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Abstract

Graph privacy is crucial in systems that present a graph structure where the confidentiality
and privacy of participants play a significant role in the integrity of the system itself. For
instance, it is necessary to ensure the integrity of banking systems and transaction net-
works, protecting the privacy of customers’ financial information and transaction details.
We propose a method called GraphPrivatizer that privatizes the structure of a graph and
protects it under Differential Privacy. GraphPrivatizer performs a controlled perturbation
of the graph structure by randomly replacing the neighbors of a node with other similar
neighbors, according to some similarity metric. With regard to neighbor perturbation, we
find that aggregating features to compute similarities and imposing a minimum similarity
score between the original and the replaced nodes provides the best privacy-utility trade-off.
We use our method to train a Graph Neural Network server-side without disclosing users’
private information to the server. We conduct experiments on real-world graph datasets
and empirically evaluate the privacy of our models against privacy attacks.

1 Introduction

In recent years, many research efforts have been made to effectively learn from graph-structured data. Graph-
based approaches have been successful in a variety of tasks such as fake news detection in social networks
(Benamira et al., 2019) and drug discovery (Gaudelet et al., 2021). Graphs can incorporate both information
about individual data points and about their interactions: Graph Neural Networks (GNNs, Scarselli et al.,
2008) have been in capturing this information and learning over graph-structured data. Both the information
about the individual data points and the relational information can be, however, of a sensitive nature and
must, therefore, be protected. Large scale machine learning models may require sending information to a
server where the training is performed, which poses a privacy risk. Efforts have thus been recently made to
address privacy attacks on graphs (Zhang et al., 2021; 2022). One possibility to protect private information
on graphs is to use the formal privacy guarantees offered by Differential Privacy (DP, Dwork, 2006), whose
range of applications on graph-structured data has been recently expanding (Mueller et al., 2022b). DP has
been used both in centralized settings where a server has graph-wide access to information (Olatunji et al.,
2023; Wu et al., 2022; Sajadmanesh et al., 2023) and in local settings (Sajadmanesh & Gatica-Perez, 2021).

1Equal contribution.
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In a centralized privacy setting, a trusted entity is allowed to gather the private data and learn on it, while
promising to release a model from which private information cannot be inferred. In this setting, the training
procedure itself must therefore be DP (Abadi et al., 2016). A local privacy setting is instead desirable when
no entity is trusted to gather all the private information: in this case, data must be privatized locally before
it is made available to a central entity where the training is performed. The local privacy setting is therefore
crucial in cases where no central entity is trusted to be willing and capable to keep private data secure. Once
the data has been locally privatized, the central server is not able to infer private data and the training
procedure itself does not need to be DP (Mueller et al., 2022b). Despite these advantages, a local privacy
setting often results in reduced performance if compared to the centralized one (Cormode et al., 2018; Yang
et al., 2023), due to the large amount of noise that the local privatization entails.

While recent efforts have been made towards improving the privacy-utility trade-off in a local privacy setting
(Yang et al., 2023), little investigation on locally privatizing the edges of a graph which is then trained on a
central entity (e.g., a server) has been previously performed. Motivated by real-world applications such as
private learning on social network data, we therefore focus on protecting the relational information contained
in graphs by means of local privatization techniques that act on the individual users’ side.

To address this problem, we propose GraphPrivatizer, a method to locally privatize a graph’s structure
that does not rely on graph-wide information, and which protects the privacy of features and labels as well.
In particular: (i) We introduce a definition of edge LDP for our local privacy settings; (ii) We propose
GraphPrivatizer, a method that locally privatizes the structure of a graph while preserving the out-degree
of nodes by construction and keeping labels and features private too; (iii) Taking advantage of the notion of
message passing in GNNs, we parametrize the perturbations of a node’s neighborhood which allows to only
replace neighbors with other similar nodes to improve utility while preserving privacy; and (iv) We evaluate
our proposal on different real-world datasets to investigate its privacy-utility trade-off, empirically assessing
its privacy guarantees using privacy attacks that try to recover the private structure of the graph.

2 Related Work

GNNs have gained increasing popularity as the framework of choice to solve graph-based learning tasks in
recent years. The efficacy of GNNs in graph representation learning has motivated the proposal of several
GNN variants such as Graph Convolutional Networks (Zhang et al., 2019), Graph Attention Networks
(Veličković et al., 2018), and GraphSAGE (Hamilton et al., 2017), as well as architectures for large multi-
relation graphs (Iyer et al., 2021; Wang et al., 2019). Recent research efforts have also been made to address
privacy attacks on graphs (Zhang et al., 2021; 2022). Privacy attacks can be categorized as graph properties
attacks (inferring, e.g., the number of nodes), membership attacks (inferring, e.g., whether a subgraph is
part of a graph), and graph reconstruction attacks (Zhang et al., 2022). Specifically, the existence of an edge
between two nodes is often sensitive in nature (Mueller et al., 2022b) and should be kept private.

Differential Privacy (DP, Dwork, 2006) offers formal privacy guarantees to protect information about in-
dividual training points, and has been used to provide privacy guarantees in GNNs as well. DP has been
utilized in centralized settings where a server has access to information on the entire graph (Olatunji et al.,
2023; Wu et al., 2022; Sajadmanesh et al., 2023), and in local settings (Sajadmanesh & Gatica-Perez, 2021;
Joshi & Mishra, 2022; 2023). Different formulations of DP on graphs aim at protecting the relationship
between nodes (edge-level DP) (Raskhodnikova & Smith, 2016; Hidano & Murakami, 2022), the individual
nodes themselves (node-level DP) (Raskhodnikova & Smith, 2016; Ayle et al., 2022; Kasiviswanathan et al.,
2013; Olatunji et al., 2023), or the entire graph as a single entity (graph-level DP) (Mueller et al., 2022a).
For a survey on recent advances in DP approaches on structured data, refer to Mueller et al. (2022b).

In this work, we focus on protecting the structure of the graph, i.e., hiding its edges. Previous work has
addressed structural privacy using central (Sajadmanesh et al., 2023; Olatunji et al., 2023) or local (Joshi &
Mishra, 2022; 2023; Hidano & Murakami, 2022) DP; these approaches require however some entity to have
access to the entire noiseless adjacency matrix of the graph (Sajadmanesh et al., 2023; Joshi & Mishra, 2022)
or to part of it (Joshi & Mishra, 2023; Hidano & Murakami, 2022) in order to privatize the graph structure.
Such approaches may thus pose privacy concerns or depend on the availability of public data (Olatunji et al.,
2023). Additionally, approaches such as Sajadmanesh et al. (2023) require the introduction of a custom
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architecture. Hidano & Murakami (2022) propose a degree-preserving randomized response algorithm for
graph classification on unattributed graphs where they empirically show the benefit of preserving the degree
of nodes after graph perturbations. Besides the different learning task they consider, as we will focus on
node classification for graphs with node features and labels, Hidano & Murakami (2022) require nonetheless
that each node is aware of how many nodes the graph contains. Joshi & Mishra (2023) is, to the best of
our knowledge, the closest existing approach that guarantees edge-level local DP: their approach requires
however that each node has noiseless access to portions of the adjacency matrix and comes at a substantial
reduction in model performance if compared to a non-private model. Additionally, Joshi & Mishra (2023) do
not test against privacy attacks that try to recover the edges of the graph. In comparison, our approach can
be used with any conventional GNN architecture and we do not rely on public data: we adopt a local privacy
setting where the individual nodes have noise-free access only to their own edges, features, and labels, and
where no entity has access to the complete adjacency matrix of the graph.

3 Preliminaries and Problem Statement

In this section we recall the definitions of Graph Neural Network (GNN, Scarselli et al., 2008) and Local
Differential Privacy (LDP, Dwork, 2006; Yang et al., 2020). Then, we briefly discuss randomized response
(RR, Warner, 1965) and edge privacy in graphs, as well as LinkTeller (Wu et al., 2022) as the privacy attack
we use to validate our approach. Finally, we describe our local privacy setting and problem statement.

3.1 Graph Neural Networks

Consider an unweighted graph defined as a tuple G = (V, E, X, Y ), where V = VL ∪ VU is the set union of
labeled nodes VL and unlabelled nodes VU , E is the set of edges, X ∈ R|V |×d is a feature matrix consisting
of d-dimensional feature vectors, one for each node v ∈ V , and Y is the set of labels. Let N (v) denote the
neighborhood of v, that is, the set of nodes which are adjacent to v. Let deg(v) denote the degree of v, that is,
the size of its neighborhood. Graph Neural Networks (GNNs, Scarselli et al., 2008) are a class of models that
have been effective in learning over graph-structured data. A typical GNN consists of L layers where the
embeddings of the nodes in a certain layer are obtained from the previous layer by means of an aggregation
and an update function. Specifically, the embedding hl

v for a node v in layer l is obtained by aggregating the
embeddings of its neighbors N (v) from layer l − 1 and passing the resulting aggregated message ml

v through
the update function. The aggregation function is a permutation invariant and differentiable function, while
the update function is a trainable and non-linear function:

ml
v = Aggregate({hl−1

u | ∀u ∈ N (v)}), (1)

hl
v = Update({hl−1

v , ml
v}). (2)

Common choices for the Aggregate function are the sum or the mean, while the Update function can be,
for instance, a neural network.

3.2 Differential Privacy

Differential Privacy (DP, Dwork, 2006) is a formal definition of privacy that protects individual training
points. As originally introduced by Dwork (2006), central or global DP, simply referred to as DP, was
designed for a centralized setting where a trusted entity gathers all user data and guarantees to process it
and produce an output while preserving the privacy of users. More formally, DP guarantees that an attacker
cannot confidently infer whether the output of a DP mechanism M was obtained from a database D or
from a database D′, where D and D′ differ in a single record and are thus said to be adjacent datasets. In
a local privacy setting no trusted entity can process the private data of users. In this more restrictive case
each user perturbs its data locally and provides the central entity with a noisy version of its data only. In a
local privacy setting the datasets D thus consist of data from individual users which is then protected under
Local Differential Privacy (LDP, Yang et al., 2020).
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Definition 3.1 (ϵ LDP). Let ϵ > 0. Consider a randomized mechanism M : D → R and probabilities Pr
taken over the coin tosses of M. M satisfies ϵ local differential privacy if, for any possible pairs of user’s
private data points x, x′ ∈ D and for any possible outputs S ⊆ R:

Pr[M(x) ∈ S] ≤ eϵ Pr[M(x′) ∈ S].

We refer to ϵ as the privacy budget of the algorithm. In particular, ϵ = 0 indicates that the randomized
mechanism is perfectly private and implies that the output of the mechanism is independent of the input. On
the other hand, ϵ = ∞ provides no privacy guarantee. The choice of ϵ is both problem and data dependent
(Lee & Clifton, 2011), with common ranges often considering values ϵ ∈ (0, 10] (Wu et al., 2022; Sajadmanesh
& Gatica-Perez, 2021). For a given deterministic function, DP can be achieved by adding random noise to
the output of the function to hide the contribution of individual training points, where the amount of noise
added depends on the choice of privacy budget ϵ (Dwork et al., 2014). As no single entity is trusted with
all the users’ private data, LDP is generally a stronger privacy model than DP. However, the lack of such
trusted central entity and thus the need to add noise to the local data of each user before communicating it
to the central entity entails a greater total noise which can negatively affect model performance (Cormode
et al., 2018). This, in turn, enhances the importance of novel approaches that can provide LDP with good
accuracy which are thus our focus.

3.3 DP and privacy attacks in GNNs

DP can be applied to graph context by defining a notion of adjacency for graphs. Considering the (central-
ized) DP setting first, we say two graphs G and G′ are edge adjacent if they differ exactly in one edge, that
is, if G′ can be obtained from G by adding or removing a single edge. Similarly, G and G′ are node adjacent
if they differ in exactly one node, that is, if G′ can be obtained from G by adding or removing a single node
and its edges. In our local privacy setting we consider LDP which can guarantee privacy on graphs in the
sense of Definition 3.1 on any pair of adjacent user inputs. Focusing here on edge privacy, one can define a
notion of edge adjacency to protect a user’s edges. A common definition of edge LDP considers a user’s v
neighbor list as represented by |V |-dimensional bit vector (b1, . . . , b|V |), where bi,i=1,···|V | = 1 if and only if
there is an edge between node v and node vi, and bi = 0 otherwise.
Definition 3.2 (ϵ-edge LDP, (Qin et al., 2017)). Let ϵ > 0. A randomized mechanism M : D → R satisfies
ϵ-edge local differential privacy if, for any possible pairs of user’s neighbor lists b, b′ differing by one bit, and
for any possible outputs S ⊆ R, it holds that:

Pr[M(b) ∈ S] ≤ eϵ Pr[M(b′) ∈ S]

Edge LDP can be achieved by perturbing the neighbor list of each node using randomized response (RR,
Warner, 1965; Qin et al., 2017). RR flips every bit of each neighbor list with probability 1/(eϵ + 1), guar-
anteeing ϵ-edge LDP. However, as large values of ϵ are undesirable because they imply low privacy, and as
the neighbor list is often sparse, RR increases the connectivity of the graph. The addition of many spurious
edges has negative consequences on the performance of a GNN trained on the perturbed graph (Joshi &
Mishra, 2022): thus, we develop different perturbation techniques which offer a better trade-off between
privacy and model accuracy for graph data. In this work, we propose an alternative definition of adjacency
for edge privacy which imposes additional conditions on the edges RR can act on.

