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ABSTRACT

The vast amount of health data has been continuously collected for each pa-
tient, providing opportunities to support diverse healthcare predictive tasks such
as seizure detection and hospitalization prediction. Existing models are mostly
trained on other patients’ data and evaluated on new patients. Many of them
might suffer from poor generalizability. One key reason can be overfitting due
to the unique information related to patient identities and their data collection en-
vironments, referred to as patient covariates in the paper. These patient covariates
usually do not contribute to predicting the targets but are often difficult to remove.
As a result, they can bias the model training process and impede generalization.
In healthcare applications, most existing domain generalization methods assume
a small number of domains. In this paper, considering the diversity of patient
covariates, we propose a new setting by treating each patient as a separate domain
(leading to many domains). We develop a new domain generalization method
ManyDG1, that can scale to such many-domain problems. Our method identifies
the patient domain covariates by mutual reconstruction, and removes them via an
orthogonal projection step. Extensive experiments show that ManyDG can boost
the generalization performance on multiple real-world healthcare tasks (e.g., 3.7%
Jaccard improvements on MIMIC drug recommendation) and support realistic but
challenging settings such as insufficient data and continuous learning.

1 INTRODUCTION

The remarkable ability of functional approximation (Hornik et al., 1989) can be a double-edged
sword for deep neural nets (DNN). Standard empirical risk minimization (ERM) models that min-
imize average training loss are vulnerable in applications where the model tends to learn spurious
correlations (Liu et al., 2021; Wiles et al., 2022) between covariates (opposed to the causal factor
(Gulrajani & Lopez-Paz, 2021)) and the targets during training. Thus, these models often fail on new
data that do not have the same spurious correlations. In clinical settings, Perone et al. (2019); Koh
et al. (2021); Castro et al. (2020) have shown that a prediction model trained on a set of hospitals
often does not work well for another hospital due to covariate shifts, e.g., different devices, clinical
procedures, and patient population.

Unlike previous settings, this paper targets the patient covariate shift problem in the healthcare ap-
plications. Our motivation is that patient-level data unavoidably contains some unique personalized
characteristics (namely, patient covariates), for example, different environments (Zhao et al., 2017)
and patient identities, which are usually independent of the prediction targets, such as sleep stages
(Zhao et al., 2017) and seizure disease types (Hirsch et al., 2021). These patient covariates can cause
spurious correlations in learning a DNN model.

For example, in the electroencephalogram (EEG) sleep staging task, the patient EEG recordings
may be collected from different environments, e.g., in sleep lab (Terzano et al., 2002) or at home
(Kemp et al., 2000). These measurement differences (Zhao et al., 2017) can induce noise and biases.
It is also common that the label distribution per patient can be significantly different. A patient with

1Code is available at https://github.com/ycq091044/ManyDG.
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insomnia (Rémi et al., 2019) could have more awake stages than ordinary people, and elders tend to
have fewer rapid eye movement (REM) stages than teenagers (Ohayon et al., 2004). Furthermore,
these patient covariates can be even more harmful when dealing with insufficient training data.

In healthcare applications, recent domain generalization (DG) models are usually developed in
cross-institute settings to remove each hospital’s unique covariates (Wang et al., 2020; Zhang et al.,
2021; Gao et al., 2021; Reps et al., 2022). Broader domain generalization methods were built with
various techniques, including style-based data augmentations (Nam et al., 2021; Kang et al., 2022;
Volpi et al., 2018), episodic meta-learning strategies (Li et al., 2018a; Balaji et al., 2018; Li et al.,
2019) and domain-invariant feature learning (Shao et al., 2019) by heuristic metrics (Muandet et al.,
2013; Ghifary et al., 2016) or adversarial learning (Zhao et al., 2017). Most of them (Chang et al.,
2019; Zhou et al., 2021) limit the scope within CNN-based models (Bayasi et al., 2022) and batch
normalization architecture (Li et al., 2017) on image classification tasks.

Unlike previous works that assume a small number of domains, this paper considers a new setting
for learning generalizable models from many more domains. To our best knowledge, we are the
first to propose the many-domain generalization problem: In healthcare applications, we handle the
diversity of patient covariates by modeling each patient as a separate domain. For this new many-
domain problem, we develop an end-to-end domain generalization method, which is trained on a
pair of samples from the same patient and optimized via a Siamese-type architecture. Our method
combines mutual reconstruction and orthogonal projection to explicitly remove the patient covariates
for learning (patient-invariant) label representations. We summarize our main contributions below:

• We propose a new many-domain generalization problem for healthcare applications by treating
each patient as a domain. Our setting is challenging: We handle many more domains (e.g., 2,702
in the seizure detection task) compared to previous works (e.g., six domains in Li et al. (2020)).

• We propose a many-domain generalization method ManyDG for the new setting, motivated by
a latent data generative model and a factorized prediction model. Our method explicitly captures
the domain and domain-invariant label representation via orthogonal projection.

• We evaluate our method ManyDG on four healthcare datasets and two realistic and common
clinical settings: (i) insufficient labeled data and (ii) continuous learning on newly available data.
Our method achieves consistently higher performance against the best baseline (e.g., 3.7% Jaccard
improvements in the benchmark MIMIC drug recommendation task).

2 RELATED WORKS

Domain Generalization (DG) The main difference between DG (Wang et al., 2022) (also called
multi-source domain generalization, MSDG) and domain adaptation (Wilson & Cook, 2020) is that
the former cannot access the test data during training and is thus more challenging.
This paper focuses on the DG setting, for which recent methods are mostly developed from im-
age classification. They can be broadly categorized into three clusters (Yao et al., 2022): (i) Style
augmentation methods (Nam et al., 2021; Kang et al., 2022) assume that each domain is associ-
ated with a particular style, and they mostly manipulate the style of raw data (Volpi et al., 2018;
Zhou et al., 2020b) or the statistics of feature representations (the mean and standard deviations) (Li
et al., 2017; Zhou et al., 2021) and enforces to predict the same class label; (ii) Domain-invariant
feature learning (Li et al., 2018b; Shao et al., 2019) aims to remove the domain information from
the high-level features by heuristic objectives (such as MMD metric (Muandet et al., 2013; Ghifary
et al., 2016), Wasserstein distance (Zhou et al., 2020a)), conditional adversarial learning (Zhao et al.,
2017; Li et al., 2018c) and contrastive learning (Yao et al., 2022); (iii) Meta learning methods (Li
et al., 2018a) simulate the train/test domain shift during the episodic training (Li et al., 2019) and
optimize a meta objective (Balaji et al., 2018) for generalization. Zhou et al. (2020a) used an en-
semble of experts for this task. For a more holistic view, two recent works have provided systematic
evaluations (Gulrajani & Lopez-Paz, 2021) and analysis (Wiles et al., 2022) on existing algorithms.
Our paper considers a new setting by modeling each patient as a separate domain. Thus, we deal
with many more domains compared to all previous works (Peng et al., 2019). This challenging
setting also motivates us to capture the domain information explicitly in our proposed method.

Domain Generalization in Healthcare Applications Many healthcare tasks aim to predict some
clinical targets of interest for one patient: During each hospital visit, such as estimating the risk of
developing Parkinson’s disease (Makarious et al., 2022) and sepsis (Gao et al., 2021), predicting the
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endpoint of heart failure (Chu et al., 2020), recommending the prescriptions based on the diagnoses
(Yang et al., 2021a;b; Shang et al., 2019); During each measurement window, such as identifying the
sleep stage from a 30-second EEG signal (Biswal et al., 2018; Yang et al., 2021c), detecting the IIIC
seizure patterns Jing et al. (2018); Ge et al. (2021). In such tasks, every patient can generate multiple
data samples, and each data unavoidably contains patient-unique covariates, which may bias the
training performance. Most existing works (Wang et al., 2020; Zhang et al., 2021; Gao et al., 2021)
consider model generalization or adaptation across multiple clinical institutes (Reps et al., 2022;
Zhang et al., 2021) or different time frames (Guo et al., 2022) with heuristic assumptions such as
linear dependency (Li et al., 2020) in the feature space. Fewer works attempt to address the patient
covariate shift. For example, Zhao et al. (2017) trained a conditional adversarial architecture with
multi-stage optimization to mitigate environment noise for radio frequency (RF) signals. However,
their approach requires a large number of parameters (linear to the number of domains). In our
setting with more patient domains, their method can be practically less effective, as we will show in
the experiments. Compared to Zhao et al. (2017), our method can handle many more domains with
a fixed number of learnable parameters and follows end-to-end training procedures.

