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ABSTRACT

Causal discovery has witnessed significant progress over the past decades. Most algorithms
in causal discovery consider a single domain with a fixed distribution. However, it
is commonplace to encounter heterogeneous data (data from different domains with
distribution shifts). Applying existing methods on such heterogeneous data may lead to
spurious edges or incorrect directions in the learned graph. In this paper, we develop a
novel score-based approach for causal discovery from heterogeneous data. Specifically,
we propose a Multiple-Domain Score Search (MDSS) algorithm, which is guaranteed to
find the correct graph skeleton asymptotically. Furthermore, benefiting from distribution
shifts, MDSS enables the detection of more causal directions than previous algorithms
designed for single domain data. The proposed MDSS can be readily incorporated into
off-the-shelf search strategies, such as the greedy search and the policy-gradient-based
search. Theoretical analyses and extensive experiments on both synthetic and real data
demonstrate the efficacy of our method.

1 INTRODUCTION

Discovering causal relations among variables is a fundamental problem in various fields such as economics,
biology, drug testing, and commercial decision making. Because conducting randomized controlled trials
is usually expensive or even infeasible, discovering causal relations from observational data, i.e. causal
discovery (Pearl, 2000; Spirtes et al., 2000), has received much attention over the past few decades. Early
causal discovery algorithms can be roughly categorized into two types: constraint-based ones (e.g. PC
(Spirtes et al., 2000)) and score-based ones (e.g. GES (Chickering, 2002)). In general, these methods cannot
uniquely identify the causal graph but are guaranteed to output a Markov equivalence class. Since the
seminal work by Shimizu et al. (2006), several methods have been developed, achieving identifiability of the
whole causal structure by making use of constrained Functional Causal Models (FCMs), including the linear
non-Gaussian model (Shimizu et al., 2006), the nonlinear additive noise model (Hoyer et al., 2009), and the
post-nonlinear model (Zhang & Hyvärinen, 2009). Recently, Zheng et al. (2018) proposed a score-based
method that formulates the causal discovery problem as continuous optimization with a structural constraint
that ensures acyclicity. Based on the continuous structural constraint, several researchers further proposed to
model the causal relations by neural networks (NNs) (Lachapelle et al., 2019; Yu et al., 2019; Zheng et al.,
2019). Another recent work Zhu & Chen (2019) used reinforcement learning (RL) for causal discovery,
where the RL agent searches over the graph space and outputs a graph that fits the data best.

The above approaches are designed for data from a single domain with a fixed causal model, with the
limitation that many of the edge directions cannot be determined without strong functional constraints. In
addition, the sample size of data from one domain is usually not large enough to guarantee small statistical
estimation errors. One way to improve statistical reliability is to combine datasets from multiple domains,
such as P-value meta-analyses (Lee, 2015; Marot et al., 2009). The idea of combining multiple-domain
data is commonly seen in learning with mixture of Bayesion networks (Thiesson et al., 1998). While
mixture of Bayesion networks are usually used for density estimation, the purpose of causal analysis from
multiple-domain data is completely different, it aims at discovering the underlying causal graphs for all
domains. Regarding causal analysis from multiple-domain data, a challenge is the data heterogeneity
problem: the data distribution may vary across domains. For example, in fMRI hippocampus signal analysis,
the connection strength among different brain regions may change across different subjects (domains). Due
to the distribution shift, directly pooling the data from multiple domains may lead to spurious edges. To
tackle the issue, different ways have been investigated, including using sliding windows (Calhoun et al.,
2014), online change point detection (Adams & MacKay, 2007), online undirected graph learning (Talih
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& Hengartner, 2005), locally stationary structure tracker (Kummerfeld & Danks, 2013), and regime aware
learning (Bendtsen, 2016). However, these methods may suffer from high estimation variance due to sample
scarcity, large type II errors, and a large number of statistical tests. Huang et al. (2015) recovers causal
relations with changing modules by making use of certain types of smoothness of the change, while it does
not explicitly locate the changing causal modules. Other similar methods, including Xing et al. (2010); Song
et al. (2009), can be reduced to online parameter learning because the causal directions are given.

By utilizing the invariance property (Hoover, 1990; Tian & Pearl, 2001; Peters et al., 2016) and the more
general independent change mechanism (Pearl, 2000), recently, Ghassami et al. (2018) developed two
methods: identical boundaries (IB) and minimal changes (MC), for causal discovery from multi-domain
data. However, the proposed methods 1) assume causal sufficiency (i.e., all common causes of variables are
measured), which is usually not held in real circumstances, 2) are designed for linear systems only, 3) and
are not capable of identifying causal directions from more than ten domains. Huang et al. (2019) proposed
a more general approach called CD-NOD for both linear and nonlinear heterogeneous data, by extending
the PC algorithm to tackle the heterogeneity issue. However, inheriting the drawbacks of constraint-based
methods, CD-NOD involves a multiple testing problem and is time-consuming due to large number of
independence tests.

To overcome the limitations of existing works, we propose a Multiple-Domain Score Search (MDSS) method
for causal discovery from heterogeneous data, which enjoys the following properties. (1) To avoid spurious
edges when combing multi-domain data, MDSS searches over the space of augmented graphs, which
includes an additional domain index as a surrogate variable to characterize the distribution shift. (2) The
changing causal modules can be immediately identified from the recovered augmented graph. (3) Benefiting
from causal invariance and the independent change mechanism, MDSS uses a novel Multiple-Domain
Score (MDS) to help identify more causal directions beyond those in the Markov equivalence class from
distribution-shifted data. (4) MDSS can be readily incorporated into off-the-shelf search strategies and is
time-efficient and applicable to both linear and nonlinear data. (5) Theoretically, we show that MDSS is
guaranteed to find the correct graph skeleton asymptotically, and further identify more causal directions than
other traditional score-based and constraint-based algorithms. Empirical studies on both synthetic and real
data prove the efficacy of our method.