To validate our approach, we test it against a LinkTeller attack. LinkTeller (Wu et al., 2022) is an influence
analysis based attack that recovers private edges from trained GNNs. The attack assumes that the trained
GNN exposes an inference API; at test time, a user can provide node features to query the API and obtain
predictions for said nodes. For each pair of nodes the attacker provides perturbed feature vectors for the first
node and queries the API with them, evaluating the effect this has on the predictions of the second node.
The attacker then guesses the presence of edges between the pairs of nodes which have a high influence on
each other. See Wu et al. (2022) for more details on LinkTeller. As LinkTeller cannot deal with randomized
models such as GraphSAGE (Wu et al., 2022), we instead attack it using the LSA2 attack described in He
et al. (2021). LSA2 leverages on node-level information and computes the model posterior for every node
the attacker possesses, assigning edges to pairs of nodes whose posteriors have a high correlation.
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3.4 Problem statement

We address private learning on graphs with LDP where each
node can is considered as an individual user: for a graph
G = (V, E, X, Y ) we consider V , E, X, and Y to be private
to individual nodes/users, which only share noisy versions of
them with a server. The server uses the information to train
a GNN for node classification, learning to predict labels Y
in a semi-supervised learning setting. More explicitly, no en-
tity (neither users/nodes, nor the server) has complete and
noise-free information about the graph. The only noiseless in-
formation a node can have access to is its own features, label,
and edges (Figure 1). We elect this as our setting of choice
because of its similarities with real-world scenarios where indi-
vidual nodes/users may not have knowledge about the entire
graph beyond the nodes/users they directly interact with.

Node v

1-hop neighbors of v

2-hop neighbors of v

Figure 1: In our setting, a node v knows
only about its immediate, 1-hop neighbors.
In fact, a node may not be aware of its 2-
hop neighbors in a real-world scenario.

4 Approach

In this section, we introduce our approach, called GraphPrivatizer, which provides edge, feature, and label
privacy. Specifically, we focus on investigating the trade-off between edge privacy and GNN performance in
the local privacy setting described in Section 3.4. A global notion of differential privacy is not allowed by
our local privacy setting, as no central entity is trusted with the entire graph. ϵ-edge LDP (Definition 3.2)
too has limitations in our privacy setting, as we will discuss in the next section. Therefore, we provide a
new definition of edge privacy for our setting and propose a novel edge private algorithm based on it. To
guarantee label and/or feature privacy, GraphPrivatizer uses existing techniques presented in Section 4.3.

4.1 Adjacent neighborhoods

The definition of ϵ-edge LDP provided in Section 3.3 entails the perturbation of the neighbor list of a node
v using RR, where two neighbor lists are adjacent if they differ by one bit. As previously mentioned, this
perturbation leads to a great increase in the connectivity of the graph for small, thus desirable, values of
ϵ. Moreover, in the local privacy setting described in Section 3.4 a node’s neighbor list include only its
immediate neighbors and there are therefore no graph-wide neighbor lists to perturb with the standard RR
approach. To define a notion of privacy which is appropriate for our setting we choose to consider the set of
neighbors of node v: two neighbor sets are said to be adjacent if they differ by a single node.
Definition 4.1 (Adjacent neighborhoods). Consider a node v. Let b = {v1, . . . , vd} = N (v), b′ =
{v′

1, . . . , v′
d} = N ′(v) be two neighbor sets, with d = deg(v). We say N (v) and N ′(v) are adjacent if

they differ in only one element; that is, they are adjacent neighborhoods if, without loss of generality, v1 ̸= v′
1

and vi = v′
i for i = 2, . . . , d.

We use Definition 4.1 to introduce an edge set notion of LDP, which we refer to as ϵ-edge set LDP.
Definition 4.2 (ϵ-edge set LDP). Let ϵ > 0. A randomized mechanism M : D → R satisfies ϵ-edge set
local differential privacy if, for any possible pairs user’s neighbor sets b, b′ that are adjacent according to
Definition 4.1, and for any possible outputs S ⊆ R, it holds that:

Pr[M(b) ∈ S] ≤ eϵ Pr[M(b′) ∈ S]

ϵ-edge set LDP can be seen as a relaxation of ϵ-edge LDP Definition 3.2, as it practically entails a more
controlled perturbation of the edges of a node. To be more explicit on the relation between ϵ-edge set LDP
(Definition 4.2) and the ϵ-edge LDP (Definition 3.2) notion used by related work such as Joshi & Mishra
(2023), note that one can obtain any set perturbation as described in Definition 4.1 by means of two bit
flips on the neighbor list of a node. A 2ϵ-edge LDP mechanism is thus also ϵ-edge set LDP. The converse
does not hold as not all two bit flips on the neighbor list of a node correspond to a set perturbation as
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described in Definition 4.1. Moreover, and in contrast with ϵ-edge LDP, adjacent neighbor sets according
to Definition 4.1 have the same number of nodes. Thus, a perturbation of the neighborhoods based on
this notion of adjacency preserves, by construction, the degree of nodes. The preservation of node degrees
after private perturbations is a desirable property as empirically shown, albeit for the different task of graph
classification on unattributed graphs, by (Hidano & Murakami, 2022).

4.2 Edge privacy

Equipped with the notion of adjacency in Definition 4.1, we develop a perturbation technique that acts on
the neighbor set of a node which is edge set LDP in the sense of Definition 4.2. Our approach informally
seeks to replace nodes in a neighbor set with other nodes that are similar with respect to some similarity
measure. The perturbed neighborhood can in this way retain more of the original information content of
the neighborhood and provide good performance. Specifically, our proposal randomly replaces a neighbor u
of a node v with one of the neighbors of u itself. That is, we perform perturbations considering nodes in the
two-hop extended local view (Sun et al., 2019) of v. Two neighborhoods of v are then adjacent according to
Definition 4.1 if one can be obtained from the other by means of an edge perturbation within the two-hop
expended local view of v which preserves the degree of v. The replacement itself then occurs via RR, which
ensures the privacy of the procedure. Conceptually, we can describe our method as consisting of two steps.
The neighbor set N (v) of a node v is perturbed by: (i) selecting a set of candidate replacement nodes for
the neighbors of v and (ii) randomly picking of the replacement nodes using RR. Algorithm 1 describes the
procedure. We provide a summary of the main notation for ease of read.

Algorithm 1 Perturb neighborhood
Input: Graph G = (V, E, X, Y ), node v ∈ V , similarity sα,

threshold δ, aggregation coeff. α, strategy g(sα, α, δ)
Output: N ′(v): Perturbed neighborhood of node v

1: N (v)← GetNeighbors(v, 1)
2: N ′(v)← ∅
3: for u ∈ N (v) do
4: u′ = RR(u, QuerySimilar(G, u, sα, α, δ, g))
5: N ′(v)← N ′(v) ∪ u′

6: end for
7: return N ′(v)

Notation

δ threshold on similarity

α aggregation coefficient

xu feature vector of node u

xu,α
aggregated feature vector
of node u and N (u), eq. (3)

sα(v, u) cosine similarity between
xv,α and xu,α, eq. (4)

Consider a node v and assume we want to perturb its neighbor set N (v) by replacing some of its nodes.
Nodes u ∈ N (v) are randomly replaced with nodes picked in a set of candidates, where the candidates are
selected from nodes in the two-hop extended local view of v according to a similarity measure s. That is,
the set of nodes which are considered as candidates to replace a node u is constituted of nodes u′ that are
similar to u. Given our local privacy setting, non-parametric and non-learnable similarity measures are a
natural choice as no prior information on the data is available. We provide a comparison of the performance
of our approach using the Euclidean distance and the cosine similarity in Appendix B, and find that the
cosine similarity is preferable.

We therefore measure the similarity between u and a candidate u′ using the cosine similarity s of their
feature vectors xu and xu′ , s = xu·xu′

∥xu∥∥xu′ ∥ . In this regard, we devise two strategies to obtain the set of
candidates based on similarity, which are described in Algorithm 3 and Algorithm 4. For both strategies,
only the nodes u′ which have a similarity score exceeding a threshold δ are selected as the set of candidates.
As GNNs perform aggregations of the features of neighbors produce embeddings, we additionally propose to
use such aggregated features to compute similarity scores. We therefore evaluate the similarity of a node u
using Aggu = Aggregate({xn : ∀n ∈ N (u)}) instead of xu. We denote with α the hyper-parameter which
parameterizes the contribution of aggregated features in the similarity computation. That is, for each node
u we compute the aggregated feature vector xu,α of node u and N (u) as

xu,α = (1 − α)xu + αAggu. (3)
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The similarity between two nodes u and u′ is then computed as

sα(u, u′) = xu,α · xu′,α

∥xu,α∥∥xu′,α∥
. (4)

To summarise, δ > 0 can be used to filter out dissimilar replacement candidates, while α > 0 is used
to introduce aggregate information in the similarity computation. The case α = δ = 0 introduces no
thresholds for the application of RR and no aggregation, and will thus be used as our reference to in-
vestigate the impact of such thresholds and aggregations. When computing similarities/aggregations be-
tween nodes, noisy feature vectors obtained according to Section 4.3 are used, ensuring that feature pri-
vacy is not violated. Our method is thus consistent with the setting described in Section 3.4 as we
assume that the only noiseless information a node has access to consists of its own features, labels,
and edges to 1-hop neighbors. Algorithm 2 describes the procedure to select replacement candidates.

Algorithm 2 QuerySimilar
Input: Graph G = (V, E, X, Y ), node v ∈ V , similarity sα, threshold δ, aggregation coeff. α, strategy g(sα, α, δ)
Output: S(v): set of nodes similar to v, according to sα

1: S(v)← ∅
2: S(v) = g(v, sα, α, δ) # get similar nodes according to strategy g
3: return S(v)

As anticipated, we utilize two different strategies g to select candidates for a node u based on their similarity.
Specifically, we either consider u’s most similar neighbor if it exceeds the similarity threshold δ as a candidate
for replacement (Algorithm 3) or all the neighbors that exceed the similarity threshold δ (Algorithm 4).

Algorithm 3 Most-similar neighbor
Input: node v, its neighborhood N (v), similarity

function sα, threshold δ, aggregation coeff. α
Output: mv: v’s most similar neighbor

1: mv = arg max
u∈N (v)

sα(v, u)

2: if sα(v, mv) ≥ δ then
3: return mv

4: end if
5: return v

Algorithm 4 Threshold-based similar neighbors
Input: node v, its neighborhood N (v), similarity

function sα, threshold δ, aggregation coeff. α
Output: T (v): set of neighbors similar to v

1: T (v)← ∅
2: for u ∈ N (v) do
3: if sα(v, u) ≥ δ then
4: T (v)← T (v) ∪ u
5: end if
6: end for
7: return T (v)

For each node v, the number of similarity values which need to be computed to perturb its neighborhood de-
pends on the number of nodes in the two-hop extended local view of v and is upper bounded

∑
u∈N (v) deg(u)

which may thus be computationally expensive for very dense graphs. However, in a practical setting where
nodes are distributed among different computing units, the neighbor perturbation is performed locally by
the individual nodes. Moreover, the nodes only require the (perturbed, possibly aggregated) features of their
neighbor to compute their similarity with them. In terms of communication cost, this amounts to two appli-
cations of the Aggregate (Section 3.1) function and is done as a pre-processing step before training. With
these considerations and the observation that real-world datasets have a small average degree (Table 4), we
expect an efficient implementation of our approach to scale well to sparse large graphs.

Once a set of candidate nodes has been obtained, the neighbor perturbation is performed in Algorithm 1
with RR. The probabilities of replacement associated with RR differ whether we consider one candidate
replacement, (strategy in Algorithm 3) or a set of candidate replacements (strategy in Algorithm 4). Denote
with Pr[u → u′] the probability that node u gets replaced with node u′. If we consider the most similar
replacement candidate only, RR is applied as follows.

Pr[u → u′] =
{

eϵ

eϵ+1 if u′ = u
1

eϵ+1 otherwise
(5)
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If we consider the threshold-based strategy, RR is instead applied as follows.

Pr[u → u′] =
{

eϵ

eϵ+d−1 if u′ = u
1

eϵ+d−1 otherwise
(6)

To distinguish the two strategies, we refer to our method as GraphPrivatizer-m (GP-m) when using the
most-similar strategy, and as GraphPrivatizer-t (GP-t) when using the threshold-based strategy. Regardless
of the strategy, our approach is ϵ-edge set private.
Theorem 4.3. Algorithm 1 is ϵ-edge set LDP.

Proof. Algorithm 1 with the neighbor selection described in Algorithm 3 is a randomized mechanism based
on RR: we denote it as M. The proof follows from the DP of RR (see, e.g., Qin et al., 2017). Denote
with Pr[v → u] the probability that a node v gets replaced by a node u, let p = 1

eϵ+1 be the probability of
node replacement according to RR, and q = 1 − p. Note that ϵ > 0 implies q > p. Let b = {v1, . . . , vd},
b′ = {v′

1, . . . , v′
d} be two neighbor sets which differ in only one element; assume, without loss of generality,

that v1 ̸= v′
1. Then, given any output s = {s1, . . . , sd} of M, it holds that:

Pr[M(b) = s]
Pr[M(b′) = s] = Pr[v1 → s1] · · · Pr[vn → sd]

Pr[v′
1 → s1] · · · Pr[v′

n → sd] = Pr[v1 → s1]
Pr[v′

1 → s1] <
q

p
= eϵ

With analogous reasoning (see, e.g., Wang et al., 2016), one can show that Algorithm 1 with the neighbor
selection described in Algorithm 4 is ϵ-edge set private.

4.3 Feature and label privacy

In addition to edge privacy, GraphPrivatizer also ensures feature and label LDP. That is, for each node,
GraphPrivatizer ensures that an attacker cannot confidently infer the feature vector or the label. Specifically,
we make use of the Drop algorithm introduced in Sajadmanesh & Gatica-Perez (2021), which enables efficient
LDP GNN training with both private labels and node features. Features are privatized with a multi-bit
mechanism, which allows individual nodes to perturb their features before communicating them. Labels
are, instead, privatized using RR: a node’s class is randomly replaced with one of the other available classes
with the same approach described in Equation (6). We refer the reader to the original publication for more
details. We assign a privacy budget ϵx for feature privacy and ϵy for label privacy.

4.4 Complete architecture

Figure 2 summarizes the complete approach: GraphPrivatizer produces perturbed features X ′, edges E′,
and labels Y ′, which are then shared with a server to train a GNN. In particular, Figure 2 schematically
shows which components of GraphPrivatizer have access to the unperturbed, private data.
Theorem 4.4. GraphPrivatizer is ϵ + ϵx + ϵy LDP

Proof. The private feature vectors are only used by the multi-bit mechanism, the private labels are only used
by the RR mechanism for labels, and the private edge information is only used by Algorithm 1. In particular,
Algorithm 1 only post-processes the privatized feature vectors and, due to the composition and robustness
to post-processing properties of DP (Dwork et al., 2014), GraphPrivatizer is thus ϵ + ϵx + ϵy LDP.

