
Analytic Energy-Guided Policy Optimization for
Offline Reinforcement Learning

Jifeng Hu1 Sili Huang2∗ Zhejian Yang1 Shengchao Hu3

Li Shen4 Hechang Chen1∗ Lichao Sun5

Yi Chang1∗ Dacheng Tao6
1Jilin University 2Minzu University of China

3Shanghai Jiao Tong University 4Shenzhen Campus of Sun Yat-sen University
5Lehigh University 6Nanyang Technological University

{hujf21, zjyang22}@mails.jlu.edu.cn {chenhc, yichang}@jlu.edu.cn
huangsili@muc.edu.cn mathshenli@gmail.com charles-hu@sjtu.edu.cn

lis221@lehigh.edu dacheng.tao@gmail.com

Abstract

Conditional decision generation with diffusion models has shown powerful compet-
itiveness in reinforcement learning (RL). Recent studies reveal the relation between
energy-function-guidance diffusion models and constrained RL problems. The
main challenge lies in estimating the intermediate energy, which is intractable
due to the log-expectation formulation during the generation process. To address
this issue, we propose the Analytic Energy-guided Policy Optimization (AEPO).
Specifically, we first provide a theoretical analysis and the closed-form solution of
the intermediate guidance when the diffusion model obeys the conditional Gaus-
sian transformation. Then, we analyze the posterior Gaussian distribution in the
log-expectation formulation and obtain the target estimation of the log-expectation
under mild assumptions. Finally, we train an intermediate energy neural network
to approach the target estimation of log-expectation formulation. We apply our
method in 30+ offline RL tasks to demonstrate the effectiveness of our method.
Extensive experiments illustrate that our method surpasses numerous representative
baselines in D4RL offline reinforcement learning benchmarks.

1 Introduction

Controllable generation with diffusion models has shown remarkable success in text-to-image genera-
tion [9], photorealistic image synthesization [87], high-resolution video creation [8], and robotics
manipulation [10]. A common strategy to realize controllable diffusion models is guided sampling,
which can be further classified into two categories: classifier-guided [17, 48] and classifier-free-
guided [61, 1] diffusion-based methods.

Usually, classifier guidance and classifier-free guidance need paired data, i.e., samples and the
corresponding conditioning variables, to train a controllable diffusion model [85, 24, 74]. However,
it is difficult to describe the conditioning variables for each transition in RL. We can only evaluate the
value for the transitions with a scalar and continuous function, which is generally called the action
value function (Q function) [64, 48]. Recently, energy-function-guided diffusion models provide an
effective way to realize elaborate manipulation in RL. Previous studies also reveal the relation of
equivalence between guided sampling energy-function-guided diffusion models and constrained RL

∗Corresponding authors: Hechang Chen, Sili Huang, and Yi Chang.
code: https://github.com/JF-Hu/Analytic-Energy-guided-Policy-Optimization

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

problems [64, 11]. Considering the following formula of energy-function-guided diffusion models

min
p

Ex∼p(x)E(x),

s.t. DKL(p(x)||q(x)),
(1)

where x ∈ Rd, E(x) : Rd → R is the energy function, q(x) and p(x) denote the unguided and
guided data distribution, and DKL(·) represents the KL divergence. The optimal solution to the
above problem is

p(x) ∝ q(x)e−βE(x), (2)
where inverse temperature β is the Lagrangian multiplier, which controls the energy strength. Equa-
tion (2) shows that the guided data distribution lies in the intersection region of unguided distribution
q(x) and energy distribution e−βE(x). Obversely, the guidance comes from the energy function E(x).
The constrained RL problem

max
π

Es∼Dµ
[
Ea∼π(·|s)Q(s, a)

]
,

s.t. DKL(π(·|s)||µ(·|s)) < ε,
(3)

has the similar formula with Equation (1), where π and µ are the learned and behavior policies. Thus,

π∗(a|s) ∝ µ(a|s)eβQ(s,a). (4)

The optimal policy π∗(a|s) under state s can be regarded as the guided distribution p(x), and actions
a can be generated with guided sampling. See Section 6.2 for more discussion and Appendix C for
detailed derivation.

Although sampling from p(x) is intractable due to the normalization term, it can be bypassed
in score-based diffusion models, where the score function ∇x log p(x) can be calculated with
intermediate energy Et(xt) (Refer to Equation (8) for details.) [61, 28]. However, the intermediate
energy introduced in classifier-guided and classifier-free-guided methods has proved to be inexact
theoretically and practically [64, 90]. Besides, for classifier-guided methods, the intermediate
guidance can be influenced by the fictitious state-action pairs generated during the generation process.
For classifier-free-guided methods, the intermediate guidance is manually predefined during guided
sampling. Though recent studies [64] propose the exact expression of Et(xt), they do not investigate
the theoretical solution of the intermediate energy.

In this paper, we theoretically analyze the intermediate energy Et(xt) (intermediate guidance is
∇xtEt(xt)) with a log-expectation formulation and derive the solution of intermediate energy by
addressing the posterior integral. Based on the theoretical results, we propose a new diffusion-based
method called Analytic Energy-guided Policy Optimization (AEPO). In contrast with previous studies,
we leverage the characteristic of Gaussian distribution and find a solution for the log-expectation
formulation. Specifically, we first convert the implicit dependence on the action in the exponential
term to explicit dependence by applying Taylor expansion. After that, we investigate the posterior
distribution formulation of the expectation term and simplify the intractable log-expectation formula-
tion with the moment-generating function of the Gaussian distribution. Then, we propose to train a
general Q function and an intermediate energy function to approach the simplified log-expectation
formulation given a batch of data. Finally, during the inference, we can use the intermediate guidance
to generate guided information to high-return action distributions.

To verify the effectiveness of our method, we apply our method in offline RL benchmarks D4RL [21],
where we select different tasks with various difficulties. We compare our method with dozens of
baselines, which contain many types of methods, such as classifier-guided and classifier-free-guided
diffusion models, behavior cloning, and transformer-based models. Through extensive experiments,
we demonstrate that our method surpasses state-of-the-art algorithms in most environments.

2 Related Work

2.1 Offline RL

Offline RL aims to learn a policy entirely from previously collected datasets, thus avoiding expensive
and risky interactions with the environment, such as autonomous driving [56, 35, 53, 30, 60, 44, 45].

2

However, in practice, we may face the distribution shift issue, which means that the learned policy
and the behavior policy are different, and the overestimation of out-of-distribution (OOD) actions
will lead to a severe performance drop [55, 27, 22, 32, 71, 42, 41, 46]. In order to solve these
issues, previous studies can be roughly classified into several research lines. Policy regularization
methods [7, 66, 88, 22, 54] focus on applying constraints to the learned policy to prevent it from
deviating far from the behavior policy. Critic penalty methods [55, 53, 65, 68, 43] propose to train
a conservative value function that assigns low expected return on unseen samples and high return
on dataset samples, resulting in efficient OOD actions overestimation. Uncertainty quantification
methods [89, 2, 4, 83] introduce uncertainty estimation to identify whether an action is OOD, thus
enhancing the robustness on OOD actions. Recently, generative models [26, 57, 81, 39, 37, 38, 15],
such as diffusion models, are proposed to augment the offline datasets with synthetic experiences or
train a world model for planning.

2.2 Generative Policy Optimization

Recent advancements [48] in diffusion RL methods have shown the diffusion models’ powerful
expression in modeling multimodal policies [11, 82, 34], learning heterogeneous behaviors [1, 25, 58],
and generating fine-grained control [40, 16, 33]. Diffusion-based RL algorithms cursorily contain two
types of guided sampling to realize policy optimization [12]. Guidance-based policy optimization [48,
64, 91] uses the value function to instruct the action generation process of diffusion models. During
the intermediate diffusion steps, the generated action vectors will incline to the region with high
values according to the intermediate guidance. Selected-based policy optimization [11, 25, 67]
first generates a batch of candidate actions from diffusion behavior policy. Then, it constructs a
critic-weighted empirical action distribution and resamples the action from it for evaluation.

3 Preliminary

3.1 Diffusion Probabilistic Models

Diffusion Probabilistic Models (DPMs) [29, 17, 74] are proposed to construct the transformation
between complex data distribution x0 and easy sampling distribution xT (e.g., Gaussian distribution).
By defining the forward transformation from data distribution x0 to simple distribution xT in T time
range according to the following stochastic differential equation dx = f(x, t)dt + g(t)dw, where
f(·, t) : Rd → Rd is the drift coefficient, g(·) is the diffusion coefficient, and w is the standard Wiener
process, we can obtain a reverse transformation from the simple distribution xT to data distribution
x0, as shown in dx =

[
f(x, t)− g(t)2∇x log qt(x)

]
dt+ g(t)dw̄, where w̄ is the standard Wiener

process, t ∈ [0, T] is the diffusion time, t = 0 means data without perturbation, t = T means
prior sample-friendly distribution, dt indicates infinitesimal negative timestep, qt(x) is the marginal
distribution of xt, and ∇x log qt(x) is the score function. Usually, we adopt the Gaussian transition
distribution [62, 63], which means

qt|0(xt|x0) = N (xt;αtx0, σ
2
t I), (5)

where αt > 0 is a decrease function, σt > 0 is an increase function, qT |0(xT |x0) ≈
N (xT ; 0, σ̃

2I) for certain σ̃. Obviously, qT |0(xT |x0) will be independent of x0, i.e., qT |0(xT |x0) ≈
qT (xT). Based on the above results, once we obtain ∇x log qt(x), we can perform genera-
tion from simple distribution [5, 86]. By constructing the score function s(xt), previous stud-
ies [78, 77] show that the following objective is equivalent: Eq(xt)

[
||s(xt)−∇xt log qt(xt)||22

]
⇒

Eq(x0)qt|0(xt|x0)

[
||s(xt)−∇xt log qt|0(xt|x0)||22

]
and the reverse transformation can be an alterna-

tive formula, i.e., probability flow ordinary differential equation (ODE)

dxt
dt

= f(t)xt −
1

2
g(t)2∇xt log pt(xt), (6)

where f(x, t) = f(t)xt, f(t) = d logαt
dt , and g(t)2 =

d σ2
t

dt − 2d logαt
dt σ2

t , because Equation (6)
holds the marginal distribution unaltered [52]. Considering that xt = αtx0+σtϵ, where ϵ ∼ N (0, I),
there exist s(xt) = ∇xt log pt(xt) ≈ − ϵ

σt
. So, we can introduce a neural network ϵθ(xt, t), and

Ldiff = Ex0∼q(x0),t∼U(0,T)

[
||ϵθ(xt, t)− ϵ||22

]
, (7)

3

is the diffusion loss, where U(·) is uniform distribution. x0 ∼ q(x0) means sampling data
from the offline datasets. After training, we can obtain the score function value through ϵθ, i.e.,
∇xt log pt(xt) ≈ − ϵθ

σt
. Then, we can use Equation (6) for the generation process [62].

3.2 Guided Sampling

In RL, guidance plays an important role in generating plausible decisions because the dataset quality
is usually mixed, and naive modeling of the conditional action distribution under states will lead to
suboptimal performance. Classifier-guided methods [17, 82, 48, 50] define binary random optimality
variables O, where O = 1 means optimal outputs, and O = 0 means suboptimal outputs. For each
generation step t, p(xt−1|xt,O) ∝ q(xt−1|xt)p(O|xt), the guidance serves as a gradient on the
mean value modification p(xt−1|xt,O) = N (xt;µt + Σt · ∇ log p(O|xt),Σt), where µt and Σt
is the predicted mean and variances of q(xt−1|xt). During inference, the fictitious intermediate
outputs xt that do not exist in the training dataset will lead to suboptimal intermediate guidance.
Different from classifier-guided methods, the classifier-free-guided methods implicitly build the joint
distribution between the data and condition variables C in the training phase [1, 11, 61, 12]. Therefore,
we can use the desired condition as guidance to perform guided sampling. The classifier-free-guided
training loss is Ex0∼q(x0),t∼U(0,T),b∼B(λ)

[
||ϵθ(xt, b ∗ C, t)− ϵ||22

]
, where B is binomial distribution,

λ is the parameter of B. During inference, the guidance is also incorporated in the mixed prediction of
conditional and unconditional noise, i.e., ϵ̂ = ϵθ(xt, t, ∅) + ω(ϵθ(xt, t, C)− ϵθ(xt, t, ∅)), ω controls
the guidance strength, ∅ means b = 0. Due to the condition variables being needed before generation,
we need to manually assign the value before inference. The predefined C will also restrict the model’s
performance if insufficient prior information on environments arises.