2 METHODOLOGY

In this section, we start from a brief introduction to causal discovery and distribution shifts (Section 2.1),
and then in Section 2.2 and 2.3, we introduce our proposed Multiple-Domain Score Search (MDSS). In
Section 2.2, MDSS starts with a predefined graph search algorithm to learn the skeleton of the causal graph,
with the linear Bayesian information criterion (BIC) score or nonlinear generalized score (GS (Huang et al.,
2018)) on the augmented causal system. Then in Section 2.3, MDSS further identifies causal directions
with Multiple-Domain Score (MDS) based on the identified skeleton of the graph from Section 2.2. Both
theoretically and empirically, we show that MDSS can identify more directions compared to algorithms that
are designed for i.i.d. or stationary data.

2.1 BACKGROUND IN CAUSAL DISCOVERY AND DISTRIBUTION SHIFTS

The basic causal discovery problem can be formulated as follows: Suppose there are d observable random
variables, i.e. V = (V1, ..., Vd). Each random variable satisfies the following generating process: Vi =
fi
(
PAi, ε

)
, where fi is a function to model the causal relation between Vi and its parents PAi, and εi is a

noise variable with non-zero variance. All the noise variables are independent of each other. The task of
causal discovery is to recover the causal adjacency matrix B given the observed data matrix X ∈ RT×d,
where Bij = 1 indicates that Vi is a parent of Vj , and T is the sample size.

We denote the underlying causal graph over V as G0. For each Vi, we call P (Vi|PAi) its causal module.
For a single domain, the joint probability can be factorized as P (V) =

∏d
i=1 P (Vi|PAi). Suppose there

are n domains with distribution shifts (i.e. P (V) changes across domains), which implies that some causal
modules change across domains. The changes may be caused by the variation of functional models, causal
strength, or noise variance. Furthermore, we have the following assumptions.

Assumption 1. The changes of causal modules can be represented as functions of domain index C, denoted
by g(C),
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Assumption 2. There is no confounder in each single dataset, but we allow the changes of different causal
modules being dependent.

Remark: If changes in several causal modules are dependent, it can be regarded as special "confounders"
that simultaneously affect these causal modules. As a consequence of such confounders, previous causal
discovery algorithms designed for i.i.d. or stationary data may output erroneous edges. See section 3.1 for an
illustration. Thus, causal discovery from multiple-domain data with distribution shifts (i.e. , heterogeneous
data) can be much more difficult than that from single-domain data.

2.2 SKELETON ESTIMATION ON AUGMENTED GRAPHS

With Assumptions 1 and 2, it is natural to consider g(C) as an extra variable in order to remove any
potential influence caused by these special confounders. We assume that there are L such confounders
(g1(C), ..., gL(C)). The causal relation between each observable variable Vi and its parents PAi can be
formalized with

Vi = fi
(
PAi,gi(C), θi(C), εi

)
, (1)

where gi(C) ⊆ {gl(C)}Ll=1 is the set of confounders that influence Vi, θi(C) are the effective parameters in
Vi’s causal module that are also assumed to be functions of C and are mutually independent for all variables.

Let G0 be the underlying causal graph over V. We denote the graph resulting from adding arrows gi(C)→
Vi and θi(C)→ Vi on G0 for each Vi in V as Gaug over V ∪ {gl(C)}Ll=1 ∪ {θi(C)}di=1. We call Gaug an
augmented graph (see Figure 1(d) as an example), which satisfies the following assumption.

Assumption 3. The joint distribution over V ∪ {gl(C)}Ll=1 ∪ {θi(C)}di=1 is Markov and faithful to Gaug .

To remove the potential influence from confounders and recover causal relations from multiple domains, one
way is to perform causal discovery algorithms on the augmented graph. While {gl(C)}Ll=1 and {θi(C)}di=1
are not directly observed, we take C as a surrogate variable (Huang et al., 2019) for them because C is
always available as a domain index. Given Assumptions 1, 2 and 3, one can apply any score-based method
over V∪{C} to recover the causal relations among variables V as if {gl(C)}Ll=1∪{θi(C)}di=1 were known.
For simplicity, we denote the graph over V ∪ {C} as augmented graph as well. Since C is the domain index,
P (C) follows a discrete uniform distribution. Correspondingly, the generating process of non-stationary
data can be considered as follows: First we generate random values from P (C), and then we generate data
points over V according to the SEM in Equation 1. Finally, generated data points are sorted in ascending
order according to the values of C (i.e., data points having the same value of C are regarded as belonging to
the same domain). In other words, we observe the distribution P (V|C), where P (V|C) may change across
different values of C, resulting in non-stationary data. Note that if we do not include C into the system
explicitly, samples of V are not i.i.d. However, after explicitly including the domain index C into the system,
P (V, C) is fixed, and thus the pooled data are i.i.d. samples from distribution P (V, C).

Before stating our main result, we first give the definitions of globally consistent scoring criterion and locally
consistent scoring criterion, which will be used in the paper.

Definition 1 (Globally Consistent Scoring Criterion). Let D be a dataset consisting of T i.i.d. samples
from some distribution P (·). LetH and G be any DAGs. A scoring criterion S is globally consistent if the
following two properties hold as T →∞:

1. IfH contains P and G does not contain P , then S(H,D) > S(G,D)1.

2. IfH and G both contain P , and G contains fewer parameters thanH, then S(H,D) < S(G,D).

Definition 2 (Locally Consistent Scoring Criterion). Let D be a dataset consisting of T i.i.d. samples from
some distribution P (·). Let G be any DAG, and let G′ be the DAG that results from adding the edge Vi → Vj
on G. A scoring criterion S(G, D) is locally consistent if the following two properties hold as T →∞:

1. If Vj 6⊥⊥ Vi|PAGj , then S(G′, D) > S(G, D).

2. If Vj ⊥⊥ Vi|PAGj , then S(G′, D) < S(G, D).
1Here, larger score means the corresponding graph is closer to the equivalent class of the true DAG, while the MDS

defined in Section 2.3 should be regarded as a type of "loss function" which needs to be minimized.
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It has been shown that the BIC score and the GS score are both globally and locally consistent (Chickering,
2002; Huang et al., 2018).

