, 1) i (34)

ieN

The next result makes use of the defined semigroup and leads to the desired representation. Note that
we indeed consider a bounded function of the operator, as we consider it only for ¢ > 0 and assume
that the operator is bounded from below.

Theorem 5 (Reed & Simon, |1980, Theorem VIII.7) Suppose L is self-adjoint and bounded from
below, and define T'(t) = e~ ** for t > 0. Then

(a) T(0) = 1.

(b) Forevery ¢ € D(L), it holds that

(570)

Proof of[Theorem 1|Combining (a) and (b) of the shows that ¢ (t) := T'(t)1)g satisfies

00 = (grre+ i)

which is exactly the claim of The last remark we make is that in we only
assume essential self-adjointness of £, while above results operate with self-adjoint operators. Thus,
the above theorems hold true for the closure £ of the operator £. However, note that £ is densely
defined and has eigenfunctions which make up an orthonormal basis of both its domain and L2 (1).
Thus, the same representation (9) as for £ holds for £. |

= i 1O h)i —TOY _ —LT(0)) = —L) (35)

h—0

t=0

= —LT(t)ho = —Ly(t), ¥(0) =T(0)¢o = o, (36)

h=0
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B.3 UNITARY EQUIVALENCE (T}

First, notice that U : L?(u) — L?(R%) : ¢ + e~#F4) is indeed a unitary transformation, since

Vip, o € L*(p) : (U, Up) 2ray = /e—QBEW dz = (¥, 9),.. (37)
To establish equivalence, we compute
V(e"Fyp) = e"F (Vo + BVE ¢) (38)
A(e?Fp) = PP (A + 2B8(VE, V) + (BAE + B2 VE|?) ), (39)
26(VE,V(e"F)) = " (2B(VE, Vi) + 28°|| VE|*). (40)

Putting this together gives

LUT') = L(ePy) = PP (—Av + B2|VE|*y — BAEY) +28°fePy,  (4D)
from which the result follows.
B.4 ESSENTIAL SELF-ADJOINTNESS OF L

We will first show the following relation

(o, LY, = (Veo, V) . + 2B, fb) (42)

from which it is clear that £ is symmetric on C§° (Rd). Indeed, using the divergence theorem, for
P, ¢ € C5°(RY) one obtains that

(W, —Ap), = — /wAap e 2PEqy (43)
= [ (0. 99) ~ 286{V, VEY) P s (44)
= <V77Z)a v@>u - 2ﬁ<¢7 <VE7 V(p))u, (45)

which immediately shows the result.

While for matrices the notions of symmetry and self-adjointness are equivalent, the situation becomes
more delicate for general (possibly unbounded) linear operators. In our case we can use the following
result on the essential self-adjointness of the Schrodinger operator.

Lemma 2 (Reed & Simon, 1975, Theorem X.28) Let V € L?,_(R?) with V > 0 pointwise. Then
S = —A + Vs essentially self-adjoint on C§°(R?).

Note, that C§°(R?) is dense in L2(R?). Thus, operator £ is also densely defined as its domain
contains U~ (Cg°(R?)).

The essential self-adjointness of £ follows from the unitary equivalence with the Schrédinger operator
as unitary transformation preserves essential self-adjointness of the transformed operator.

B.5 PROOF OF[THEOREM 2|
As we have shown, the operator L is unitarily equivalent to the Schrodinger operator defined through
S:D(S) c L*(RY) — L*(RY) : h+ —Ah + Vh (46)

with V = 82||VE||? — BAE + 232 f. All the properties mentioned in the statement of
remain unchanged under unitary equivalence (both the assumptions on the operator and the conclu-
sions regarding the spectral properties). Hence it is sufficient to show the result for the Schrédinger
operator S associated with L.

This is precisely the content of the following theorem, proven inReed & Simon|(1978)), combined
with observations in section[B.4l
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Theorem 6 (Reed & Simon| 1978, Theorem XII1.67, X111.47) Suppose V € L}, (R?) is bounded
from below and lim;|_, V(z) = oc. Then the Schrodinger operator S = —A + ) has compact
resolvent, and in particular a purely discrete spectrum and an orthonormal basis of eigenfunctions
in L2(R?). The spectrum o(S) is bounded from below. If in addition V € L? (R?), the smallest
eigenvalue has multiplicity one, and the corresponding eigenfunction can be taken to be strictly
positive.

B.6 PROOF OF[THEOREM 4

The result relies on the fact that the Schrodinger operator associated with £ has a quadratic potential,
for which the eigenfunctions can be computed exactly. Indeed, the following is a standard result that
can be found in many textbooks on quantum mechanics (Griffiths & Schroeter, [2018)):

Lemma 3 Consider the Schrodinger operator in d = 1 with quadratic potential,
d?y
S:D(S) c L*(R) — L*(R) : Yo — 2. (47)

The eigenvalues of S are given by \,, = 2n + 1, and the normalized eigenfunctions are given by

1 1

_ —m2/2
where H,, denotes the n-th physicist’s Hermite polynomial defined through
Ho(z) =1, Hi(x) =2z, H,yi(x)=2xH,(x)—2nH,_1(z). (49)

These satisfy the generating function relation

’I’L

e2ot—t? — i f. (50)

This result can be easily extended to higher dimensions:

Lemma 4 Consider now the d-dimensional Harmonic oscillator:

S:D(S) C LA (RY) — L*(RY) : op » —Ayp + 2T Az 1) (51
where A € R is symmetric and positive definite. Denote A = UT AU the diagonalization of A.
Then the eigenvalues are indexed by the multi-index o € N%, and are given by

d
Ao =Y AP (20, +1). (52)

i=1

The associated normalized eigenfunctions are

1 L1 1/8

=— ——2TUTAY2U (AV*U 53
balr) = a7z exP ( 2" x) H Lty e (AU &9

Proof. We begin by introducing the variable y = A'/4Ux. This gives
2T Az = yTAY %y (54)
Agtp = Tr(AY2V24) (55)

so that we can write

A T Azep = y vz (L2 56
A+ 2" Az =) A, 82+y,w (56)

i=1
Thus, the d-dimensional harmonic oscillator decouples into d rescaled one-dimensional oscillators.
Since L?(R%) = ®?:1 L?(R) (after completion), this means that the eigenfunctions are given by the
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product of the one-dimensional eigenfunctions. Hence the spectrum is indexed by o € N and the
eigenfunctions are, expressed in the variable y,

)B*y?ﬂ (57)

1 1
baly) = e 11;[1 \/WHm(yz

To get the eigenfunctions in the x variable, we transform back and note that the above expression
is normalized as [ ¢, (y)*dy = 1, while we need [ ¢, (z)?dz = 1. Using the fact that dy =

det(Al/ 4)da, this yields the final normalized eigenfunctions as

1 A1/8
o) = exp (— J;TUTAI/QUx> H H,. A1/4Um) ) (58)
md/4 V25 (@ i
and the eigenvalues as
d
Ao =Y AP (20, +1). (59)
i=1
]

Now consider the operator £ as defined in (T0), with b(z) = —Ax and f(z) = 27 Pz. Since A is
symmetric, it holds that b = —V E with E(z) = %mTA:c. It follows that £ is unitarily equivalent
with the Schrodinger operator with potential

V = —BAE + BY|VE|? + 282 f = —8Tr(A) + 2T (AT A + 2P). (60)

The first term gives a constant shift to the eigenvalues, but otherwise we are precisely dealing with
the d-dimensional harmonic oscillator, whose eigensystem is described in Lemma ] Hence the
eigenvalues are precisely (14), and the eigenfunctions of the original operator £ are then obtained by

multiplying with e 22" 4% which yields (T3).

B.7 SEMIGROUP AND VISCOSITY SOLUTIONS

Plan of the section. We work with two linked equations on R? x [0,7]: the HIB equation (6)
and the linear parabolic PDE (8] obtained from (6] via the (monotone) Cole—Hopf transform. Our
goal is to produce the optimal control u* by first solving the linear PDE, then applying the inverse
Cole—Hopf transform to obtain a value function candidate V. This program raises two issues which
have to be addressed:

1. Nonuniqueness in unbounded domains. On R (even with the same terminal/boundary data),
second-order finite-horizon HIB and linear parabolic equations may admit multiple solutions
unless one restricts to an appropriate growth class; see [Tychonoff| (1935) for a classical
example of this phenomenon.

2. Verification. To identify v* from a solution of (6)) one uses a verification theorem. These
theorems require the candidate V' to be a (sufficiently regular) viscosity solution (Crandall
et al.,|1992) lying in a class where comparison (hence uniqueness) holds, see (Fleming &
Soner, 2006, Section V.9) for an example of such result.

In our approach we fix a specific semigroup solution of the linear PDE and use it to define V' via
the inverse Cole—Hopf map. Specifically, we have V'(z,t) = —8~ " log(z, 5 /3( t)), where

P(x,t) = (e**1)p)(x). The central task is therefore to (a) place this V/ in a uniqueness class for (6)
and (b) confirm the hypotheses of a verification theorem. In the following text we establish sufficient
conditions under which the task is solved.

Verification theorem and Comparison (uniqueness) in R? under growth constraints. There are
several ways to establish that the value function V' (3)) is a unique solution of HIB equation (6) in
some growth class for the given terminal conditions. In general it is obtained with a use of Dynamic
Programming Principle. However, this approach is not so simple in the case of unbounded controls
and non-smooth viscosity solutions. We refer to (Zhou et al.l[1997; Fleming & Soner, [2006; Da Lio
& Leyl [2006; [2011) for an overview of ways to establish connection between value function and
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viscosity solutions, as well as results regarding existence and uniqueness of viscosity solutions in
appropriate growth classes. Following |Da Lio & Ley|(2011) we introduce class of functions C,,. We
say that a locally bounded function u : R? x [0; 7] — R is in the class C,, if for some C' > 0 we have

lu(z, )] < C(1+||2|]P), ¥ (z,1) € RY x [0; T]. (61)
Now, we can formulate the following

Theorem 7 (Da Lio & Ley,[2006| Thm. 3.1)+(Da Lio & Ley,[2011| Thm. 3.2) Suppose that in (6)
we have

* b satisfies and 24), and 0 = I
* Running cost f satisfies: 3C; > 0: Vo € R? : |f(z)] < C1(1 + ||z||P)

* Terminal condition satisfies g € (fp

Then there exists 0 < 7 < T such that (6)) has a unique continuous viscosity solution in R? x [r; T’
in the class C,,. Moreover, this unique solution is the value function V' ®).

Remark 3 See discussion in (Da Lio & Ley,|201 1} Remark 3.1) why we can’t hope to obtain existence
in Theorem[7|on a whole interval [0;T).

Growth of semigroup solution From previous paragraphs it is clear that one way to provide a link
between proposed V' and solutions of @ is to to establish growth rates on V. Specifically, following
Theorem|7|we want to show that V' € C,,.

There are other ways to establish connection between solutions, see Biton|(2001), (Fleming & Soner,
2006} Section VI). However, we choose to pursue a path related to growth conditions of spectral
elements of Schrodinger operator (Davies & Simon, |1984; |Baraniewicz, |2024)).

Theorem 8 (Davies & Simon, 1984, Thm. 6.1, Thm. 6.3) Let S = —A +V on R? with ground state
¢o > 0 (normalized in L2(Rd)) and suppose that there exist C7,C3 > 0 and C5, Cy € R such that,
for all x with ||z|| large,

Csllz||* +Cs < V(z) < Ci|z||* + Cy, where §+1<b<a.