5 Experiments

In this section, we empirically investigate1 the performance of GraphPrivatizer and assess the trade-off
between edge privacy and GNN accuracy in node classification tasks across several datasets. In particular,
we (i) compare our approach against the baseline described in Section 5.1, and (ii) analyze the effects of the

1Code available at github.com/pindri/gnn-structural-privacy.
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Figure 2: Scheme of GraphPrivatizer and how it acts on the features, edges, and labels of a node v. The
shaded area highlights our contribution and where the algorithms we propose are utilized.

parameters α and δ on the privacy-accuracy trade-off for GraphPrivatizer. With respect to this trade-off, as
discussed in Section 4.2, we use the setting α = δ = 0 as our reference and perform comparisons with α, δ > 0
to evaluate the benefits of higher thresholds δ and aggregation α coefficients. We empirically evaluate the
edge privacy of our approach against attacks that try to recover the private edges. We use a variety of
GNN architectures that include traditional convolutional GNNs, graph attention networks, and transformer
networks, and perform experiments on the most commonly used benchmark datasets for node classification
that include citation, co-purchase, and social networks. We experiment with GCN (Kipf & Welling, 2017),
GraphSAGE (Hamilton et al., 2017), GAT (Veličković et al., 2018), GT (a graph transformer adapted from
Shi et al. (2021)), GATv2 (Brody et al., 2022) and GraphConv (the graph convolution operator introduced
in Morris et al. (2019)) on the Cora (Yang et al., 2016), Pubmed (Yang et al., 2016), LastFM (Rozemberczki
& Sarkar, 2020), Facebook (Rozemberczki et al., 2021), and Amazon Photo (Shchur et al., 2018) datasets.
In what follows, we will take the feature privacy budget ϵx and label privacy budgets ϵy to be fixed: the
results and discussion will therefore focus on the edge privacy parameter ϵ which is simply referred to as
privacy budget. We leave additional details on hyper-parameters and on the datasets used to Appendix A.

With regard to the privacy attack, we assume the trained GNN exposes an inference API that an attacker
can query. We assume the attacker possesses feature information on pairs of nodes and wishes to determine
whether an edge connects each pair of nodes. It should be noted that, according to the data model we
adopt and describe in Section 3.4, no entity, either users or server, possesses noise-free information about
other nodes’ features. For this reason, we assume that the attacker itself may only have access to the
noisy feature vector that a node sends to the server for, e.g., training. With these assumptions, we attack
all models with LinkTeller (Wu et al., 2022) except for the GraphSAGE, which we attack with LSA2 (He
et al., 2021; Wu et al., 2022). For LinkTeller, we use the default influence and graph density parameters of
0.001 and 1 (Wu et al., 2022). In all cases, we randomly sample 500 pairs of nodes that are connected in the
original, unperturbed graph, as well as 500 pairs of nodes that are not connected in the original, unperturbed
graph. The task of the attacker is to decide which of these nodes are connected or not connected, in a
binary classification problem. We evaluate the performance of the attacker using the AUC, which we report
multiplied by a factor 102, that is, AUC ∈ [0, 100]. LinkTeller is a threshold-based binary classifier, so we use
the AUC as a performance measure to capture all threshold values. A higher AUC denotes a higher ability
of the attack to correctly identify the edges of the graph, and thus lower edge privacy, where an increase of
1 AUC point can be interpreted as a 1% increase in the likelihood of correctly identifying edges. It should
be noted that the attacker has access to the API of a GNN which was trained on perturbed data, while we
evaluate the attack AUC with respect to the original unperturbed data, which is what should be protected.

5.1 Comparison against baseline approaches

We compare GraphPrivatizer against a baseline approach adapted from existing literature on private node
classification. Specifically the baseline approach is adapted from Sajadmanesh & Gatica-Perez (2021) and
Wu et al. (2022) to our setting. Specifically, for the baseline we consider a slightly relaxation of the setting
described in Figure 1 and assume that each node has access to the list of nodes in its 2-hop neighborhood. We
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then apply randomized response with privacy budget ϵ to this list, thus perturbing the 2-hop neighborhood
of the node. This approach corresponds to a local version of the EdgeRand approach described in Wu
et al. (2022) and applied to each node. These adaptations are necessary as the original algorithms assume
access to the full adjacency matrix which is not compatible with our local privacy setting. A very similar
approach is also used in Joshi & Mishra (2023), who apply RR to 2-hop neighborhoods as well. We refer
to this baseline simply as a randomized response baseline and denote it with RR. The baseline approach
does not, in general, preserve the degree of the nodes and thus the sparsity of the adjacency matrix of the
graph. Additionally, no form of threshold or aggregation is considered for the baseline. We highlight that
the baseline approach assumes that nodes have access to the list of nodes in the entire 2-hop neighborhood,
while GraphPrivatizer operates with the more strict (and private) condition that only immediate neighbors
are known. Our experiments show that, despite this more strict setting, GraphPrivatizer outperforms the
baseline in terms of accuracy with comparable privacy and thus offers a better privacy-utility trade-off. We
additionally compare our results with LPGNN (Sajadmanesh & Gatica-Perez, 2021), which is mirrored by
our experiments with ϵ = ∞ where no edge privacy is guaranteed. For all comparisons we set the threshold
and aggregation parameters for GraphPrivatizer to δ = 0 and α = 0.5 respectively. With reference to the
results in Section 5.2, δ = 0 ensures the best privacy as it imposes no threshold during the neighborhood
perturbation, while α = 0.5 corresponds to an intermediate amount of aggregation which provides good
accuracy without sacrificing privacy. Refer to Section 5.2 for more details on the effects of α and δ.

We present the results of our comparison between GraphPrivatizer (GP) and the RR baseline in Table 1:
our approach is better in terms of accuracy without sacrificing privacy across all datasets. We performed
statistical testing using a paired Wilcoxon signed rank test to compare the accuracy and privacy of our
approach against the baseline across all privacy budgets, and report the p-values P in Table 1a. For accuracy,
we tested the null hypothesis H0: AccGP − AccRR = 0 and found that GraphPrivatizer has higher accuracy
across all datasets with statistical significance. For attack performance, we tested the null hypothesis H0:
AUCGP − AUCRR = 0 and found that there is no statistically significant difference in the privacy of our
approach and the RR baseline across all datasets. In Table 1b we use GAP to denote the utility gap, i.e., the
accuracy loss with respect to the non-edge-private, ϵ = ∞ setting corresponding to LPGNN (Sajadmanesh
& Gatica-Perez, 2021). While the non-edge-private setting is expected to provide better accuracy than the
edge-private one, we are interested in evaluating how closely GraphPrivatizer and RR can match its accuracy
while providing edge privacy. We report results for ϵ = 0.1 and find that GraphPrivatizer narrows the utility
gap when compared to the RR baseline across all datasets.

Table 1: Aggregate results across models for GraphPrivatizer (GP) and a randomized response (RR) baseline.
For GraphPrivatizer, we report results for α = 0.5 and δ = 0. Sub-table (a) reports the average improvement
in accuracy of GraphPrivatizer over the baseline as well as the average difference in attack performance
between GraphPrivatizer and the baseline across all models and privacy budgets. We report p-values P for a
paired Wilcoxon signed rank test, testing respectively the null hypotheses H0: AccGP − AccRR = 0 and H0:
AUCGP − AUCRR = 0. In sub-table (b) GAP denotes the utility gap, i.e., the accuracy loss with respect to
the non-edge-private, ϵ = ∞ setting corresponding to LPGNN (Sajadmanesh & Gatica-Perez, 2021), where
we report aggregate results across models as (mean ± standard deviation), for ϵ = 0.1.

(a) Accuracy and AUC results across all privacy budgets.

dataset AccGP − AccRR AUCGP − AUCRR

Cora 3.9 (P <.001) 0.2 (P >.05)

LastFM 10.1 (P <.001) 0.5 (P >.05)

PubMed 0.8 (P <.001) 2.7 (P >.05)

Facebook 5.0 (P <.001) 0.6 (P >.05)

Amazon Photo 5.5 (P <.01) 3.9 (P >.05)

(b) Utility gap (GAP) for ϵ = 0.1.

dataset GAPGP GAPRR

Cora 6.3 ± 2.2 12.4 ± 6.3
LastFM 6.3 ± 3.2 21.7 ± 13.8
PubMed 1.9 ± 0.2 2.7 ± 1.7
Facebook 5.0 ± 0.6 13.2 ± 8.5
Amazon Photo 3.4 ± 2.7 8.0 ± 3.3

Across all models and datasets, GraphPrivatizer provides an average 6.6 AUC points improvement in privacy
with respect to the non-edge-private LPGNN (Sajadmanesh & Gatica-Perez, 2021) setting while suffering a
4.9% decrease in accuracy, while the RR baseline provides a similar 6.4 AUC points improvement in privacy
but with a much less desirable 12.5% decrease in accuracy. Overall, GraphPrivatizer achieves thus a better
privacy-utility trade-off than RR. Additional results in Appendix C.
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5.2 Results for GraphPrivatizer and discussion

While in Section 5.1 we show that GraphPrivatizer outperforms the RR baseline approach and improves upon
the privacy-utility trade-off, here we investigate our approach in more detail and determine to which degree
the use of thresholds and aggregations described in Section 4 is beneficial. We are interested in establishing
if positive threshold and aggregation parameters (i.e., α, δ > 0) consistently provide a better privacy-utility
trade-off than the reference case where no aggregation or threshold are considered (i.e., α = δ = 0).

Table 2: Aggregate results for GraphPrivatizer. We denote as AccGP and AUCGP the average accuracy
and AUC results for GraphPrivatizer with α, δ > 0, where the average is taken across all positive tested
values of α and δ. We denote with ∆Acc the average accuracy difference with the α = δ = 0 case across
all tested values of α and δ larger than zero, where positive values of ∆Acc indicate that GraphPrivatizer
performs better when some thresholds are applied and/or aggregation is performed during the neighbor
perturbation. Analogously, we denote with ∆AUC the average AUC×102 difference, where values close to
zero indicate that GraphPrivatizer offers the same protection against privacy attack when introducing a
positive threshold and/or feature aggregation during the neighbor perturbation. We denote the datasets we
use as Cora (Cr), LastFM (FM), PubMed (PM), Facebook (Fb), and Amazon Photo (Ph). Results reported
as (average values ± standard deviation), for ϵ = 0.1.

GP-t

Model Dataset AccGP AUCGP ∆Acc ∆AUC

GAT

Cr 78.0 ± 1.7 92 ± 1 7 ± 3 3 ± 4
FM 81.1 ± 3.9 57 ± 2 6 ± 3 3 ± 2
PM 82.0 ± 0.3 70 ± 5 1.5 ± 0.7 4 ± 2
Fb 89.5 ± 0.7 63 ± 4 4 ± 2 2 ± 2
Ph 83.3 ± 1.7 79 ± 4 11 ± 5 9 ± 6

GCN

Cr 79.7 ± 1.1 72 ± 5 4 ± 2 8 ± 5
FM 85.7 ± 0.7 90 ± 2 3 ± 1 10 ± 5
PM 82.0 ± 0.3 96 ± 1 1.4 ± 0.7 10 ± 5
Fb 90.4 ± 0.2 96 ± 1 4 ± 2 6 ± 3
Ph 81.4 ± 1.9 95 ± 1 13 ± 7 3 ± 3

SAGE

Cr 79.7 ± 1.0 78 ± 2 4 ± 2 5 ± 3
FM 83.5 ± 2.0 85 ± 3 3 ± 2 1 ± 1
PM 81.7 ± 0.3 56 ± 3 1.3 ± 0.7 0 ± 1
Fb 90.4 ± 0.2 74 ± 02 4 ± 2 4 ± 2
Ph 83.4 ± 0.6 85 ± 2 13 ± 5 17 ± 9

GP-m

Model Dataset AccGP AUCGP ∆Acc ∆AUC

GAT

Cr 78.9 ± 1.8 73 ± 6 3 ± 2 0 ± 3
FM 82.1 ± 3.0 57 ± 1 2 ± 2 1 ± 1
PM 82.1 ± 0.3 72 ± 5 1.5 ± 0.7 0 ± 1
Fb 90.3 ± 0.7 64 ± 5 2 ± 1 0 ± 1
Ph 85.9 ± 3.8 81 ± 5 0.5 ± 0.9 0 ± 1

GCN

Cr 80.4 ± 1.1 93 ± 0.1 4 ± 2 5 ± 3
FM 85.7 ± 0.4 92 ± 2 3 ± 1 5 ± 3
PM 82.0 ± 0.3 97 ± 1 1.5 ± 0.7 2 ± 2
Fb 91.3 ± 0.2 98 ± 1 1.5 ± 0.7 2 ± 1
Ph 83.1 ± 3.8 96 ± 1 1.2 ± 1.0 2 ± 4

SAGE

Cr 80.4 ± 1.0 77 ± 3 4 ± 2 3 ± 2
FM 84.2 ± 1.3 84 ± 3 3 ± 1 1 ± 1
PM 81.6 ± 0.3 55 ± 3 1.5 ± 0.7 0 ± 1
Fb 90.9 ± 0.2 74 ± 2 2 ± 1 1 ± 2
Ph 86.1 ± 3.5 90 ± 2 0.8 ± 0.6 8 ± 5

We present an aggregate overview of our results in Table 2. We focus here on the case ϵ = 0.1 and on
the GCN, GraphSAGE, and GAT models, with additional results available in Appendix C. GraphPrivatizer
consistently performs better with α, δ > 0 in terms of accuracy, as it provides a positive accuracy improvement
∆Acc in almost the totality of cases. In more than half of the cases, it also provides performance in defending
against privacy attacks which is equivalent to the α = δ = 0 setting, having ∆AUC which overlaps with zero.
It should moreover be noted that the ∆AUC results reported in Table 2 are, as mentioned, multiplied by
a factor 102. For this reason, most of the cases where ∆AUC > 0 correspond to only a small decrease in
privacy, with the majority of cases reporting ∆AUC ≤ 2 which indicates an increase in the likelihood that the
attacker is able to correctly identify edges of at most 2%. That is, it is on average preferable to introduce
feature aggregation and/or to a threshold to select similar neighbors during the neighbor perturbation.
If we compare the different models tested, GCN appears to be more prone to worse performance against
privacy attacks. This behavior is consistent with the observations reported in Wu et al. (2022) and may
be explained by highlighting how the influence computation that underlies the LinkTeller attack is better
suited for graph convolution aggregations, and thus for GCNs (more details on Wu et al. (2022)). While
information propagation between nodes can be exploited for other GNN architecture the introduction of,
e.g., the attention mechanism in GAT/GATv2 can negatively impact the attack performance. Nevertheless,
Table 1 and Table 2 show that GraphPrivatizer performs well for different GNN models and datasets.
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While Table 2 shows that the setting α, δ > 0 is generally preferable when considering averaged results across
all values of α and δ, a more detailed analysis shows that, depending on the model and the dataset, specific
combinations of α and δ provide the best performance. We report here more detailed results for GP-t with
GAT, leaving additional results in Appendix C.
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(a) ∆Acc for different values of α and δ. Higher is better.
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(b) ∆AUC for different values of α and δ. Smaller is better.