3.3 Diffusion Offline RL

Typical RL [69] is formulated by the Markov Decision Process (MDP) that is defined as the tuple
M = ⟨S,A,P, r, γ⟩, where S and A denote the state and action space, respectively, P(s′|s, a) is the
Markovian transition probability, r(s, a) is the reward function, and γ ∈ [0, 1) is the discount factor.
The goal is to find a policy π that can maximize the discounted return Eπ[

∑∞
k=0 γ

kr(sk, ak)],
where k represents the RL time step which is different from diffusion step t [76]. In offline
RL [55, 53], only a static dataset Dµ collected with behavior policy is available for training. Ex-
tracting optimal policy from offline datasets is formulated as a constrained RL problem [72, 84]
as shown in Equation (3), which can be converted to find an optimal policy π∗ that maximizes
π∗ = maxπ Es∼DµEa∼π(·|s)

[
Q(s, a)− 1

βDKL(π(·|s)||µ(·|s))
]
. Diffusion offline RL usually

adopts diffusion models to imitate the behavior policy µ [1]. Naively modeling the action dis-
tribution will only lead to suboptimal policy. Thus, the well-trained value functions will be used to
extract optimal policy, such as action value gradient guidance [48] and empirical action distribution
reconstruction [25].

4 Method

In order to generate samples from the desired distribution p(x) with the reverse transformation
(generation process) Equation (6), we should know the score function ∇x log p(x). If the score
function of the desired distribution p(x) has a relation with the score function of q(x)

∇x log p(x) = ∇x log q(x) +∇x − βE(x), (8)

for any data x, we can obtain the score function of p(x) by compounding the score function of
q(x) and the gradient of E(x). However, it only exists p0(x0) ∝ q0(x0)e

−βE(x0) for the samples
in the dataset rather than the marginal distribution of pt(xt) and qt(xt). Previous guided sampling
methods usually adopt MSE or diffusion posterior sampling (DPS) as the objective of training the
intermediate energy, which cannot satisfy the relation pt(xt) ∝ qt(xt)e

−Et(xt), thus leading to an
inexact intermediate guidance. We summarize the results in Theorem 4.1.

Theorem 4.1 (Inexact and Exact Intermediate Energy). Suppose p0(x0) and q0(x0) has the re-
lation of Equation (2). pt|0(xt|x0) and qt|0(xt|x0) are defined by pt|0(xt|x0) := qt|0(xt|x0) =

N (xt;αtx0, σ
2
t I) for all t ∈ (0, T]. According to the Law of Total Probability, the marginal

4

distribution pt(xt) and qt(xt) are given by pt(xt) =
∫
pt|0(xt|x0)p0(x0)dx0 and qt(xt) =∫

qt|0(xt|x0)q0(x0)dx0. Previous studies [64, 67, 14] define the inexact intermediate energy as

EMSE
t (xt) = Eq0|t(x0|xt)[E(x0)], t > 0; EDPSt (xt) = E(Eq0|t(x0|xt)[x0]), t > 0. (9)

The exact intermediate energy is defined by

Et(xt) = − log Eq0|t(x0|xt)[e
−βE(x0)], t > 0. (10)

It can be proved (See Appendix D for details.) that pt(xt) ∝ qt(xt)e
−Et(xt) exists under Equation (10)

rather than Equation (9). So, the intermediate guidance (Equation (8)) is inexact for previous
classifier-guided and classifier-free-guided methods.

Similarly, in RL, as shown in Equation (4), the desired distribution is π(a|s). The intermediate energy
Et(s, at) and the score function ∇at log πt(at|s) with intermediate guidance ∇atEt(s, at) in RL are
defined as follows

Et(s, at) =

{
βQ(s, a0), t = 0

log Eµ0|t(a0|at,s)[e
βQ(s,a0)], t > 0

(11)

∇at log πt(at|s) = ∇at log µt(at|s) +∇atEt(s, at), (12)
where we slightly abuse the input of E because the value action should depend on the corresponding
state in RL. Refer to Appendix E for the detailed derivation.

4.1 Intermediate Energy

Diffusion loss (Equation (7)) provides the way to obtain the score function of µt(at|s),

∇at log µt(at|s) = −ϵθ(s, at, t)
σt

. (13)

Obviously, the most challenging issue that we need to address is log Eµ0|t(a0|at,s)[e
βQ(s,a0)] because

of the intractable log-expectation formulation. Following previous research, we use a Gaussian
distribution as the estimate for the posterior distribution µ0|t(a0|at, s), where the mean and covariance
are denoted as µ0|t = N (µ̃0|t, Σ̃0|t). We will introduce how to approximate µ̃0|t and Σ̃0|t below. We
first focus on converting the implicit dependence on the action in the exponential term to explicit
dependence by applying Taylor expansion. Expand Q(s, a0) at a0 = ā with Taylor expansion, where
ā is a constant vector. Then, we have

Q(s, a0) ≈ Q(s, a0)|a0=ā +
∂Q(s, a0)

∂a0

⊤
|a0=ā ∗ (a0 − ā). (14)

Replacing Q function in log Ea0∼µ(a0|at,s)eβQ(s,a0) with Equation (14), we will derive the following

log Ea0∼µ(a0|at,s)e
βQ(s,a0) ≈ βQ(s, ā)− βQ′(s, ā)⊤ā+ log

{
Ea0∼µ(a0|at,s)[e

βQ′(s,ā)⊤a0]
}
,

(15)
where Q′ = ∂Q

∂a . More discussion about the approximation of intermediate energy can be found in
Appendix F and G. Note that the above derivation makes the complex dependence between Q(s, a0)
and a0 easier. In other words, we transfer a0 from the implicit dependence on Q(s, a0) to explicit
dependence on Q′(s, ā)⊤a0. Refer to Appendix H for more details. As for the only unknown item
Ea0∼µ(a0|at,s)[eβQ

′(s,ā)⊤a0], the exact result can be derivated from moment generating function,
which indicates that Ex∼N (v,Σ)[e

a⊤x] = ea
⊤v+ 1

2a
⊤Σa. By simplifying Equation (15), we have

log
{
Ea0∼µ(a0|at,s)[e

βQ′(s,ā)⊤a0]
}
= βQ′(s, ā)⊤µ̃0|t +

1

2
β2Q′(s, ā)⊤Σ̃0|tQ

′(s, ā).

Finally, the intermediate energy Et(s, at) with log-expectation formulation can be approximated by

log Ea0∼µ(a0|at,s)e
βQ(s,a0) ≈ βQ(s, ā) + βQ′(s, ā)⊤(µ̃0|t − ā) +

1

2
β2Q′(s, ā)⊤Σ̃0|tQ

′(s, ā).

(16)
From Equation (16), we can see that the intermediate energy can be approximated with ā, µ̃0|t, and
Σ̃0|t. In the next section, we will introduce how to approximate the parameters of the posterior
distribution µ(a0|at, s). The training algorithm is shown in Algorithm 1 of Appendix A.

5

4.2 Posterior Approximation

In this paper, we provide several methods to approximate the distribution of µ(a0|at, s). We use
“Posterior i” to differentiate different posterior approximation methods in the following contents.

Posterior 1. Inspired by previous studies [6], we can use the trained diffusion model ϵθ to obtain
the mean vector µ̃0|t of the distribution µ0|t(a0|at, s) = N (a0; µ̃0|t, Σ̃0|t), where the mean vector

µ̃0|t =
1

αt
(at − σtϵθ(s, at, t)) (17)

according to Equation (5). As for covariance matrix Σ̃0|t, following the definition of covariance

Σ̃0|t(at) =
1

α2
t

Eµ0|t(a0|at,s)
[
(at − αta0)(at − αta0)

⊤]− σ2
t

α2
t

ϵθϵ
⊤
θ , (18)

where in the second equation we use Eµ0|t(a0|at)[(a0−
1
αt
at) ∗ σt

αt
ϵθ] = (Eµ0|t(a0|at,s)[a0]−

1
αt
at) ∗

σt
αt
ϵθ = (µ̃0|t − 1

αt
at) ∗ σt

αt
ϵθ = −σ2

t

α2
t
ϵθϵ

⊤
θ , ϵθ = ϵθ(s, at, t), and µ̃0|t = Eµ0|t(a0|at,s)[a0]. Besides,

we also notice that µ(at) ∼ N (at;αta0, σ
2
t I), thus we have

Eµt(at|s)Eµ0|t(a0|at,s)
[
(at − αta0)(at − αta0)

⊤] = σ2
t I. (19)

To simplify the problem of calculating the exact covariance matrix, we adopt two strategies. 1) The
isotropic Gaussian assumption: Computing an exact covariance matrix is expensive (if the matrix size
is N , it requires N2 computation times.). Under the isotropic Gaussian assumption, we only need
N computation times, which significantly reduces the computational cost. 2) The marginalization
over at: Since at is sampled from a distribution, data points far from the mean can lead to instability
during training. Therefore, we marginalize over at to use the average effect to replace the specific
effect of each individual at on a0. Based on the above two strategies, we have

Σ̃0|t = Eµt(at|s)Σ̃0|t(at) =
σ2
t

α2
t

[I − Eµt(at|s)[ϵθϵ
⊤
θ]]. (20)

For simplicity, we usually consider isotropic Gaussian distribution, where the covariance Σ̃0|t satisfies
Σ̃0|t = σ̃2

0|t ∗ I , the covariance can be simplified as

σ̃2
0|t =

σ2
t

α2
t

[
1− 1

d
Eµt(at|s)

[
||ϵθ(at, t)||22

]]
. (21)

In the experiments, we adopt this posterior as the default setting to conduct all experiments. Refer to
Appendix I.1 for the detailed derivation.

Posterior 2. As Equation (17) shows, we still adopt the same mean of the distribution µ0|t(a0|at, s).
We assume that the q0|t(a0|at) obey the formulation µ0|t(a0|at, s) = N (a0; µ̃0|t, Σ̃0|t). Again
considering Equation (18), we reformulate [79] it as

Σ̃0|t(at) = Eµ0|t(a0|at,s)
[
(a0 − u0)(a0 − u0)

⊤]− (µ̃0|t − u0)(µ̃0|t − u0)
⊤, (22)

where u0 is any constant vector, which has the same dimension with µ̃0|t. When we consider isotropic
Gaussian distribution and remove the inference of at, the Σ̃0|t is simplified as Σ̃0|t = σ̃2

0|tI and

σ̃2
0|t = V ar(a0)−

1

d
Eµt(at|s)[||µ̃0|t − u0||22], (23)

where u0 = Ea0∼µ(a0)[a0] and we can use the mean value of the whole action vectors of the dataset
as an unbiased estimation. V ar(a0) can be approximated from a batch of data or from the entire
dataset. We can sample a batch of data at with different t to calculate an approximation solution of
the second term Eµt(at|s)[||µ̃0|t − u0||22]. In Appendix I.2, we provide the detailed derivation. From
the above theory, we can solve the Gaussian distribution µ0|t(a0|at, s)’s parameters (µ̃0|t, Σ̃0|t).
According to Equation (16), we have simplified intermediate energy:

Et(s, at) ≈ βQ(s, ā) + βQ′(s, ā)⊤(µ̃0|t − ā) +
1

2
β2σ̃2

0|t ∗ ||Q
′(s, ā)||22, (24)

and the intermediate energy training loss LIE is
LIE = E

[
||EΘ(s, at, t)− Et(s, at)||22

]
, (25)

where Θ is the parameter, the mean and covariance are given by Equation (17), (21), and (23).

6

Table 1: Offline RL algorithms comparison on D4RL Gym-MuJoCo tasks, where we use red color
and blue color to show diffusion-based and non-diffusion-based baselines. Our method is shown
with yellow color .