3 MANY-DOMAIN GENERALIZATION FOR HEALTHCARE APPLICATIONS

The section is organized by: (i) We first formulate the main-domain generalization problem in Sec-
tion 3.1; (ii) Then, we motivate our model design by assuming the data generation process in Sec-
tion 3.2; (iii) In Section 3.3, we simultaneously develop model architecture and objectives as they
are interdependent; (iv) We summarize the training and inference procedure in Section 3.4.

3.1 PROBLEM DEFINITION: MANY-DOMAIN GENERALIZATION

We denote D as the domain set of training (e.g., a set of training patients, each as a domain). In
the setting, we assume the size of D is large, e.g., |D| > 50. Each domain d ∈ D has multiple
data (e.g., one patient can generate many data samples), and thus we use Sd to denote the sample
set of domain d. The notation xdi represents the i-th sample of domain d (e.g., a 30-second EEG
sleep signal), which is associated to label ydi (e.g., the “rapid eye movement” sleep stage). The
many-domain generalization problem asks to find a mapping, f : x → y, based on the training set
{(xdi , ydi ) : i ∈ Sd, d ∈ D}, such that given new domains D′ (e.g., a new set of patients), we can
infer the labels of {xd′i : i ∈ Sd′ , d′ ∈ D′}. We provide a notation table in Appendix A.1.

3.2 MOTIVATIONS ON METHOD ARCHITECTURE DESIGN

This paper targets the many-domain generalization problem in healthcare applications by treating
each patient as an individual domain. The problem is challenging since we deal with many more
domains than previous works. Our setting is also unique: All the domains are induced by individual
patients, and thus they naturally follow a meta domain distribution formulated below.

Data Generative Model We assume the training data is generated from a two-stage process. First,
each domain is modeled as a latent factor z sampled from some meta domain distribution p(·);
Second, each data sample is from a sample distribution conditioned on the domain z and class y:

z ∼ p(·), x ∼ p(·|z, y). (1)

Factorized Prediction Model Given the generated sample x, we want to uncover its true label
using the posterior p(y|x). The quantity can be factorized by the domain factor z as

p(y|x) =
∫
p(y, z|x)dz =

∫
p(y|x, z)p(z|x)dz. (2)

Motivations on Method Architecture Design Thus, a straightforward solution for addressing the
many-domain generalization problem is: Given a data sample x in the training set, we first identify
the latent domain factor z and then build a factorized prediction model to uncover the true label y in
consideration of the underlying data generative model.

• Motivation 1: By the form of the prediction model, we need (i) a domain encoder p(z|x); (ii) a
label predictor p(y|x, z). Cascading the encoder and predictor can generate the posterior label y,
which motivates the forward architecture of our method.

3



Published as a conference paper at ICLR 2023

• Motivation 2: To guide the learning process of z (i.e., ensuring it is domain representation), we
consider reconstruction (inspired by VAE (Kingma & Welling, 2013)). By the form of the data
generative model p(x′|z, y′), we use z and another sample (x′, y′) to calculate reconstruction loss.

Figure 1: ManyDG Framework. The forward architecture (solid lines) for both training and infer-
ence follows three steps (inspired by the factorized prediction model): feature extraction, domain
encoding, and label prediction via orthogonal projection. During training, we input two samples
from the same domain, a unique design in our method is that we use the estimated domain z (from
x) and the true label y′ (from x′) to reconstruct the encoded feature v′ (from x′). Conversely, we re-
construct v by z′ and y. This mutual reconstruction design enables to learn better domain factors
z, z′. The feature v encode domain and label information along approximately different embedding
dimensions, which can be decomposed into v||z and v⊥z respectively via orthogonal projection.

3.3 MANYDG: METHOD TO HANDLE MANY-DOMAIN GENERALIZATION

We are motivated to develop our method ManyDG (shown in Figure 1) in a principled way.

STEP 1: Universal Feature Extractor Before building the prediction model, it is common to
first apply a learnable feature extractor, hθ(·) : x 7→ v, with parameter θ, on the input sample x.
The output feature representation is v,

v = hθ(x). (3)

The encoded feature v can include both the domain information (i.e., patient covariates in our ap-
plications) and the label information. Also, hθ(·) could be any neural architecture, such as RNN
(Rumelhart et al., 1985; Hochreiter & Schmidhuber, 1997; Chung et al., 2014), CNN (LeCun et al.,
1995; Krizhevsky et al., 2017), GNN (Gilmer et al., 2017; Kipf & Welling, 2016) or Transformer
(Vaswani et al., 2017). In our experiments, we specify the choices of feature encoder networks based
on the healthcare applications.

STEP 2: Domain Encoder Following Motivation 1, we parameterize the domain encoder p(z|x)
by an encoder network qϕ(·) with parameter ϕ. Since hθ(·) already encode the feature embedding
v, we apply qϕ(·) on v (not the raw input x) to estimate the domain factor,

z = qϕ(v). (4)

Note that though Equation (2) has a probabilistic form, we use a deterministic three-layer neural
network qϕ(·) for the prediction task. We ensure that v and z have the same dimensionality.

Objective 1: Mutual Reconstructions To ensure that z represents the true latent domain of x, we
postpone the forward architecture design. This section proposes a mutual reconstruction task as our
first objective to guide the learning process of z, following Motivation 2:
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• For the current sample (x, y) with feature v and domain factor z, we take a new sample (x′, y′)
from the same domain/patient in the training set.

• We obtain the feature and the domain factor of this new sample, denoted by v′, z′:

v′ = hθ(x
′), z′ = qϕ(v

′). (5)

• Since x and x′ share the same domain, we want to use the domain factor of x and the label of x′

to reconstruct the feature of x′. We utilize the decoder p(x|z, y), parameterized by pψ(·).
v̂′ = pψ(z, y

′). (6)

Note that, we consider reconstructing the feature vector v′ not the raw input x′. Here, the decoder
pψ(·) is also a non-linear projection. We implement it as a three-layer neural network in the
experiments. Conversely, we reconstruct v by the domain factor of x′ and the label of x,

v̂ = pψ(z
′, y). (7)

• The reconstruction loss is formulated as mean square error (MSE), commonly used for raw data
reconstruction (Kingma & Welling, 2013). In our case, we reconstruct parameterized vectors and
further follow (Grill et al., 2020) to use the L2-normalized MSE, equivalent to the cosine distance,

Lrec = −⟨ v

∥v∥
,

v̂

∥v̂∥
⟩ − ⟨ v′

∥v′∥
,

v̂′

∥v̂′∥
⟩. (8)

Here, ⟨·, ·⟩ is the notation for vector inner product and ∥ · ∥ is for L2-norm.

Remark for Mutual Reconstruction We justify that this objective can guide z to be the true
domain factor of x. Follow Equation (6): First, the reconstructed v̂′ should contain the domain
information (which y′ as input cannot provide), and thus z as another input will strive to preserve
the domain information from v (in Equation (4)) for the reconstruction; Second, if two samples
have different labels (i.e., y ̸= y′), then z will not preserve label information from v since it is not
useful for the reconstruction; Third, even if two samples have the same labels (i.e., y = y′), the input
y′ in Equation (6) will provide more direct and all necessary label information for reconstruction and
thus discourages z to inherit any label-related information from v. Thus, z is conceptually the
true domain representation. Empirical evaluation verifies that z satisfies the properties of being
domain representation, as we show in Section 4.4 and Appendix B.4.

Objective 2: Similarity of Domain Factors Further, to ensure the consistency of the learned
latent domain factors, we enforce the similarity of z and z′ (from x,x′ respectively), since they
refer to the same domain. Here, we also use the cosine distance to measure the similarity of two
latent factors,

Lsim = −⟨ z

∥z∥
,

z′

∥z′∥
⟩. (9)

After designing these objectives, we go back and follow Motivation 1 again to finish the architecture
design. So far, for the given sample x, we have obtained the universal feature vector v that contains
both the domain and label semantics, and the domain factor z that only encodes the domain informa-
tion. Previous work (Bousmalis et al., 2016) suggests that explicitly modeling domain information
can improve model’s ability for learning domain-invariant features (i.e., label information). Inspired
by this, the designing goal of our label predictor p(y|x, z) is to extract the domain-invariant label
information from v with the help of z, for uncovering the true label of x. For the label predictor
p(y|x, z), we also start from the feature space v (not raw input x) and parameterize it as a predictor
network, gξ(·) : v, z 7→ y, with parameter ξ. To achieve this goal, we rely on the premise that v and
z are in the same embedding space, which requires Objective 3 below.