Figure 3: Results for GP-t with GAT, for ϵ = 0.1. Average values across 10 runs. The colormap is normalized
to interpret all ∆Acc > 0 and ∆AUC ≤ 2 as desirable.

Figure 3 exemplifies the trade-off between improvements in model accuracy, and a decrease in edge privacy
for all combinations of α and δ, with the combination α = δ = 0 representing the reference base case. Model
accuracy tends to increase with larger values of α and δ, while privacy tends to decrease. In fact, a higher
threshold δ implies that fewer nodes may be selected as candidate replacements during perturbation, with
δ = 1 requiring that only nodes with similarity of 1 may be considered. With respect to the aggregation
parameter α, values larger than zero tend to provide increased accuracy for small δ. This suggests that,
when computing similarities, it is beneficial to do so on aggregate features: in this way, nodes which behave
similarly with respect to the output of the Aggregate function (Section 3.1), which is then used to train
the GNN, will be favoured as candidates for replacement.

Small values of α and δ provide therefore a good trade-off between model accuracy and privacy, with some
combinations remarkably offering both improved accuracy and better privacy over the α = δ = 0 case.
For instance, the combination α = 0.5, δ = 0.1 for Cora offers a 5.4% improvement in accuracy and a
0.8% improvement in edge privacy. Considering the additional visualizations provided on Appendix C, this
behavior generally holds across datasets, for both GP-t and GP-m. Even for GCN (see for instance Table 3b),
where average results show an unfavorable ∆AUC > 0, specific combinations of α and δ can provide accuracy
improvements over the α = δ = 0 case at a small or null privacy cost.

Finally, we consider what the benefits of GraphPrivatizer are across the range of privacy budgets we tested.
We focus here on GP-t on LastFM for GCN: Table 2 shows for this case a decrease in protection against
privacy attacks corresponding to a relatively large ∆AUC = 10 ± 5 when introducing a positive α or δ.

Analyzing this case more in detail, Table 3a shows that, as previously observed, on average GraphPrivatizer
entails a 10% increase in the attack performance for this specific experiment for positive thresholds or
aggregation coefficients. Nevertheless, AccGP for ϵ = 0.1 is close to that of the non private model for
ϵ = ∞, despite having a smaller AUC. More in detail, when compared to GraphPrivatizer for ϵ = 0.1, the
no aggregations and no thresholds achieve a better accuracy only for ϵ = 8, but with a worse AUC. That
is, on average, GraphPrivatizer with threshold and feature aggregation provides a better trade-off between
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Table 3: Accuracy and AUC across different values of ϵ. We denote as with the subscript GP the average
results for GraphPrivatizer across α, δ > 0, while the subscript b denotes the base case α = δ = 0.

(a) GCN on LastFM with GP-t. Average across α, δ.

ϵ ∆Acc AccGP Accb AUCGP AUCb

0.1 3.2 ± 1.0 85.7 ± 1.5 82.6 90 ± 5 80
1 1.7 ± 1.0 85.9 ± 1.1 84.2 92 ± 3 84
2 1.7 ± 1.0 86.2 ± 0.7 84.5 93 ± 2 89
8 0.1 ± 0.0 86.6 ± 0.1 86.4 94 ± 0 94
∞ 0.0 ± 0.0 86.5 ± 0.0 86.5 94 ± 0 94

(b) GCN on LastFM with GP-t. α = 0.75, δ = 0.

ϵ ∆Acc AccGP Accb AUCGP AUCb

0.1 0.4 83.0 82.6 80 81
1 1.1 84.1 83.0 85 85
2 0.6 85.1 84.5 89 89
8 0.2 86.6 86.4 94 95
∞ 0 86.6 86.6 95 95

accuracy and privacy. Furthermore, the improvement is more evident for specific values of α and δ: for
instance, Table 3b shows that for ϵ = 0.1, α = 0.75 and δ = 0, provide both a 0.4% improvement in accuracy
and a 1% improvement in AUC. Similarly, higher privacy budgets are still favorable to GraphPrivatizer with
α, δ > 0 which always outperforms the α = δ = 0 case at a smaller or equal AUC.

Considering existing results available in literature, Sajadmanesh et al. (2023) perform experiments on the
Facebook dataset and obtain an accuracy of 76.3 ± 0.21 for a total privacy budget of ϵ = 4. This result is,
however, not directly comparable to ours as it considers a different privacy setting (global vs local privacy)
and assumes access to the adjacency matrix. Closer to our approach is that of Joshi & Mishra (2023) who
train an edge-LDP GNN where nodes have noiseless access to part of the adjacency matrix: despite the less
strict privacy setting, they obtain worse accuracy and report a best accuracy of ≈ 50 on Cora, ≈ 70 on
LastFM, and ≈ 70 on PubMed, while not testing the effectiveness of their method against privacy attacks
that try to recover the edges. Their approach is, indeed, very similar to the one we adopt in Section 5.1 as
a baseline which we have shown is consistently outperformed by our method and provides generally worse
privacy-utility trade-off across all datasets.

6 Conclusions

Motivated by real-world applications, we investigated LDP GNNs. Considering a local privacy setting where
the individual nodes of the graph can only have noise-free access to their own features, labels, and edges,
we (i) introduced a new definition of LDP for our local privacy setting, (ii) proposed our private algorithm
GraphPrivatizer, and (iii) empirically validated its performance on real-world datasets and against privacy
attacks. GraphPrivatizer is a fully private algorithm that protects edges, features, and labels. We introduced
a new methodology to protect edges by means of controlled perturbations which replace the neighbors of
a node with other similar nodes according to some similarity measure. We furthermore evaluated the
impact of thresholds on the similarity between the original and the perturbed neighbor nodes and of feature
aggregation in computing the similarity scores, finding that a positive threshold and aggregation coefficient
provide the best privacy-utility trade-off. Compared to existing approaches which do not provide edge-
privacy (Sajadmanesh & Gatica-Perez, 2021) or do so while requiring a central entity to have complete
information about the edges of the graph (Sajadmanesh et al., 2023; Joshi & Mishra, 2022), GraphPrivatizer
provides LDP without requiring a trusted entity to have access to the adjacency matrix of the graph and is
applicable to a variety of GNN models.

Future work could focus on addressing some of the limitations of GraphPrivatizer. First, GraphPrivatizer
does not consider datasets containing edge features. While it could be possible to, e.g., privatize categorical
edge features using randomized response, our local privacy setting would need to be adapted to determine
which entity can have noise-free access to the edge features. Additionally, better personalized user privacy
requirements could be considered. In particular, the introduction of a notion of trust between nodes could
allow two neighboring nodes that trust each other to exchange less noisy information, thus improving the
GNN performance. Finally, while GraphPrivatizer is generally applicable to various types of GNN models,
edge perturbations which are tailored to a specific GNN architecture can possibly provide a better privacy-
utility trade-off and could therefore be explored in future work.
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A Experimental details

For all experiments, we divide our dataset with 50:25:25 train:validation:test set ratios, similarly to Sajad-
manesh & Gatica-Perez (2021). We train all the models for 100 epochs, with learning rate 10−2, weight
decay 10−3, and dropout rate 0.5. We run experiments with edge privacy budget ϵ = {0.1, 1, 2, 8, ∞},
α = {0, 0.25, 0.5, 0.75, 1.0}, and δ = {0, 0.1, 0.25, 0.5, 1}. We perform 10 runs for each value of ϵ, α and δ
with different seeds and consider average results. We perform label and feature perturbations as described
in Section 4.3, with privacy budgets fixed at ϵx = 3 and ϵy = 3. Additionally, we set the KProp hyper-
parameters in the Drop algorithm to the best values described in Sajadmanesh & Gatica-Perez (2021): we
use Kx = 16, Ky = 2 for Cora, Kx = 4, Ky = 2 for Facebook, and Kx = 16, Ky = 0 for LastFM and
PubMed. After a grid-search tuning, we use Kx = 4, Ky = 2 for Amazon Photo.

Table 4: Statistics of the datasets. Cora and PubMed Yang et al. (2016) are citation networks where an
edge (i, j) exists between two documents if document i cites document j, and features consist of bag-of-
words representations of the documents. Classes consist of document categories. Facebook Rozemberczki
et al. (2021) is a page-page graph of verified Facebook pages, where nodes correspond to official Facebook
pages and edges correspond to mutual likes between pages. Node features are extracted from the site
descriptions and the classes correspond to various page categories. LastFM Rozemberczki & Sarkar (2020)
is a friendship graph of LastFM users where nodes represent users and edges friendships between users. The
classes correspond to the home countries of the users. Amazon Photo (Shchur et al., 2018) is a co-purchase
network where nodes represent goods and edges correspond to two goods which have been frequently bought
together on Amazon. The features consist of bag-of-words representations of the goods and the classes
correspond to product categories.

Dataset Classes Nodes Edges Features Avg. Degree
Cora (Cr) 7 2708 5278 1433 3.90
LastFM (FM) 10 7083 25814 7842 7.29
PubMed (PM) 3 19717 44324 500 4.50
Facebook (Fb) 4 22470 170912 4714 15.21
Amazon Photo (Ph) 8 7650 238162 745 31.13

B Similarity metric

The performance of GraphPrivatizer is affected by the choice of similarity measure in Algorithm 2. Non-
parametric and non-learnable similarity measures are desirable in our local privacy setting, as they do not
require access to data. We compare the cosine similarity with the Euclidean distance, and find that the
cosine similarity is preferable. Refer to Section 5 for details on how privacy attacks are performed.

Table 5: We denote with ∆Acc the average accuracy difference between results obtained with the cosine
similarity and with the Euclidean distance. Analogously, we denote with ∆AUC the average AUC × 102

difference. Results reported as (average ± standard deviation), for ϵ = 0.1 across 5 runs. The cosine
similarity is preferable as it provides better accuracy ( ∆Acc > 0) with comparable privacy (∆AUC ≈ 0).

Dataset ∆Acc ∆AUC

Cora 4.8 ± 1.2 2 ± 3
Facebook 1.6 ± 0.5 1 ± 1
LastFM 2.4 ± 1.4 1 ± 1
Amazon Photo −0.9 ± 5 −1 ± 10
Pubmed 2.8 ± 0.3 3 ± 7
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C Additional results

C.1 Comparison against the RR baseline

Table 6: Results on all datasets for GraphPrivatizer and the RR baseline discussed in Section 5.1. The
subscript ∞ denotes the non-edge-private results.

Dataset Model ∆Acc ∆AUC AccGP AccRR AUCGP AUCRR Acc∞ AUC∞

Cora

GAT 3.2 −1.1 71.9 ± 2.6 68.8 ± 5.4 65.0 ± 4.8 66.0 ± 7.9 80.0 ± 1.7 78.5 ± 6.9
GATv2 1.2 1.2 71.0 ± 2.3 69.8 ± 2.3 57.0 ± 2.8 55.8 ± 3.1 79.7 ± 2.0 61.6 ± 7.4
GCN 3.1 −8.8 75.7 ± 1.0 72.6 ± 2.4 83.4 ± 0.9 92.2 ± 2.0 81.7 ± 1.0 95.7 ± 0.9
GConv 22.2 5.8 71.1 ± 2.9 48.9 ± 6.4 56.6 ± 1.3 50.8 ± 0.5 74.0 ± 4.9 53.9 ± 1.4
GT 3.4 4.1 71.6 ± 2.9 68.3 ± 2.6 58.0 ± 0.9 53.8 ± 0.8 79.2 ± 2.8 62.3 ± 1.1
SAGE 3.4 −5.1 77.0 ± 1.0 73.6 ± 2.1 72.0 ± 3.3 77.1 ± 2.8 81.8 ± 0.7 79.3 ± 3.1

Facebook

GAT 4.2 5.1 85.7 ± 0.9 81.5 ± 0.5 60.8 ± 3.7 55.7 ± 3.3 90.9 ± 0.6 64.6 ± 3.7
GATv2 3.4 −0.7 83.0 ± 1.0 79.5 ± 1.1 53.7 ± 1.7 54.4 ± 3.5 88.6 ± 2.1 61.3 ± 5.9
GCN 5.9 −1.6 86.5 ± 0.3 80.6 ± 0.4 91.3 ± 0.9 92.9 ± 1.1 91.9 ± 0.2 99.1 ± 0.4
GConv 26.7 2.3 84.6 ± 0.8 57.9 ± 8.8 52.4 ± 0.9 50.1 ± 0.1 88.5 ± 0.9 51.1 ± 0.5
GT 3.9 1.5 86.7 ± 0.5 82.8 ± 0.4 53.8 ± 0.7 52.2 ± 0.7 91.7 ± 0.1 60.3 ± 1.7
SAGE 5.3 −0.8 87.0 ± 0.2 81.7 ± 0.4 69.7 ± 2.0 70.5 ± 3.5 91.9 ± 0.2 74.7 ± 2.3