The procedure for skeleton estimation on augmented graphs is described in Algorithm 1. The predefined
graph search algorithms will be discussed in Section 2.4. Apart from the recovered skeleton over V, the
changing modules can be detected as well in Step 4 of Algorithm 1. It is important to note that we allow
causal relations to be either linear or nonlinear. If they are nonlinear, we apply GS as a score function.
When they are linear, although we can also use GS, we use linear BIC instead because it is less likely to be
overfitting for linear data and is computationally more efficient.

Algorithm 1 Skeleton Search on Augmented Graph
Input: n datasets, each has T observations, d variables and index C.
Output: skeleton S of Gaug’s subgraph G1 over V, and variables VC ∈ V that are connected with C.

1: Pool all datasets with an extra surrogate variable C to form a data matrix X ∈ RnT×(d+1).
2: Use the predefined graph search algorithm with BIC or GS plus acyclicity constraints to recover the

augmented graph. Eliminate any direction Vi → C in the graph with the prior that any variable Vi does
not affect domain index. This step leads to the recovered augmented graph Gaug .

3: Discard the index variable in Gaug to obtain the induced subgraph G1. Discard the directions in G1 and
output the skeleton S of G1.

4: Detect changing causal modules by inspecting Gaug recovered in Step 2, and output VC .

The validity of searching on augmented graph is guaranteed by Theorem 1.

Theorem 1. Let D be the pooling of all datasets, DC be the augmented dataset with the domain index as
an extra random variable. Let G0 be the underlying causal graph for the distribution of D over V, GC be
the underlying causal graph for the distribution of DC over V ∪ C. If we denote G′C as the graph after the
following modifications on GC: 1. adding any edges, 2. deleting any edges or 3. reversing any edges that
changes the conditional dependence relation of GC , then we have S(GC , DC) > S(G′C , DC), where S is
any globally consistent scoring criterion.

Proof of the theorem is given in Appendix A.1. Intuitively, this theorem means we will obtain an augmented
graph that is in the same Markov equivalence class as the true augmented graph if we maximize the score.

2.3 CAUSAL DIRECTION DETERMINATION BY MULTIPLE-DOMAIN-SCORE

For each variable Vk ∈ VC , we prove that it is possible to determine the directions of edges that connect to
Vk. We denote Vl as any variable that connects to Vk. There are two possible cases:

1) Vl /∈ VC . In this case, C − Vk − Vl forms an unshielded triple. It is intuitive to incorporate the prior
that C → Vk (i.e. change of domain leads to the distribution shift of Vk). There are two possible patterns
in this case: C → Vk → Vl and C → Vk ← Vl, which we denote as P and P ′ respectively. For P , the
causal mechanisms P (effect|cause) is invariant when P (cause) changes. For P ′, we have the invariance of
P (cause) when the causal mechanism P (effect|cause) changes, which is complementary to the invariance
of causal mechanisms. The direction between Vk and Vl can be determined as long as a globally consistent
score is used. To be specific, suppose P is the true causal pattern underlying the generative distribution, the
score of P will be larger than that of P ′ if the score function used is globally consistent and decomposable,
because compared with P , P ′ eliminates a conditional independence (C ⊥⊥ Vl|Vk) that actually holds in the
generative distribution. This causal direction determination is not achievable for algorithms designed for
stationary data from a single domain (because domain index cannot be used as an additional variable in this
case). To utilize this prior, we simply eliminate any direction Vi → C as described in Step 2 of Algorithm 1.
Figure 1(a) is a graphical illustration for this case.

2) Vl ∈ VC . In this case, both Vk and Vl are connected to C, which is much more difficult than case
1). We propose a novel multiple-domain score (MDS) that utilizes the property of independent changes of
causal modules to determine causal directions based on the causal skeleton derived from Algorithm 1. To
specify the idea, we take the two-variable case as an example. Here we assume the true causal direction is
V1 → V2. Figure 1(b) stands for the case where θ1 and θ2 are independent. (We drop the notation of domain
index C for simplicity). In other words, P (V1; θ1) and P (V2|V1; θ2) change independently. If the recovered
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direction is reverse (see Figure 1(c)), we factorize the joint distribution as

P (V1, V2; θ′1, θ
′
2) = P (V2; θ′2)P (V1|V2; θ′1) , (2)

where θ′1 and θ′2 are assumed to be sufficient for P (V2) and P (V1|V2) respectively. Since V1 ← V2 is not
the true direction, θ′1 and θ′2 are not independent, and they are determined jointly by θ1 and θ2. Based on
this point, the causal direction can be determined by comparing the dependence between θ1, θ2 and the
dependence between θ′1 and θ′2, and choose the direction with smaller dependence.

Vi

C

(a)

V1 V2

θ1(C) θ2(C)

(b)

V1 V2

θ′1(C) θ′2(C)

(c)

V1 V2

θ1(C) θ2(C)g(C)

(d)

Figure 1: (a) In skeleton estimation on augmented graph, we force the direction to be C→Vi if algorithm
finds a link between them. (b)(c) True causal graph for V1 and V2 and the graph with reversed causal
direction in the two-variable example. (c) A two-variable example where confounder exists.