Objective 3: Maximum Mean Discrepancy The Maximum Mean Discrepancy (MMD) loss is
commonly used to reduce the distribution gap (Muandet et al., 2013; Ghifary et al., 2016; Li et al.,
2018b; Kang et al., 2022). In our model, we use it for aligning the embedding space of v and z. We
consider a normalized version by using the feature norm to re-scale the magnitude in optimization,

LMMD =
MMD2(zµ,vµ)

∥sg(vµ)∥2F
=

∥zµ − vµ∥2F
∥sg(vµ)∥2F

. (10)

Here, sg(·) means to stop gradient back-propagation for this quantity. We use the norm F induced
by the inner product. The mean values are calculated over the data batch zµ = E[z], vµ = E[v].
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STEP 3: Label Predictor via Orthogonal Projection To this end, we can proceed to design the
label predictor network gξ(·) and complete the forward architecture. To obtain the robust transfer-
able features that are invariant to the domains, Bousmalis et al. (2016) uses soft constraints to learn
orthogonal domain and label subspaces in domain adaptation settings. A recent paper (Shen et al.,
2022) further shows that the universal feature representation learned from contrastive pre-training
contains domain and label information along approximately different dimensions.

Inspired by this, we consider the orthogonal projection as a pre-step of the predictor (as shown in
Figure 1). We visually illustrate the orthogonal projection step in Figure 2.

Figure 2: Decomposition

Since v and z are in the same space, we decompose v into two parts
(by basic vector arithmetics): A component parallel to z, denoted as
v||z, which will only contain the domain information,

v||z = z · ⟨ v

∥z∥
,

z

∥z∥
⟩; (11)

Another component orthogonal to z, denoted as v⊥z, which contains
the remaining information, i.e., the label representation,

v⊥z = v − v||z. (12)

This orthogonal projection step is non-parametric. The rationale of this step is that we empirically
find our universal feature extractor hθ(·) tends to generate v that contains both domain and label in-
formation approximately in different embedding dimensions (shown in Section 4.4). The orthogonal
projection step can leverage this property to remove domain covariate information and extract better
invariant features v⊥z for prediction. Note that the orthogonal projection step is also suitable for use
with Objective 2 since only the angle of vector z is needed for finding the orthogonal component.

After orthogonal projection, we apply the predictor network gξ(·) (operates on space v) as a post-
step to parameterize the label predictor p(y|x, z), which completes the forward architecture,

p(y|x, z) = gξ(v⊥z). (13)

In the experiment, we implement gξ(·) as one fully connected (FC) layer without the bias term,
which is essentially a parameter matrix. We also use a temperature hyperparameter τ (He et al.,
2020) to re-scale the output vector before the softmax activation.

Objective 4: Cross-entropy Loss The above objective functions are essentially used to regularize
the domain factor z. Finally, we consider the cross-entropy loss, which adds label supervision.

Lsup = − log p(y|x, z). (14)

Given that all the objectives are scaled properly, we choose their unweighted linear combination as
the final loss to avoid extra hyperparameters. In Appendix B.5, we show that the weighted version
can have marginal improvements over our unweighted version.

Lfinal = Lsup + LMMD + Lrec + Lsim. (15)

3.4 TRAINING AND INFERENCE PIPELINE OF MANYDG

During training, we input a pair of data x,x′ from the same domain and follow three steps under a
Siamese-type architecture. Four objective functions are computed batch-wise on two sides (imple-
mentation of our “double” training loader can refer to Appendix A.2) to optimize parameters θ, ϕ,
ξ, and ψ. During inference, we directly follow three steps to obtain the predicted labels.

4 EXPERIMENTS

This section presents the following experiments to evaluate our model comprehensively. Data pro-
cessing files, codes, and instructions are provided in https://github.com/ycq091044/ManyDG.

• Evaluation on health monitoring data: We evaluate our ManyDG on multi-channel EEG seizure
detection and sleep staging tasks. Both are formulated as multi-class classifications.
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• Evaluation on EHR data: We conduct visit-level drug recommendation and readmission pre-
diction on EHRs. The former is multi-label classification, and the latter is binary classification.

• Verifying the orthogonality property: We quantitatively show that the encoded features from
hθ(·) indeed contain domain and label information approximately along different dimensions.

• Two realistic healthcare scenarios: We further show the benefits of our ManyDG when (i) train-
ing with insufficient labeled data and (ii) continuous learning on newly collected patient data.

4.1 EXPERIMENTAL SETUP

Baselines We compare our model against recent baselines that are designed from different per-
spectives. All models use the same backbone network as the feature extractor. We add a non-linear
prediction head after the backbone to be the (Base) model. Conditional adversarial net (CondAdv)
(Zhao et al., 2017) concatenates the label probability and the feature embedding to predict domains
in an adversarial way. Domain-adversarial neural networks (DANN) (Ganin et al., 2016) use gradient
reversal layer for domain adaptation, and we adopt it for the generalization setting by letting the dis-
criminator only predict training domains. Invariant risk minimization (IRM) (Arjovsky et al., 2019)
learns domain invariant features by regularizing squared gradient norm. Style-agnostic network
(SagNet) (Nam et al., 2021) handles domain shift by perturbing the mean and standard deviation
statistics of the feature representations. Proxy-based contrastive learning (PCL) (Yao et al., 2022)
build a new supervised contrastive loss from class proxies and negative samples. Meta-learning for
domain generalization (MLDG) (Li et al., 2018a) adopts the model-agnostic meta learning (MAML)
(Finn et al., 2017) framework for domain generalization.

Environments and Implementations The experiments are implemented by Python 3.9.5, Torch
1.10.2 on a Linux server with 512 GB memory, 64-core CPUs (2.90 GHz, 512 KB cache size each),
and two A100 GPUs (40 GB memory each). For each set of experiments in the following, we split
the dataset into train / validation / test by ratio 80%:10%:10% under five random seeds and re-run the
training for calculating the mean and standard deviation values. More details, including backbone
architectures, hyperparameters selection and datasets, are clarified in Appendix A.4.

4.2 RESULTS ON HEALTH MONITORING DATA: SEIZURE DETECTION AND SLEEP STAGING

Healthcare Monitoring Datasets Electroencephalograms (EEGs) are multi-channel monitoring
signals, collected by placing measurable electronic devices on different spots of brain surfaces.
Seizure dataset is from Jing et al. (2018); Ge et al. (2021) for detecting ictal-interictal-injury-
continuum (IIIC) seizure patterns from electronic recordings. This dataset contains 2,702 patient
recordings collected either from lab setting or at patients’ home, and each recording can be split
into multiple samples, which leads to 165,309 samples in total. Each sample is a 16-channel 10-
second signal, labeled as one of the six seizure disease types: ESZ, LPD, GPD, LRDA, GRDA,
and OTHER, by well-trained physicians. Sleep-EDF Cassette (Kemp et al., 2000) has in total 78
subject overnight recordings and can be further split into 415,089 samples of 30-second length. The
recordings are sampled at 100 Hz at home, and we extract the Fpz-Cz/Pz-Oz channels as the raw
inputs to the model. Each sample is classified into one of the five stages: awake (Wake), rapid eye
movement (REM), and three sleep states (N1, N2, N3). The labels are downloaded along with the
dataset.

Backbone and Metrics We use short-time Fourier transforms (STFT) for both tasks to obtain the
spectrogram and then cascade convolutional blocks as the backbone, adjusted from Biswal et al.
(2018); Yang et al. (2021c). Model architecture is reported in Appendix A.4. We use Accuracy,
Cohen’s Kappa score and Avg. F1 score over all classes (equal weights for each class) as the metrics.