LastFM

GAT 24.2 2.9 75.7 ± 3.2 51.5 ± 14.8 54.7 ± 1.2 51.8 ± 1.2 83.6 ± 3.3 57.0 ± 2.2
GATv2 9.8 1.5 68.9 ± 8.9 59.1 ± 18.6 52.5 ± 0.7 50.9 ± 0.7 77.3 ± 8.3 55.4 ± 1.2
GCN 3.3 −5.9 82.2 ± 1.9 78.9 ± 2.3 81.7 ± 2.0 87.6 ± 3.1 86.5 ± 0.3 94.8 ± 1.9
GConv 42.3 2.8 65.2 ± 6.9 22.9 ± 12.2 52.9 ± 1.7 50.1 ± 0.2 66.6 ± 10.8 51.8 ± 1.6
GT 8.1 3.4 69.0 ± 4.4 60.9 ± 9.1 54.8 ± 0.7 51.5 ± 0.3 79.1 ± 5.1 59.3 ± 1.6
SAGE 4.8 −1.2 80.5 ± 1.7 75.7 ± 2.4 82.8 ± 3.5 84.0 ± 5.9 86.0 ± 0.6 86.1 ± 2.4

PubMed

GAT 0.5 4.3 80.4 ± 0.4 79.9 ± 0.4 68.7 ± 3.8 64.5 ± 5.8 82.5 ± 0.2 72.8 ± 5.6
GATv2 0.2 2.8 80.7 ± 0.4 80.5 ± 0.3 59.1 ± 2.5 56.3 ± 3.2 82.6 ± 0.2 66.0 ± 4.7
GCN 0.2 −12.3 80.6 ± 0.5 80.3 ± 0.4 85.7 ± 1.0 98.1 ± 0.5 82.4 ± 0.3 99.2 ± 0.7
GConv 3.9 20.5 79.8 ± 0.6 75.9 ± 1.3 71.3 ± 3.9 50.7 ± 0.4 82.0 ± 0.5 75.0 ± 2.2
GT −0.7 7.7 80.0 ± 0.6 80.7 ± 0.4 60.5 ± 0.5 52.8 ± 0.6 82.2 ± 0.3 64.3 ± 1.2
SAGE 0.1 −1.5 80.3 ± 0.3 80.3 ± 0.5 56.9 ± 3.1 58.4 ± 3.8 82.0 ± 0.2 56.6 ± 1.7

Amazon
Photo

GAT 2.5 11.6 82.7 ± 3.5 80.2 ± 1.1 72.9 ± 3.4 61.3 ± 4.0 86.8 ± 0.6 84.6 ± 3.1
GATv2 9.0 8.8 83.5 ± 0.5 74.4 ± 4.2 63.5 ± 1.7 54.7 ± 1.6 85.0 ± 0.4 76.8 ± 5.1
GCN 8.1 3.6 80.4 ± 6.5 72.3 ± 1.7 95.1 ± 0.7 91.4 ± 0.2 80.8 ± 9.1 96.3 ± 1.7
GConv −3.6 −0.7 55.7 ± 10.1 59.3 ± 1.3 52.7 ± 1.6 53.4 ± 2.1 61.3 ± 18.9 52.2 ± 1.3
GT 7.3 12.1 84.4 ± 0.6 77.1 ± 2.4 68.5 ± 1.0 56.4 ± 3.7 86.7 ± 0.3 87.4 ± 1.8
SAGE 9.5 −11.8 85.0 ± 0.4 75.5 ± 1.8 78.9 ± 5.1 90.6 ± 0.7 86.4 ± 0.2 93.8 ± 1.0
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C.2 Additional results for the GT, GATv2, and GConv models

Table 7: Aggregate results for GraphPrivatizer for all models. We denote as AccGP and AUCGP the average
accuracy and AUC results for GraphPrivatizer with α, δ > 0, where the average is taken across all positive
tested values of α and δ. We denote with ∆Acc the average accuracy difference with the α = δ = 0 case across
all tested values of α and δ larger than zero, where positive values of ∆Acc indicate that GraphPrivatizer
performs better when some thresholds are applied and/or aggregation is performed during the neighbor
perturbation. Analogously, we denote with ∆AUC the average AUC×102 difference, where values close to
zero indicate that GraphPrivatizer offers the same protection against privacy attack when introducing a
positive threshold and/or feature aggregation during the neighbor perturbation. We denote the datasets we
use as Cora (Cr), LastFM (FM), PubMed (PM), Facebook (Fb), and Amazon Photo (Ph). Results reported
as (average values ± standard deviation), for ϵ = 0.1.

GP-t

Model Dataset AccGP AUCGP ∆Acc ∆AUC

GAT

Cr 78.0 ± 1.7 92 ± 1 7 ± 3 3 ± 4
FM 81.1 ± 3.9 57 ± 2 6 ± 3 3 ± 2
PM 82.0 ± 0.3 70 ± 5 1.5 ± 0.7 4 ± 2
Fb 89.5 ± 0.7 63 ± 4 4 ± 2 2 ± 2
Ph 83.3 ± 1.7 79 ± 4 11 ± 5 9 ± 6

GCN

Cr 79.7 ± 1.1 72 ± 5 4 ± 2 8 ± 5
FM 85.7 ± 0.7 90 ± 2 3 ± 1 10 ± 5
PM 82.0 ± 0.3 96 ± 1 1.4 ± 0.7 10 ± 5
Fb 90.4 ± 0.2 96 ± 1 4 ± 2 6 ± 3
Ph 81.4 ± 1.9 95 ± 1 13 ± 7 3 ± 3

SAGE

Cr 79.7 ± 1.0 78 ± 2 4 ± 2 5 ± 3
FM 83.5 ± 2.0 85 ± 3 3 ± 2 1 ± 1
PM 81.7 ± 0.3 56 ± 3 1.3 ± 0.7 0 ± 1
Fb 90.4 ± 0.2 74 ± 02 4 ± 2 4 ± 2
Ph 83.4 ± 0.6 85 ± 2 13 ± 5 17 ± 9

GT

Cr 78.1 ± 1.7 61 ± 2 6 ± 3 3 ± 2
FM 78.6 ± 1.1 54 ± 1 7 ± 4 3 ± 2
PM 81.7 ± 0.3 64 ± 1 2 ± 1 3 ± 1
Fb 90.5 ± 0.3 59 ± 1 4 ± 2 5 ± 2
Ph 84.3 ± 1.3 78 ± 4 7 ± 4 13 ± 8

GATv2

Cr 77.3 ± 2.2 60 ± 3 7 ± 3 4 ± 2
FM 73.8 ± 1.1 54 ± 1 4 ± 3 2 ± 1
PM 82.2 ± 0.4 64 ± 4 1.2 ± 0.7 3 ± 2
Fb 87.3 ± 1.5 58 ± 4 4 ± 1 3 ± 2
Ph 81.1 ± 1.6 68 ± 5 11 ± 6 7 ± 7

GConv

Cr 75.4 ± 3.6 55 ± 2 4 ± 2 −2 ± 1
FM 69.9 ± 5.7 52 ± 1 3 ± 2 −1 ± 1
PM 81.4 ± 0.4 74 ± 3 1.7 ± 0.7 3 ± 2
Fb 87.7 ± 0.8 51 ± 1 4 ± 2 −1 ± 1
Ph 64.3 ± 7.9 51 ± 1 3 ± 6 0 ± 1

GP-m

Model Dataset AccGP AUCGP ∆Acc ∆AUC

GAT

Cr 78.9 ± 1.8 73 ± 6 3 ± 2 0 ± 3
FM 82.1 ± 3.0 57 ± 1 2 ± 2 1 ± 1
PM 82.1 ± 0.3 72 ± 5 1.5 ± 0.7 0 ± 1
Fb 90.3 ± 0.7 64 ± 5 2 ± 1 0 ± 1
Ph 85.9 ± 3.8 81 ± 5 0.5 ± 0.9 0 ± 1

GCN

Cr 80.4 ± 1.1 93 ± 0.1 4 ± 2 5 ± 3
FM 85.7 ± 0.4 92 ± 2 3 ± 1 5 ± 3
PM 82.0 ± 0.3 97 ± 1 1.5 ± 0.7 2 ± 2
Fb 91.3 ± 0.2 98 ± 1 1.5 ± 0.7 2 ± 1
Ph 83.1 ± 3.8 96 ± 1 1.2 ± 1.0 2 ± 4

SAGE

Cr 80.4 ± 1.0 77 ± 3 4 ± 2 3 ± 2
FM 84.2 ± 1.3 84 ± 3 3 ± 1 1 ± 1
PM 81.6 ± 0.3 55 ± 3 1.5 ± 0.7 0 ± 1
Fb 90.9 ± 0.2 74 ± 2 2 ± 1 1 ± 2
Ph 86.1 ± 3.5 90 ± 2 0.8 ± 0.6 8 ± 5

GT

Cr 78.4 ± 1.4 62 ± 1 4 ± 2 1 ± 1
FM 79.6 ± 2.9 59 ± 1 3 ± 1 1 ± 1
PM 81.7 ± 0.3 64 ± 1 2 ± 1 1 ± 1
Fb 90.1 ± 0.3 59 ± 1 3 ± 1 1 ± 1
Ph 86.2 ± 3 81 ± 4 1.0 ± 0.7 5 ± 7

GATv2

Cr 77.8 ± 1.9 60 ± 5 5 ± 2 2 ± 2
FM 76.2 ± 8.2 55 ± 1 1 ± 2 0 ± 1
PM 82.1 ± 0.3 65 ± 4 1.4 ± 0.7 4 ± 1
Fb 87.8 ± 1.7 59 ± 4 3 ± 1 2 ± 2
Ph 82.3 ± 2.6 70 ± 5 2 ± 2 2 ± 5

GConv

Cr 75.5 ± 3.1 54 ± 1 1 ± 1 −2 ± 1
FM 70.0 ± 6.2 53 ± 2 1 ± 2 −1 ± 1
PM 81.5 ± 0.4 75 ± 3 1.2 ± 0.7 −1 ± 1
Fb 88.1 ± 0.8 51 ± 1 3 ± 1 0 ± 0
Ph 71.1 ± 9.9 51 ± 2 5 ± 7 0 ± 1
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C.3 Results for different privacy budgets

We denote as with the subscript GP the average results for GraphPrivatizer across α, δ > 0, while the
subscript b denotes the baseline α = δ = 0.

Table 8: Results on Cora.

GP-t GP-m
Model ϵ ∆Acc AccGP Accb AUCGP AUCb ∆Acc AccGP Accb AUCGP AUCb

GAT

0.1 8.2 ± 1.0 79.3 ± 1.4 71.1 74.2 ± 2.5 69.2 3.4 ± 2.0 79.8 ± 1.6 76.4 74.8 ± 2.7 73.2
1.0 4.2 ± 1.0 79.7 ± 1.0 75.6 73.6 ± 3.1 69.1 2.0 ± 1.0 80.3 ± 0.7 78.3 73.8 ± 2.6 70.6
2.0 1.9 ± 1.0 79.8 ± 0.6 77.8 74.2 ± 2.2 72.5 0.6 ± 0.0 80.7 ± 0.4 80.1 74.9 ± 2.1 74.9
8.0 −0.6 ± 0.0 80.0 ± 0.4 80.6 73.7 ± 2.8 78.7 −0.4 ± 0.0 80.9 ± 0.4 81.3 75.5 ± 1.8 73.6
∞ −0.1 ± 0.0 80.0 ± 0.3 80.2 77.3 ± 1.4 77.5 0.0 ± 0.0 81.0 ± 0.2 81.0 76.4 ± 1.3 73.3

GATv2

0.1 8.2 ± 1.0 78.8 ± 0.8 70.6 61.1 ± 1.1 56.6 5.8 ± 1.0 79.0 ± 1.0 73.2 61.3 ± 0.7 58.6
1.0 4.6 ± 0.0 79.2 ± 0.3 74.5 61.6 ± 0.8 60.3 2.0 ± 1.0 79.1 ± 0.5 77.1 61.5 ± 0.8 60.1
2.0 2.3 ± 1.0 79.2 ± 0.5 77.0 62.3 ± 1.3 59.2 2.0 ± 1.0 79.3 ± 0.7 77.4 62.2 ± 1.0 61.1
8.0 0.5 ± 0.0 79.1 ± 0.5 78.6 62.0 ± 0.9 61.3 0.1 ± 1.0 79.2 ± 0.6 79.1 60.9 ± 1.2 62.2
∞ −0.2 ± 0.0 79.9 ± 0.3 80.0 62.3 ± 0.6 62.6 −0.0 ± 0.0 79.8 ± 0.5 79.8 62.0 ± 0.5 62.0

GCN

0.1 5.4 ± 1.0 80.8 ± 1.1 75.4 94.8 ± 2.4 83.9 4.9 ± 1.0 81.3 ± 1.1 76.4 95.0 ± 1.7 88.8
1.0 4.0 ± 1.0 81.0 ± 0.5 76.9 95.1 ± 1.3 88.4 1.3 ± 0.0 81.8 ± 0.4 80.4 95.5 ± 0.6 93.7
2.0 1.4 ± 0.0 81.2 ± 0.4 79.8 95.6 ± 0.4 92.6 0.9 ± 0.0 82.0 ± 0.4 81.1 95.8 ± 0.4 95.2
8.0 0.4 ± 0.0 81.3 ± 0.2 80.9 95.7 ± 0.3 95.9 −0.4 ± 0.0 81.6 ± 0.3 81.9 95.9 ± 0.3 95.9
∞ 0.0 ± 0.0 81.7 ± 0.0 81.7 95.7 ± 0.0 95.7 0.0 ± 0.0 81.8 ± 0.0 81.8 96.2 ± 0.0 96.2