Then S is intrinsically ultracontractive (IUC). Moreover, there exist constants Cs, C7 > 0 and
Cs, Cs € R such that, as ||z|| — oo,

Cs |z 571 + Cs < —logo(x) < Crllz||5+! + Cs. (62)

Proof. Intrinsic ultracontractivity under the stated growth is exactly (Davies & Simon| 1984,
Thm. 6.3). The upper growth bound in (62)) is the estimate — log ¢o(x) < Clz||2T! stated explicitly
in (Davies & Simon, 1984, Eq. (6.4)). For the lower bound in (62)), take a comparator W (z) = ¢ ||=||®

with 0 < ¢ < Cs;then W — coand V — W — o0, so the ground states satisfy gi)(()v) <C gbéw)
by the comparison Lemma (Davies & Simon| 1984, Lem. 6.2). (Davies & Simon, 1984, App. B)

constructs WKB-type barriers for —A + W and gives pointwise upper bounds of the form (JSE)W) (z) <

C'||z|| 8 exp{—rl||z|| *T2} for large ||z|| (see the WKB ansatz and subharmonic comparison in
(Davies & Simon, 1984, App. B, esp. Lem. B.1-B.3)); combining yields the stated lower bound on
— log ¢0. ([l

Remark 4 Note that we use ultracontractivity properties of S which require growth of V to be at
least as ||z||>T¢,e > 0. The characterization of operator contractivity properties is fully given in
(Davies & Simon, |1984, Thm. 6.1) and does not allow for slower orders of growth. This restriction
on growth of V is encoded through condition 5 +1 < b < a.

Theorem 9 Let
V=3IVE|? —AE+28f, S=ULU'=-A+V.
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where UL f = PP f. Let (w,t) = (e %)) () and define the candidate value function

V/(,t) = = og s (. 35 (T — 1))

Assume the hypotheses of Theorem([8|for V. Finally, let us suppose that there exist 0 < m < M so
that
Yo

U=t
where ¢q is a ground state of Shrédinger operator S. Then, uniformly for all t € [0, T), there exist
constants C1,Cs > 0 and Cy, Cy € R such that, as ||x|| — oo,

m <

< M, Vz € RY, (63)

Cille] 3+ Cy < V'(@,t) + B(x) < Cyllz] 571 + Cu. (64)
Proof. Recall that the ground state of £ is an eigenfunction ¢y = U !¢, where ¢ is a ground state

of Shrodinger operator S. Let us introduce the ground state transformed semigroup:

ekot

Pfog(x) = m

(e (p09))(z)

Thus, we have a representation

blat) = (e o) (x) = € gy () PP (“’) ()

®o

It is known, that semigroup P/°g(x) is Markov, see [Kaleta et al.|(2018). Using the fact that P°g(x)
is Markov and (63)) we have the two-sided bound for all ¢ € [0; 7]

e g (z)m < (e o) (x) < e Mhpg(z) M

which leads to a bound

/\0 5 —5 "log M — B 'log ¢o — E(z) < V'(2,t)

>\0

252 *57110gm*57110g¢0*E($) (65)

Applying growth bounds on ground state of Shrodinger operator from Theorem §]leads to the desired
bound.

Remark 5 Note that definition of C,, (61) requires a growth bound on coordinate x uniformly for
all t € [0;T]. Unfortunately, analysis based purely on spectral properties of operator leads to
non-uniform growth bounds depending on t, which blow up when t — 0 for e~** (for example,
note that constants in (Davies & Simonl 1984, Thm. 3.2) depend on time). For this reason and for
simplicity we introduced assumption (63) on boundary conditions.

Relationship between semigroup-based and viscosity solution Finalising everything in this
section, we formulate the following result which addresses the questions raised above.

Theorem 10 Consider HIB equation (). Let V = B||VE||> — AE + 28f. Assume the following:
* b(z) = —VE(z) satisfies (23) and 24), and o = 1.

* V satisfies Assumption|(A2)] Moreover, there exist Cy,C5 > 0 and Cy, Cy € R such that,
Sor all x with ||z|| large,

Callz||® +Cy < V(z) < Ciflz||® + Co, where §+1<b<a. (66)

e Let ¢g be the ground state of operator S = —A + V. Assume g € C, and there exist
0 <m < M so that
exp(—fyg)

= P < M, VzeR? 67
= exp(BE(@))go — TSR ©7

22



Under review as a conference paper at ICLR 2026

Then there exists 0 < 7 < T such that function V'(x,t) = —B~1log(x, 2ﬁ( t)), where

Y(x,t) = (e o) (x) and L and 1y are from (8, is a unique continuous viscosity solution of (6)
on R x [r; T in the class C, /2+1. Moreover; it coincides with value function V (@) on R% x [r;T).

Proof. Under Assumption [(A2)| Theorem [6|holds. Theorem [6]ensures that operators S and £ have
some good properties and ground state ¢ is positive.

Under the stated assumptions Theorem [/ and Theorem [J]hold. Under growth assumptions and
(66) Theorem@ gives us that V' € C, /241 € C, which has to be the unique viscosity solution in C,
given by Theoremon R x [7; T, which coincides with value function V (§) on R? x [; 7). O

Remark 6 Note that assumption (€7)) is realistic under rapid growth of V, taking in account growth
bounds on the ground state (62) and b(z) = VE(z) in 24), and does not contradict g € C,.

C LoOSS FUNCTIONS

C.1 EXISTING METHODS FOR SHORT-HORIZON SOC

Grid-based solvers In low dimensions (d < 3), classical techniques for numerically solving PDEs
can be used. These include finite difference (Bonnans et al.,|2004) and finite element methods (Jensen
& Smears) [2013; [Ern & Guermond, 2004 Brenner & Scottl [2008)), as well as semi-Langrangian
schemes (Calzola et al.,[2023}; |Carlini et al., |2020) and multi-level Picard iteration (E et al., 2021).