Dataset Med-Expert Medium Med-Replay mean
score

total
scoreEnv HalfCheetah Hopper Walker2d HalfCheetah Hopper Walker2d HalfCheetah Hopper Walker2d

AWAC 42.8 55.8 74.5 43.5 57.0 72.4 40.5 37.2 27.0 50.1 450.7
BC 55.2 52.5 107.5 42.6 52.9 75.3 36.6 18.1 26.0 51.9 466.7

MOPO 63.3 23.7 44.6 42.3 28.0 17.8 53.1 67.5 39.0 42.1 379.3
MBOP 105.9 55.1 70.2 44.6 48.8 41.0 42.3 12.4 9.7 47.8 430.0
MOReL 53.3 108.7 95.6 42.1 95.4 77.8 40.2 93.6 49.8 72.9 656.5
TAP 91.8 105.5 107.4 45.0 63.4 64.9 40.8 87.3 66.8 74.8 672.9

BEAR 51.7 4.0 26.0 38.6 47.6 33.2 36.2 10.8 25.3 30.4 273.4
BCQ 64.7 100.9 57.5 40.7 54.5 53.1 38.2 33.1 15.0 50.9 457.7
CQL 62.4 98.7 111.0 44.4 58.0 79.2 46.2 48.6 26.7 63.9 575.2

TD3+BC 90.7 98.0 110.1 48.3 59.3 83.7 44.6 60.9 81.8 75.3 677.4
IQL 86.7 91.5 109.6 47.4 66.3 78.3 44.2 94.7 73.9 77.0 692.6
PBRL 92.3 110.8 110.1 57.9 75.3 89.6 45.1 100.6 77.7 84.4 759.4

DT 90.7 98.0 110.1 42.6 67.6 74.0 36.6 82.7 66.6 74.3 668.9
TT 95.0 110.0 101.9 46.9 61.1 79.0 41.9 91.5 82.6 78.9 709.9
BooT 94.0 102.3 110.4 50.6 70.2 82.9 46.5 92.9 87.6 81.9 737.4

SfBC 92.6 108.6 109.8 45.9 57.1 77.9 37.1 86.2 65.1 75.6 680.3
D-QL@1 94.8 100.6 108.9 47.8 64.1 82.0 44.0 63.1 75.4 75.6 680.7
Diffuser 88.9 103.3 106.9 42.8 74.3 79.6 37.7 93.6 70.6 77.5 697.7
DD 90.6 111.8 108.8 49.1 79.3 82.5 39.3 100.0 75.0 81.8 736.4
IDQL 95.9 108.6 112.7 51.0 65.4 82.5 45.9 92.1 85.1 82.1 739.2
HDMI 92.1 113.5 107.9 48.0 76.4 79.9 44.9 99.6 80.7 82.6 743.0
AdaptDiffuser 89.6 111.6 108.2 44.2 96.6 84.4 38.3 92.2 84.7 83.3 749.8
DiffuserLite 87.8 110.7 106.5 47.6 99.1 85.9 41.4 95.9 84.3 84.4 759.2
HD-DA 92.5 115.3 107.1 46.7 99.3 84.0 38.1 94.7 84.1 84.6 761.8
Consistency-AC 84.3 100.4 110.4 69.1 80.7 83.1 58.7 99.7 79.5 85.1 765.9
TCD 92.7 112.6 111.3 47.2 99.4 82.1 40.6 97.2 88.0 85.7 771.0
D-QL 96.1 110.7 109.7 50.6 82.4 85.1 47.5 100.7 94.3 86.3 777.1
QGPO 93.5 108.0 110.7 54.1 98.0 86.0 47.6 96.9 84.4 86.6 779.2

AEPO 94.4±0.9 111.5±1.1 109.3±0.5 49.6±1.1 100.2±0.5 86.2±1.1 43.7±1.3 101.0±0.9 90.8±1.5 87.4 786.7

4.3 Q Function Training

Due to the fact that Et(s, at) rely on Q(s, a), we first incorporate an action value function Qψ(s, a)
with parameters ψ to approximate the action values [36]. As for the training of the Qψ(s, a), we
leverage the expectile regression loss to train the Q function and V function:

LV = E(s,a)∼Dµ
[
Lτ2(Vϕ(s)−Qψ̄(s, a))

]
,

LQ = E(s,a,s′)∼Dµ
[
||r(s, a) + γVϕ(s

′)−Qψ(s, a)||22
]
,

Lτ2(y) = |τ − 1(y < 0)|y2,
(26)

where ϕ is the parameters of value function V , ψ̄ is the parameters of target Q, τ controls the
weights of different y. There are also some other methods suitable for learning the Q function from
offline datasets, such as In-support Q-learning [64] and conservative Q-learning [55]. However, they
use either fake actions that are generated from generative models or over-underestimate values for
out-of-dataset actions, which influence the learned Q values and the calculation of the intermediate
energy. We defer more discussion of the training of the Q function on offline datasets in Appendix J.

4.4 Guidance Rescaling

As shown in Equation (12), the magnitude and direction of ∇at log πt(at|s) will be easily affected
by the gradient of the intermediate energy. Previous studies usually need extra hyperparameter w to
adjust the guidance degree to find better performance, i.e., ∇at log πt(at|s) = ∇at log µt(at|s) +
w∇atEt(s, at). However, it poses issues to the performance stability of different w during inference.
Inspired by the experimental phenomenon that when the guidance scale is zero, the inference
performance is more stable than that when the guidance scale is non-zero. We propose to re-normalize
the magnitude of ∇at log πt(at|s) by ∇at log πt(at|s) =

∇at log πt(at|s)
||∇at log πt(at|s)|| ∗ ||∇at log µt(at|s)||.

5 Experiments

In the following sections, we report the details of environmental settings, evaluation metrics, and
comparison results.

7

Table 2: D4RL Pointmaze (maze2d) and Locomotion (antmaze) comparison. We select 12 subtasks
for evaluation, including different difficulties and reward settings. We use red color , blue color ,
and yellow color to show diffusion-based baselines, non-diffusion-based baselines, and our method.

Environment maze2d-umaze maze2d-medium maze2d-large mean sparse score mean dense score
Environment type sparse dense sparse dense sparse dense

DT 31.0 - 8.2 - 2.3 - 13.8 -
BCQ 49.1 - 17.1 - 30.8 - 32.3 -
QDT 57.3 - 13.3 - 31.0 - 33.9 -
IQL 42.1 - 34.9 - 61.7 - 46.2 -
COMBO 76.4 - 68.5 - 14.1 - 53.0 -
TD3+BC 14.8 - 62.1 - 88.6 - 55.2 -
BEAR 65.7 - 25.0 - 81.0 - 57.2 -
BC 88.9 14.6 38.3 16.3 1.5 17.1 42.9 16.0
CQL 94.7 37.1 41.8 32.1 49.6 29.6 62.0 32.9
TT 68.7 46.6 34.9 52.7 27.6 56.6 43.7 52.0

SfBC 73.9 - 73.8 - 74.4 - 74.0 -
SynthER 99.1 - 66.4 - 143.3 - 102.9 -
Diffuser 113.9 - 121.5 - 123.0 - 119.5 -
HDMI 120.1 - 121.8 - 128.6 - 123.5 -
HD-DA 72.8 45.5 42.1 54.7 80.7 45.7 65.2 48.6
TCD 128.1 29.8 132.9 41.4 146.4 75.5 135.8 48.9
DD 116.2 83.2 122.3 78.2 125.9 23.0 121.5 61.5

AEPO 136.0 107.2 128.4 109.9 132.4 165.5 132.3 127.5

Environment antmaze-umaze antmaze-medium antmaze-large mean score total score
Environment type diverse play diverse play diverse

AWAC 56.7 49.3 0.0 0.7 0.0 1.0 18.0 107.7
DT 59.2 53.0 0.0 0.0 0.0 0.0 18.7 112.2
BC 65.0 55.0 0.0 0.0 0.0 0.0 20.0 120.0
BEAR 73.0 61.0 0.0 8.0 0.0 0.0 23.7 142.0
BCQ 78.9 55.0 0.0 0.0 6.7 2.2 23.8 142.8
TD3+BC 78.6 71.4 10.6 3.0 0.2 0.0 27.3 163.8
CQL 74.0 84.0 61.2 53.7 15.8 14.9 50.6 303.6
IQL 87.5 62.2 71.2 70.0 39.6 47.5 63.0 378.0
QDQ 98.6 67.8 81.5 85.4 35.6 31.2 66.7 466.8

DD 73.1 49.2 0.0 24.6 0.0 7.5 25.7 154.4
D-QL 93.4 66.2 76.6 78.6 46.4 56.6 69.6 417.8
IDQL 93.8 62.0 86.6 83.5 57.0 56.4 73.2 439.3
SfBC 92.0 85.3 81.3 82.0 59.3 45.5 74.2 445.4
QGPO 96.4 74.4 83.6 83.8 66.6 64.8 78.3 469.6

AEPO 100.0 100.0 76.7 83.3 56.7 66.7 80.6 483.4

5.1 Environments

We select D4RL tasks [21] as the test bed, which contains four types of benchmarks, Gym-MuJoCo,
Pointmaze, Locomotion, and Adroit, with different dataset qualities. Gym-MuJoCo tasks are com-
posed of HalfCheetah, Hopper, and Walker2d with different difficulty settings datasets (e.g., medium,
medium-replay, and medium-expert), where ‘medium-replay’ and ‘medium-expert’ denote the mix-
ture level of behavior policies and ‘medium’ represents uni-level behavior policy. In Pointmaze, we
select Maze2D with three difficulty settings (umaze, medium, and large) and two reward settings
(sparse and dense) for evaluation. Locomotion contains an ant robot control task with different maze
sizes, which we distinguish using umaze, medium, and large. These datasets include an abundant
fraction of near-optimal episodes, making training challenging. Adroit contains several sparse-reward,
high-dimensional hand manipulation tasks where the datasets are collected under three types of
situations (human, expert, and cloned).

5.2 Metrics

Considering the various reward structures of different environments, we select the normalized
score as the comparison metric. As an example, the normalized score Enorm is calculated by
Enorm = E−Erandom

Eexpert−Erandom ∗ 100, where Erandom and Eexpert are the performance of random and
expert policies, and E is the evaluation performance. In the ablation study, we select the radar chart

8

to compare the holistic capacity of all methods, where the normalized performance is calculated by
Enorm = Ei

max({Ej |j∈1,...,N}) , where Ei is the evaluation performance of method i, i indicates the
index of comparison methods, and N is the total number of methods.

5.3 Baselines

For baselines, we compare our method with diffusion-based methods (DiffuserLite [19], HD-
DA [10], IDQL [25], AdaptDiffuser [59], Consistency-AC [18], HDMI [57], TCD [31],
QGPO [64], SfBC [11], DD [1], Diffuser [48], D-QL [82], and D-QL@1, etc.) and non-
diffusion-based methods, including traditional RL methods (AWAC [70] and BC), model-based
methods (TAP [49], MOReL [51], MOPO [89], and MBOP [3]), constraint-based methods
(CQL [55], BCQ [23], and BEAR [54], etc.), uncertainty-based methods (PBRL [4], TD3+BC [22],
and IQL [53], etc.), and transformer-based methods (BooT [80], TT [47], and DT [13],
etc.). In summary, we compared more than 30 competitive methods across over 30 subtasks.

Figure 1: Q function training and posterior approx-
imation ablation of AEPO on Gym-MuJoCo tasks.

5.4 Results

In Table 1, we report the comparison results with
dozens of diffusion-based and non-diffusion-
based methods on the D4RL Gym-MuJoCo
tasks. Among all the algorithms on 9 tasks,
the best performance of our method (AEPO)
illustrates the effectiveness in decision-making
scenarios. Especially, in guided sampling, as a
diffusion model, our method not only provides
an approximate solution to guided sampling in
theory but also surpasses most recent diffusion-
based methods, such as QGPO, DiffuserLite,
and D-QL, in abundant experiments. In order
to validate the effectiveness in sparse and dense
reward settings, as well as hard tasks with the most sub-optimal trajectories, we conduct experiments
on maze2d and antmaze tasks. The results are reported in Table 2, where we can see that our method
approaches or surpasses the SOTA algorithms. Limited by the space, we postpone more experiments
and discussion of D4RL Adroit in Table 3 of Appendix B.

Figure 2: Guidance rescale ablation of AEPO on
Gym-MuJoCo walker2d-medium-expert task. The
x-axis denotes training steps.

Apart from Posterior 1 introduced in Section 4.2,
we also investigate the performance of Posterior
2 on the D4RL Gym-MuJoCo tasks. To show
the performance differences obviously, we adopt
the holistic performance and show them on the
polygon shown in Figure 1, where each vertex
represents a sub-task. The fuller the polygon,
the better the overall performance of the model.
From the figure, it can be observed that AEPO
outperforms AEPO-Posterior 2. This may be
attributed to the variance calculation. As shown
in Section 4.2, Posterior 2 is influenced by two
factors—one being the intrinsic variance of the
dataset and the other being the diffusion model.
In contrast, Posterior 1 is influenced solely by the diffusion model. For the different Q function
training strategies, we also conduct experiments on the Gym-MuJoCo tasks. AEPO-CQL uses the
contrastive q-learning to train the Q function, and AEPO-ISQL adopts in-support softmax q-learning
to train the Q function. The results in Figure 1 illustrate that implicit Q-learning is an effective
method to learn a better Q function in offline training.