GConv

0.1 5.5 ± 1.0 76.5 ± 1.0 71.0 54.6 ± 0.3 56.6 1.4 ± 1.0 75.6 ± 1.1 74.1 54.3 ± 0.3 57.0
1.0 4.6 ± 1.0 75.8 ± 0.5 71.2 54.3 ± 0.4 56.7 1.0 ± 1.0 75.2 ± 0.7 74.3 54.6 ± 0.6 54.9
2.0 0.7 ± 1.0 77.0 ± 1.1 76.4 54.3 ± 0.3 54.7 −1.4 ± 1.0 74.8 ± 1.0 76.2 54.6 ± 0.5 54.0
8.0 1.1 ± 0.0 76.4 ± 0.4 75.3 54.2 ± 0.4 54.5 −0.8 ± 0.0 74.8 ± 0.5 75.6 54.1 ± 0.3 53.6
∞ 0.0 ± 0.0 74.0 ± 0.0 74.0 53.9 ± 0.0 53.9 0.0 ± 0.0 74.0 ± 0.0 74.0 53.9 ± 0.0 53.9

GT

0.1 7.5 ± 0.0 79.5 ± 0.5 72.1 62.4 ± 0.6 58.3 4.8 ± 0.0 79.4 ± 0.4 74.6 62.2 ± 0.5 60.4
1.0 5.3 ± 0.0 79.6 ± 0.5 74.3 62.3 ± 0.6 59.1 1.0 ± 0.0 79.2 ± 0.5 78.2 62.1 ± 0.4 61.0
2.0 2.7 ± 0.0 79.6 ± 0.4 76.9 62.1 ± 0.4 60.8 0.4 ± 0.0 79.4 ± 0.3 79.0 62.6 ± 0.6 62.0
8.0 −0.6 ± 0.0 79.7 ± 0.5 80.2 62.4 ± 0.5 62.6 0.1 ± 0.0 79.7 ± 0.4 79.6 62.5 ± 0.6 62.5
∞ −0.4 ± 1.0 79.4 ± 0.6 79.7 62.4 ± 0.5 61.9 0.8 ± 1.0 79.5 ± 0.6 78.7 62.2 ± 0.5 62.5

SAGE

0.1 5.3 ± 1.0 80.8 ± 1.1 75.5 79.9 ± 2.1 72.6 4.5 ± 1.0 81.3 ± 1.1 76.8 78.6 ± 1.2 74.7
1.0 3.4 ± 1.0 81.1 ± 0.5 77.7 79.5 ± 0.5 75.9 1.5 ± 0.0 81.5 ± 0.4 80.0 79.3 ± 0.4 78.1
2.0 1.8 ± 0.0 81.3 ± 0.3 79.5 79.7 ± 0.6 76.5 0.4 ± 0.0 81.6 ± 0.2 81.2 79.6 ± 0.5 78.5
8.0 0.4 ± 0.0 81.4 ± 0.1 81.1 80.0 ± 0.4 80.1 −0.1 ± 0.0 81.5 ± 0.2 81.7 79.6 ± 0.5 79.8
∞ 0.0 ± 0.0 81.8 ± 0.0 81.8 79.3 ± 0.0 79.3 0.0 ± 0.0 81.8 ± 0.0 81.8 79.3 ± 0.0 79.3
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Table 9: Results on LastFM.

GP-t GP-m
Model ϵ ∆Acc AccGP Accb AUCGP AUCb ∆Acc AccGP Accb AUCGP AUCb

GAT

0.1 7.4 ± 1.0 82.5 ± 1.0 75.1 57.9 ± 1.0 54.4 3.2 ± 1.0 83.1 ± 0.8 79.9 57.4 ± 0.5 56.7
1.0 2.8 ± 1.0 83.3 ± 0.9 80.5 57.6 ± 0.5 55.3 2.4 ± 1.0 82.8 ± 0.8 80.4 57.6 ± 0.4 57.0
2.0 1.2 ± 1.0 83.6 ± 0.7 82.3 57.7 ± 0.5 56.3 −0.8 ± 1.0 83.3 ± 1.1 84.1 57.4 ± 0.6 58.0
8.0 −1.9 ± 1.0 82.8 ± 0.9 84.7 57.8 ± 0.4 58.6 2.6 ± 1.0 84.1 ± 0.8 81.5 58.1 ± 0.6 56.9
∞ −0.5 ± 1.0 82.9 ± 0.8 83.5 57.5 ± 0.3 57.8 0.4 ± 1.0 83.5 ± 0.6 83.1 57.5 ± 0.3 57.6

GATv2

0.1 4.9 ± 2.0 74.6 ± 1.9 69.8 54.8 ± 0.5 52.6 1.3 ± 2.0 77.0 ± 1.8 75.7 55.1 ± 0.4 54.8
1.0 6.2 ± 2.0 77.1 ± 1.9 70.9 55.1 ± 0.3 52.7 −1.6 ± 2.0 75.6 ± 1.5 77.2 55.0 ± 0.5 54.8
2.0 6.0 ± 4.0 77.9 ± 3.5 71.9 54.9 ± 0.4 53.2 0.4 ± 1.0 76.9 ± 1.5 76.5 55.1 ± 0.4 55.1
8.0 −1.7 ± 2.0 75.6 ± 1.8 77.3 54.8 ± 0.5 54.6 −1.7 ± 1.0 76.9 ± 1.1 78.6 55.2 ± 0.3 54.6
∞ 0.2 ± 0.0 77.1 ± 0.4 76.9 55.5 ± 0.2 55.7 −0.2 ± 0.0 77.1 ± 0.4 77.3 55.5 ± 0.1 55.3

GCN

0.1 3.9 ± 0.0 86.5 ± 0.4 82.6 93.5 ± 2.0 80.8 3.2 ± 0.0 86.3 ± 0.5 83.1 94.2 ± 1.2 87.4
1.0 2.3 ± 0.0 86.5 ± 0.2 84.2 94.0 ± 1.2 84.7 1.2 ± 0.0 86.5 ± 0.2 85.3 94.9 ± 0.6 90.9
2.0 2.0 ± 0.0 86.5 ± 0.2 84.5 94.6 ± 0.8 89.2 0.3 ± 0.0 86.6 ± 0.1 86.2 94.5 ± 0.5 94.5
8.0 0.1 ± 0.0 86.6 ± 0.1 86.4 94.7 ± 0.5 94.9 −0.2 ± 0.0 86.5 ± 0.1 86.7 94.0 ± 0.4 93.5
∞ 0.0 ± 0.0 86.5 ± 0.0 86.5 94.8 ± 0.0 94.8 0.0 ± 0.0 86.6 ± 0.0 86.6 94.5 ± 0.0 94.5

GConv

0.1 4.0 ± 1.0 70.5 ± 1.2 66.5 51.9 ± 0.2 53.3 1.1 ± 3.0 70.4 ± 3.2 69.3 52.5 ± 0.6 53.7
1.0 2.2 ± 1.0 71.6 ± 1.3 69.4 52.2 ± 0.3 51.8 2.0 ± 2.0 69.1 ± 1.8 67.1 52.7 ± 0.8 53.1
2.0 2.4 ± 1.0 69.9 ± 1.3 67.5 52.6 ± 0.7 52.9 −2.8 ± 3.0 70.0 ± 2.5 72.7 52.2 ± 0.3 52.8
8.0 1.3 ± 2.0 69.6 ± 2.2 68.4 52.5 ± 0.6 52.4 1.2 ± 2.0 69.7 ± 2.4 68.5 52.5 ± 0.6 52.6
∞ 0.0 ± 0.0 66.6 ± 0.0 66.6 51.8 ± 0.0 51.8 0.0 ± 0.0 66.6 ± 0.0 66.6 51.8 ± 0.0 51.8

GT

0.1 8.3 ± 1.0 80.2 ± 0.8 71.9 58.8 ± 0.5 54.6 3.5 ± 1.0 80.3 ± 0.7 76.8 58.9 ± 0.3 57.5
1.0 6.8 ± 1.0 80.5 ± 0.8 73.7 59.4 ± 0.4 55.4 2.8 ± 1.0 81.0 ± 0.6 78.2 59.1 ± 0.4 57.9
2.0 5.7 ± 1.0 79.8 ± 0.9 74.2 59.4 ± 0.4 56.5 0.5 ± 0.0 80.6 ± 0.5 80.1 59.0 ± 0.4 58.2
8.0 −1.0 ± 1.0 80.1 ± 0.8 81.1 59.3 ± 0.3 59.0 −1.2 ± 1.0 79.9 ± 0.9 81.2 58.9 ± 0.4 58.8
∞ −0.4 ± 0.0 80.3 ± 0.5 80.7 58.9 ± 0.2 58.9 −0.4 ± 1.0 80.4 ± 0.6 80.8 58.8 ± 0.2 59.0

SAGE

0.1 4.6 ± 1.0 84.6 ± 0.8 80.0 85.9 ± 1.2 83.7 3.2 ± 1.0 84.9 ± 0.9 81.8 85.2 ± 0.8 83.2
1.0 5.7 ± 1.0 84.6 ± 0.5 78.9 86.0 ± 1.1 83.5 3.1 ± 1.0 85.4 ± 0.7 82.3 85.2 ± 1.0 84.7
2.0 1.8 ± 0.0 84.6 ± 0.3 82.7 85.7 ± 0.8 85.4 1.8 ± 1.0 85.1 ± 0.8 83.4 85.8 ± 0.4 85.4
8.0 −0.0 ± 1.0 85.3 ± 0.6 85.3 85.7 ± 0.9 83.5 1.2 ± 0.0 85.3 ± 0.5 84.2 85.8 ± 0.6 85.1
∞ 0.0 ± 0.0 86.0 ± 0.0 86.0 86.1 ± 0.0 86.1 0.0 ± 0.0 86.0 ± 0.0 86.0 86.1 ± 0.0 86.1
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Table 10: Results on PubMed.

GP-t GP-m
Model ϵ ∆Acc AccGP Accb AUCGP AUCb ∆Acc AccGP Accb AUCGP AUCb

GAT

0.1 1.9 ± 0.0 82.4 ± 0.1 80.5 71.6 ± 1.1 67.3 1.8 ± 0.0 82.4 ± 0.2 80.6 72.6 ± 0.9 72.0
1.0 1.4 ± 0.0 82.4 ± 0.1 81.1 72.4 ± 1.4 65.4 0.7 ± 0.0 82.5 ± 0.1 81.8 72.2 ± 1.3 73.8
2.0 0.8 ± 0.0 82.5 ± 0.1 81.7 71.8 ± 1.3 69.7 0.0 ± 0.0 82.4 ± 0.1 82.4 71.9 ± 1.4 69.5
8.0 0.1 ± 0.0 82.5 ± 0.1 82.4 72.8 ± 1.2 70.9 0.1 ± 0.0 82.5 ± 0.1 82.4 72.7 ± 1.3 73.3
∞ −0.0 ± 0.0 82.5 ± 0.0 82.5 73.0 ± 0.2 73.2 −0.0 ± 0.0 82.5 ± 0.0 82.5 73.0 ± 0.3 72.8

GATv2

0.1 1.6 ± 0.0 82.5 ± 0.1 80.9 64.5 ± 0.6 60.3 1.8 ± 0.0 82.5 ± 0.1 80.8 65.5 ± 0.8 61.7
1.0 1.1 ± 0.0 82.4 ± 0.1 81.3 65.2 ± 0.9 61.4 0.7 ± 0.0 82.5 ± 0.1 81.9 65.8 ± 0.8 63.7
2.0 0.8 ± 0.0 82.5 ± 0.1 81.7 64.3 ± 0.8 62.8 0.4 ± 0.0 82.5 ± 0.1 82.1 64.9 ± 1.4 64.9
8.0 0.0 ± 0.0 82.5 ± 0.1 82.4 65.2 ± 1.2 65.3 −0.0 ± 0.0 82.5 ± 0.0 82.6 65.2 ± 1.0 66.5
∞ −0.1 ± 0.0 82.6 ± 0.1 82.7 66.2 ± 0.2 66.2 0.0 ± 0.0 82.6 ± 0.0 82.6 66.2 ± 0.2 66.2

GCN

0.1 1.8 ± 0.0 82.3 ± 0.1 80.6 98.5 ± 1.0 85.9 1.8 ± 0.0 82.3 ± 0.1 80.5 98.7 ± 0.7 93.4
1.0 1.0 ± 0.0 82.4 ± 0.1 81.4 98.9 ± 0.5 89.9 0.7 ± 0.0 82.3 ± 0.1 81.6 99.1 ± 0.2 97.2
2.0 0.5 ± 0.0 82.4 ± 0.1 81.9 99.1 ± 0.3 94.4 0.0 ± 0.0 82.4 ± 0.1 82.3 99.1 ± 0.2 98.9
8.0 0.1 ± 0.0 82.4 ± 0.0 82.3 99.1 ± 0.2 99.1 0.1 ± 0.0 82.4 ± 0.1 82.3 99.1 ± 0.2 98.8
∞ 0.0 ± 0.0 82.4 ± 0.0 82.4 99.2 ± 0.0 99.2 0.0 ± 0.0 82.4 ± 0.0 82.4 99.2 ± 0.0 99.2

GConv

0.1 2.0 ± 0.0 81.7 ± 0.1 79.7 74.8 ± 1.0 71.4 1.5 ± 0.0 81.8 ± 0.1 80.3 74.4 ± 0.8 76.0
1.0 1.1 ± 0.0 81.7 ± 0.1 80.6 74.8 ± 0.6 73.1 0.6 ± 0.0 81.9 ± 0.1 81.3 74.6 ± 0.7 75.8
2.0 0.7 ± 0.0 81.7 ± 0.1 81.1 74.1 ± 0.7 77.5 0.6 ± 0.0 81.9 ± 0.1 81.3 74.5 ± 1.0 74.4
8.0 0.2 ± 0.0 81.8 ± 0.1 81.6 74.4 ± 0.5 74.9 0.0 ± 0.0 81.8 ± 0.2 81.7 73.8 ± 1.3 74.5
∞ 0.0 ± 0.0 82.0 ± 0.0 82.0 75.0 ± 0.0 75.0 0.0 ± 0.0 82.0 ± 0.0 82.0 75.0 ± 0.0 75.0

GT

0.1 1.9 ± 0.0 82.1 ± 0.1 80.1 64.3 ± 0.2 60.2 2.3 ± 0.0 82.0 ± 0.1 79.8 64.3 ± 0.3 63.2
1.0 1.2 ± 0.0 82.0 ± 0.1 80.8 64.1 ± 0.5 61.0 0.8 ± 0.0 82.0 ± 0.1 81.2 64.1 ± 0.2 64.1
2.0 1.0 ± 0.0 82.1 ± 0.1 81.0 64.3 ± 0.2 62.2 0.4 ± 0.0 82.0 ± 0.1 81.7 64.4 ± 0.3 64.4
8.0 0.1 ± 0.0 82.1 ± 0.1 82.0 64.2 ± 0.2 64.1 0.3 ± 0.0 82.1 ± 0.0 81.9 64.4 ± 0.3 64.5
∞ 0.0 ± 0.0 82.1 ± 0.0 82.1 64.2 ± 0.2 64.3 −0.0 ± 0.0 82.1 ± 0.0 82.1 64.2 ± 0.2 64.0

SAGE

0.1 1.6 ± 0.0 82.0 ± 0.2 80.4 56.2 ± 0.9 56.1 1.9 ± 0.0 82.0 ± 0.1 80.1 55.9 ± 0.5 57.0
1.0 1.1 ± 0.0 82.0 ± 0.1 80.9 55.6 ± 0.6 57.0 0.6 ± 0.0 82.0 ± 0.1 81.4 56.1 ± 0.7 56.6
2.0 0.5 ± 0.0 82.0 ± 0.1 81.5 55.8 ± 0.5 54.8 0.2 ± 0.0 82.0 ± 0.1 81.8 55.9 ± 0.6 54.6
8.0 −0.0 ± 0.0 82.0 ± 0.1 82.1 55.9 ± 0.5 55.7 0.1 ± 0.0 82.0 ± 0.1 82.0 56.0 ± 0.6 57.0
∞ 0.0 ± 0.0 82.0 ± 0.0 82.0 56.6 ± 0.0 56.6 0.0 ± 0.0 82.0 ± 0.0 82.0 56.6 ± 0.0 56.6
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Table 11: Results on Facebook.