FBSDE solvers In another line of work, the SOC problem is transformed into a pair of forward-
backward SDEs (FBSDEs). These are solved through dynamic programming (Gobet et al., 2005
Longstaff & Schwartz, 2001)) or deep learning methods which parametrize the solution to the FBSDE
using a neural network (Han et al.|[2018; [E et al., 2017; |/Andersson et al., [2023).

IDO methods In recent years, many methods have been proposed which parametrize the control wug
directly, and optimize it by rolling out simulations of the system (3)) under the current control. Authors
of Niisken & Richter| (2021) coined the term iterative diffusion optimization (IDO), arguing that many
of these methods can be viewed from a common perspective given in Algorithm 2] (Appendix E)). This
class of algorithms contains state-of-the art methods such as SOCM and adjoint matching (Holdijk
et al.,[2023; IDomingo-Enrich et al.} 2024a). We describe the most commonly used loss functions in

C.2 EXTENDING TO MULTIPLE EIGENFUNCTIONS

PINN loss The most common way to extend the PINN loss (T3] to multiple eigenfunctions is to
define

k
RIE’INN Z 1 £[¢: )‘iﬁbini +an0rm(|‘¢i||§ - 1)2) + Qorth Z<¢l7¢j>i (68)
i=0 i
for (tporm, Qorth, > 0. Here we have denoted ¢ : R — R**+1. The main difference is the addition
of the orthogonal regularization term, which both ensures that the same eigenfunction is not learned
twice, and attempts to speed up learning by enforcing the known property that eigenfunctions with
different eigenvalues are orthogonal w.r.t. the inner product (-, -),,.

Variational loss A similar idea is used to generalize the variational loss (I7). The following result
shows that the variational principle (I6) can be extended to multiple eigenfunctions by imposing
orthogonality.

Theorem 11 (Zhang et al.l 2022] Theorem 1) Let k € N, and let £ be a self-adjoint operator with
discrete spectrum which admits an orthonormal basis of eigenfunctions, and whose eigenvalues are
bounded below. Furthermore, let wg > ... > w; > 0 be real numbers. Then it holds that

k k
;w fov-lgckEH;w <f f> ( )

23



Under review as a conference paper at ICLR 2026

where the infimum is taken over all (f;)*_, C H such that
VZ,] S {0,,]€} . <f27f]> :52] (70)
Proof. The proof of this result is given in/Zhang et al.| (2022). (|

Based on this result, the following generalization of the variational loss is proposed in|Zhang et al.
(2022):

k
2
RYar(®) = > (61, L) + a|[Ey [60"] — I||. (71)
i=0
where we have written || - ||z for the Frobenius norm and o > 0. This loss was also studied in

Cabannes et al.| (2023)), where it was noted that the minimizers of the variational loss (17)-(71) are
not obtained at the eigenfunctions. Instead, the following characterization of the minimizers of (71)
was obtained.

Lemma 5 (Cabannes et al.l [2023| Lemma 2) Suppose that H = L?(p). Then it holds that
. k 7 T 7 )\i
argmin Ry, () =Ue |UU" =1,¢; = 1—— ] & (72)
Yoo thr €M 2a)

where (¢;, A;) denotes the orthonormal eigensystem of L.

C.3 ESTIMATING \;

The main advantage of the variational loss (I7), is that it does not require the eigenvalues of £
to be available. However, Lemma shows that the minimizers of R¥,, do not coincide exactly with
the eigenfunctions of £, so we cannot naively compute (¢, L¢),, to obtain the eigenvalues. Instead,
the following lemma shows how to obtain the eigenvalues and eigenfunctions from an element in the
minimizing set (72).

Lemma 6 Suppose it holds that 1) = U(;S, where UUT = I and ¢~>i = (1 — %)@' for each i, and

o> )‘7’“ Then the first k + 1 eigenfunctions and eigenvalues are given by

6=DV2UTy, A= %(1 ~Dy) (73)

where UDUT = E, [pT] is the diagonalization of the second moment matrix of .
Proof. By definition of v, we have
Eulyy"] = UE,[¢¢"UT (74)
=U (1 — 21QA> Ut (75)

where A = diag(\;) and we have used the orthonormality property of the eigenfunctions. From this,
we obtain that 5

oA U= UDY?¢ (76)

which concludes the proof. U

D=1-

In light of this result, we can estimate the second moment matrix E,,[1/1)7], apply a diagonalization
algorithm, and obtain the eigenfunctions and eigenvalues using (73).

C.4 EMPIRICAL LOSS & SAMPLING

Rewriting variational loss Recalling the equation (@2,

(o, LY, = (Veo, V), + 282, f), (77)

we see that it is possible to evaluate inner products of the form (p, £1)),, by only evaluating ¢, 1) and
its derivatives. This avoids the expensive computation of the second order derivatives of the neural
network, making the variational losses less memory-intensive than the other loss functions, which
requires explicit computation of L.

24



Under review as a conference paper at ICLR 2026

Estimation of inner products All of the loss functions discussed for learning eigenfunctions
contain inner products of the form (v, ¢),. To obtain an empirical loss, these quantities most be
approximated. When p is a density, this is done using a Monte Carlo estimate

(o, ) = /W dp =Ey )] =~ % > eX)v(Xi), X~ p. (78)
1=1

Since pu(x) < exp(—2B8E(x)), we can employ Markov Chain Monte Carlo (MCMC) techniques in
order to obtain the samples (X;) (Brooks et al.,[2011). In particular, when training the eigenfunctions,
we can store m samples in memory and apply some number of MCMC steps in each iteration to
update these samples. Alternatively, one can pre-sample a large dataset of samples from .