As shown in Figure 2, guided sampling, such as ω = 0.1, is important to reach higher returns
compared with non-guided sampling (ω = 0). With the increase of ω, the performance of ‘non-
rescale’ decreases quickly, while ‘rescale’ can still hold the performance. Obviously, guidance
rescaling makes it robust to find better performance in a wider range of ω.

9

6 Discussion

6.1 Differences Discussion

Previous methods, such as QGPO, cannot solve the intractable intermediate energy with the log-
expectation form, which leads to sub-optimal performance. Facing this issue, we resolve the in-
tractable log-expectation of intermediate energy with Taylor expansion and the moment generating
function, achieving better performance in 33 tasks with various domains. Below we discuss the
differences between our method and QGPO in detail.

• From the perspective of theory, our method provides a theoretical solution for the log-expectation
of the intermediate energy, which takes a further step compared with QGPO. QGPO only derives
the formula of intermediate energy rather than the further results of the log-expectation.

• From the perspective of algorithmic design, in Theorem 3.2 of QGPO, where the authors use
contrastive learning loss to fit the intermediate energy, the authors mention that, under infinite data
and model capacity, the contrastive loss (Equation (12) in QGPO) can perfectly approximate the
intermediate energy. However, in practice, we cannot achieve infinite model capacity, and offline
samples are certainly limited. Our method does not require assumptions about the sample size or
model capacity.

• From the perspective of the dataset, QGPO requires the use of a diffusion model to generate
fake action vectors for CEP, and these fake action vectors may introduce the influence of out-of-
distribution actions. However, our method does not require the generation of fake actions.

Compared with posterior sampling methods, such as DPS, the key difference between DPS and
AEPO is that the intermediate energy formula used in AEPO is exact, while that in DPS is inexact.
The derivation of the exact and inexact intermediate energy can be found in Table 1 and Appendix E
of QGPO. AEPO first bases on the exact intermediate energy, then solves the log-expectation that
QGPO does not resolve.

6.2 Intuition Behind Using the Q-function as the Energy Function

In reinforcement learning, the Q-value Q(s, a) represents the expected return of taking action a
in state s. Higher Q-values indicate more desirable actions. In energy-based guided sampling,
the energy function E(x) serves as a scoring function, where lower energy corresponds to higher
sampling probability on x. By identifying the energy function as E(x) = −Q(s, a), we make high-Q
actions more likely to be sampled through the exponential weighting βQ(s, a). This aligns with the
optimization objective in constrained RL: maximizing the expected Q-value under a KL divergence
constraint from a prior behavior policy.

7 Conclusion

In this paper, we provide a theoretical analysis of the intermediate energy that matters in conditional
decision generation with diffusion models. We investigate the closed-form solution of intermediate
guidance that has intractable log-expectation formulation and provide an effective approximation
method under the most widely used Gaussian-based diffusion models. Finally, we conduct sufficient
experiments in 4 types, 30+ tasks by comparing with 30+ baselines to validate the effectiveness.
Limitations and potential improvements can be found in Appendix B.8.

Acknowledgement

We would like to thank Lijun Bian for her contributions to the figures and tables of this manuscript.
We thank Siyuan Guo for his contributions to the writing suggestions of this manuscript. This
work is supported in part by the National Key R&D Program of China (No. 2023YFF0905400,
No. 2021ZD0112500); the National Natural Science Foundation of China (No. 62476110, No.
U2341229); the National Key R&D Program of China (No. 2023YFF0905400, No. 2021ZD0112500);
the Key R&D Project of Jilin Province (No. 20240304200SF); NSFC Grant (No. 62576364).

10

References
[1] Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit

Agrawal. Is conditional generative modeling all you need for decision-making? arXiv preprint
arXiv:2211.15657, 2022.

[2] Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline
reinforcement learning with diversified q-ensemble. Advances in neural information processing
systems, 34:7436–7447, 2021.

[3] Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning. arXiv preprint
arXiv:2008.05556, 2020.

[4] Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhihong Deng, Animesh Garg, Peng Liu, and
Zhaoran Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning.
arXiv preprint arXiv:2202.11566, 2022.

[5] Fan Bao, Chongxuan Li, Jiacheng Sun, Jun Zhu, and Bo Zhang. Estimating the optimal covari-
ance with imperfect mean in diffusion probabilistic models. arXiv preprint arXiv:2206.07309,
2022.

[6] Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-dpm: an analytic estimate of the
optimal reverse variance in diffusion probabilistic models. arXiv preprint arXiv:2201.06503,
2022.

[7] Alex Beeson and Giovanni Montana. Balancing policy constraint and ensemble size in
uncertainty-based offline reinforcement learning. Machine Learning, 113(1):443–488, 2024.

[8] Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr,
Joe Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh.
Video generation models as world simulators. 2024. URL https://openai.com/research/
video-generation-models-as-world-simulators.

[9] Pu Cao, Feng Zhou, Qing Song, and Lu Yang. Controllable generation with text-to-image
diffusion models: A survey. arXiv preprint arXiv:2403.04279, 2024.

[10] Chang Chen, Fei Deng, Kenji Kawaguchi, Caglar Gulcehre, and Sungjin Ahn. Simple hierarchi-
cal planning with diffusion. arXiv preprint arXiv:2401.02644, 2024.

[11] Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement
learning via high-fidelity generative behavior modeling. arXiv preprint arXiv:2209.14548,
2022.

[12] Huayu Chen, Cheng Lu, Zhengyi Wang, Hang Su, and Jun Zhu. Score regularized policy
optimization through diffusion behavior. arXiv preprint arXiv:2310.07297, 2023.

[13] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. Advances in neural information processing systems, 34:15084–15097,
2021.

[14] Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffu-
sion posterior sampling for general noisy inverse problems. arXiv preprint arXiv:2209.14687,
2022.

[15] Yang Dai, Oubo Ma, Longfei Zhang, Xingxing Liang, Shengchao Hu, Mengzhu Wang, Shouling
Ji, Jincai Huang, and Li Shen. Is mamba compatible with trajectory optimization in offline
reinforcement learning? Advances in Neural Information Processing Systems, 37:51474–51502,
2024.

[16] Sudeep Dasari, Oier Mees, Sebastian Zhao, Mohan Kumar Srirama, and Sergey Levine. The
ingredients for robotic diffusion transformers. arXiv preprint arXiv:2410.10088, 2024.

[17] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
Advances in neural information processing systems, 34:8780–8794, 2021.

11

https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators

[18] Zihan Ding and Chi Jin. Consistency models as a rich and efficient policy class for reinforcement
learning. arXiv preprint arXiv:2309.16984, 2023.

[19] Zibin Dong, Jianye Hao, Yifu Yuan, Fei Ni, Yitian Wang, Pengyi Li, and Yan Zheng. Diffuserlite:
Towards real-time diffusion planning. arXiv preprint arXiv:2401.15443, 2024.

[20] Clive Dym. Principles of mathematical modeling. Elsevier, 2004.

[21] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for
deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[22] Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

[23] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. In International conference on machine learning, pages 2052–2062.
PMLR, 2019.

[24] Alexandros Graikos, Nikolay Malkin, Nebojsa Jojic, and Dimitris Samaras. Diffusion models
as plug-and-play priors. Advances in Neural Information Processing Systems, 35:14715–14728,
2022.

[25] Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey
Levine. Idql: Implicit q-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

[26] Haoran He, Chenjia Bai, Kang Xu, Zhuoran Yang, Weinan Zhang, Dong Wang, Bin Zhao,
and Xuelong Li. Diffusion model is an effective planner and data synthesizer for multi-task
reinforcement learning. Advances in neural information processing systems, 36:64896–64917,
2023.

[27] Longxiang He, Deheng Ye, Junbo Tan, Xueqian Wang, and Li Shen. Robust policy expansion
for offline-to-online rl under diverse data corruption. arXiv preprint arXiv:2509.24748, 2025.

[28] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

[29] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[30] Jifeng Hu, Yanchao Sun, Hechang Chen, Sili Huang, Yi Chang, Lichao Sun, et al. Distributional
reward estimation for effective multi-agent deep reinforcement learning. Advances in Neural
Information Processing Systems, 35:12619–12632, 2022.

[31] Jifeng Hu, Yanchao Sun, Sili Huang, SiYuan Guo, Hechang Chen, Li Shen, Lichao Sun,
Yi Chang, and Dacheng Tao. Instructed diffuser with temporal condition guidance for offline
reinforcement learning. arXiv preprint arXiv:2306.04875, 2023.

[32] Jifeng Hu, Sili Huang, Li Shen, Zhejian Yang, Shengchao Hu, Shisong Tang, Hechang Chen,
Yi Chang, Dacheng Tao, and Lichao Sun. Solving continual offline rl through selective weights
activation on aligned spaces. arXiv preprint arXiv:2410.15698, 2024.

[33] Jifeng Hu, Sili Huang, Siyuan Guo, Zhaogeng Liu, Li Shen, Lichao Sun, Hechang
Chen, Yi Chang, and Dacheng Tao. Decision flow policy optimization. arXiv preprint
arXiv:2505.20350, 2025.

[34] Jifeng Hu, Li Shen, Sili Huang, Zhejian Yang, Hechang Chen, Lichao Sun, Yi Chang, and
Dacheng Tao. Continual diffuser (cod): Mastering continual offline rl with experience rehearsal.
IEEE Transactions on Neural Networks and Learning Systems, 2025.

[35] Shengchao Hu, Li Chen, Penghao Wu, Hongyang Li, Junchi Yan, and Dacheng Tao. St-p3:
End-to-end vision-based autonomous driving via spatial-temporal feature learning. In European
Conference on Computer Vision, pages 533–549. Springer, 2022.

12

[36] Shengchao Hu, Ziqing Fan, Chaoqin Huang, Li Shen, Ya Zhang, Yanfeng Wang, and Dacheng
Tao. Q-value regularized transformer for offline reinforcement learning. In International
Conference on Machine Learning, pages 19165–19181. PMLR, 2024.

[37] Shengchao Hu, Li Shen, Ya Zhang, Yixin Chen, and Dacheng Tao. On transforming reinforce-
ment learning with transformers: The development trajectory. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 46(12):8580–8599, 2024.

[38] Shengchao Hu, Li Shen, Ya Zhang, and Dacheng Tao. Learning multi-agent communication
from graph modeling perspective. In The Twelfth International Conference on Learning
Representations, 2024.

[39] Shengchao Hu, Li Shen, Ya Zhang, and Dacheng Tao. Graph decision transformer for offline
reinforcement learning. SCIENCE CHINA-INFORMATION SCIENCES, 68(6), 2025.

[40] Shengchao Hu, Wanru Zhao, Weixiong Lin, Li Shen, Ya Zhang, and Dacheng Tao. Prompt
tuning with diffusion for few-shot pre-trained policy generalization. In Proceedings of the 24th
International Conference on Autonomous Agents and Multiagent Systems, pages 2556–2558,
2025.

[41] Sili Huang, Bo Yang, Hechang Chen, Haiyin Piao, Zhixiao Sun, and Yi Chang. Ma-trex: Mutli-
agent trajectory-ranked reward extrapolation via inverse reinforcement learning. In International
Conference on Knowledge Science, Engineering and Management, pages 3–14. Springer, 2020.

[42] Sili Huang, Yanchao Sun, Jifeng Hu, Siyuan Guo, Hechang Chen, Yi Chang, Lichao Sun, and
Bo Yang. Learning generalizable agents via saliency-guided features decorrelation. Advances
in Neural Information Processing Systems, 36:39363–39381, 2023.

[43] Sili Huang, Hechang Chen, Haiyin Piao, Zhixiao Sun, Yi Chang, Lichao Sun, and Bo Yang.
Boosting weak-to-strong agents in multiagent reinforcement learning via balanced ppo. IEEE
Transactions on Neural Networks and Learning Systems, 2024.

[44] Sili Huang, Jifeng Hu, Hechang Chen, Lichao Sun, and Bo Yang. In-context decision trans-
former: Reinforcement learning via hierarchical chain-of-thought. In International Conference
on Machine Learning, pages 19871–19885. PMLR, 2024.

[45] Sili Huang, Jifeng Hu, Zhejian Yang, Liwei Yang, Tao Luo, Hechang Chen, Lichao Sun, and
Bo Yang. Decision mamba: Reinforcement learning via hybrid selective sequence modeling.
Advances in Neural Information Processing Systems, 37:72688–72709, 2024.