For linear systems, the dependence can be described with covariance. θ1 and θ2 can be easily obtained
by regressing V1 and V2 on their parents respectively. We first perform the regression for each domain
then calculate the covariance between θ1(C) and θ2(C). When there are more than two variables that are
connected to C, we denote such set of variables as VC with cardinality m. For each variable V k

C ∈ VC and
its parents PAk

C ⊆ VC , we calculate the sum of the dependence between parameters of V k
C ’s causal module

and the parameters of the causal module of each variable in PAk
C . To incorporate the minimization of such

dependence into score-based method, we propose MDS for linear systems:

MDSlinear =
1

n

n∑
i=1

(d ln(Ti)− 2 ln(Li))+λ1I(G /∈ DAGs)+λ2h(A)+
λ3
m

m∑
k=1

|cov(θV k
C
, θPAk

C
)|, (3)

where n, d, Ti and Li represent the number of domains, the number of variables (here we assume this quantity
is the same for all domains), sample size, and the maximized log likelihood for domain i, respectively. λ1,
λ2 and λ3 are regularization coefficients. λ3 is fixed to 0.001 in our experiments, λ1 and λ2 are adjusted
dynamically while training (see Zhu & Chen (2019) for how λ1 and λ2 are adjusted). A is the weighted
adjacency matrix recovered by the algorithm. m is the number of nonstationary variables. cov(·) is the
covariance operator. The first term in Equation 3 is the average of BIC on n domains, the second and third
terms are acyclicity constraints proposed in Zhu & Chen (2019) to narrow down the search space to DAGs.
See Appendix A.2 for more details about the acyclicity constraints.

For nonlinear systems, θ cannot be calculated explicitly. In the two-variable case, the dependence between θ1
and θ2 can be characterized by the dependence between P (V1) and P (V2|V1) with the assumption that θ1 and
θ2 are sufficient for the corresponding distribution module. To calculate the dependence between P (V1) and
P (V2|V1), Huang et al. (2019) proposes to first use kernel embeddings of distributions P (V1) and P (V2|V1),
then measure their dependence with extended Hilbert Schmidt Independence Criterion (HSIC (Gretton et al.,
2008)) in Reproducing Kernel Hilbert Space (RKHS). When there are more than two variables that are
connected to C, for each variable V k

C ∈ VC and its parents PAk
C ∈ VC, we calculate the dependence

between P (PAk
C) and P (V k

C |PAk
C). We propose corresponding MDS for nonlinear systems by integrating

such dependence with GS:

MDSnonlinear =
1

n

n∑
i=1

(GSi) + λ1I(G /∈ DAGs) + λ2h(A) +
λ3
m

m∑
k=1

HSIC(µV k
C |PAk

C
, µPAk

C
), (4)

where GSi is the generalized score for domain i, µV k
C |PAk

C
and µPAk

C
are the kernel embeddings of distribu-

tions P (V k
C |PAk

C) and P (PAk
C) respectively. HSIC(·) is HSIC operator that measures the dependence of

two random variables. See Appendix A.3, A.4 and A.5 for brief descriptions of GS, kernel embedding of
distributions and HSIC respectively.
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Degeneration issue. If we apply search strategies over the entire space of graphs over V to optimize MDS,
the MDS penalty (corresponds to the fourth term in Equation 3 and 4) tends to eliminate any edges between
each V k

C and its parents because the dependence between θV k
C

and empty set (i.e. no parents for V k
C ) is 0.

We call this an degeneration issue. To tackle this issue, we optimize the MDS score based on the skeleton of
graph G1 from Algorithm 1. To be specific, we fix the skeleton S of G1 and apply search strategies over
the space defined by S to optimize the MDS score. In other words, MDS is optimized by only altering the
direction of each edge in S. With the solution to degeneration issue, we claim that the proposed MDS can
recover more correct directions compared with G1. This is supported by Theorem 2 and Theorem 3. See
Appendix A.6 and A.7 for proofs.

Let D be the pooling of n datasets with distribution shifts and G0 be the DAG underlying the distribution
of D. Let S be the skeleton of G0 and G1 (recall G1 is in the same equivalent class as G0, which means
they have the same skeleton). Let E1 be the set of edges that exist in both G0 and G1 but have different
directions in G0 and G1. Let E2 ∈ E1 be the set of edges whose left node (or variable) and right node are
both nonstationary. Let n1 and n2 be the cardinality of E1 and E2.

Theorem 2. For linear systems, let G∗ = arg min
G

MDSlinear(G,D), let E∗2 ∈ E2 be the set of edges

whose directions are correctly determined by G∗, let n∗ denote the cardinality of E∗2. Given E2 is not empty
and G1, G∗ have the same skeleton S, then G∗ is in the same equivalent class as G0 and n∗ = n2.

Theorem 3. For nonlinear systems, let G∗ = arg min
G

MDSnonlinear(G,D), let E∗2 ∈ E2 be the set of

edges whose directions are correctly determined by G∗, let n∗ denote the cardinality of E∗2. Given E2

is not empty and G1, G∗ have the same skeleton S, then G∗ is in the same equivalent class as G0 and
0 6 n∗ 6 n2.

Theorem 2 and 3 mainly state that under proper assumptions, the directions of some edges whose left
node and right are both nonstationary can be correctly determined by the proposed method.

Confounding case. When the confounder g(C) exists (e.g. Figure 1(d)), the above approach still works
if the influence from the confounder is not very strong for the following reason: for the correct direction, the
dependence of θ1 and θ2 would come from the confounder, while for the wrong direction, the dependence
would come from the confounder as well as the wrong direction.

2.4 GRAPH SEARCH STRATEGIES

The proposed MDSS can be readily incorporated into off-the-shelf search strategies. In this paper, we adopt
the policy-gradient-based search strategy (Zhu & Chen, 2019) to search for the optimal causal structure.
Compared with other search strategies such as greedy equivalence search (GES (Chickering, 2002)), max-min
hill climbing (Tsamardinos et al., 2006), direct search by regarding the weighted graph adjacency matrix as
parameters (Zheng et al., 2018; Yu et al., 2019; Lachapelle et al., 2019), the policy-gradient-based search
by a reinforcement learning (RL) agent with stochastic policy can determine automatically where to search
given the uncertainty information of the learned policy, which gets updated promptly by the stream of reward
signals (Zhu & Chen, 2019). The graph search strategy using RL is proven to be better than other search
strategies mentioned above empirically.