Non-confining energy. In general, 1 may not be a finite measure, for instance when we have a
repulsive LQR (E = —3||||?). In this case, the inner products can no longer be estimated directly
from samples, but may still be computed by using importance sampling techniques (Liu,|2004; Tokdar
& Kassl [2010). In the case where the measure defined through p(x) = exp(—28E(x)) is not finite
but i(x) = exp(28FE(x)) is, we can apply importance sampling with i, so that the inner products
are obtained as

(0 )y = / o=@ 4z = B, [p7] (79)

where we have defined ¢ = e 2PEp and ¢p) = e~28F4). For stable training, it is then advisable to
parametrize ¢ := ¢e~27F instead of ¢.

C.5 LOGARITHMIC REGULARIZATION

As discussed in the main text, the PINN and relative eigenfunction losses (I3)-(20) have the form

R($) = Rinain(9) + aRreq(8),  Rireg(9) = (0]} — 1) (80)

for some e > 0. We observe in our experiments that this regularizer is sometimes not strong enough,
and the network may still converge to ¢ = 0. For this reason, we instead use a logarithmic regularizer

Rreg(¢) = (log [|6],)* )

The behaviour is exactly the same as before for ||¢||, &~ 1, since log(1 + z) = z + O(z?) as z — 0,
but this regularizer avoids the convergence to ¢ = 0.

C.6 FBSDE Loss

We briefly discuss the Robust FBSDE loss for stochastic optimal control introduced in|Andersson
et al| (2023). The main idea is that the solution to the HIB equation (6) can be written down as a pair
of SDEs, as the following lemma illustrates.

Lemma 7 Suppose o = 1. Then it holds that the solution to the pair of FBSDEs
dX; = (D(Xy,t) — Zy)dt + VAW, Xo ~ po, (82)

1
dY; = (—f(Xt,t) — 2Z1t||2> dt + \A(Zdet), Yr = g(X7) (83)
is given by Zy = 0.V (X, t) and Yy = V (X4, t).

This pair of SDEs can be transformed in a variational formulation which is amenable to deep learning,
as described in detail in|/Andersson et al.|(2023)). Using the Markov property of the FBSDE, one can
show that Z; = ((t, X;) for some function ¢ : [0,7] x R? — R%, and that the FBSDE problem can
be reformulated as the following variational problem:

minicmize U, (¢) = E[Y§] + o {|Y7€ — g(X%)ﬂ ,  where
T T

VS = 9(xg) + Jy (FOXE, 0+ 1ZE12) dt — [ (2F . dw)

X§ = Xo+ ) (b(s, X$) — Z8) dt + [ AW,

th :E[yg]_f(: (f(XSCaS)J'_%HZsClF) dS—i—fJ<Z§,dWS>, ZtC :C(tvxtg)’ te [O’T](84)
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Parametrizing ¢ as a neural network, we can then simulate the stochastic processes in (84)) and define
the loss function as

Rrpspe(u; X*) = E[VS] + oF [|YT< - g(Xg)@ . with¢ = —u (85)

For more details we refer to the relevant work |Andersson et al.|(2023)).

C.7 1IDO LOSS FUNCTIONS

The IDO algorithm described in Algorithm 2] is rather general, and a large number of
algorithms can be obtained by specifying different loss functions. For a detailed discussion of the
various loss functions and the relations between the resulting algorithms, we refer to Domingo-Enrich
(2024); Domingo-Enrich et al.|(2024b). Here, we go over the loss functions that were used for the
experiments in this paper.

Adjoint loss The most straightforward choice of loss is to simply use the objective of the control,
and define

u 4 1 u 2 u u
Rl ") = [ (GlaCee, ol + £ ) e+ o(xp) 56)

This loss is also called the relative entropy loss. When converting this to an empirical loss, there
are two options. The discrete adjoint method consists of first discretizing the objective and then
differentiating w.r.t. the parameters. However, this requires storing the numerical solver in memory
and can hence be quite memory-intensive.

The continuous adjoint method instead analytically computes derivatives w.r.t. the state space. To
this end, define the adjoint state as

T
a(t, X";u) == Vx, (/t (QIIU(XZ”, t)I* + f(Xt“’)> dt’ + Q(X%)> ; (87)

where X* solves (3). Then the dynamics of a can be computed as

dag = (Vxu (b(XP,8) + o (Ou(XP, 1) at; X, u)dt
1
+ <ng (f(X) + 2||7~L(Xt“7t)ll2> dt, (88)
a(T; X", u) = Vg(X7). (89)

The path of a is obtained by solving the above equations backwards in time given a trajectory (X}")
and control u. Finally, the derivative of the relative entropy loss (86) is then computed as

N N A - AN
agn_i/o (X ) dt—i-/o (ae) o(t)a(t; XE,@)dt, (90

where the notation 4 means that we do stop gradients w.r.t. § from flowing through these values.
Both the discrete and continuous adjoint method have been shown to work well in practice (Niisken
& Richter, 2021; Bertsekas & Shrevel [1996; [Domingo-Enrich, [2024). However, their training can be
unstable due to the non-convexity of the problem.