[46] Sili Huang, Jifeng Hu, Hechang Chen, Peng Cui, Haiyin Piao, Lichao Sun, and Bo Yang. Gener-
alizable causal reinforcement learning for out-of-distribution environments. IEEE Transactions
on Industrial Informatics, 2025.

[47] Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big
sequence modeling problem. Advances in neural information processing systems, 34:1273–
1286, 2021.

[48] Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion
for flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

[49] Zhengyao Jiang, Tianjun Zhang, Michael Janner, Yueying Li, Tim Rocktäschel, Edward Grefen-
stette, and Yuandong Tian. Efficient planning in a compact latent action space. arXiv preprint
arXiv:2208.10291, 2022.

[50] Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies
for offline reinforcement learning. Advances in Neural Information Processing Systems, 36,
2024.

[51] Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel:
Model-based offline reinforcement learning. Advances in neural information processing systems,
33:21810–21823, 2020.

13

[52] Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models.
Advances in neural information processing systems, 34:21696–21707, 2021.

[53] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. arXiv preprint arXiv:2110.06169, 2021.

[54] Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-
policy q-learning via bootstrapping error reduction. Advances in neural information processing
systems, 32, 2019.

[55] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning
for offline reinforcement learning. Advances in Neural Information Processing Systems, 33:
1179–1191, 2020.

[56] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[57] Wenhao Li, Xiangfeng Wang, Bo Jin, and Hongyuan Zha. Hierarchical diffusion for offline
decision making. In International Conference on Machine Learning, pages 20035–20064.
PMLR, 2023.

[58] Zechu Li, Rickmer Krohn, Tao Chen, Anurag Ajay, Pulkit Agrawal, and Georgia Chalvatzaki.
Learning multimodal behaviors from scratch with diffusion policy gradient. arXiv preprint
arXiv:2406.00681, 2024.

[59] Zhixuan Liang, Yao Mu, Mingyu Ding, Fei Ni, Masayoshi Tomizuka, and Ping Luo. Adaptdif-
fuser: Diffusion models as adaptive self-evolving planners. arXiv preprint arXiv:2302.01877,
2023.

[60] Jonathan Light, Yuanzhe Liu, and Ziniu Hu. Dataset distillation for offline reinforcement
learning. arXiv preprint arXiv:2407.20299, 2024.

[61] Xihui Liu, Dong Huk Park, Samaneh Azadi, Gong Zhang, Arman Chopikyan, Yuxiao Hu,
Humphrey Shi, Anna Rohrbach, and Trevor Darrell. More control for free! image synthesis
with semantic diffusion guidance. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pages 289–299, 2023.

[62] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver:
A fast ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in
Neural Information Processing Systems, 35:5775–5787, 2022.

[63] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-
solver++: Fast solver for guided sampling of diffusion probabilistic models. arXiv preprint
arXiv:2211.01095, 2022.

[64] Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, and Jun Zhu. Contrastive
energy prediction for exact energy-guided diffusion sampling in offline reinforcement learning.
In International Conference on Machine Learning, pages 22825–22855. PMLR, 2023.

[65] Jiafei Lyu, Xiaoteng Ma, Xiu Li, and Zongqing Lu. Mildly conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 35:1711–1724,
2022.

[66] Chengzhong Ma, Deyu Yang, Tianyu Wu, Zeyang Liu, Houxue Yang, Xingyu Chen, Xuguang
Lan, and Nanning Zheng. Improving offline reinforcement learning with in-sample advantage
regularization for robot manipulation. IEEE Transactions on Neural Networks and Learning
Systems, 2024.

[67] Liyuan Mao, Haoran Xu, Xianyuan Zhan, Weinan Zhang, and Amy Zhang. Diffusion-dice: In-
sample diffusion guidance for offline reinforcement learning. arXiv preprint arXiv:2407.20109,
2024.

[68] Yixiu Mao, Hongchang Zhang, Chen Chen, Yi Xu, and Xiangyang Ji. Supported value
regularization for offline reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

14

[69] Volodymyr Mnih. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[70] Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online
reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

[71] Runliang Niu, Jinglong Ji, Yi Chang, and Qi Wang. Screenexplorer: Training a vision-language
model for diverse exploration in open gui world. arXiv preprint arXiv:2505.19095, 2025.

[72] Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

[73] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.

[74] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 10684–10695, 2022.

[75] Litu Rout, Yujia Chen, Abhishek Kumar, Constantine Caramanis, Sanjay Shakkottai, and Wen-
Sheng Chu. Beyond first-order tweedie: Solving inverse problems using latent diffusion. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
9472–9481, 2024.

[76] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[77] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. Advances in neural information processing systems, 32, 2019.

[78] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. arXiv
preprint arXiv:2011.13456, 2020.

[79] Jianlin Su. Diffusion model learning-optimal covariance estimation. Aug 2022. URL https:
//spaces.ac.cn/archives/9246.

[80] Kerong Wang, Hanye Zhao, Xufang Luo, Kan Ren, Weinan Zhang, and Dongsheng Li. Boot-
strapped transformer for offline reinforcement learning. Advances in Neural Information
Processing Systems, 35:34748–34761, 2022.

[81] Renhao Wang, Kevin Frans, Pieter Abbeel, Sergey Levine, and Alexei A Efros. Prioritized
generative replay. arXiv preprint arXiv:2410.18082, 2024.

[82] Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive
policy class for offline reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.

[83] Xiaoyu Wen, Xudong Yu, Rui Yang, Haoyuan Chen, Chenjia Bai, and Zhen Wang. Towards
robust offline-to-online reinforcement learning via uncertainty and smoothness. Journal of
Artificial Intelligence Research, 81:481–509, 2024.

[84] Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement
learning. arXiv preprint arXiv:1911.11361, 2019.

[85] Kai Yang, Jian Tao, Jiafei Lyu, Chunjiang Ge, Jiaxin Chen, Weihan Shen, Xiaolong Zhu, and
Xiu Li. Using human feedback to fine-tune diffusion models without any reward model. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
8941–8951, 2024.

[86] Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
applications. ACM Computing Surveys, 56(4):1–39, 2023.

15

https://spaces.ac.cn/archives/9246
https://spaces.ac.cn/archives/9246

[87] Ling Yang, Jingwei Liu, Shenda Hong, Zhilong Zhang, Zhilin Huang, Zheming Cai, Wentao
Zhang, and Bin Cui. Improving diffusion-based image synthesis with context prediction.
Advances in Neural Information Processing Systems, 36, 2024.

[88] Shentao Yang, Zhendong Wang, Huangjie Zheng, Yihao Feng, and Mingyuan Zhou. A behavior
regularized implicit policy for offline reinforcement learning. arXiv preprint arXiv:2202.09673,
2022.

[89] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural
Information Processing Systems, 33:14129–14142, 2020.

[90] Hui Yuan, Kaixuan Huang, Chengzhuo Ni, Minshuo Chen, and Mengdi Wang. Reward-directed
conditional diffusion: Provable distribution estimation and reward improvement. Advances in
Neural Information Processing Systems, 36, 2024.

[91] Jinouwen Zhang, Rongkun Xue, Yazhe Niu, Yun Chen, Jing Yang, Hongsheng Li, and Yu Liu.
Revisiting generative policies: A simpler reinforcement learning algorithmic perspective. arXiv
preprint arXiv:2412.01245, 2024.

16

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please refer to Appendix B.8.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

17

Justification: Please refer to Section 4, Appendix C, D, E, H, and I
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please refer to Section 5.4 and Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

18

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please refer to Section 5.1, Section 5.2, Section 5.3, Appendix B.4, and
Appendix B.5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Please refer to Section 5.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to Appendix B.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

20

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

21

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

22

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

23

https://neurips.cc/Conferences/2025/LLM

A Pseudocode of AEPO

Algorithm 1 Analytic Energy-guided Policy Optimization (AEPO).

1: Input: Dataset Dµ, Max iterations M of training, environmental time limit T , generation steps
T , Noise prediction model ϵθ, intermediate energy model EΘ, value function Vϕ, action-value
function Qψ , target action-value function Qψ̄

2: Output: Well-trained ϵθ, EΘ, Vϕ, Qψ
3: // Training Process
4: for i = 1 to M do
5: // Train ϵθ so that we can obtian ∇at log µt(at|s) = −ϵθ(s, at, t)/σt.
6: Train noise prediction model ϵθ according to Equation (7)
7: // Train the Q function so that we can obtain Q for any input (s, a0) and Q′ with autograd.
8: Train Vϕ and Qψ with loss LV and LQ (Equation (26))
9: // For each sampled data from the dataset, we calculate the approximate intermediate energy

value with the posterior distribution.
10: Calculate the target intermediate energy shown in Equation (24)
11: // Use finite data point to fit intermediate energy function EΘ(s, at, t) with neural network.
12: Update the parameter Θ according to Equation (25)
13: end for
14: // Evaluation Process
15: for i = 1 to T do
16: Receive state s from the environment
17: Sample aT from N (0, I)
18: for t = T to 0 do
19: Calculate ∇at log µt(at|s) with Equation (13)
20: Obtain ∇atEΘ(s, at, t) by performing gradient on at
21: // ∇at log πt(at|s) = ∇at log µt(at|s) +∇atEΘ(s, at, t)
22: Obtain score function ∇at log πt(at|s) according to Equation (12)
23: // The implementation follows DPM-solver to realize lower generation steps and reduce

time consumption.
24: Perform action denoising with Equation (6)
25: end for
26: Interact with the environment with generated action a0
27: end for

The training and evaluation of AEPO are shown in Algorithm 1. In lines 3-13, we sample data
from the dataset and train the noise prediction model ϵθ that is used to obtain ∇at log µt(at|s) =
−ϵθ(s, at, t)/σt, the intermediate energy EΘ(s, at, t) that can be used to approximate the intermediate
guidance ∇atEt(s, at), and the Q function Qψ that is used to calculate EΘ(s, at, t). During the
evaluation (lines 14-27), for each state received from the environment, we perform generation with
Equation (6), where we use DPM-solver [62] as implementation. After several generation steps, we
obtain the generated action a0 to interact with the environment.

B Additional Experiments

B.1 Additional Experiments on D4RL Adroit

D4RL Adroit is a hand-like robotic manipulation benchmark, which contains several sparse rewards
and high-dimensional robotic manipulation tasks where the datasets are collected under three types
of situations (-human, -expert, and -cloned) [73]. For example, the Pen is a scenario where the
agent needs to get rewards by twirling a pen. The Relocate scenario requires the agent to pick up
a ball and move it to a specific location. The experiments of D4RL Adroit are shown in Table 3,
where we compare our method with non-diffusion-based methods highlighted with blue color and
diffusion-based methods highlighted with red color. Our method is highlighted in yellow color. The
results show that our method surpasses or matches the best performance in 11 of the total 12 subtasks,
which illustrates strong competitiveness of our method.

24

Table 3: Offline RL algorithms comparison on Adroit. We select 4 tasks for evaluation, where each
task contains 3 types of difficulty settings. We use red color , blue color , and yellow color to
show diffusion-based baselines, non-diffusion-based baselines, and our method.

Task pen hammer door relocate mean
score

total
score

Dataset human expert cloned human expert cloned human expert cloned human expert cloned

BC 7.5 69.7 6.6 - - - - - - 0.1 57.1 0.1 - -
BEAR -1.0 - 26.5 - - - - - - - - - - -
BCQ 68.9 - 44.0 - - - - - - - - - - -
IQL 71.5 - 37.3 1.4 - 2.1 4.3 - 1.6 0.1 - -0.2 - -
TT 36.4 72.0 11.4 0.8 15.5 0.5 0.1 94.1 -0.1 0.0 10.3 -0.1 20.1 240.9
CQL 37.5 107.0 39.2 4.4 86.7 2.1 9.9 101.5 0.4 0.2 95.0 -0.1 40.3 483.8
UWAC 65.0 119.8 45.1 8.3 128.8 1.2 10.7 105.4 1.2 0.5 108.7 0.0 49.6 594.7
TAP 76.5 127.4 57.4 1.4 127.6 1.2 8.8 104.8 11.7 0.2 105.8 -0.2 51.9 622.6

TCD 49.9 35.6 73.3 - - - - - - 0.4 59.6 0.2 - -
HD-DA -2.6 107.9 -2.7 - - - - - - 0.0 -0.1 -0.2 - -
DiffuserLite 33.2 20.7 2.1 - - - - - - 0.1 0.1 -0.2 - -
DD 64.1 107.6 47.7 1.0 106.7 0.9 6.9 87.0 9.0 0.2 87.5 -0.2 43.2 518.4
HDMI 66.2 109.5 48.3 1.2 111.8 1.0 7.1 85.9 9.3 0.1 91.3 -0.1 44.3 531.6
D-QL@1 66.0 112.6 49.3 1.3 114.8 1.1 8.0 93.7 10.6 0.2 95.2 -0.2 46.1 552.6
QGPO 73.9 119.1 54.2 1.4 123.2 1.1 8.5 98.8 11.2 0.2 102.5 -0.2 49.5 593.9
LD 79.0 131.2 60.7 4.6 132.5 4.2 9.8 111.9 12.0 0.2 109.5 -0.1 54.6 655.5

AEPO 76.7 147.0 69.3 10.3 129.7 6.4 9.0 106.5 3.9 0.8 107.0 0.6 55.6 667.5

Table 4: The best performance comparison of guidance rescale and non-guidance rescale with grid
search.