Results The results are reported in Table 1 (we also report the running time in Appendix B.2). We
can conclude that on the seizure detection task, our method gives around 1.8% relative improvements
on Kappa score against the best baseline and mild improvements on sleep staging. SagNet and PCL
are two very recent end-to-end baselines that relatively perform better among all the baselines. The
Base model also gives decent performance, which agrees with the findings in Gulrajani & Lopez-Paz
(2021) that vanilla ERM models may naturally have strong domain generalization ability.
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Table 1: Result comparison on health monitoring datasets

Models Seizure Detection Sleep Staging

Accuracy Kappa Avg. F1 Accuracy Kappa Avg. F1

Base 0.6450 ± 0.0102 0.5316 ± 0.0190 0.5587 ± 0.0265 0.8958 ± 0.0108 0.7856 ± 0.0108 0.6992 ± 0.0090
CondAdv 0.6437 ± 0.0174 0.5363 ± 0.0227 0.5571 ± 0.0132 0.8976 ± 0.0030 0.7898 ± 0.0198 0.6875 ± 0.0130

DANN 0.6480 ± 0.0091 0.5351 ± 0.0162 0.5679 ± 0.0030 0.8942 ± 0.0120 0.7852 ± 0.0031 0.6996 ± 0.0071
IRM 0.6479 ± 0.0153 0.5422 ± 0.0101 0.5750 ± 0.0100 0.8864 ± 0.0084 0.7821 ± 0.0187 0.7004 ± 0.0192

SagNet 0.6532 ± 0.0083 0.5508 ± 0.0171 0.5812 ± 0.0251 0.9024 ± 0.0132 0.7990 ± 0.0114 0.7053 ± 0.0141
PCL 0.6588 ± 0.0146 0.5528 ± 0.0156 0.5830 ± 0.0131 0.8971 ± 0.0165 0.7909 ± 0.0098 0.7026 ± 0.0253

MLDG 0.6524 ± 0.0178 0.5476 ± 0.0091 0.5734 ± 0.0148 0.8890 ± 0.0122 0.7743 ± 0.0102 0.6904 ± 0.0137

ManyDG 0.6754 ± 0.0079 0.5627 ± 0.0066 0.6015 ± 0.0120 0.9055 ± 0.0054 0.7998 ± 0.0124 0.7015 ± 0.0027
* Bold for the best and underscore for the second best model. Our improvements are mostly significant tested in Appendix B.3.

4.3 RESULTS ON EHRS: DRUG RECOMMENDATION AND READMISSION PREDICTION

EHR Databases Then, we evaluate our model using electronic health records (EHRs) collected
during patient hospital visits, which contain all types of clinical events, medical codes, and values.
MIMIC-III (Johnson et al., 2016) is a benchmark EHR database, which contains more than 6,000
patients and 15,000 hospital visits, with 1,958 diagnosis types, 1,430 procedure types, 112 medi-
cation ATC-4 classes. We conduct the drug recommendation task on MIMIC-III. Following Shang
et al. (2019); Yang et al. (2021a;b), the task is formulated as multi-label classification – predict-
ing the prescription set for the current hospital visit based on longitudinal diagnosis and procedure
medical codes. We adjust our decoder pψ(·) to fit into the multi-label setting. Details can refer to
Appendix A.4. The multi-center eICU dataset (Pollard et al., 2018) contains more than 140,000 pa-
tients’ hospital visit records. We conduct a readmission prediction task on eICU, which is a binary
classification task (Choi et al., 2020; Yang et al., 2022b), predicting the risk of being readmitted into
ICU in the next 15 days based on the clinical activities during this ICU stay. We include five types
of activities to form the heterogeneous sequence: diagnoses, lab tests, treatments, medications, and
physical exams, extended from Choi et al. (2020), which only uses the first three types.

Backbone and Metrics For the multi-label drug recommendation task, we use a recent model
GAMENet (Shang et al., 2019) as the backbone and employ the Jaccard coefficient, average area
under the precision-recall curve (Avg. AUPRC) and Avg. F1 over all drugs as metrics. Similarly,
for the readmission prediction task, we consider the Transformer encoder (Vaswani et al., 2017)
as backbone and employ the AUPRC, F1 and Cohen’s Kappa score as the metrics. Since both
backbones do not have CNN structures, we drop SagNet in the following. Drug recommendation is
not a multi-class classification, and we thus drop PCL as it does not fit into the setting.

Results The comparison results are shown in Table 2. Our ManyDG gives the best performance
among all models, around 3.7% Jaccard and 1.2% AUPRC relative improvements against the best
baseline on two tasks, respectively. We find that the meta-learning model MLDG gives poor per-
formance. The reason might be that each patient has fewer samples in EHR databases compared
to health monitoring datasets, and thus the MLDG episodic training strategy can be less effective.
Other baseline models all have marginal improvements over the Base model.

Table 2: Result comparison on open EHR databases

Models Drug Recommendation Readmission Prediction

Jaccard Avg. AUPRC Avg. F1 AUPRC F1 Kappa

Base 0.4858 ± 0.0139 0.7440 ± 0.0115 0.6443 ± 0.0076 0.7040 ± 0.0120 0.6554 ± 0.0089 0.5210 ± 0.0087
CondAdv 0.4990 ± 0.0144 0.7570 ± 0.0052 0.6568 ± 0.0131 0.7047 ± 0.0045 0.6709 ± 0.0035 0.5348 ± 0.0135

DANN 0.4886 ± 0.0267 0.7519 ± 0.0137 0.6595 ± 0.0206 0.7152 ± 0.0076 0.6671 ± 0.0051 0.5309 ± 0.0050
IRM 0.4933 ± 0.0083 0.7537 ± 0.0096 0.6519 ± 0.0056 0.7174 ± 0.0138 0.6614 ± 0.0111 0.5362 ± 0.0114
PCL / / / 0.7089 ± 0.0143 0.6575 ± 0.0126 0.5279 ± 0.0274

MLDG 0.4619 ± 0.0100 0.7051 ± 0.0216 0.6269 ± 0.0239 0.6701 ± 0.0209 0.6215 ± 0.0256 0.5178 ± 0.0318

ManyDG 0.5175 ± 0.0130 0.7746 ± 0.0035 0.6737 ± 0.0141 0.7258 ± 0.0132 0.6752 ± 0.0025 0.5531 ± 0.0144

4.4 VERIFYING THE ORTHOGONALITY OF EMBEDDING SUBSPACES

Experimental Settings This section provides quantitative evidence to show that the learned uni-
versal features v stores domain and label information along approximately different dimensions:
• First, we load the pre-trained embeddings from the v, v||z (equivalently z), and v⊥z spaces;
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Figure 3: Continuous learning on new patients

• Then, following Shen et al. (2022), we learn a linear model (e.g., logistic regression) on the fixed
embeddings to predict the domains and labels, formulated as multi-class classifications.

• The cosine similarity of the learned weights is reported for quantifying feature dimension overlaps.
To ensure that each dimension is comparable, we normalize v, z and v⊥z dimension-wise by the
standard deviation values before learning the linear weights. The results are shown in Table 3.

Recall that z is the learned domain representation, v is decomposed into v||z and v⊥z via orthogonal
projection and they satisfy v = v||z+v⊥z, where v||z (v⊥z) is parallel (orthogonal) to z. In Table 3,
the first two rows give relatively higher similarity and imply the domain and label information are
separated from v into v||z (equivalently z) and v⊥z, respectively. The third row has very low
similarity (or even negative value), which indicates that the feature dimensions used for predicting
(i) labels and (ii) domains are largely non-overlapped in v. Note that the cosine similarity values
from different tasks are not comparable. We provide more explanations in Appendix B.8.

Table 3: Cosine similarity of linear weights on v,v||z,v⊥z

Cosine Similarity Seizure Sleep Drug Recom- Readmission AverageDetection Staging mendation Prediction

Weight(v → labels) and Weight(v⊥z → labels) 0.8789 0.8251 0.5714 0.4627 0.6845 ± 0.1729
Weight(v → domains) and Weight(v||z → domains) 0.2462 0.3273 0.1987 0.2111 0.2458 ± 0.0510
Weight(v → labels) and Weight(v → domains) 0.0182 0.0276 0.0445 -0.0119 0.0196 ± 0.0204
Weight(v → labels) and Weight(v||z → labels) 0.1151 0.0773 0.0695 0.0524 0.0785 ± 0.0229

* Weight(·) denotes the learned linear weights. For example, Weight(v → labels) means that we train a linear model on v to
predict the labels and then output the learned weights. Cosine similarity values are averaged over all classes in the training set.