Variance and log-variance For the second class of loss functions, let (X}') denote the solution to
(3), with u replaced by v. Then we can define

= | () (X2, s / L (X 5)ds- / DX, ) Wk / e, s)IPds. ©1)
The varianceoand log-variance lossoare then defined az :

Ruvar (1) = Var(eVr " —9X1)), (92)
Riog—var (1) = Var(Yz" — g(Xp)). (93)

It can be shown that these losses are minimized when v = u*, irrespective of the choice of v. In
Niisken & Richter| (2021)), it was shown that these loss functions are closely connected to the FBSDE
formulation of the SOC problem.
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SOCM The Stochastic Optimal Control Matching (SOCM) loss, introduced in Domingo-Enrich
et al.| (2024b), is one of the most recently introduced IDO losses. It is described in the following
theorem, where we adapt the notation A = 37 !:

Theorem 12 (Domingo-Enrich et al.||2024b| Theorem 1) Foreach t € [0, T), let M, : [t,T] — R4*4
be an arbitrary matrix-valued differentiable function such that M, (t) = Id. Let v € U be an arbitrary
control. Let Rsocn : L2(R? x [0, T]; RY) x L2(]0, T)?; R?*4) — R be the loss function defined as

1

T
Rsoon(u, M) i= E f/ (X2, 1) — w(t, v, X°, W, M) dt x a(v, X°, )|, (94)
0

where X" is the process controlled by v (i.e., dX} = (b(X},t) + o(t)v(X},t)) dt + VAo (t)dW;
and X{§ ~ po), and

T
U)(t, v, va VV7 Mt) = U(t)T < - /t Mt(s)vwf(X:) S)dS - Mt(T)Vg(X%)
T
[ OB~ 00(6) ()T ()X s)ds

T
LAL2 / (My(5)Vab(X?, 8) — D, My(s)) (6= 1) (s) dWs)’

t
T
a(v, X", B) = exp (— A / FOXP )t — A~ g(X4)
0

T -1 T
S [ .awy - 2 | |v<Xf,t>||2dt>- ©95)
0 0

Lsocm has a unique optimum (u*, M*), where u* is the optimal control.

The proof hinges on the path integral representation described in [Kappen| (2005a)) and using a
reparametrization trick to compute its gradients. We refer the reader to the relevant work Domingo-+
Enrich et al.| (2024b) for more details. The reason why this method outperforms other IDO losses is
as follows: the loss can be seen as minimizing the discrepancy between u and a target vector
field w. The addition of the parametrized matrix M allows the variance of this weight to be reduced,
making it easier to learn. The downside of this method is that the variance of the importance weight o
can blow up in more complex settings or with poor initialization, with the method failing to converge
as a result.

Adjoint Matching The most recently introduced IDO loss, adjoint matching, was proposed in
Domingo-Enrich et al.|(2024a), and was proposed in the context of finetuning diffusion models. It is
based on two observations. Firstly, one can write down a regression objective that does not have an
importance weighting o by using the adjoint state a defined earlier.

Lemma 8 (Domingo-Enrich et al.||2024a, Proposition 2) Define the basic adjoint matching objective
as

T
R Basio—d—staten (s X) = % / (X0, t) + () a(t; X*, @) |2dt, @ = stopgrad(u).
' (96)
where & = stopgrad(u) means that the gradients of . w.r.t. the parameters 0 of the control u are
artificially set to zero. Then the gradient of this loss w.r.t. 0 is equal to (90), the gradient of the loss in
the continuous adjoint method. Consequently, the only critical point of E xu.pu[RBasic— Adj— Match)
is the optimal control u*.

Secondly, it is observed that some terms in the SDE for the adjoint state (88) have expectation zero
under the trajectories of the optimal control. Indeed, it holds by definition of the value function and
adjoint state that

VV (x,t) = Ela(t, X" ,u*) | X; = ] (97)
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and hence, since u* = —oVV, we get
Exoper [u(2,8)" Vou* (z,t) + alt, X, u*) T o(t)u* (z,t) | X, = 2] =0 (98)

This motivates dropping the terms with expectation zero in (88)), yielding the loss function

T

R adj—Maten(u; X) = %/ |u(Xs,t) + o(t)a(t; X, w)||*dt, @ = stopgrad(u), (99)
0

where a(t: X) = ~(a(t: X)"Vab(Xe, 1) + V(X0 1), (100)

a(T, X) = Vag(X1). (101)

The value a is called the lean adjoint state. The claimed benefit of this method is that the resulting
loss is a simple least-squares regression objective with no importance weighting, allowing it to avoid
the problem of high variance importance weights. We refer to the original work [Domingo-Enrich
et al.| (2024a) for a more in-depth discussion and proofs related to the adjoint matching loss.

D ALGORITHMS

We give an overview of the algorithm used for eigenfunction learning in Algorithm[I] and for the
IDO method in Algorithm 2}

Algorithm 1 Deep learning for eigenfunctions

Parametrize the eigenfunctions (47*), choose loss functions (R;).
Fix a batch size m, number of iterations [V, regularization o > 0, learning rate n > 0.
Generate m samples (X;)" ,; from g, for instance using an MCMC scheme.
forn=0,...,N —1do

(optional) Update the samples (X;)™ ; using a sampling algorithm.

Compute an m-sample Monte-Carlo estimate R;(¢?") of the loss R;(¢?7) .

Compute the gradients Vgﬂfl\i (qﬁfi) for the current parameters 6;, and update 6; using Adam.
end for
Estimate the eigenvalues \; from the learned functions (bfi

return eigenfunction estimates (¢."), eigenvalue estimates ()\;).

R AN A

_.
e

Algorithm 2 Iterative Diffusion Optimization (IDO)

1: Parametrize the control ug € U, 0 € RP, and choose a loss function R.

2: Fix a batch size m, number of iterations /N, number of timesteps K, learning rate > 0.

3: fori=0,...,N—1do
Simulate m trajectories of (3]) with control © = ug using a K -step discretization scheme.
Compute an m-sample Monte-Carlo estimate R (ug) of the loss R (ug).

4
5
6:  Compute the gradients VR (uy) for the current parameters 6 and update using Adam.
7
8

: end for
: return the learned control vy ~ u*.
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E EXPERIMENTAL DETAILS

E.1 SETTING CONFIGURATIONS
To evaluate the learned controls, we will use three different metrics:

1. The control objective is the value we are trying to minimize,

E

r 1 u 2 u u
[ (Gexeore + sox) ng(XT)] - (102)

It can be estimated by simulating trajectories of (3). Unless mentioned otherwise, we
estimate it using 65536 trajectories and report the standard deviation of the estimate.