Type guidance rescale non-guidance rescale

walker2d-me 109.3±0.5 109.4±0.9

walker2d-mr 90.8±1.5 92.8±4.8

halfcheetah-mr 43.7±1.3 43.3±1.5

Figure 3: Guidance rescale ablation of AEPO on D4RL Gym-MuJoCo halfcheetah-medium-expert
task. The y-axis and x-axis denote the normalized score and training steps, respectively.

B.2 Additional Rescaling Ablation

We want to emphasize that the purpose of using guidance rescale is to make our method less sensitive
to ω. The main contributions of our method are our theoretical results of intermediate energy and
systematic comparison results with dozens of baselines on 33 tasks. The results in Table 4 show
that the best performance achieved via grid search under both guidance rescale and non-guidance
rescale settings is comparable, indicating that guidance rescale is not the primary factor contributing
to significant performance gains.

25

Figure 4: Guidance rescale ablation of AEPO on D4RL Gym-MuJoCo hopper-medium-expert task.
The y-axis and x-axis denote the normalized score and training steps, respectively.

Figure 5: Guidance rescale ablation of AEPO on D4RL Gym-MuJoCo walker2d-medium task. The
y-axis and x-axis denote the normalized score and training steps, respectively.

Apart from the guidance rescaling ablation on walker2d-medium-expert task, we also conduct the
experiments on halfcheetach-medium-expert, hopper-medium-expert, and walker2d-medium tasks,
where the results are shown in Figure 3, Figure 4, and Figure 5, respectively. From the results, we
can see that guidance is important to reach a better performance by comparing ω = 0.1 and ω = 0,
where ω = 0 means no intermediate guidance. ‘rescale’ means we apply the guidance rescaling
strategy, and ‘non-rescale’ means we do not use guidance rescaling. With the increase of ω, the
performance of ‘non-rescale’ decreases quickly, while ‘rescale’ can still hold the performance, which
illustrates that guidance rescaling makes the model robust to the guidance degree ω, thus leading to
better performance in a wider range of ω.

B.3 Parameter Sensitivity

We investigate the influence of hyperparameters of β and τ that are used in loss LIE (Equation (25))
and LQ (Equation (26)). From the results shown in Figure 6, we can see that our method shows slight
sensitivity to β value. For the hyperparameter τ , we find that a certain value is friendly for achieving
good performance, such as τ = 0.7 (Figure 6 (g)).

26

Figure 6: Parameter sensitivity of D4RL Gym-MuJoCo tasks.

Table 5: The hyperparameters of AEPO.
Hyperparameter Value

network backbone MLP
action value function (Qψ) hidden layer 3
action value function (Qψ) hidden layer neuron 256
state value function (Vϕ) hidden layer 3
state value function (Vϕ) hidden layer neuron 256
intermediate energy function (EΘ) hidden layer 3
intermediate energy function (EΘ) hidden layer neuron 256
noise prediction function (ϵθ) hidden block 7
noise prediction function (ϵθ) hidden layer neuron 256/512/1024
inverse temperature β 1
expectile weight τ 0.5
guidance degree ω 0.1
ν 0.001
ā,u0 Refer to Appendix K.2

B.4 Computation

We conduct the experiments on NVIDIA GeForce RTX 3090 GPUs and NVIDIA A10 GPUs, and the
CPU type is Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz. Each run of the experiments spanned
about 48-72 hours, depending on different tasks.

B.5 Hyperparameters

The hyperparameters used in our method are shown in Table 5.

B.6 Computational Efficiency

We select hopper-m as the test environment, set the batch size to 32, and control the same hardware
conditions. The GPU is NVIDIA A10, and the CPU is Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz.
The results are shown in Table 6, where we report the results of runtime GPU memory usage,
inference time consumption of every decision, and training time consumption of every neural network
update. The results indicate that our method incurs lower GPU memory overhead compared to QGPO,
primarily because it does not require loading additional ’fake_actions’ data. In terms of training time,
our method introduces higher overhead than QGPO, mainly due to the extra computation involved in
calculating the intermediate energy of Equation (16). However, in inference time, the cost of AEPO
and QGPO is comparable, as both adopt the same number of generation steps.

27

Table 6: The computational efficiency comparison between AEPO and the SOTA diffusion-based
model QGPO. We set the batch size to 32 and conduct experiments of hopper-m under the same
hardware conditions. The GPU used is NVIDIA A10, and the CPU is Intel(R) Xeon(R) Gold 6230
CPU @ 2.10GHz.

Method AEPO QGPO

training time of every updating on hopper-m (s) 0.018 0.015
GPU memory usage with batch size 32 on hopper-m (M) 1135 1161
inference time of every generation on hopper-m (s) 0.068 0.070

Table 7: The influence of different training methods on the Q function. The experiments are conducted
on AEPO, but with different training methods of Q functions.

Q function training type IQL-like Q-function training CQL-like Q-function training

walker2d-me 109.3±0.5 109.8±0.7

halfcheetah-me 94.4±0.9 93.8±0.9

hopper-me 111.5±1.1 111.2±2.4

B.7 The Effects of Q-function Training Method

Regardless of which Q-function training method is used, as long as the Q-function learning is suitable
for offline RL, the performance obtained using our method is similar. For example, with IQL-like
Q function training methods and CQL-like Q function training methods, when obtaining accurately
estimated Q functions, the performance of AEPO is similar. As shown by the experimental results in
Table 7, this experiment used two methods to train the Q function, one being an IQL-like training
method and the other using a CQL-like training method. We find that the experimental performance
was similar, indicating that we just need to adopt the Q-function training method that is suitable and
widely used in offline RL.

B.8 Limitation Discussion

For the limitation of this paper, we summarize the potential areas for improvement as follows.

• The generative model requires multiple iterative steps for each decision, which may impact
its deployment in environments with strict real-time requirements.

• The posterior estimation method proposed in this paper is sampling-based. We could also
consider higher-order posterior estimation methods in the future, such as the second-order
Tweedie method [75]. However, this would require a trade-off between more accurate
posterior estimation and increased computational cost.

• The current method is primarily designed for continuous action spaces, where the use of
the first-order Taylor expansion of the Q-function with respect to actions is mathematically
justified due to the differentiability of Q(s, a) with respect to the continuous action variable.

C The Constrained RL Problem

The constrained RL problem is

min
π

− Es∼Dµ
[
Ea∼π(·|s)Q(s, a)

]
s.t. DKL(π(·|s)||µ(·|s))

, (27)

which can be converted to

max
π

Es∼Dµ
[
Ea∼π(·|s)Q(s, a)− 1

β
DKL(π(·|s)||µ(·|s))

]
. (28)

It reveals the optimal solution
π∗(a|s) ∝ µ(a|s)eβQ(s,a),

28

where π∗(a|s) is the optimal policy that can produce optimal decisions by learning from the dataset,
µ(a|s) is the behavior policy that is used to sample the data of the dataset, i.e., the data distribution
of the dataset induced from µ(a|s), Q(s, a) is the action value function, and we usually adopt neural
network to learn the action value function.

Proof. The Equation (28) is actually the lagrangian function of the contained RL problem by selecting
the lagrangian multiplier as 1

β and adding the implicit constraint
∫
π(a|s)da = 1

min
π

Es∼DµL

=min
π

Es∼Dµ
[
Ea∼π(·|s)Q(s, a)− 1

β
∗DKL(π(·|s)||µ(·|s)) + η ∗ (

∫
π(a|s)da− 1)

].
The functional derivative of L regarding π is

∂L
∂π

=
L(π + δπ)− L(π)

∂π

L(π + δπ) =

∫
(π(a|s) + δπ(a|s))Qψ(s, a)da

− 1

β
∗
∫

(π(a|s) + δπ(a|s)) log π(a|s) + δπ(a|s)
µ(·|s)

da

+ η ∗
(∫

(π(a|s) + δπ(a|s))da− 1

)
.

Notice that the Taylor expansion of log u(x)
q(x) at u(x) = p(x) is

log
u(x)

q(x)
|u(x)=p(x) = log

p(x)

q(x)(
log

u(x)

q(x)

)′

|u(x)=p(x) =
1

p(x)

Thus,

log
u(x)

q(x)
≈ log

u(x)

q(x)
|u(x)=p(x) +

(
log

u(x)

q(x)

)′

|u(x)=p(x)(u(x)− p(x))

Let u(x) = π(a|s) + δπ(a|s), p(x) = π(a|s), q(x) = µ(a|s), we have

log
π(a|s) + δπ(a|s)

µ(·|s)
≈ log

π(a|s)
µ(a|s)

+
1

π(a|s)
δπ(a|s).

Then, L(π + δπ) can be simplified

L(π + δπ) =

∫
(π(a|s) + δπ(a|s))Q(s, a)da

− 1

β
∗
∫
(π(a|s) + δπ(a|s))

(
log

π(a|s)
µ(a|s)

+
1

π(a|s)
δπ(a|s)

)
da

+ η ∗
(∫

(π(a|s) + δπ(a|s))da− 1

)
.

=

∫
π(a|s)Q(s, a)da− 1

β
∗
∫
π(a|s) log π(a|s)

µ(a|s)
da+ η ∗

(∫
π(a|s)da− 1

)
+

∫
δπ(a|s)

[
Q(s, a)− 1

β

(
log

π(a|s)
µ(a|s)

+ 1

)
+ η

]
− 1

β

1

π(a|s)
(δπ(a|s))2

≈ L(π) +
∫
δπ(a|s)

[
Q(s, a)− 1

β

(
log

π(a|s)
µ(a|s)

+ 1

)
+ η

]
da

29

Finally, we obtain the functional derivative is

∂L
∂π

=
L(π + δπ)− L(π)

∂π

= Q(s, a)− 1

β

(
log

π(a|s)
µ(a|s)

+ 1

)
+ η

Let ∂L∂π = 0, we have

π∗(a|s) = µ(a|s) ∗ eβ(Q(s,a)+η)−1∫
π∗(a|s)da =

∫
µ(a|s) ∗ eβ(Q(s,a)+η)−1da = 1∫

µ(a|s) ∗ eβ∗Q(s,a)da = eβ∗η−1

π∗(a|s) = µ(a|s) ∗ eβ∗Q(s,a)∫
µ(a|s) ∗ eβ∗Q(s,a)da

π∗(a|s) ∝ µ(a|s) ∗ eβ∗Q(s,a)

D Analysis of Exact and Inexact Intermediate Guidance

Previous studies propose that through an ingenious definition (For clarity, we rewrite it below), we
can guarantee the relation pt(xt) ∝ qt(xt)e

−Et(xt) of p(xt) and q(xt) at any time t, where Et(xt) is
general formula of intermediate energy.

Theorem D.1 (Intermediate Energy Guidance). Suppose p0(x0) and q0(x0) has the relation of
Equation (2). For t ∈ (0, T], let pt|0(xt|x0) and qt|0(xt|x0) be defined by

pt|0(xt|x0) := qt|0(xt|x0) = N (xt;αtx0, σ
2
t I).

So the marginal distribution pt(xt) and qt(xt) at time t are pt(xt) =
∫
pt|0(xt|x0)p0(x0)dx0 and

qt(xt) =
∫
qt|0(xt|x0)q0(x0)dx0. Define a general representation of intermediate energy as

Et(xt) =

{
βE(x0), t = 0

− log Eq0|t(x0|xt)[e
−βE(x0)], t > 0

(29)

Then qt(xt) and pt(xt) satisfy
pt(xt) ∝ qt(xt)e

−Et(xt) (30)

for any diffusion step t and the score functions of qt(xt) and pt(xt) satisfy ∇xt log pt(xt) =
∇xt log qt(xt)−∇xEt(xt).

The derivation can be found in Appendix E.