4.5 CASE STUDIES: CONTINUOUS LEARNING ON NEW LABELED DATA

We simulate a realistic clinical setting in this section: continuous learning on newly available data.
Another common setting is using insufficient labeled data, which is discussed in appendix B.1.

It is common in healthcare that new patient data is labeled gradually, and pre-trained predictive
models will further optimize the accuracy based on these new annotations, instead of training on all
existing data from scratch. We simulate this setting on the seizure detection task by sorting patients
by their ID (smaller ID comes to the clinics first) in ascending order. Specifically, we pre-train each
model on the first 1,000 patients. Then, we add 100 new patients at a step following the order. We
fine-tune the models on these new patients and a small subset of previous data (we randomly select
four samples from each previous patient and add them to the training set). Note that, without this
small subset of existing data, all models will likely fail due to dramatic data shifts. The result of
10 consecutive steps is shown in Figure 3. Our model consistently performs the best during the
continuous learning process. It is also interesting that MLDG improves slowly compared to other
methods. The reason might be similar to what we have explained in Section 4.3 that the existing
patients have only a few (e.g., 4) samples.

5 CONCLUSION

This paper proposes a novel many-domain generalization setting and develops a scalable model
ManyDG for addressing the problem. We elaborate on our new designs in healthcare applications
by assuming each patient is a separate domain with unique covariates. Our ManyDG method is built
on a latent generative model and a factorized prediction model. It leverages mutual reconstruction
and orthogonal projection to reduce the domain covariates effectively. Extensive evaluations on four
healthcare tasks and two challenging case scenarios show our ManyDG has good generalizability.
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A DETAILS FOR NOTATIONS, IMPLEMENTATIONS AND DATASETS

A.1 NOTATION TABLE

For clarity, we have attached a notation table here, summarizing all symbols used in the main paper.
This paper uses the generic notation x to denote the input features. We use plain letters for scalars,
such as d, p, y; boldface lowercase letters for vectors or vector-valued functions, e.g., v, z, hθ(·),
qϕ(·), gξ(·), pψ(·), and they have the same dimensionality; Euler script letters for sets, e.g., D, S.

Table 4: Notations used in ManyDG
Symbols Descriptions

d ∈ D, d′ ∈ D′ patient/domain set in training and test
i ∈ Sd data sample set of patient/domain d
xdi , ydi the i-th (sample, class label) for patient/domain d

p(·) meta domain distribution
z domain latent factor (representation)
p(·|z, y) sample distribution conditioned on patient domain z and class label y
p(y|x) a generic notation for posterior of label probability given sample x
p(z|x) a generic notation for posterior of domain factor given sample x
p(y|x, z) a generic notation for posterior of label probability given sample x and domain z

v the feature representation of x
v̂ reconstructed feature representation of x
v||z, v⊥z the component of v that is parallel to or orthogonal to z space
hθ(·) : x 7→ v learnable feature extractor with parameter set θ
qϕ(·) : v 7→ z learnable encoder network for p(z|x) (on top of hθ(·)) with parameter set ϕ
gξ(·) : v, z 7→ y learnable predictor network for p(y|x, z) (on top of hθ(·)) with parameter set ξ
pψ(·) : z, y 7→ v learnable decoder network for p(·|z, y) with parameter set ψ

⟨·⟩ vector inner product
∥ · ∥F ; ∥ · ∥ vector norm induced by measure F ; L2-norm
Weight(·) the learned weight of a logistic regression task

A.2 IMPLEMENTING OUR DOUBLE DATA LOADER FOR TRAINING

Our method is trained end-to-end in a mini-batch fashion. We build a new data loader at each epoch.
First, during each training epoch, we will randomly shuffle the data samples within each patient
domain. Second, for building the data loader, we will fold each patient data list into two half-lists and
append them to two global data lists respectively patient-by-patient. These two global lists have the
same length and will be used to build the data loader. Upon using it, the data loader will output two
data batches simultaneously (for the Siamese-type architecture), where the same indices correspond
to the samples from the same patient. At every epoch, only one pairing combination is used for the
data from each patient, and the shuffle and re-build steps between epochs ensure that every data
pair within the same patient can have the chance to be trained together with equal probability. Our
double data loader building procedure does not incur extra time consumption compared to the model
training time. Our model’s space and time complexity are asymptotically the same as training the
Base model, shown in Appendix B.2.

A.3 DETAILS IN IMPLEMENTING THE LABEL PREDICTOR AND DATA DECODER

Figure 4: Predictor

Prototype-base Predictor As mentioned in the main text, we use a
fully connected (FC) layer without the bias term to be the predictor,
which is essentially a parameter matrix W. Each row in the parameter
matrices {wk}Kk=1 has the same dimensionality as v and can be viewed
as the prototype for the class k ∈ {1, 2, . . . ,K}. We can construct one
positive pair between the data representation and the corresponding class
prototype and (K − 1) negative pairs with the prototypes from other
classes (in Figure 4). The final label probability is given by the softmax
activation form,

p(y = k|x, z) = gξ,k(v⊥z) =
exp(⟨wk,v⊥z⟩/τ)∑
i exp(⟨wi,v⊥z⟩/τ)

. (16)
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Figure 5: Shared backbone for seizure detection task

Here, ⟨·, ·⟩ is the notation for vector inner product, and τ is the tempera-
ture (He et al., 2020). With the prototype-based design, our predictor is also amenable for use with
recent supervised contrastive loss (Yao et al., 2022; Khosla et al., 2020); however, we leave this as
future work.

Prototype-base Data Decoder In the main text, we use a decoder network pψ(·|z, y) to recon-
struct another sample from the same domain based on the domain factor z and the class label y.
In the implementation, we do not directly input a combination of z and the categorical label y.
For parameterizing the class label, we also use the prototype wy as the class label information and
concatenate it with the domain factor z for reconstruction.

A.4 MORE INFORMATION FOR DATASETS AND IMPLEMENTATION

IIIC Seizure requested from (Jing et al., 2018; Ge et al., 2021; Jing & et al., 2023). We could not
find the license, as stated in Jing et al. (2018) “the local IRB waived the requirement for informed
consent for this retrospective analysis of EEG data”.

We use 16-channel 10-second signals sampled at 200Hz. Thus, the raw data inputs are a matrix
16×2000, and the values are measurement amplitudes. We use torch.stft to implement the short-time
Fourier transform (STFT) for obtaining the spectrogram. The FFT window size is 64, the hop length
(overlapping window) is 32, and the imaginary and real parts are square-summed to be the energy
density in the frequency domain. After STFT, the sample size is 16×33×63. We further normalize
the values and take the logarithm on one side of the spectrogram as the input to the backbone
model. The data processing steps largely followed Jing et al. (2018). Seizure detection is a six-class
classification problem, and we use some common combinations of hyperparameters: 128 as the

batch size, 128 as the hidden representation size, 50 as the training epochs (50× size of an epoch
size of an episode

as the number of episodes for MLDG baseline, which follows MAML, the same setting for other
datasets), 5 × 10−4 as the learning rate with Adam optimizer and 1 × 10−5 as the weight decay
for all models. Our model uses τ = 0.5 as the temperature (the same for other datasets). Other
hyperparameters in baselines are mostly following their original default values. Some other variants
of hyperparameter combinations have also been tested with the validation set (on the following three
datasets, we also do the same procedures), which do not show significant differences. We report our
backbone model in Figure 5.

The original dataset provides a vote count distribution over six labels as the targets in Seizure. We
filter out the data that have fewer than five expert votes. We use the vote counts for calculating
the following customized cross entropy loss (CEL) and use the majority label (that has the most
significant vote) for calculating the evaluation metrics.