GP-t GP-m
Model ϵ ∆Acc AccGP Accb AUCGP AUCb ∆Acc AccGP Accb AUCGP AUCb

GAT

0.1 4.8 ± 1.0 90.5 ± 1.1 85.8 63.8 ± 1.3 60.8 3.1 ± 0.0 91.0 ± 0.4 87.9 64.8 ± 0.6 64.0
1.0 4.1 ± 1.0 90.8 ± 0.8 86.6 65.2 ± 1.7 62.9 1.0 ± 0.0 91.0 ± 0.2 90.0 64.7 ± 1.1 66.1
2.0 2.5 ± 0.0 90.8 ± 0.4 88.4 64.1 ± 1.4 64.9 0.2 ± 0.0 90.9 ± 0.1 90.7 64.4 ± 1.0 64.9
8.0 0.1 ± 0.0 91.1 ± 0.2 91.0 63.8 ± 1.1 67.2 −0.3 ± 0.0 91.1 ± 0.2 91.4 64.9 ± 1.3 64.4
∞ 0.1 ± 0.0 90.9 ± 0.1 90.8 64.7 ± 0.3 64.8 −0.1 ± 0.0 90.9 ± 0.1 91.0 64.6 ± 0.3 64.3

GATv2

0.1 4.9 ± 1.0 88.2 ± 0.7 83.3 58.5 ± 1.8 54.8 3.8 ± 0.0 88.6 ± 0.4 84.8 60.0 ± 1.3 57.0
1.0 4.0 ± 0.0 88.1 ± 0.4 84.1 58.4 ± 1.0 54.8 1.0 ± 1.0 87.9 ± 0.6 86.9 59.3 ± 1.4 57.6
2.0 3.2 ± 0.0 88.4 ± 0.4 85.1 58.8 ± 1.0 55.9 0.2 ± 1.0 88.3 ± 0.5 88.1 59.9 ± 1.6 59.3
8.0 0.1 ± 0.0 88.6 ± 0.5 88.5 61.2 ± 2.8 59.7 −0.2 ± 0.0 88.2 ± 0.4 88.4 58.6 ± 2.1 57.8
∞ 0.1 ± 0.0 88.6 ± 0.1 88.4 61.7 ± 0.4 61.8 0.2 ± 0.0 88.6 ± 0.1 88.4 61.9 ± 0.4 61.3

GCN

0.1 4.8 ± 1.0 91.4 ± 1.0 86.6 98.1 ± 1.5 90.8 2.9 ± 0.0 91.8 ± 0.3 89.0 98.9 ± 0.2 96.9
1.0 4.0 ± 1.0 91.6 ± 0.7 87.6 98.5 ± 1.0 93.2 1.1 ± 0.0 91.9 ± 0.1 90.8 99.0 ± 0.1 98.7
2.0 3.0 ± 0.0 91.7 ± 0.5 88.7 98.8 ± 0.4 95.8 0.5 ± 0.0 91.9 ± 0.1 91.5 99.0 ± 0.0 99.1
8.0 0.1 ± 0.0 91.9 ± 0.0 91.9 99.1 ± 0.2 99.2 0.1 ± 0.0 92.0 ± 0.0 91.9 99.0 ± 0.1 99.0
∞ 0.0 ± 0.0 91.9 ± 0.0 91.9 99.1 ± 0.0 99.1 0.0 ± 0.0 91.9 ± 0.0 91.9 99.1 ± 0.0 99.1

GConv

0.1 4.4 ± 0.0 88.5 ± 0.3 84.1 51.2 ± 0.3 52.4 2.5 ± 0.0 88.6 ± 0.2 86.1 51.2 ± 0.2 51.8
1.0 4.0 ± 0.0 88.5 ± 0.2 84.6 51.1 ± 0.2 52.1 0.4 ± 0.0 88.5 ± 0.2 88.1 51.1 ± 0.1 51.7
2.0 2.0 ± 0.0 88.5 ± 0.3 86.5 51.1 ± 0.2 52.2 0.1 ± 0.0 88.3 ± 0.2 88.2 51.2 ± 0.4 51.3
8.0 −0.0 ± 0.0 88.5 ± 0.3 88.6 51.0 ± 0.1 51.1 0.5 ± 0.0 88.4 ± 0.3 88.0 51.1 ± 0.1 51.0
∞ 0.0 ± 0.0 88.5 ± 0.0 88.5 51.1 ± 0.0 51.1 0.0 ± 0.0 88.5 ± 0.0 88.5 51.1 ± 0.0 51.1

GT

0.1 4.7 ± 0.0 91.4 ± 0.4 86.7 60.1 ± 0.8 54.2 3.3 ± 0.0 91.5 ± 0.2 88.2 60.4 ± 0.4 57.2
1.0 3.7 ± 0.0 91.5 ± 0.2 87.8 60.4 ± 0.5 55.7 1.0 ± 0.0 91.6 ± 0.1 90.6 60.3 ± 0.4 58.8
2.0 2.6 ± 0.0 91.5 ± 0.1 88.9 60.2 ± 0.6 56.7 0.5 ± 0.0 91.6 ± 0.1 91.1 60.7 ± 0.3 59.5
8.0 0.0 ± 0.0 91.6 ± 0.1 91.6 60.7 ± 0.2 60.0 0.1 ± 0.0 91.6 ± 0.1 91.4 60.5 ± 0.6 59.7
∞ −0.0 ± 0.0 91.6 ± 0.1 91.6 60.3 ± 0.4 60.1 0.1 ± 0.0 91.6 ± 0.1 91.5 60.3 ± 0.2 60.1

SAGE

0.1 4.4 ± 1.0 91.3 ± 0.9 86.9 75.0 ± 1.5 69.8 2.6 ± 1.0 91.5 ± 0.6 88.9 75.0 ± 1.4 72.9
1.0 3.6 ± 1.0 91.5 ± 0.7 87.8 74.7 ± 0.7 70.9 1.0 ± 0.0 91.7 ± 0.2 90.7 74.7 ± 0.4 76.0
2.0 2.5 ± 0.0 91.6 ± 0.4 89.1 74.6 ± 0.8 71.0 0.4 ± 0.0 91.8 ± 0.1 91.4 75.2 ± 0.5 75.2
8.0 −0.0 ± 0.0 91.8 ± 0.0 91.8 75.6 ± 0.5 76.2 0.1 ± 0.0 91.8 ± 0.0 91.7 75.8 ± 0.9 74.2
∞ 0.0 ± 0.0 91.9 ± 0.0 91.9 74.7 ± 0.0 74.7 0.0 ± 0.0 91.9 ± 0.0 91.9 74.7 ± 0.0 74.7
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Table 12: Results on Amazon Photo.

Model ϵ ∆Acc AccGP Accb AUCGP AUCb ∆Acc AccGP Accb AUCGP AUCb

GAT

0.1 13.9 ± 2.0 85.6 ± 2.4 71.8 80.9 ± 3.9 70.1 1.4 ± 0.0 86.3 ± 0.5 84.9 82.3 ± 4.2 79.4
1.0 15.4 ± 2.0 85.2 ± 2.4 69.8 80.5 ± 4.6 71.5 0.2 ± 1.0 86.2 ± 1.1 86.0 80.0 ± 4.5 75.9
2.0 12.8 ± 2.0 85.6 ± 1.8 72.8 83.5 ± 1.9 72.2 −0.2 ± 1.0 86.2 ± 0.9 86.3 82.4 ± 3.6 82.6
8.0 0.2 ± 0.0 86.4 ± 0.3 86.1 84.9 ± 2.9 73.6 −0.2 ± 1.0 86.3 ± 1.1 86.5 83.4 ± 2.6 83.1
∞ −0.0 ± 0.0 86.8 ± 0.0 86.8 83.9 ± 0.5 84.4 −0.0 ± 0.0 86.8 ± 0.0 86.8 83.7 ± 0.6 83.7

GATv2

0.1 13.9 ± 2.0 83.8 ± 2.4 69.9 71.0 ± 4.6 61.7 2.6 ± 2.0 82.7 ± 2.2 80.1 70.2 ± 4.2 68.2
1.0 12.2 ± 4.0 82.6 ± 4.0 70.4 69.4 ± 4.8 57.2 −0.6 ± 2.0 83.7 ± 1.9 84.3 70.9 ± 4.1 72.4
2.0 13.9 ± 5.0 82.2 ± 5.3 68.3 68.3 ± 2.6 60.0 −0.9 ± 1.0 84.1 ± 0.9 85.0 72.0 ± 3.2 76.8
8.0 −1.2 ± 1.0 83.8 ± 1.3 85.0 72.9 ± 3.4 71.8 −1.1 ± 2.0 83.4 ± 1.8 84.5 72.6 ± 3.4 69.9
∞ 0.0 ± 0.0 84.9 ± 0.0 84.9 76.7 ± 0.8 77.6 −0.0 ± 0.0 84.9 ± 0.0 84.9 76.6 ± 0.9 77.3

GCN

0.1 15.4 ± 3.0 84.1 ± 2.9 68.7 96.4 ± 1.7 89.2 0.5 ± 2.0 83.2 ± 1.6 82.7 96.2 ± 0.9 95.9
1.0 10.6 ± 3.0 83.7 ± 3.5 73.1 95.9 ± 1.2 92.3 −0.7 ± 2.0 83.5 ± 1.9 84.2 96.2 ± 0.8 95.8
2.0 12.8 ± 3.0 83.3 ± 3.1 70.4 95.3 ± 0.6 93.0 −3.8 ± 3.0 81.9 ± 2.6 85.7 96.1 ± 1.0 95.5
8.0 −1.7 ± 2.0 84.2 ± 1.5 85.9 95.7 ± 0.9 95.3 −4.4 ± 2.0 81.8 ± 1.9 86.2 96.0 ± 0.6 96.5
∞ 0.0 ± 0.0 80.8 ± 0.0 80.8 96.3 ± 0.0 96.3 0.0 ± 0.0 80.8 ± 0.0 80.8 96.3 ± 0.0 96.3

GConv

0.1 −3.2 ± 6.0 64.1 ± 6.1 67.3 51.8 ± 1.0 52.0 −5.3 ± 7.0 70.8 ± 7.1 76.1 52.2 ± 0.6 51.7
1.0 5.4 ± 5.0 65.9 ± 5.0 60.5 52.3 ± 0.9 51.7 −7.7 ± 9.0 62.2 ± 9.0 69.9 52.1 ± 0.7 52.2
2.0 11.8 ± 4.0 66.3 ± 4.3 54.4 52.2 ± 1.5 51.8 −7.4 ± 6.0 63.0 ± 6.2 70.3 51.9 ± 0.5 51.8
8.0 −13.0 ± 11.0 60.8 ± 10.5 73.7 52.2 ± 0.8 52.8 −5.5 ± 7.0 65.5 ± 6.6 71.0 52.0 ± 0.6 51.7
∞ 0.0 ± 0.0 61.3 ± 0.0 61.3 52.2 ± 0.0 52.2 0.0 ± 0.0 61.3 ± 0.0 61.3 52.2 ± 0.0 52.2

GT

0.1 8.7 ± 1.0 86.1 ± 0.9 77.3 81.5 ± 6.6 66.4 1.3 ± 1.0 86.4 ± 0.6 85.2 82.7 ± 4.2 74.5
1.0 7.6 ± 1.0 86.1 ± 0.9 78.6 78.4 ± 5.5 67.3 0.3 ± 1.0 86.4 ± 0.7 86.0 82.8 ± 3.1 73.8
2.0 3.4 ± 1.0 86.2 ± 0.7 82.8 80.8 ± 4.2 67.1 0.0 ± 0.0 86.4 ± 0.5 86.3 83.5 ± 3.1 77.1
8.0 0.0 ± 0.0 86.6 ± 0.2 86.6 82.5 ± 2.0 80.3 −0.2 ± 0.0 86.6 ± 0.1 86.8 84.7 ± 2.4 81.0
∞ −0.0 ± 0.0 86.7 ± 0.0 86.7 87.5 ± 0.5 87.6 0.1 ± 0.0 86.7 ± 0.0 86.6 87.3 ± 0.6 87.8

SAGE

0.1 14.9 ± 2.0 85.9 ± 1.7 71.0 85.1 ± 6.9 70.9 1.0 ± 0.0 86.3 ± 0.3 85.3 86.2 ± 7.0 79.0
1.0 14.6 ± 1.0 85.9 ± 0.9 71.3 78.4 ± 2.1 71.6 0.2 ± 0.0 86.3 ± 0.2 86.1 77.6 ± 2.8 83.0
2.0 13.0 ± 2.0 85.8 ± 1.6 72.7 80.5 ± 4.3 72.7 0.2 ± 0.0 86.4 ± 0.2 86.3 79.0 ± 2.3 83.0
8.0 −0.2 ± 0.0 86.7 ± 0.1 86.9 80.0 ± 1.9 80.0 0.1 ± 0.0 86.5 ± 0.1 86.4 78.7 ± 2.0 83.0
∞ 0.0 ± 0.0 86.4 ± 0.0 86.4 93.8 ± 0.0 93.8 0.0 ± 0.0 86.4 ± 0.0 86.4 93.8 ± 0.0 93.8
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C.4 Additional results with GAT

We report results for ϵ = 0.1 and different values of α and δ, for all our experiments, as averaged values
across 10 runs.
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(a) ∆Acc for different values of α and δ. Higher is better.
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(b) ∆AUC for different values of α and δ. Smaller is better.