While for inexact intermediate energy

EMSE
t (xt) = Eq0|t(x0|xt)[E(x0)], t > 0,

EDPSt (xt) = E(Eq0|t(x0|xt)[x0]), t > 0,

that are adopted in classifier-guided and classifier-free-guided methods, it can be derivated that
Et(xt) ≥ EMSE

t (xt) when β = 1 and t > 0.

Proof. By applying Jensen’s Inequality, it is easy to have

− log Eq0|t(x0|xt)[e
−βE(x0)] ≥ −Eq0|t(x0|xt)[log e

−βE(x0)] = βEq0|t(x0|xt)[E(x0)].

When β = 1, we have Et(xt) ≥ EMSE
t (xt)

30

Also, we can prove that these three intermediate guidance values are not equal to each other:
∇xtEt(xt) ̸= ∇xtEMSE

t (xt) ̸= ∇xtEDPSt (xt).

Proof. For t > 0,

∇xtEt(xt) = ∇xt − log Eq0|t(x0|xt)[e
−βE(x0)],

= − 1

Eq0|t(x0|xt)[e
−βE(x0)]

∇xt

∫
q0|t(x0|xt)[e−βE(x0)]dx0,

= −eEt(xt)
∫
q0|t(x0|xt)∇xt log q0|t(x0|xt)e−βE(x0)dx0,

= −Eq0|t(x0|xt)

[
eEt(xt)−βE(x0)∇xt log q0|t(x0|xt)

]
,

where we use the chain rule of derivation and gradient trick to obtain the result. when β = 1, we have
∇xtEt(xt) = −Eq0|t(x0|xt)

[
eEt(xt)−E(x0)∇xt log q0|t(x0|xt)

]
. Similarly, we can obtain the gradient

of EMSE
t (xt) and EDPSt (xt):

∇xtEMSE
t (xt) = ∇xtEq0|t(x0|xt)[E(x0)],

= ∇xt

∫
q0|t(x0|xt)E(x0)dx0,

=

∫
q0|t(x0|xt)∇xt log q0|t(x0|xt)E(x0)dx0,

= Eq0|t(x0|xt)
[
E(x0)∇xt log q0|t(x0|xt)

]
.

∇xtEDPSt (xt) = ∇xtE(y)|y=Eq0|t(x0|xt)[x0],

= ∇yE(y)⊤∇xtEq0|t(x0|xt)[x0],

= ∇yE(y)⊤Eq0|t(x0|xt)
[
x0∇xt log q0|t(x0|xt)

]
,

= Eq0|t(x0|xt)
[
∇yE(y)⊤x0∇xt log q0|t(x0|xt)

]
.

From the results we can see that ∇xtEt(xt) ̸= ∇xtEMSE
t (xt) ̸= ∇xtEDPSt (xt).

E Guidance of Intermediate Diffusion Steps

In order to guide the diffusion model during the intermediate diffusion steps, we first consider the
following problem

min
p

Ex0∼p0(x0)E(x0)

s.t. DKL(p0(x0)||q0(x0))
(31)

and the relation function
p0(x0) ∝ q0(x0)e

−βE(x0) (32)
Define

pt|0(xt|x0) :=qt|0(xt|x0) = N (xt;αtx0, σ
2
t I)

pt(xt) =

∫
pt|0(xt|x0)p0(x0)dx0,

qt(xt) =

∫
qt|0(xt|x0)q0(x0)dx0,

Et(xt) =

{
βE(x0), t = 0

− log Eq0|t(x0|xt)[e
−βE(x0)], t > 0

Then, we will obtain the following relation between score function of pt(xt) and the score function
of of qt(xt)

∇xt log pt(xt) = ∇xtqt(xt)−∇xtEt(xt) (33)
for each intermediate diffusion step.

31

Proof. Known that

pt|0(xt|x0) = qt|0(xt|x0) = N (xt|αtx0, σ2
t I)

qt(xt) =

∫
qt|0(xt|x0)q0(x0)dx0

pt(xt) =

∫
pt|0(xt|x0)p0(x0)dx0

p0(x0) ∝ q0(x0)e
−βE(x0)

By integral

Z =

∫
q0(x0)e

−βE(x0)dx0 = Eq0(x0)

[
e−βE(x0)

]
,

and

p0(x0) ∝ q0(x0)e
−βE(x0),

we know

p0(x0) =
q0(x0)e

−βE(x0)

Z
.

Thus,

pt(xt) =

∫
pt|0(xt|x0)p0(x0)dx0

=

∫
pt|0(xt|x0)

q0(x0)e
−βE(x0)

Z
dx0

=

∫
qt|0(xt|x0)

q0(x0)e
−βE(x0)

Z
dx0

= qt(xt)

∫
q0|t(x0|xt)

e−βE(x0)

Z
dx0

=
qt(xt)Eq0|t(x0|xt)[e

−βE(x0)]

Z

=
qt(xt)e

−Et(xt)

Z

pt(xt) ∝ qt(xt)e
−Et(xt),

where we replace qt|0(xt|x0)q0(x0) with qt(xt)q0|t(x0|xt) by using Bayes Law in the fourth equation.
Now, if we want to generate data from p(x0), we just need train a diffusion model q(x0) and a
guidance Et, then use

pt(xt) ∝ qt(xt)e
−Et(xt)

∇xt log pt(xt) = ∇xt log qt(xt)−∇xtEt(xt)
(34)

to obtain the score function value of ∇xt log pt(xt). Then, we can use the reverse transformation
(Equation (6)) to generate samples.

In RL, we should use Q(s, a) to denote −E(x0), because Equation (1) and Equation (3) indicate that
maximizing Q(s, a) is same with minimizing E0(x0). Besides, we notice that approximating Et(xt)
needs to calculate E(x0). And actually E(x0) is the Q(s, a). In other words, the intermediate energy
guidance in RL is defined by

Et(xt) =

{
βE(x0) → βQ(s, a), t = 0

− log Eq0|t(x0|xt)[e
−βE(x0)] → log Eq0|t(x0|xt)[e

βQ(s,a)], t > 0
(35)

32

Proof.

πt(at|s) =
∫
πt|0(at|a0, s)π0(a0|s)da0

=

∫
πt|0(at|a0, s)

µ0(a0|s)eβQ(s,a0)

Z
da0

=

∫
πt|0(at|a0, s)

µ0(a0|s)eβQ(s,a0)

Z
da0

= µt(at|s)
∫
µ0(a0|at, s)

eβQ(s,a0)

Z
da0

=
µt(at|s)Eµ0(a0|at,s)[e

βQ(s,a0)]

Z

=
µt(at|s)eEt(at)

Z

πt(at|s) ∝ µt(at|s)eEt(s,at)

Here, we slightly abuse the notion of E because, in RL, the input of the energy function is the
concatenation of state and action.

F Discussion of Previous Intermediate Energy Estimation Methods

Here we discuss the differences between our method (AEPO) and QGPO [64] and Diffusion-
DICE [67] from several perspectives.

• From a theoretical perspective: Our method provides a theoretical solution for the log
expectation of the intermediate energy, whereas QGPO and Diffusion-DICE do not discuss
further results for the log expectation term. In Lemma 1 of the Diffusion-DICE paper, it
reformulates the estimation of the log expectation term of the intermediate energy as a
convex optimization problem, which is different from our approach: we aim to derive further
analytical results for the log expectation term.

• From the action generation perspective: When generating actions, Diffusion-DICE requires
generating multiple candidate actions (Algorithm 1, line 10 in Diffusion-DICE), whereas
our method, like QGPO, does not require generating multiple candidates.

• For additional assumptions: In Theorem 3.2 of QGPO where the authors use contrastive
learning loss to fit the intermediate energy, the authors mention that, under infinite data and
model capacity, the contrastive loss (Equation (12) in QGPO) can perfectly approximate the
intermediate energy. However, in practice, we cannot achieve infinite model capacity, and
offline samples are certainly limited. Our method does not require assumptions about the
sample size or model capacity.

• For the dataset: Furthermore, QGPO requires the use of a diffusion model to generate
fake action vectors for CEP, and these fake action vectors may introduce the influence of
out-of-distribution actions. However, our method does not require the generation of fake
actions.

• For training stability: Diffusion-DICE formulates an optimization problem as
minE[f(x)e−y + y], where f(x) represents the Q function in RL, is usually positive.
This results in an adversarial training dynamic: the term min e−y encourages larger values
of y, while min y pushes the output y lower. However, when y > 0, the gradient of e−y
dominates that of y, which can drive the model to continuously increase its output prediction,
eventually leading to unstable training. This concern is also raised by readers in the GitHub
issues of Diffusion-DICE. Fortunately, this issue does not arise in our method (AEPO)
and QGPO. Our method removes the log and exp operations through simplification and
approximation, and QGPO stabilizes training by normalizing weights during each CEP
update.

33

Table 8: The intermediate energies comparison between QGPO and AEPO. We select ’hopper-
medium-v2’ as the evaluation task, where the reference values are calculated with the analytic
equation results (Equation (24)). The estimated intermediate values of AEPO and QGPO are
calculated with the learned neural network EΘ and the fϕ trained with CEP, respectively.

method AEPO QGPO

mean error 48.8 53.2
performance 87.4 86.6

• Experiments of the estimated intermediate energies: The quality of the intermediate energy
estimation is directly related to the model’s performance. During the action generation
process, if the estimation of the intermediate energy is biased, the generated actions are
unlikely to be good, leading to inferior evaluation performance. We report the mean error
between the estimated intermediate energies from AEPO and QGPO and the calculated
value from Equation (16). The results are shown in Table 8.

G Discussion of the Q-function Smoothness and Locality

In Equation 14, we use the Taylor expansion to convert the implicit dependence on the action in the
exponential term to explicit dependence. Below we provide the necessary conditions analysis of
Q-function smoothness and the locality when applying the Taylor expansion on Q-function.

For smoothness, we often use neural networks to learn the Q function in practical implementation,
and by using specific activation functions, such as SiLU (the activation function used in our source
code), we can ensure that the Q function is smooth with respect to actions and at least twice differen-
tiable. This is because: If the activation function ϕ(·) is SiLU, then ϕ(·) is infinitely differentiable
with respect to the input. Assuming the neural network is an L-layer feedforward network, i.e.,
Q(a) =WLϕ(WL−1ϕ(.)), then 1) affine transformations are infinitely differentiable, 2) activa-
tion functions are infinitely differentiable, so the composite function Q(a) with respect to a is also
infinitely differentiable, and at least twice differentiable. Even in cases where activation functions
like ReLU are used, the Q-function remains piecewise linear and locally approximable by linear
functions in regions away from non-differentiable points.

For local linearity, since the Hessian of Q(a) with respect to a exists and is continuous, the closed
ball Bρ(ā) with center ā and radius ρ is a compact set, and by the Bolzano–Weierstrass theorem [20],
the Hessian norm must have a maximum value on this compact set, denoted as LH . Therefore,
the linearization error in the Taylor expansion of Q(a) with respect to a is bounded quadratically,
satisfying the conditions for local linearity.

H Detailed Derivation of Intermediate Guidance

Implicit dependence of Q(s, a0) on action a0 hinds the exact calculation of
log Eµ0|t(a0|at,s)[e

βQ(s,a0)]. In order to approximate the intermediate energy Et(s, at) shown in
Equation (11), we first expand Q(s, a0) at a0 = ā with Taylor expansion, i.e.,

Q(s, a0) ≈ Q(s, a0)|a0=ā +
∂Q(s, a0)

∂a0
|a0=ā ∗ (a0 − ā),

where ā is a constant vector. Replacing it to log Ea0∼µ(a0|at,s)eβQ(s,a0), we can transfer the
implicit dependence of Q(s, a0) on a0 to explicit dependence on Q′(s, ā) ∗ a0. Accordingly,

34

log Ea0∼µ(a0|at,s)eβQ(s,a0) is given by

log Ea0∼µ(a0|at,s)e
βQ(s,a0)

≈ log Ea0∼µ(a0|at,s)e
β∗

(
Q(s,a0)|a0=ā+

∂Q(s,a0)
∂a0

|a0=ā∗(a0−ā)
)

= log Ea0∼µ(a0|at,s)e
β∗(Q(s,ā)+Q′(s,ā)∗(a0−ā))

= log Ea0∼µ(a0|at,s)
[
eβ∗Q(s,ā) ∗ eβ∗Q

′(s,ā)∗(a0−ā)
]

= log
{
eβ∗Q(s,ā)−β∗Q′(s,ā)∗ā

}
+ log

{
Ea0∼µ(a0|at,s)[e

β∗Q′(s,ā)∗a0]
}

=β ∗Q(s, ā)− β ∗Q′(s, ā) ∗ ā+ log
{
Ea0∼µ(a0|at,s)[e

β∗Q′(s,ā)∗a0]
}
.