For calculating the supervised loss in Seizure, we use a customized version of cross entropy loss.
Our customized CEL is a weighted average form of the standard CEL for the classification task.
We employ the customized CEL form here, considering that for Seizure (and some other expert-
annotated datasets), the labeling experts might have disagreements on the true label of ambiguous
samples and thus usually resulting in a vote count distribution instead of a single label. The cus-
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Figure 6: Shared backbone for sleep staging task

tomized CEL can capture more information (e.g., how hard the sample is) than the standard CEL in
such cases. The customized CEL will reduce to the standard CEL if without labeling disagreements.
We give the definition of our customized CEL below,

L4 = −
∑
k∈S

1

|S|
log p(y = k|x, z). (17)

where S ⊂ {1, · · · ,K} includes all class indices that have more votes than half of the maximum
class votes. For example, if the votes for a sample are [8, 0, 5, 3, 2, 1], then S = {1, 3} where 8 and
5 are viewed as valid votes, and other classes are considered minor classes, which will not be used
for calculating the loss. For common classification task with single labels, |S| = 1.

Sleep-EDF 2 (Kemp et al., 2000) We use the cassette portion. This dataset is under Open BSD
3.0 License3. It contains other Polysomnography (PSG) signals such as (horizontal) EOG, and
submental chin EMG. We only use two EEG channels, Fpz-Cz and Pz-Oz, and a raw 30-second
sample has size 2 × 3000. We also do STFT with an FFT window size of 256, hop length of 64
and normalize and logarithm operations on one side of the spectrogram. The data processing step4

largely follows Yang et al. (2021c; 2022a). The final size of a sample is 2×129×43. We integrated
the data cleaning and processing pipeline into PyHealth Yang et al. (2022b). We select combinations
of hyperparameters: 256 as the batch size, 128 as the hidden representation size, 50 as the training
epochs, 5× 10−4 as the larning rate with Adam optimizer, and 1× 10−5 as the weight decay for all
models. The backbone model is reported in Figure 6.

MIMIC-III 5 (Johnson et al., 2016) This dataset is under PhysioNet Credentialed Health Data
License 1.5.06. The dataset is publicly available with patients who stayed in intensive care unit
(ICU) in the Beth Israel Deaconess Medical Center for over 11 years. It consists of 50,206 medical
encounter records. Following the preprocessing step from Yang et al. (2021a;b); Shang et al. (2019).
We filter out the patients with only one visit. Diagnosis, procedure and medication information
is extracted in “DIAGNOSES ICD.csv”, “PROCEDURES ICD.csv” and “PRESCRIPTIONS.csv”
from original MIMIC database. We merge these three sources by patient id and visit id. After the
merging, diagnosis and procedure are ICD-9 coded, and they will be transformed into multi-hot
vectors before training. There are in total 6,350 patients, 15,032 visits, 1,958 types of diagnoses,
1,430 types of procedures, and 112 ATC-4 coded medications. For each visit, we use the diagnosis
and procedure information (two ICD code sets) and previous visit information (two ICD code sets
and one ATC code set per visit) to predict the current medication set, which is a sequential multi-
label prediction task. Later on, we integrate the MIMIC-III processing pipeline into PyHealth7

Yang et al. (2022b). In this task, we use binary cross entropy loss for each medication, following
Yang et al. (2021a;b); Shang et al. (2019) and then aggregate the loss. The backbone model is

2https://www.physionet.org/content/sleep-edfx/1.0.0/
3https://www.physionet.org/content/sleep-edfx/view-license/1.0.0/
4https://github.com/ycq091044/ContraWR
5https://physionet.org/content/mimiciii/1.4/
6https://physionet.org/content/mimiciii/view-license/1.4/
7https://pyhealth.readthedocs.io
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Figure 7: Shared backbone for the readmission prediction task. Different colored circles mean
different event types and different feature inputs.

borrowed from a recent paper Shang et al. (2019) with the same model hyperparameter set. For
other hyperparameters, we use 64 as the batch size, 64 as hidden representation, 100 as the training
epochs, 1× 10−3 as the learning rate with Adam optimizer and 1× 10−5 as the weight decay for all
models. We adjust the conditional mutual reconstruction part of our model by using the average of
class prototypes as the label information for this setting.

eICU 8 (Pollard et al., 2018) This dataset is under PhysioNet Credentialed Health Data License
1.5.09. This data covers patients admitted to critical care units from 2014 to 2015. We define each
encounter as identified by patientunitstayid in the data tables. Data processing step largely follows
Choi et al. (2020). We consider the following five event categories and the features: (i) diagnosis:
diagnosis string features (in total 3,845 types) and the ICD-9 codes (in total 1,195 types); (ii) lab
test: lab test types (in total 158 types) and the corresponding numeric results; (iii) medication:
medication names (in total 291 types), prescription and the pick list frequency with which the drug
is taken; (iv) physical exam: the system root path of the physical exam (in total 462 types), which
indicates the types; (v) treatment: the path of the treatment (in total 2,695 types). The “offset” time
in raw data tables is used as the timestamp for each event since they are offset with respect to the
admission time. For each encounter, we can collect a heterogeneous event sequence following time
order for predicting the risk of re-admitted into ICU (re-hospitalized) within next 15 days (Choi
et al., 2020). We integrated the data cleaning and processing pipeline into PyHealth Yang et al.
(2022b). In this task, we learn two class prototypes and finally feed the first column of the output
softmax logits for the binary cross entropy loss (which only takes batch size × 1 format as input
in torch.nn.functional.binary cross entropy loss). For hyperparameters, we use 256 as the batch
size, 128 as hidden representation, 50 as the training epochs, 5 × 10−4 as the learning rate with
Adam optimizer, and 1 × 10−5 as the weight decay for all models. The backbone model is based
on 3-layer Transformer encoder blocks, before which we first use separate encoders for encoding
different types of events into the same-length embeddings. We show an illustration in Figure 7.

We report the label distribution information in Table 5.

8https://physionet.org/content/eicu-crd/2.0/
9https://physionet.org/content/eicu-crd/view-license/2.0/
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Table 5: Label information of four datasets
Dataset Task Label Distribution
Seizure multi-class OTHER: 26.4%, ESZ: 3.7%, LPD: 19.7%, GPD: 24.2%, LRDA: 14.4%, GRDA: 11.7%

Sleep-EDF multi-class Wake: 68.8%, N1: 5.2%, N2: 16.6%, N3: 3.2%, REM: 6.2%
MIMIC-III multi-label max # of med. is 64, avg # of med. is 11.65

eICU binary hospitalized: 83.78%, non-hospitalized: 16.22%
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Figure 8: Varying number of training patients

B ADDITIONAL EXPERIMENTAL RESULTS

We present additional experiments in this appendix section due to space limitations.

B.1 BETTER GENERALIZATION ABILITY ON SMALL TRAINING DATA

Train on Small Data. Here, we mimic the critical situation where the labeling cost is very high
(such as seizure detection (Jing et al., 2018)) and only limited training data is available. We rely
on EEG seizure detection tasks and evaluate all models on insufficient labeled data. We limit the
training number of patients to 2,000, 1,500, 1,000, 500, 100 and use the same test group for evalu-
ation. The results are reported in Figure 8, which suggests that: (i) the performance of all models
deteriorates with less labeled data; (ii) our ManyDG consistently outperforms the baselines.

B.2 RUNNING TIME COMPARISON

This section compares the running time of all models in four healthcare tasks. As mentioned before,
all models use the same backbone and batch size. When recording the running time, we duplicated
the environment mentioned in Section 4.1, stopped other programs, and ran all the models one by
one on one GPU. We record the first 23 epochs of all models and drop the first three epochs (since
they might be unstable). We report the mean time cost per epoch in Table. MLDG uses an episodic
training strategy, different from epoch-based training. Thus, we calculate the equivalent running
time for MLDG, which is that we first average the episode time by the sample size and then multiply
the per-sample time by the overall training data size.

We report the results in Table 6, which shows our method is as efficient as the Base model in each
task. CondAdv and DANN are two adversarial training models which rely on an additional domain
discriminator. In our cases with patient-induced domains, we have more domains to deal with (than
previous domain generalization settings). Thus, their discriminator can be less effective and will
cost more time.