The idea of causal discovery with RL can be summarized as follows. The algorithm uses an encoder-decoder
neural network model to generate directed graphs from the observed data, which are then used to compute
rewards consisting of the predefined score function as well as some regularization terms for acyclicity. The
encoder-decoder model can be regarded as an "actor" that learns to generate "actions" (i.e., graph adjacency
matrices) in actor-critic algorithm, an algorithm commonly used in RL. The reward function can be regarded
as the "environment" that evaluates how good the "action" is (i.e., how good the produced graph adjacency
matrix fits the observed data). The weights of the encoder-decoder model is trained by policy gradient and
stochastic optimization methods. The output of the algorithm is the graph that achieves the best reward
during the training process.

To integrate MDS with the policy-gradient-based search, we replace the predefined score function in the
original paper (where BIC is used) with MDS. Apart from policy-gradient-based search, we also experiment
with greedy equivalence search, details of which can be found in Appendix A.8.

The complete search procedure is described in Algorithm 2.
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Algorithm 2 Multiple-domain Score Search
Input n datasets each has T observations, d variables and index C.
Output causal graph G2 over V.

1: Execute Algorithm 1, input all the datasets and corresponding domain index, output skeleton S and
nonstationary variables VC .

2: Execute the predefined graph search algorithm with MDS in the space defined by S , output G2 over V.
3: Perform any pruning methods on G2 if needed.

3 EXPERIMENTS

In this section, we conduct empirical studies to show the effectiveness of our MDSS method combined with
the MDS score. We compare MDSS to some well-known causal discovery algorithms that are designed
for i.i.d. or stationary data from a single domain (GES (Chickering, 2002), PC (Spirtes et al., 2000),
LiNGAM (Shimizu et al., 2006), NO-TEARS (Zheng et al., 2018) and RL (Zhu & Chen, 2019)) as well as
algorithms designed for heterogeneous data from multiple domains (CD-NOD (Huang et al., 2019), MC and
IB (Ghassami et al., 2018)). The comparison is made on both synthetic and real data.

We evaluate the estimated graphs using three metrics: True Negative Rate (TNR), True Positive Rate (TPR),
and Structural Hamming Distance (SHD, i.e. , the smallest number of edge additions, deletions, and reversals
to convert the estimated graph into the true DAG). A lower SHD indicates a better estimate of the causal
graph. For algorithms that output completed partially directed acyclic graph (CPDAG), we randomly choose
a direction for those undirected edges.

3.1 A TOY EXAMPLE

We use a synthetic toy example to illustrate the influence of confounders g(C) for algorithms (we use RL)
designed for homogeneous data, and demonstrate that MDSS can avoid such influence and further identify
more directions. See Appendix A.9 for this example.

3.2 SYNTHETIC DATA

In this section, we conduct extensive experiments with MDSS and other causal discovery algorithms on linear
and nonlinear synthetic data. We denote n as the number of datasets, each has d variables and T observations.
We set n ∈ {6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, d ∈ {6, 7, 8}, T = 100 for both linear and
nonlinear data. We repeat each setting 20 times with DAGs randomly generated by Erdős–Rényi model (ER)
with parameter 0.3. Each variable Vi is chosen as nonstationary with probability 0.6. Similar to Section 3.1,
linear data are generated using linear SEM Vi = wiPAi + bi + εi, we fix wi and εi across domains and vary
bi if Vi is chosen as nonstationary. Nonlinear data is generated using nonlinear SEM Vi = fi(PAi) + bi + εi,
fi(·) is randomly picked from {sin(·), cos(·), sigmoid(·)}, and bi varies if Vi is nonstationary, εi stays
invariant.

We first consider the setting when n = 6 and d = 10. MDSS, MC, IB, and CD-NOD are tested on data from
all domains. GES, PC, LiNGAM, NO-TEARS, and RL are tested on data from all domains as well as data
from a single domain (the domain is randomly chosen). For GES, we use fast GES (FGES (Ramsey et al.,
2017)), which is an improved version of the original GES. The mean and standard deviation are reported in
Table 1 and 2. As we can see, MDSS outperforms other algorithms on both linear and nonlinear data. The
performances of PC, FGES, LiNGAM, NO-TEARS, and RL on pooling of all domain data are worse than
that on single domain data. Specifically, despite the minor increase in TPR, their TNR decrease dramatically
when data from all domains are used. This phenomenon further proves our proposition that distribution
shifts will introduce spurious edges if not properly dealt with.

We further compare the performance of MDSS, IB, MC and CD-NOD by varying d and n. The results
are reported in Figure 2. The black curves in figures of row 2 and row 3 are shorter than others because
CD-NOD takes too much time to give any result when d > 6 and n > 15. According to the results, MDSS
outperforms the others in most cases.