Figure 4: Results for GP-t with GAT, for ϵ = 0.1. Average values across 10 runs. The colormap is normalized
to interpret all ∆Acc > 0 and ∆AUC ≤ 2 as desirable.
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(a) ∆Acc for different values of α and δ. Higher is better.
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(b) ∆AUC for different values of α and δ. Smaller is better.

Figure 5: Results for GP-m with GAT, for ϵ = 0.1. Average values across 10 runs. The colormap is
normalized to interpret all ∆Acc > 0 and ∆AUC ≤ 2 as desirable.
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C.5 Additional results with SAGE

We report results for ϵ = 0.1 and different values of α and δ, for all our experiments, as averaged values
across 10 runs.
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(a) ∆Acc for different values of α and δ. Higher is better.
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(b) ∆AUC for different values of α and δ. Smaller is better.

Figure 6: Results for GP-t with SAGE, for ϵ = 0.1. Average values across 10 runs. The colormap is
normalized to interpret all ∆Acc > 0 and ∆AUC ≤ 2 as desirable.
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(a) ∆Acc for different values of α and δ. Higher is better.
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(b) ∆AUC for different values of α and δ. Smaller is better.

Figure 7: Results for GP-m with SAGE, for ϵ = 0.1. Average values across 10 runs. The colormap is
normalized to interpret all ∆Acc > 0 and ∆AUC ≤ 2 as desirable.
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C.6 Additional results with GCN

We report results for ϵ = 0.1 and different values of α and δ, for all our experiments, as averaged values
across 10 runs.
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(a) ∆Acc for different values of α and δ. Higher is better.

0.0 0.1 0.25 0.5 1.0
delta

0.
0

0.
25

0.
5

0.
75

1.
0

al
ph

a

0.0 2.9 6.7 11.0 11.9

-0.1 4.2 9.4 12.4 11.9

-0.5 6.2 11.5 12.1 11.9

-0.4 10.2 12.1 12.1 11.9

8.3 12.1 12.1 12.1 11.9

Cora

0.0 0.1 0.25 0.5 1.0
delta

0.
0

0.
25

0.
5

0.
75

1.
0

al
ph

a

0.0 6.6 9.9 14.2 13.6

0.7 6.0 12.1 13.5 13.6

1.0 10.2 12.9 13.6 13.6

-1.0 13.5 13.6 13.6 13.6

5.4 13.6 13.6 13.6 13.6

LastFM

0.0 0.1 0.25 0.5 1.0
delta

0.
0

0.
25

0.
5

0.
75

1.
0

al
ph

a

0.0 7.0 11.9 13.1 13.3

0.0 9.3 12.7 13.1 13.3

-0.2 10.9 12.8 12.9 13.3

-0.5 12.9 12.8 12.8 13.3

6.4 12.8 12.8 12.8 13.3

PubMed

0.0 0.1 0.25 0.5 1.0
delta

0.
0

0.
25

0.
5

0.
75

1.
0

al
ph

a
0.0 2.4 5.0 7.4 8.1

0.0 3.0 6.3 8.1 8.1

0.5 4.6 7.5 8.2 8.1

0.2 6.7 8.2 8.2 8.1

3.0 8.2 8.2 8.2 8.1

Facebook

0.0 0.1 0.25 0.5 1.0
delta

0.
0

0.
25

0.
5

0.
75

1.
0

al
ph

a

0.0 5.4 6.8 7.2 6.1

2.9 5.9 7.6 8.0 6.1

-0.3 6.0 9.0 7.0 6.1

2.4 9.0 9.0 9.0 6.1

-0.3 9.0 9.0 9.0 6.1

Amazon Photo

0

1
2
3
4
5
6
7

(b) ∆AUC for different values of α and δ. Smaller is better.

Figure 8: Results for GP-t with GCN, for ϵ = 0.1. Average values across 10 runs. The colormap is normalized
to interpret all ∆Acc > 0 and ∆AUC ≤ 2 as desirable.
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(b) ∆AUC for different values of α and δ. Smaller is better.

Figure 9: Results for GP-m with GCN, for ϵ = 0.1. Average values across 10 runs. The colormap is
normalized to interpret all ∆Acc > 0 and ∆AUC ≤ 2 as desirable.
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C.7 Additional results with GATv2

We report results for ϵ = 0.1 and different values of α and δ, for all our experiments, as averaged values
across 10 runs.
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(b) ∆AUC for different values of α and δ. Smaller is better.

Figure 10: Results for GP-t with GATv2, for ϵ = 0.1. Average values across 10 runs. The colormap is
normalized to interpret all ∆Acc > 0 and ∆AUC ≤ 2 as desirable.
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(a) ∆Acc for different values of α and δ. Higher is better.
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(b) ∆AUC for different values of α and δ. Smaller is better.

Figure 11: Results for GP-m with GATv2, for ϵ = 0.1. Average values across 10 runs. The colormap is
normalized to interpret all ∆Acc > 0 and ∆AUC ≤ 2 as desirable.
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C.8 Additional results with GT

We report results for ϵ = 0.1 and different values of α and δ, for all our experiments, as averaged values
across 10 runs.
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(a) ∆Acc for different values of α and δ. Higher is better.

0.0 0.25 0.5 0.75 1.0
delta

0.
0

0.
25

0.
5

0.
75

1.
0

al
ph

a

0.0 2.4 3.6 4.0 4.6

-0.2 3.1 4.8 4.7 4.3

-0.3 3.6 4.0 3.8 4.3

-0.7 3.2 4.6 5.2 4.3

2.3 4.7 3.9 3.9 3.6

Cora

0.0 0.25 0.5 0.75 1.0
delta

0.
0

0.
25

0.
5

0.
75

1.
0

al
ph

a

0.0 3.4 4.5 4.4 5.5

0.0 3.5 4.8 4.8 4.5

0.2 3.3 3.8 4.6 4.7

-0.3 3.9 4.1 4.0 4.7

2.3 3.8 4.2 3.6 5.0

LastFM

0.0 0.25 0.5 0.75 1.0
delta

0.
0

0.
25

0.
5

0.
75

1.
0

al
ph

a

0.0 4.0 3.9 4.1 4.3

0.0 3.9 4.0 4.1 4.5

0.3 4.5 4.2 4.0 4.3

0.4 4.0 4.2 4.0 4.1

3.3 3.7 4.0 4.0 4.5

PubMed

0.0 0.25 0.5 0.75 1.0
delta

0.
0

0.
25

0.
5

0.
75

1.
0

al
ph

a
0.0 2.5 5.7 6.0 6.2

0.2 3.3 5.2 6.2 6.1

-0.5 5.5 5.7 5.7 6.2

0.3 6.0 6.1 6.3 6.4

4.0 6.4 5.8 6.8 6.5

Facebook

0.0 0.1 0.25 0.5 1.0
delta

0.
0

0.
25

0.
5

0.
75

1.
0

al
ph

a

0.0 2.6 13.2 17.6 17.3

-0.6 2.4 14.7 14.7 17.8

0.2 10.8 20.1 14.5 18.7

-0.3 19.8 19.7 20.2 17.1

0.1 19.2 19.7 19.1 17.9

Amazon Photo

0

1
2
3
4
5
6
7

(b) ∆AUC for different values of α and δ. Smaller is better.

Figure 12: Results for GP-t with GT, for ϵ = 0.1. Average values across 10 runs. The colormap is normalized
to interpret all ∆Acc > 0 and ∆AUC ≤ 2 as desirable.
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(a) ∆Acc for different values of α and δ. Higher is better.

0.0 0.25 0.5 0.75 1.0
delta

0.
0

0.
25

0.
5

0.
75

1.
0

al
ph

a

0.0 1.0 2.2 2.0 1.4

-0.2 1.0 1.9 2.2 2.4

-0.5 1.3 1.1 1.0 2.0

0.0 2.8 1.6 2.0 2.3

0.1 2.1 1.9 1.4 1.9

Cora

0.0 0.25 0.5 0.75 1.0
delta

0.
0

0.
25

0.
5

0.
75

1.
0

al
ph

a

0.0 0.7 0.6 2.2 1.3

0.1 1.3 1.3 1.1 1.4

0.4 1.5 1.2 1.3 1.0

-0.5 1.5 1.7 1.6 1.5

0.8 1.3 1.8 1.9 1.2

LastFM

0.0 0.25 0.5 0.75 1.0
delta

0.
0

0.
25

0.
5

0.
75

1.
0

al
ph

a

0.0 0.5 1.4 1.5 1.0

-0.2 0.8 1.2 0.7 1.1

0.3 1.7 1.3 1.4 1.2

-0.4 0.8 0.9 1.3 0.7

0.6 0.7 0.8 1.0 0.8

PubMed

0.0 0.25 0.5 0.75 1.0
delta

0.
0

0.
25

0.
5

0.
75

1.
0

al
ph

a

0.0 1.4 2.5 4.6 2.9

0.6 2.3 2.9 3.6 2.6

0.4 2.5 3.5 3.5 3.5

0.5 3.1 3.2 3.2 3.5

2.3 3.6 3.9 3.5 3.0

Facebook

0.0 0.1 0.25 0.5 1.0
delta

0.
0

0.
25

0.
5

0.
75

1.
0

al
ph

a

2.2 3.8 4.0 11.9 14.7

5.1 -0.0 9.3 15.5 15.4

5.1 7.9 11.4 10.1 14.6

2.1 11.1 11.6 12.2 15.6

0.0 10.4 9.9 9.6 15.2

Amazon Photo

0

1
2
3
4
5
6
7

(b) ∆AUC for different values of α and δ. Smaller is better.

Figure 13: Results for GP-m with GT, for ϵ = 0.1. Average values across 10 runs. The colormap is normalized
to interpret all ∆Acc > 0 and ∆AUC ≤ 2 as desirable.
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C.9 Additional results with GConv

We report results for ϵ = 0.1 and different values of α and δ, for all our experiments, as averaged values
across 10 runs.
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(a) ∆Acc for different values of α and δ. Higher is better.
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(b) ∆AUC for different values of α and δ. Smaller is better.

Figure 14: Results for GP-t with GConv, for ϵ = 0.1. Average values across 10 runs. The colormap is
normalized to interpret all ∆Acc > 0 and ∆AUC ≤ 2 as desirable.
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(a) ∆Acc for different values of α and δ. Higher is better.

0.0 0.25 0.5 0.75 1.0
delta

0.
0

0.
25

0.
5

0.
75

1.
0

al
ph

a

0.0 -1.2 -3.3 -2.7 -3.1

-0.3 -1.9 -2.4 -3.1 -3.1

-0.3 -2.2 -2.6 -2.5 -3.1

-0.1 -2.6 -2.6 -2.6 -3.1

-1.3 -2.6 -2.6 -2.6 -3.1

Cora

0.0 0.25 0.5 0.75 1.0
delta

0.
0

0.
25

0.
5

0.
75

1.
0

al
ph

a

0.0 -0.6 -0.3 -1.1 -1.8

-0.9 -1.6 -1.3 -1.8 -1.8

-0.4 -0.5 -0.6 -1.9 -1.8

-1.0 -0.6 -0.6 -0.6 -1.8

-0.0 -0.6 -0.6 -0.6 -1.8

LastFM

0.0 0.25 0.5 0.75 1.0
delta

0.
0

0.
25

0.
5

0.
75

1.
0

al
ph

a

0.0 1.1 -0.7 -0.8 -1.0

-0.9 -1.8 -3.1 -1.0 -1.0

-1.1 -1.3 -2.1 -3.6 -1.0

-1.3 -1.8 -1.8 -2.1 -1.0

1.7 -0.9 -0.9 -0.9 -1.0

PubMed

0.0 0.25 0.5 0.75 1.0
delta

0.
0

0.
25

0.
5

0.
75

1.
0

al
ph

a

0.0 -0.1 -0.6 -0.8 -0.7

0.7 0.1 -0.8 -0.8 -0.7

0.1 -0.5 -0.6 -0.6 -0.7

0.3 -0.6 -0.6 -0.6 -0.7

-0.3 -0.7 -0.7 -0.7 -0.7

Facebook

0.0 0.1 0.25 0.5 1.0
delta

0.
0

0.
25

0.
5

0.
75

1.
0

al
ph

a

0.0 0.8 -0.2 -1.0 0.5

0.0 0.3 0.3 -0.8 0.5

0.7 1.0 0.8 -0.2 0.5

0.8 0.8 0.8 0.8 0.5

4.5 0.0 0.0 0.0 0.5

Amazon Photo

0

1
2
3
4
5
6
7

(b) ∆AUC for different values of α and δ. Smaller is better.

Figure 15: Results for GP-m with GConv, for ϵ = 0.1. Average values across 10 runs. The colormap is
normalized to interpret all ∆Acc > 0 and ∆AUC ≤ 2 as desirable.
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