Table 6: Running time comparison (seconds per epoch)
Model Seizure Detection Sleep Staging Drug Recommendation Readmission Prediction

Base 7.128 ± 0.4000 17.91 ± 0.1885 3.306 ± 0.0219 541.4 ± 12.36
CondAdv 19.95 ± 0.1673 20.60 ± 0.1498 3.472 ± 0.0248 580.1 ± 16.87
DANN 11.71 ± 0.3037 18.29 ± 1.0210 3.518 ± 0.0256 585.3 ± 8.282
IRM 7.598 ± 0.3639 19.23 ± 0.5725 3.416 ± 0.0022 558.2 ± 4.022
SagNet 12.75 ± 0.4110 35.57 ± 0.0186 / /
PCL 8.743 ± 0.4869 21.70 ± 0.3514 / 577.9 ± 10.24
MLDG (equivalent) 13.87 ± 0.4965 31.89 ± 0.2578 4.210 ± 0.0448 663.6 ± 14.05

ManyDG 7.996 ± 0.2862 19.23 ± 0.2744 3.462 ± 0.0648 558.1 ± 14.27
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B.3 STATISTICAL TESTING WITH P-VALUES

We also conduct T-tests on the results in Section 4.2 and Section 4.3 and calculated the p-values
in the following Table 7 and Table 8. Commonly, a p-value smaller than 0.05 would be consid-
ered significant. We use bold font for p-values that is larger than 0.05. We can conclude that our
performance gain is significant over the baselines in most of the cases.

Table 7: p-values under T-test on biosignal classification tasks

Comparison Seizure Detection Sleep Staging

Accuracy Kappa Avg. F1 Accuracy Kappa Avg. F1

Base vs ManyDG 1.8277e-04 2.3857e-03 3.1177e-03 3.9742e-02 3.1450e-02 2.7878e-01
CondAdv vs ManyDG 1.6107e-03 1.1745e-02 1.2661e-04 6.3333e-03 1.5790e-01 1.4948e-02

DANN vs ManyDG 2.3134e-04 2.1345e-03 6.9548e-05 3.2046e-02 1.0646e-02 2.7459e-01
IRM vs ManyDG 1.9953e-03 1.4039e-03 1.4164e-03 6.9382e-04 4.2033e-02 4.4536e-01

SagNet vs ManyDG 6.4119e-04 7.1616e-02 5.2789e-02 3.0083e-01 4.5421e-01 7.3663e-01
PCL vs ManyDG 1.8472e-02 9.1054e-02 1.5726e-02 1.3048e-01 9.8423e-02 5.4170e-01

MLDG vs ManyDG 9.1763e-03 4.9798e-03 3.0785e-03 7.4243e-03 2.0582e-03 4.1056e-02

Table 8: p-values under T-test on EHR classification tasks

Comparison Drug Recommendation Readmission Prediction

Jaccard Avg. AUPRC Avg. F1 AUPRC F1 Kappa

Base vs ManyDG 1.5738e-03 1.0867e-04 8.9086e-04 7.8500e-03 3.4105e-04 7.0435e-04
CondAdv vs ManyDG 2.2134e-02 5.5230e-05 2.9717e-02 2.6847e-03 1.8490e-02 2.4544e-02

DANN vs ManyDG 2.0507e-02 1.9382e-03 9.6398e-02 6.0040e-02 3.6720e-03 3.2901e-03
IRM vs ManyDG 2.2013e-03 4.5726e-04 3.5304e-03 1.5173e-01 8.1280e-03 2.5219e-02
PCL vs ManyDG / / / 4.3115e-03 4.3811e-03 3.8113e-02

MLDG vs ManyDG 1.4382e-05 2.3040e-05 1.4652e-03 2.4545e-04 4.0163e-04 1.7682e-02

B.4 COSINE SIMILARITY ON DOMAIN REPRESENTATIONS

In this section, we load the pre-trained embedding z from four healthcare tasks. To give more
insights into the learned domain factor z, we compute the cosine similarity of the estimated z within
the same domains and the cosine similarity of z cross domains. We average the computed cosine
similarity values over each embedding pair and show the results in Table 9.

Table 9: Cosine similarity of within-domain and cross-domain factors z

Cosine Similarity Seizure Sleep Drug Recom- Readmission AverageDetection Staging mendation Prediction

Avg. of within-domain z 0.9789 0.9672 0.9993 0.9619 0.9768 ± 0.0144
Avg. of cross-domain z 0.9685 0.9584 0.9965 0.9523 0.9689 ± 0.0169

It is interesting that both the within-domain and cross-domain similarity are pretty high, e.g., larger
than 0.95. The second finding is that within-domain similarity is larger than cross-domain similarity
(though it seems insignificant, we will explain why this phenomenon is normal and our design is
however useful). The reason is that we only enforce the similarity of z from the same domain as one
objective Lsim but never enforce the dissimilarity of z from different domains (if we did, then the
values in second row of the table are expected to decrease).

A very similar phenomenon has been observed in Grill et al. (2020) from the self-supervised con-
trastive learning area. Before the proposal of Grill et al. (2020), researchers will simultaneously
enforce the similarity of positive samples and the dissimilarity of negative samples He et al. (2020);
Chen et al. (2020) for learning unsupervised features invariant to data augmentations. However, Grill
et al. (2020) claims that enforcing the similarity of positive pairs along is empirically good enough
for learning unsupervised features. In the implementation, the cosine similarity of positive pairs
is learned to approach 1.0, and the negative pairs will chase after to achieve a slightly lower score
(often times higher than 0.95). They show better results on ImageNet against previous approaches
He et al. (2020); Chen et al. (2020) (that enforces both similarity and dissimilarity).
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Our method empirically also works well on four datasets. Further discussion on this topic is beyond
the main scope of the paper. We will explore this direction for future work.

B.5 ABLATION STUDY ON OBJECTIVES AND THEIR COMBINATIONS

Ablation Study on Combinations of Objectives First, we design ablation studies to test the ef-
fectiveness of each objective. Recall that, we have used the following final loss in the main text:

Lfinal = Lsup + LMMD + Lrec + Lsim. (18)

Here, Lsup is the supervised cross entropy loss, LMMD is the loss to enforce v and z to be in the
same space, Lrec is the mutual reconstruction loss between two data samples, and Lsim enforces the
similarity of two latent factors from the same patient.

In this section, we test the following loss combinations on the seizure detection task: (i) Case 1:
Only Lsup; (ii) Case 2: Lsup and LMMD; (iii) Case 3: Lsup and Lrec; (iv) Case 4: Lsup, LMMD and
Lrec. We show the final performance results and the learning curve of each objective in Figure 9.
The results prove the necessity of all our objectives. We provide discussions and insights on the
effectiveness of individual objectives:

• With different objectives, the overall losses all decrease, which means the model trains success-
fully in each case.

• In case 1 (only Lsup, no LMMD, Lrec, Lsim), there is no interaction between two sides of the
Siamese architecture. Our method performs similarly to the Base model. Reflected on the
loss curves: Lsim = −0.17 (domain factors are not similar, ideal value is -1.0); Lrec = 0 (no
reconstruction effect, ideal value is -2.0); LMMD = 2.0 (embedding spaces are not aligned, ideal
value is 0).

• In case 2 (only Lsup, LMMD, no Lrec, Lsim): There is no interaction between two sides of the
Siamese architecture. Our method performs similarly to the Base model. However, the MMD
objective improves the orthogonal projection, which explains the slight improvements over case
1. Reflected on the loss curves: Lsim = −0.45 (domain factors are somewhat similar, ideal value
is -1.0); Lrec = 0 (no reconstruction effect, ideal value is -2.0); LMMD = 0 (embedding spaces
are aligned, ideal value is 0).

• In case 3 (only Lsup, Lrec, no LMMD, Lsim): The reconstruction objective ensures the inter-
actions between two-sided pipeline, which is essential for learning the domain and domain-
invariance representations. We find that without LMMD, our model can learn to align the v
and z embedding spaces and use orthogonal projection for prediction. According to the bar chart
in Figure 9, **the Lrec brings the most performance gains** compared to other objectives (ex-
clude Lsup). Reflected on the loss curves: Lsim = −0.45 (domain factors are somewhat similar,
ideal value is -1.0); Lrec = −1.4 (reconstruction effect, ideal value is -2.0); LMMD = 0.15
(embedding spaces are nearly aligned, ideal value is 0).

• In case 4 (Lsup, Lrec, LMMD, no Lsim): Adding LMMD can ensure the perfect alignment of
the v and z embedding spaces and brings further improvements over case 3. Reflected on the loss
curves: Lsim = −0.45 (domain factors are somewhat similar, ideal value is -1.0); Lrec = −1.4
(reconstruction effect, ideal value is -2.0); LMMD = 0 (embedding spaces are aligned, ideal value
is 0).