To demonstrate that the proposed MDS contributes to the performance, we conduct some ablation studies.
To be specific, we keep the directions in step 3 of Algorithm 1 and output G1 (Algorithm 2, or MDS search,
is not executed). We use the same experimental setting as Table 1. The results (TPR, TNR and SHD) are
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Table 1: Empirical results for MDSS, MC, IB and CD-NOD on linear and nonlinear data.
MDSS MC IB CD-NOD

Linear
TPR 0.98±0.08 0.51±0.37 0.40±0.20 0.60±0.25
TNR 0.90±0.11 0.65±0.20 0.55±0.17 0.92±0.09
SHD 1.25±1.26 4.35±2.35 5.45±1.56 1.70±1.19

Nonlinear
TPR 0.65±0.17 0.18±0.18 0.23±0.19 0.65±0.30
TNR 0.80±0.15 0.78±0.11 0.82±0.09 0.64±0.14
SHD 2.30±1.39 5.20±1.25 4.65±1.31 2.60±1.20

Table 2: Empirical results for PC, FGES, LiNGAM, NO-TEARS and RL on linear and nonlinear data.
PC FGES LiNGAM NO-TEARS RL

single pool single pool single pool single pool single pool

Linear
TPR 0.65±0.25 0.78±0.21 0.70±0.29 0.85±0.17 0.23±0.21 0.20±0.22 0.68±0.18 0.73±0.13 0.81±0.11 0.87±0.10
TNR 0.48±0.20 0.28±0.42 0.44±0.32 0.47±0.22 0.69±0.06 0.35±0.22 0.71±0.10 0.60±0.13 0.87±0.09 0.37±0.22
SHD 6.00±2.00 6.60±2.69 5.60±2.73 5.10±1.51 3.40±0.66 7.40±2.42 4.20±1.21 4.95va1.45 1.50±1.16 7.50±1.24

Nonlinear
TPR 0.35±0.28 0.53±0.31 0.35±0.32 0.48±0.28 0.13±0.13 0.28±0.24 0.51±0.37 0.55±0.32 0.52±0.28 0.25±0.18
TNR 0.43±0.28 0.18±0.56 0.44±0.26 0.22±0.45 0.75±0.13 0.48±0.24 0.85±0.11 0.69±0.10 0.75±0.10 0.67±0.14
SHD 7.30±2.45 7.80±3.25 7.30±3.10 8.10±3.27 4.30±0.9 7.50±2.58 2.55±1.48 3.05±1.14 4.10±1.22 5.00±1.09
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Figure 2: Comparison of MDSS, MC, IB and CD-NOD when n and d vary.
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(a) MDSS. TPR: 0.57, TNR: 0.88, SHD: 3
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(b) MC, TPR: 0.29, TNR: 0.38, SHD: 9
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(c) IB. TPR: 0.29, TNR: 0.38, SHD: 7
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(d) CD-NOD. TPR: 0.43, TNR: 0.38, SHD: 8
Figure 3: Recovered graphs from MDSS, MC, IB and CD-NOD on hippocampus data.

0.58 ± 0.21, 0.92 ± 0.07 and 7.95 ± 4.51 for linear data, 0.32 ± 0.22, 0.58 ± 0.22 and 6.20 ± 0.26 for
nonlinear data. When compared with the results of MDSS in Table 1, it is obvious that MDS search identifies
more directions and boost the performance.

3.3 REAL DATA

We apply MDSS to fMRI hippocampus dataset (Poldrack et al., 2015). This dataset records signals from 6
separate brain regions: perirhinal cortex (PRC), parahippocampal cortex (PHC), entorhinal cortex (ERC),
subiculum (Sub), CA1, and CA3/Dentate Gyrus (DG) of a single person with resting states in 84 successive
days. The records for each day can be regarded as a domain. We select 10 of them. The results from MDSS,
MC, IB and CD-NOD are given in Figure 3. The directions of anatomical ground truth are: PHC→ ERC,
PRC → ERC, ERC → CA3/DG, CA3/DG → CA1, CA1 → Sub, Sub → ERC and ERC → CA1. See
Appendix A.10 for illustration of the ground true causal graph. As we can see, MDSS outperforms the
others.
4 CONCLUSIONS
This paper proposes a Multiple-Domain Score Search (MDSS) algorithm for causal discovery from heteroge-
neous data. It first performs skeleton learning over the space of augmented graphs. Then a Multiple-Domain
Score (MDS) is used to determine causal directions based on the skeleton of the recovered graph. The
MDS is proposed based on distribution shifts across domains and the assumption of independent change.
Compared with previous methods, MDSS can remove the influence of distribution shifts and further recover
more causal directions. In future work, we aim to improve MDSS from the following two aspects: 1) Score
calculation takes more time than training NNs for searching, so it is essential to optimize score computing to
accelerate the entire framework. 2) The current framework of MDSS cannot deal with the more general case
where causal directions also change, while this phenomenon does exist in some real-world circumstances.
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A APPENDIX

A.1 PROOF OF THEOREM 1

Proof. Let P (V) be the distribution of the data over V , PC(V, C) be the distribution of the augmented data
over V ∪ C. According to Markov and faithfulness conditions, GC is the perfect map of PC(V, C).

1. If G′C is the graph after deleting any edges from GC , then GC contains PC(V, C) while G′C does not.
According to Definition 1, we have S(GC , DC) > S(G′C , DC).

2. If G′C is the graph after reversing any edges from GC , that changes the conditional dependence of
GC , then obviously GC contains PC(V, C) while G′C does not. According to Definition 1, we have
S(GC , DC) > S(G′C , DC).

3. If G′C is the graph after adding any edges from GC . Although both G′C and GC contain PC(V, C), G′C
has more parameters. According to Definition 1, we have S(GC , DC) > S(G′C , DC).

11
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A.2 ACYCLICITY CONSTRAINTS

Causal discovery from samples of a joint distribution is a challenging combinatorial problem because
of the intractable search space super-exponential in the number of graph nodes. Recently, Zheng et al.
(2018) formulates the structure learning problem as a purely continuous optimization problem by a new
characterization of acyclicity that is not only smooth but also exact. Zheng et al. (2018) proposes to measure
the "DAG-ness" of a graph by

h(A) = tr
(
eA◦A

)
− d, (5)

where A is a weighted adjacency matrix and d is the number of node in the graph. Function h(·) satisfies the
following properties:

• h(A) = 0 if and only if A is acyclic.
• The values of h quantify the "DAG-ness" of the graph.
• h is smooth.
• h and its derivatives are easy to compute.