2. The control L? error at time t is given by

EINP}f* [”U(.Z‘,t) - U*('r7t>||2] ) (103)

where P denotes the density over R? induced by the trajectory (3) under the optimal
control at time ¢.

3. The average control L? error is the above quantity averaged over the entire trajectory,

Etjo,r By pur [llu(z,t) — u*(x,t)\ﬂ . (104)

These are also the metrics reported in previous works Domingo-Enrich et al.| (2024b)); [Domingo-
Enrich| (2024); Niisken & Richter|(2021). The L? error is introduced because, after the control « is
sufficiently close to the optimal control u*, the expectation (I02) requires increasingly more Monte
Carlo samples to distinguish u from the optimal control. In this case the L? error is a more precise
metric for determining how close a given control is to the optimal control.

For all experiments, we trained the neural networks involved using Adam with learning rate = 10~%,
For the IDO methods, we use a batch size of m = 64. For the eigenfunction learning, we sample
from p using the Metropolis-Adjusted Langevin Algorithm (Roberts & Rosenthall [1998). Unless
mentioned otherwise, we sample m = 65536 samples, updating these in every iteration with 100
MCMC steps with a timestep size of At = 0.01 after a warm-up phase of 1000 steps. For more
details, we refer to the code in the supplementary material, which contains a description of all
hyperparameters used.

QUADRATIC The first setting we consider has

1
E(z) = ixTAnm f(x)=2"Pz, g(z)=2"7Qu, (105)
where A € R¥*? is symmetric, Q € R?*9 is positive definite and P € R%*?. This type of control
problem is more widely known as the linear quadratic regulator. The optimal control is given by
u*(x,t) = —2F;x, where F; solves the Riccati equation (see (van Handel, 2007, Theorem 6.5.1))
dF;

T ATF, - F,A-2FRFT +P=0, Fr=Q. (106)

We consider three different configurations:
* (ISOTROPIC) Wesetd =20, A=I1,P=1,Q =05I1,8=1,T =4, zog ~ N(0,0.5]),
taking K = 200 time discretization steps for the simulation of the SDE.
* (REPULSIVE) Exactly the same as isotropic, but with A = —1.

* (ANISOTROPIC) We set d = 20, A = diag(e®), P = Udiag(e? ) UL, Q = 0.5I, 8 = 1,
T =4, 39 ~ N(0,0.5]), taking K = 200 time discretization steps for the simulation of
the SDE. The values a;, p; are sampled i.i.d. from A (0, 1), and the matrix U is a random
orthogonal matrix sampled using scipy.stats.ortho_group (Virtanen et al.,2020)
at the start of the simulation.
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DOUBLE WELL The second setting we consider is the d-dimensional double well defined through

d
B(z)=> ria?—17% fx)=>Y w}-1)?% gx)=0. (107)
i=1

i=1

where d = 10, and k; = 5,1; = 3fori = 1,2,3 and k; = v; = 1 for ¢ > 4. In addition, we again set
T =4, 8 =1and use K = 400 discretization steps. This problem is similar to the one considered in
[Niisken & Richter| (2021) and [Domingo-Enrich et al.| (2024b), the difference being that we consider
a longer horizon (I" = 4 instead of T' = 1) and consider a nonzero running cost in order to have
nontrivial long-term behaviour. This problem is considered a highly nontrivial benchmark problem,
since the double well in each dimension creates a total of 2¢ = 1024 local minima, making this
setting highly multimodal. The ground truth is not available in closed form, but can be approximated
efficiently by noticing that the energy and running cost are a sum of one-dimensional terms, and
hence we can compute the solution by solving d one-dimensional problems using a classical solver.

RING The final setting considers the setup
E(x) = o ([lal* - 2R?) [l]?,  f(z) =221, g(z) =0, (108)

where o = 1, R = 5/+/2. This energy is nonconvex and has its minimizers lying on the hypersphere
with radius R. This setting serves to highlight the difference between the relative eigenfunction
loss (20) and the other eigenfunction losses, and for visualization purposes will be done in d = 2.
In addition, we set T = 5,8 = 1 and xy = (R,0). The energy landscape and running cost are
visualized in[Figure 6] The goal of the controller is essentially to guide the system to the left hand
side of the zy-plane while being constrained by the potential to stay close to the circle of radius R.
This setting requires a smaller timestep for stable simulation, we take K = 500.

Ring energy Running cost f

Running cost

|
[y
©

u

-3.6

-5.4

=7.2

Figure 6: Energy function (left) and running cost (right) for the RING setting in d = 2.

E.2 MODEL ARCHITECTURE AND TRAINING

Architecture For the IDO methods, we use the exact same architecture as in|Domingo-Enrich et al.|
(2024b). They argue that the control can be viewed as the analog of a score function in diffusion
models, and hence they use a simplified U-Net architecture, where each of the up-/downsampling
steps is a fully connected layer with ReLU activations. As in their work, we use three downsampling
and upsampling steps, with widths 256, 128 and 64.

For the eigenfunction models, we use the same architecture, but replace the ReLLU activation with
the GELU activation function z — x®(z), where ® is the cdf of a standard normal distribution
(Hendrycks & Gimpell, 2023). This is done because the eigenfunction losses require evaluating the
derivatives of the network w.r.t. the inputs, hence requiring a smoother activation function.

Training For the eigenfunction method, we train using the following procedure:
1. Start training the top eigenfunction using the deep Ritz loss (T7). Every 100 iterations,

we estimate the eigenvalue \g, and continue training until the variance of these estimates
(computed with EMA 0.5) is below 10~* and we have reached at least 5000 iterations.