• Adding Lsim for case 4 leads to the final objective in our method. Lsim maximizes the similarity
of the domain factors and brings further accuracy improvements.

In summary, Lsup brings the label supervision (the most important one), Lrec brings additional
information (tells the model that two samples are from the same domain), LMMD improves the
orthogonal projection (for better disentanglement), and Lsim improves the learned domain factor
(for better orthogonal projection).

Ablation Study on Combinations of Weights Next, on the seizure detection task, we add weights
as hyperparameters λ1, λ2, λ3 > 0 to combine our proposed objectives,

Lfinal = Lsup + λ1 · LMMD + λ2 · Lrec + λ3 · Lsim. (19)
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Figure 9: Results of ablation studies on different objective combinations
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Figure 10: Results on individual weight variation

By default, we use λ1 = λ2 = λ3 = 1.0 in the experiments of main text. This section first tests
different variations of λ1, λ2, λ3 individually. The results are shown in Figure 10. When increasing
one of the weights from 0.1 to 10.0 and fix the others, we find that all three metrics will follow a
similar pattern: first become better and then slightly decreases. From the figure, we can conclude
that using λ1 = λ2 = λ3 = 1.0 is indeed a decent choice without using exhaustive search. However,
there are minor variations in performance, and apparently we can find a (slightly) better combination
than default.

Based on the individual performance, we guess that λ1 = 0.2, λ2 = 0.2, λ3 = 2.0 might be a better
combination from a greedy perspective. Thus, we train the model again on this combination and
find that it gives marginal improvements over our default choice, shown in Table 10.

Table 10: Comparison with greedy weight combination
Weights Accuracy Kappa Avg. F1

λ1 = λ2 = λ3 = 1.0 0.6754 ± 0.0079 0.5627 ± 0.0066 0.6015 ± 0.0120
λ1 = 0.2, λ2 = 0.2, λ3 = 2.0 0.6785 ± 0.0045 0.5654 ± 0.0062 0.6031 ± 0.0089

B.6 SCATTER PLOT OF v⊥z,v||z

To provide more insights on the learned embeddings, we plot the L2-norm statistics of v⊥z,v||z on
four tasks for both training and test. Specifically, we draw a scatter plot using L2-norm of v⊥z as
x-axis and L2-norm of v||z as y-axis.

For IIIC seizure dataset, we randomly select 25 batches (3,200 samples) from the training set and
select 25 batches (3,200 samples) from the test set. For Sleep-EDF sleep staging dataset, we ran-
domly select 25 batches (3,200 samples) from the training set and 25 batches (3,200 samples) from
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Figure 11: Scatter plot of v⊥z and v||z

the test set. For MIMIC-III drug recommendation dataset, we randomly select 25 batches (1,600
samples) from the training set and 25 batches (1,600 samples) from the test set. For eICU hospital
readmission prediction dataset, we randomly select 25 batches (1,600 samples) from the training set
and 10 batches (640 samples) from the test set. The results are shown in Figure 11.

Result Analysis From Figure 11, we can roughly come up with three findings: (i) The scatter plot
distributions for training and test look similar on all datasets and tasks, which means our approach
is well-trained and generaliable (at least on the norm space); (ii) The magnitude (norm) of v||z is
generally larger than v⊥z on all datasets, which means the domain information v||z is indeed a large
component on the extracted features v. This finding again verifies the necessity of removing the
domain information during the prediction; (iii) The correlations between norms of v||z and v⊥z

are slightly different across different tasks. In the IIIC seizure prediction task and drug MIMIC
recommendation task, their norms seem a bit positively correlated. In Sleep-EDF sleep staging
task, their norms seem uncorrelated. In eICU hospitalization prediction task, their norms seem a
bit negative correlated. We conclude that the norm correlations are highly dependent on the dataset
characteristics.

B.7 PERFORMANCE COMPARISON WITH SIMPLE DECOMPOSITION MODEL

In this section, we compare our model performance with two simple decomposition models. They
have the same architectural designs with different objective functions. We describe the architecture:

• We assume the model has a feature encoder from x → v, and v contains both domain informa-
tion and domain-invariant label information.

• We assume the model has a domain information encoder that maps v into a domain representa-
tion z and has a label information encoder that maps v into a label representation u.

• There are four loss objectives, which (i) (supervised loss) minimizes the supervised prediction
loss with a final prediction layer on u, similarity on u as well; (ii) (reconstruction loss) mini-
mizes the discrepancy between v and the reconstructed v̂ from z,u, similarity for v′ and v̂′ from
z′,u′; (iii) (domain similarity loss) maximizes the similarity of z and z′ between two samples
of the same patient domain; (iv) (orthogonality loss) enforces the orthogonality of z,u and the
orthogonality of z′,u′.

For the first simple decomposition (SimD1) model, we follow this domain adaptation work (Bous-
malis et al., 2016), which also learns the domain-specific information and domain-shared informa-
tion separately by two neural networks. It uses (i) cross-entropy loss as the supervised loss; (ii)
mean square error (MSE) as the reconstruction loss; (iii) scale-invariant MSE (Eigen et al., 2014)
as the domain similarity loss; (iv) Frobenius norm as the orthogonality loss.
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For the second simple decomposition (SimD2) model, we use the loss design from our approach
and use (i) cross-entropy loss as the supervised loss; (ii) normalized cosine similarity as the recon-
struction loss; (iii) normalized cosine similarity as the domain similarity loss; (iv) Frobenius norm
as the orthogonality loss.

Result Analysis We show the performance compared of these two simple decomposition models
with our proposed ManyDG in Table 11 and Table 12. In summary, our ManyDG outperforms two
simple decomposition models significantly, which shows the effectiveness of our mutual reconstruc-
tion and orthogonal projection steps. The SimD2 model also performs better than SimD1 model
consistently. The only differences between them are the metrics used for each objective design. We
find that SimD1 needs to carefully find the hyperparameter weights for balancing different objec-
tives, while the objectives in SimD2 are all well-scaled and can be used together without weights.
Though we have selected decent weight combinations for SimD1, it is still inferior to SimD2.

Table 11: Result comparison on health monitoring datasets

Models Seizure Detection Sleep Staging

Accuracy Kappa Avg. F1 Accuracy Kappa Avg. F1

SimD1 0.5954 ± 0.0127 0.4792 ± 0.0197 0.4998 ± 0.0242 0.8862 ± 0.0015 0.7855 ± 0.0149 0.6962 ± 0.0025
SimD2 0.6499 ± 0.0153 0.5485 ± 0.0065 0.5686 ± 0.0092 0.9017 ± 0.0073 0.7978 ± 0.0205 0.6989 ± 0.0141
ManyDG 0.6754 ± 0.0079 0.5627 ± 0.0066 0.6015 ± 0.0120 0.9055 ± 0.0054 0.7998 ± 0.0124 0.7015 ± 0.0027

Table 12: Result comparison on open EHR databases

Models Drug Recommendation Readmission Prediction

Jaccard Avg. AUPRC Avg. F1 AUPRC F1 Kappa

SimD1 0.4894 ± 0.0087 0.7472 ± 0.0065 0.6482 ± 0.0192 0.6985 ± 0.0153 0.6368 ± 0.0026 0.5079 ± 0.0118
SimD2 0.4901 ± 0.0091 0.7536 ± 0.0115 0.6534 ± 0.0127 0.7047 ± 0.0105 0.6584 ± 0.0048 0.5260 ± 0.0103
ManyDG 0.5175 ± 0.0130 0.7746 ± 0.0035 0.6737 ± 0.0141 0.7258 ± 0.0132 0.6752 ± 0.0025 0.5531 ± 0.0144

B.8 MORE EXPLANATIONS ON THE LEARNED LINEAR WEIGHTS

In this section, we discuss the relatively low cosine similarity in Table 3. Compared to the first row
(predicting the labels, e.g., 6-class classification in seizure detection), the second row corresponds
to predicting one of the many domains (e.g., 2,702-class classification in seizure detection). Using
the linear prediction model, the performances of the second row are naturally not as good as the first
row. As a result, the learned coefficients in the second row are less similar than those learned in the
first row. This may also explain why sleep staging has the highest similarity in the second row (since
this task only has 78 domains).
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