Further, Zhu & Chen (2019) finds that h(A), which is non-negative, can be small for certain cyclic graphs
and its minimum over all non-DAGs is not easy to compute. As a consequence, it would require a very
large penalty weight for h(A) to obtain exact DAGs if only h(A) is used. To address the issue, Zhu &
Chen (2019) proposes another acyclicity penalty term I(G /∈ DAGs), which is the indicator function w.r.t.
acyclicity to induce exact DAGs. The combination of the above two acyclicity constraints can be written as
λ1I(G /∈ DAGs) + λ2h(A), which corresponds to the second and third terms in our proposed MDS.

See their original papers Zheng et al. (2018) and Zhu & Chen (2019) for more details.

A.3 GENERALIZED SCORE

We use generalized score (GS (Huang et al., 2018)) as a model selection criteria to measure how well the a
graph fits the data. Here we give a brief introduction of the calculation of GS.

Assume X is a random variable with domain X , andHX is a reproducing kernel Hilbert space (RKHS) on
X with continuous feature mapping φX : X → HX . Similarly we define variable Y , Z with domain Y , Z ,
the corresponding RKHSHY ,HZ and feature mapping φY , φZ . Let Z̈ := (Y, Z), consider the following
two regression functions in RKHS:

φX (X) = F1(Z) + U1,

φX (X) = F2(Z̈) + U2,
(6)

where F1 : Z → HX and F2 : Z̈ → HX . If X ⊥⊥ Y |Z, the following equation holds:
EZ [V arX|Z [φX (X)|Z]] = EZ̈ [V arX|Z̈ [φX (X)|Z̈]], (7)

which means that it is not useful to incorporate Y as a predictor of X given Z, so the first model (i.e. the
model with less complexity) in Equation 6 is preferred.

Cross-validated likelihood is used to express such preference. To perform cross validation, the whole data
set D is split into a training set and a test set and repeat this procedure K times, i.e. K-fold cross validation.
Let D(k)

1 and D(k)
0 be the kth training set and kth validation set respectively. Let D(k)

1,i and D(k)
0,i be the data

of Xi and its parents in training set and validation set respectively. The GS of DAG Gh using cross-validated
likelihood is calculated with

SCV (Gh;D) =

m∑
i=1

SCV

(
Xi, PA

Gh
i

)
=

m∑
i=1

(
1

K

K∑
k=1

`
(

ˆ̃F
(k)
i |D

(k)
0,i

))
,

(8)

where PAGhi are parents of Xi in graph Gh, ˆ̃F
(k)
i is the regression function estimated from kth training data

D
(k)
1,i , `

(
ˆ̃F
(k)
i |D

(k)
0,i

)
is the log-likelihood evaluated on the kth validation set with the estimated regression

function.

Another type of GS based on marginal likelihood are also proposed, see Huang et al. (2018) for more details.
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A.4 KERNEL EMBEDDING OF DISTRIBUTIONS

According to Equation 4 in our paper, we need to calculate the dependence between distributions P (V k
C |PAk)

and P (PAk). The dependence between random variables can be measured by Hilbert Schmidt Independence
Criterion (HSIC), which will be discussed in next section. To transform the distribution for data from
different domains to a random variable in RKHS, we use kernel embeddings of conditional distributions
(Song et al., 2013). In the rest of this section, we denote PAk as X and V k

C as Y for simplicity.

Let X be the domain of X , and (H, k) be a reproducing kernel Hilbert space (RKHS) with a measurable
kernel on X . Let φ(x) ∈ H be a continuous feature mapping φX : X → H. Similar notations are for
variables Y andC. We define the cross-covariance operatorCY X : H → G asCY X := EY X [φ(X)⊗ψ(Y )].

The kernel embedding of the conditional distribution P (X|C = cn) for data from a given domain C = cn
can be calculated as

µX|C=cn = CXCC−1CCφ (cn) (9)

The empirical estimate for µX|C=cn is

µ̂X|C=cn =
1

N
ΦxΦ>c

(
1

N
ΦcΦ

>
c + λI

)−1
φcn

= Φx (Kc + λI)
−1

kc,cn

, (10)

where N is sample size, Φx := [φ (x1) , . . . , φ (xN )], Φc := [φ (c1) , . . . , φ (cN )], Kc (ct, ct′) =

〈φ (ct) , φ (ct′)〉, kc,cn := [k (c1, cn) , . . . , k (cN , cn)]
>. The corresponding Gram matrix with Gaussian

kernel with σx is

MH
X = exp

(
−

diag
(
Ml

X

)
· 1N + 1N · diag

(
Ml

X

)
− 2Ml

X

2σ2
x

)
, (11)

where diag(·) sets all off-diagonal entries of the matrix as zero, and 1N is a N ×N matrix with all entries
being 1. Ml

X is the Gram matrix with a linear kernel:

Ml
X = Kc (Kc + λI)

−1
Kx (Kc + λI)

−1
Kc, (12)

whose (c, c′) entry can be calculated by

Ml
X (c, c′) = µ̂>X|C=c

µ̂X|C=c′

= k>c,c (Kc + λI)
−1

Φ>x Φx (Kc + λI)
−1

kc,c′

= k>c,c (Kc + λI)
−1

Kx (Kc + λI)
−1

kc,c′

(13)

Similarly we can calculate the empirical kernel embedding of the conditional distribution P (Y |X,C = cn)
and the corresponding Gram matrix, which we denote as µ̂Y |X,C=cn and MG

Y |X , respectively. For more
details about kernel embeddings of distributions, see Song et al. (2013) and Huang et al. (2019).