30



Under review as a conference paper at ICLR 2026

Table 1: Iteration times by method and loss

Experiment Iteration time (s)
Method Loss
COMBINED Adjoint Matching 0.332
Log variance 0.328
Relative entropy 0.419
SOCM 0.432
EIGF Deep ritz loss 0.227
PINN 0.662
Relative loss 0.662
Variational loss 0.228
FBSDE FBSDE 0.443
IDO Adjoint Matching 0.230
Log variance 0.212
Relative entropy 0.413
SOCM 0.799

2. Fix )Ag, and continue training the top eigenfunction using a loss function of choice among
(15),(17), 20). Start training the excited state using the variational loss Ry, in (71)) with
k = 1 and regularization parameter o = |Ag|.

For the combined methods, we first train the eigenfunction and eigenvalues using the method
above with R ge; for 80 000 iterations, and then start training with an IDO loss using the control
parametrization (22)). We resample the trajectories in [0, 7] (which only use the eigenfunction
control) every L = 100 iterations in order to have a diverse set of starting positions at 7" = T¢;.

E.3 COMPUTATIONAL COST

[Table 1| shows the computation cost per iteration for the different algorithms for the QUADRATIC
(REPULSIVE) setting, measured in seconds/iteration when ran in isolation on a single GPU. All
experiments where carried out on an NVIDIA H100 NV GPU.

E.4 FURTHER DETAILS ON THE RING SETTING

The RING setting serves as an illustrative example the difference between the "absolute’ eigenfunction
losses and our relative eigenfunction loss. As shown in the relative loss obtains a drastically
lower control objective than the absolute losses. To further understand this, consider the shape of
the learned eigenfunctions for the different losses, shown in[Figure 7] From the top row, it is clear
that the learned eigenfunctions for the different methods are all very close in terms of the distance
induced by || - ||,. However, while the learned eigenfunctions look similar in L? (1), the logarithm
of the learned eigenfunctions varies drastically, and hence the resulting control V log ¢ (shown in
differs greatly - the control learned by the relative loss correctly guides the system along
the circle in the negative x direction, while the other controls are not learned correctly for x > 0. The
name ’relative loss’ comes from the analogy with absolute and relative errors,

v —z*| <€ s ’%71‘ <e <= |logz —logz*| < e+ O(?). (109)

In essence, since the resulting control is given by V log ¢, the quantity of interest is the relative error
of the learned eigenfunction, while existing methods are designed to minimize the absolute error.

E.5 DETAILS ON[FIGURE ]I
We give here some details on the motivating plot shown in[Figure | The value shown is the control

L? error of each of the different methods in the QUADRATIC (REPULSIVE) setting. Each algorithm
was run for 30k iterations, and the values reported are the mean and 5%-95% quantiles over the last
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Deep Ritz loss — eigenfunction Variational loss — eigenfunction PINN loss — eigenfunction Relative loss (ours) — eigenfunction

Figure 7: Learned eigenfunctions (top row) and their logarithms (bottom row) for the RING setting
with different loss functions.
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Figure 8: L? error of V log ¢ for different eigenfunctions (left), average control L? error for different
methods (middle) and control L? error over time (right). Legend is the same as in and

1000 iterations. The EIGF+IDO (OURS) label refers to the combined method, where we first train the
eigenfunctions until convergence and then train using the relative entropy loss.

E.6 ADDITIONAL EXPERIMENT: REPULSIVE POTENTIAL

shows the same plots discussed in the main text for the QUADRATIC (REPULSIVE) setting,

where we obtain similar results. The reported eigenfunction error is measured in L? (i) instead of
L*(p).

E.7 CONTROL OBJECTIVES

As mentioned before, the control objective is the final metric for evaluating the performance of the
different algorithms, but due to variance of the Monte Carlo estimator the difference between methods
can be quite small. We report the control objectives for all experiments at convergence in[Table 2] and
The value reported is the mean value of the control objective over N = 65536 simulations,

and the error is the standard deviation of these estimates, divided by v/ V.
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Table 2: Control objective for the different methods in the QUADRATIC (ISOTROPIC) and QUADRATIC
(REPULSIVE) settings. The SOCM method did not converge, and hence the dynamics diverge.

QUADRATIC (ISOTROPIC)

QUADRATIC (REPULSIVE)

Method Loss

IDO Relative entropy 32.7870 £ 0.014 112.5172 £ 0.051
Log variance 32.7850 £ 0.014 114.0552 + 0.053
SOCM 73.1062 + 0.062 nan =+ nan
Adjoint matching 32.7754 + 0.014 113.4554 + 0.052

COMBINED Relative entropy 32.7763 + 0.014 112.3444 + 0.050

(ours) Log variance 32.7740 £+ 0.014 150.0721 £ 0.12
SOCM 32.7717 £ 0.014 112.3960 + 0.050
Adjoint matching 32.7725 £ 0.014 114.7020 £ 0.055

FBSDE FBSDE 32.7979 £ 0.014 112.6393 £ 0.051

Table 3: Control objective for the different methods in the QUADRATIC (ANISOTROPIC) and DOUBLE

WELL settings.

Method

Loss

QUADRATIC (ANISOTROPIC)

DOUBLE WELL

IDO

Relative entropy
Log variance
SOCM

Adjoint matching

38.9967 + 0.022
31.3664 + 0.016
112.2728 + 0.18
31.3584 + 0.016

35.2688 = 0.010
32.8645 £+ 0.0094
41.7215 £ 0.013
34.8713 £ 0.010

COMBINED
(ours)

Relative entropy
Log variance
SOCM

Adjoint matching

31.3476 £ 0.016
32.5115 £ 0.047
31.3483 £ 0.016
31.3497 +£ 0.016

32.6130 £+ 0.0088
32.9080 £ 0.0088
32.4421 + 0.0088
32.5638 £+ 0.0088

FBSDE

FBSDE

31.3854 £ 0.016

35.1890 £ 0.011
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