A.5 EXTENDED HILBERT SCHMIDT INDEPENDENCE CRITERION

With the notations and results in the above section, we can calculate the dependence between P (X) and
P (Y |X) by extended Hilbert Schmidt Independence Criterion:

HSICP (X),P (Y |X) =
1

(N − 1)2
tr
(
MH

XHMG
Y |XH

)
, (14)

where H is a matrix used to center the features, whose entries Hij := δij −N−1. Huang et al. (2019) uses a
normalized version of the estimated HSIC, which is invariant to the scale in MH

X and MG
Y |X :

HSICNP (X),P (Y |X) =
HSICP (X),P (Y |X)

1
N−1 tr

(
MH

XH
)
· 1
N−1 tr

(
MG

Y |XH
)

=
tr
(
MH

XHMG
Y |XH

)
tr
(
MH

XH
)

tr
(
MG

Y |XH
) (15)
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A.6 PROOF OF THEOREM 2

Definition 3. Score Equivalence. Let D be a dataset consisting of T records that are i.i.d samples from
some distribution P (·). A score function S is score equivalent if for any two DAGs G and G′ which are in the
same Markov equivalence class, we have S(G′, D) = S(G, D).

Proof. Let G′ = arg min
G

MDSnonlinear(G,D), G′′ = arg min
G

MDSnonlinear(G,D) and G′′′ =

arg min
G

MDSnonlinear(G,D) be three DAGs with the same skeleton S as G1, let E′2, E′′2 and E′′′2 ∈ E2

be the set of edges with cardinality n′, n′′ and n′′′, whose directions are correctly determined by G′, G′′ and
G′′′ respectively.

• If G′ is not in the same equivalent class as G0 and n′ = n2. According to score consis-
tency of BIC, the first term in MDSlinear(G′,D) is larger than that in MDSlinear(G∗,D) and
the last term in MDSlinear(G′,D) and MDSlinear(G∗,D) is same because n′ = n2, then
MDSlinear(G′,D) > MDSlinear(G∗,D).

• If G′ is in the same equivalent class as G0 and n′ < n2. According to score equivalence
of BIC, the first term in MDSlinear(G′,D) and MDSlinear(G∗,D) is same and the last
term in MDSlinear(G′,D) is larger than that in MDSlinear(G∗,D) because n′ < n2, then
MDSlinear(G′,D) > MDSlinear(G∗,D).

• If G′ is not in the same equivalent class as G0 and n′ < n2. then MDSlinear(G′,D) >
MDSlinear(G∗,D) clearly holds according to the above two cases.

All the above three cases are contradict with the condition that these three graphs are DAGs that minimize
MDSnonlinear(G,D).

A.7 PROOF OF THEOREM 3

The conclusion that 0 6 n∗ 6 n2 holds clearly. The conclusion that G∗ is in the same equivalent class as G0

can be proved similar to the proof of Theorem 2. MDSnonlinear is not able to guarantee n∗ = n2 mainly
because GS is not score equivalent.

A.8 EXPERIMENTS OF GREEDY EQUIVALENCE SEARCH

The proposed MDSS can be readily incorporated into off-the-shelf search strategies. In the main paper, we
adopt policy-gradient-based search strategy (Zhu & Chen, 2019) to search the optimal causal structure. In
this section, we demonstrate that greedy equivalence search (Chickering, 2002) can also be utilized as the
search strategy.

Similar to the two-stage search in our main paper, we first perform greedy equivalence search on the
augmented graphs (i.e. graphs with domain index as an additional node) to optimize the score (BIC for linear
systems and GS for nonlinear systems). The output of this step is an equivalence class of the augmented
graph. Then we utilize distribution shifts of the nonstationary variables to detect more edge directions.
Consider the same setting as in Section 3.2 (i.e. , n = 6 and d = 10). In linear case, TPR, TNR, SHD
for MDSS with greedy equivalence search is 0.67 ± 0.15, 0.75 ± 0.16 and 4.75 ± 2.05 respectively. In
nonlinear case, TPR, TNR, SHD for MDSS with greedy equivalence search is 0.69 ± 0.13, 0.63 ± 0.21
and 5.80 ± 2.67 respectively. Compared with the results in Table 1, 1) MDSS with greedy equivalence
search outperforms MC, IB and CD-NOD in both linear and nonlinear cases, 2) although MDSS with greedy
equivalence search is not as good as MDSS with policy-gradient-based search in linear case, it achieves
comparable results as policy-gradient-based one in nonlinear case.

A.9 A TOY EXAMPLE

The example is consisted of 10 linear datasets with 4 variables, whose underlying causal graph is given in
Figure 4(a). We use linear SEM Vi = wiPAi + bi + εi to generate the data. For each variable Vi, wi is fixed
to 1 and εi is also fixed as a standard Gaussian noise across all datasets. To introduce distribution shifts, we
vary bi across datasets, here b3 is chosen to be invariant (i.e. V3 is stationary).
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We first run RL on single dataset (randomly chosen from 10 datasets) and the pooling of all datasets
respectively, with results shown in Figure 4(b) and 4(c). RL misidentifies the direction between V1 and V2 in
both cases, which is reasonable because RL uses BIC plus an acyclicity constraint as score function, and
BIC is score equivalent. Furthermore, when multiple datasets with distribution shifts are used, RL outputs
erroneous edges (i.e. edges between V1, V4 and V2, V4) due to confounders. Next we run MDSS on the
pooling of all datasets, with result shown in Figure 4(d). MDSS correctly detects variables with changing
causal modules. It recovers all the directions between those 4 variables correctly as well.

V1 V2

θ4(C)θ2(C)

V4V3

g(C)θ1(C)

(a)

V1 V2 V4V3

(b)

V1 V2 V4V3

(c)

V1 V2 V4V3

C

(d)

Figure 4: (a) True causal graph for the 4-variable toy example (b) Graph from RL running on single dataset.
(c) Graph from RL running on multiple datasets. (d) Graph from MDSS.

A.10 GROUND TRUE CAUSAL GRAPH FOR REAL DATA

PHc

DG

ERc CA1

Sub

PRc

Figure 5: Ground true causal graph for real data
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