Furthermore, by applying the moment generating function of Gaussian distribution, we have

log Ea0∼µ(a0|at,s)e
βQ(s,a0)

= β ∗Q(s, ā)− β ∗Q′(s, ā) ∗ ā+ log
{
Ea0∼µ(a0|at,s)[e

β∗Q′(s,ā)∗a0]
}

= β ∗Q(s, ā)− β ∗Q′(s, ā) ∗ ā+ β ∗Q′(s, ā)⊤ ∗ µ̃0|t +
1

2
∗ β2 ∗ σ̃2

0|t ∗ ||Q
′(s, ā)||22

= β ∗Q(s, ā) + β ∗Q′(s, ā)⊤ ∗ (µ̃0|t − ā) +
1

2
∗ β2 ∗ σ̃2

0|t ∗ ||Q
′(s, ā)||22.

I Detailed Derivation of Posterior Distribution

I.1 Posterior 1

If we want to get the exact mean of µ0|t(a0|at, s), we actually want to optimize the following
objective [6]

µ̃∗
0|t(a0|at, s) = min

θ
Ea0∼µ0|t(a0|at,s)

[
||µ̃0|t,θ(a0|at, s)− a0||22

]
, (36)

where µ̃0|t,θ(a0|at, s) can be further reparameterized by

µ̃0|t,θ =
1

αt
(at − σtϵθ(s, at, t)), (37)

because this reparameterization follows the same loss function (as shown in Equation (7)) as the
diffusion model, and we do not need to introduce additional parameters to approximate the mean of
µ0|t(a0|at, s). For the covariance matrix Σ̃0|t, following the definition of covariance

Σ̃0|t(at) = Eµ0|t(a0|at,s)
[
(a0 − µ̃0|t)(a0 − µ̃0|t)

⊤]
= Eµ0|t(a0|at,s)

[
(a0 −

1

αt
(at − σtϵθ))(a0 −

1

αt
(at − σtϵθ))

⊤
]

= Eµ0|t(a0|at,s)

[
(a0 −

1

αt
at)(a0 −

1

αt
at)

⊤
]
− σ2

t

α2
t

ϵθϵ
⊤
θ

=
1

α2
t

Eµ0|t(a0|at,s)
[
(at − αta0)(at − αta0)

⊤]− σ2
t

α2
t

ϵθϵ
⊤
θ ,

(38)

where in the second equation we replace µ̃0|t with Equation (37). In the third equation, we use

Eµ0|t(a0|at)[(a0 −
1

αt
at) ∗

σt
αt
ϵθ]

= (Eµ0|t(a0|at,s)[a0]−
1

αt
at) ∗

σt
αt
ϵθ

= (µ̃0|t −
1

αt
at) ∗

σt
αt
ϵθ

= −σ
2
t

α2
t

ϵθϵ
T
θ ,

35

and µ̃0|t = Eµ0|t(a0|at,s)[a0]. Besides, we also notice that µ(at) ∼ N (at;αta0, σ
2
t I), thus we have

Eµt(at|s)Eµ0|t(a0|at,s)
[
(at − αta0)(at − αta0)

⊤]
=Eµ(a0|s)Eµt|0(at|a0,s)

[
(at − αta0)(at − αta0)

⊤]
=Eµ(a0|s)Eµt|0(at|a0,s)

[
(at − αta0)(at − αta0)

⊤]
=Eµ(a0|s)Σt|0
=σ2

t I,

where in the first equation µt(at|s)µ0|t(a0|at, s) = µ(a0|s)µt|0(at|a0, s). To make the variance
independent from the data at, we can apply the expectation over Σ̃0|t(at):

Σ̃0|t = Eµt(at|s)Σ̃0|t(at)

=
σ2
t

α2
t

[I − Eµt(at|s)[ϵθ(at, t)ϵθ(at, t)
⊤]].

For simplicity, we usually consider isotropic Gaussian distribution, i.e., Σ̃0|t = σ̃2
0|tI , which indicates

that

σ̃2
0|t =

σ2
t

α2
t

[1− 1

d
Eµt(at|s)[||ϵθ(at, t)||

2
2]].

I.2 Posterior 2

For the mean value of the distribution µ0|t(a0|at, s), we still adopt the same reparameterization trick
µ̃0|t,θ =

1
αt
(at − σtϵθ(s, at, t)). But for the covariance, we can reformulate [79] it as

Σ̃0|t(at) = Eµ0|t(a0|at,s)
[
(a0 − µ̃0|t)(a0 − µ̃0|t)

⊤]
= Eµ0|t(a0|at,s)

[(
(a0 − u0)− (µ̃0|t − u0)

) (
(a0 − u0)− (µ̃0|t − u0)

)⊤]
= Eµ0|t(a0|at,s)

[
(a0 − u0)(a0 − u0)

⊤]− (µ̃0|t − u0)(µ0|t − u0)
⊤,

(39)

where we add a constant vector u0 that has the same dimension with µ̃0|t in the second equation. We
use µ̃0|t = Eµ0|t(a0|at,s)[a0] to derivate the third equation. Perform expectation on Σ̃0|t(at) and let
u0 = Ea0∼µ(a0)[a0], we have

σ̃2
t = Eµt(at|s)[Σ̃0|t(at)],

= Eµt(at|s)Eµ0|t(a0|at,s)
[
(a0 − u0)(a0 − u0)

⊤]− Eµt(at|s)
[
(µ̃0|t − u0)(µ̃0|t − µ0)

⊤] ,
= Eµ(a0|s)Eµt|0(at|a0,s)

[
(a0 − u0)(a0 − u0)

⊤]− Eµt(at|s)(µ̃0|t − u0)(µ̃0|t − u0)
⊤,

=
1

d
Eµ(a0|s)

[
||a0 − u0||22

]
− 1

d
Eµt(at|s)[||µ̃0|t − u0||22],

= V ar(a0)−
1

d
Eµt(at|s)[||µ̃0|t − u0||22],

(40)

where V ar(a0) can be approximated from a batch of data or from the entire dataset and
Eµt(at|s)[||µ̃0|t − u0||22] can be estimated by sampling a batch of data a0 and at with different
t.

I.3 Another Method to Approximate Posterior µ0|t

Consider the covariance estimation under µ0|t ̸= Eµ0|t(a0|at,s)[a0] where µ0|t has been trained well
using the diffusion loss function (shown in Equation (7)), we can adopt the following negative
log-likelihood optimization problem [5]

min
Σ̃0|t

Eat∼µt(at|s),a0∼µ0|t(a0|at,s)[− logP (a0; µ̃0|t, Σ̃0|t)].

36

perform derivation w.r.t Σ̃0|t, we have

∂

∂Σ̃0|t
− log P (a0; µ̃0|t, Σ̃0|t),

=
∂

∂Σ̃0|t
− log

[
1

2πd/2|Σ̃0|t|1/2
e
− 1

2 (a0−µ̃0|t)
⊤Σ̃−1

0|t(a0−µ̃0|t)

]
,

=
∂

∂Σ̃0|t

[
d

2
log 2π +

1

2
log |Σ̃0|t|+

1

2
(a0 − µ̃0|t)

⊤Σ̃−1
0|t (a0 − µ̃0|t)

]
,

=
1

2
Σ̃−1

0|t −
1

2
Σ̃−1

0|t (a0 − µ̃0|t)(a0 − µ̃0|t)
⊤Σ̃−1

0|t .

So the objective reaches maximization when Σ̃∗
0|t = Eat∼µt(at|s),a0∼µ0|t(a0|at,s)

[
(a0 − µ̃0|t)(a0 − µ̃0|t)

⊤].
Usually, we consider the isotropic Gaussian distribution, i.e., Σ̃0|t = σ̃2

0|tI and

σ̃2
0|t =

1

d
Ea0∼µ(a0|s),at∼µt|0(at|a0,s)[||a0 − µ̃0|t||22]. (41)

Furthermore, we also have the following result, which is the same as Equation (41):

σ̃2
0|t =

1

d
Ea0∼µ(a0|s),at∼µt|0(at|a0,s)[||a0 − µ̃0|t||22],

=
1

d
Ea0∼µ(a0|s),ϵ∼N (0,I),t∼U [0,T],at=αta0+σtϵ

[
||a0 −

1

αt
(at − σtϵθ(s, at, t))||22

]
,

=
σ2
t

α2
td

Ea0∼µ(a0|s),ϵ∼N (0,I),t∼U [0,T],at=αta0+σtϵ

[
||ϵ− ϵθ(s, at, t)||22

]
.

(42)

Inspired by the previous studies [5, 63] that µ̃0|t = Eµ0|t(a0|at,s)[a0] is suitable for training in practice,
so we only focus on the performance of Posterior 1 and Posterior 2 in this paper.

We summarize the posterior mean and covariance in

µ̃0|t =
1

αt
(at − σtϵθ(s, at, t)),

σ̃2
0|t =

σ2
t

α2
t

[
1− 1

d
Eµt(at|s)

[
||ϵθ(at, t)||22

]]
,

σ̃2
0|t = V ar(a0)−

1

d
Eµt(at)[||µ̃0|t − u0||22],

σ̃2
0|t =

σ2
t

α2
td

Ea0∼µ(a0|s),ϵ∼N (0,I),t∼U [0,T],at=αta0+σtϵ

[
||ϵ− ϵθ(s, at, t)||22

]
.

(43)

J The Training of Q Function

J.1 Q-function Training with Expectile Regression

Expectile regression loss

LV = E(s,a)∼Dµ
[
Lτ2(Vϕ(s)−Qψ̄(s, a))

]
,

LQ = E(s,a,s′)∼Dµ
[
||r(s, a) + γVϕ(s

′)−Qψ(s, a)||22
]
,

Lτ2(y) = |τ − 1(y < 0)|y2,

provides a method to avoid out-of-sample actions entirely and simultaneously perform maximization
over the actions implicitly. The target value of Q is induced from a parameterized state value function,
which is trained by expectile regression on in-sample actions. Besides, its effectiveness has been
verified by many recent studies [53, 25]. Thus, we adopt this method to train the Q function.

37

J.2 Q Function Training with In-support Softmax Q-Learning

Due to the natural property of data augmentation in generative models, such as diffusion models, we
can use diffusion models to generate fake samples [64] and augment the training of the Q function:

LISQL = E(s,a,s′)∼D
[
||Qψ(s, a)− T πQψ(s, a)||22

]
,

T πQψ(s, a) ≈ r(s, a) + γ ∗

∑
â′

[
eβQψ(s

′,â′) ∗Qψ(s′, â′)
]

∑
â′ e

βQψ(s′,â′)
,

where â′ is the fake actions. This method needs additional samples to train the Q function, where we
can not make sure all the fake actions are reasonable for certain states. To a certain extent, these fake
actions are OOD actions for the value functions. Besides, additional actions will also cause large
memory consumption.

J.3 Q Function Training with Contrastive Q-Learning

Contrastive Q-learning [55] is another notable method for training the Q function from offline datasets.
It underestimates the action values for all actions that do not exist in the dataset to reduce the influence
of OOD actions. The training loss is

LCQL = Es,a,s′∼D
[
||Qψ(s, a)− (r +Qψ̄(s

′, a′ = π(a′|s′)))||22
]

+ λ
(
Es∼D,a∼π(a|s)[Qψ(s, a)]− E(s,a)∼D[Qψ(s, a)]

)
.

The learned Q function tends to predict similar values for actions that do not exist in datasets, which
will cause ineffective intermediate guidance and further affect the performance.

K Implementation Details

K.1 Guidance Rescale Strategy

The guidance scale affects the amplitude and direction of the generation. The direction of generation
must be changed due to the gradient guidance of the critic. So we can We find that when the guidance
scale is zero, the inference performance is more stable than the guidance scale is non-zero, which
inspires us to modify the amplitude of the score of the optimal data distribution ∇at log πt(at|s).
Mathematically, we re-normalize the amplitude of ∇at log πt(at|s) by

∇at log πt(at|s) =
∇at log πt(at|s)

||∇at log πt(at|s)||
∗ ||∇at log µt(at|s)||. (44)

K.2 The Choice of ā and u0

Although we can choose ā as any vector, considering the error bound of Taylor expansion and the
stability of the training process, we use the following method to obtain ā

ā = a− ν ∗
Q′
ψ(s, a0)

||Q′
ψ(s, a0)||

, (45)

where ν = 0.001. Considering the loss term of second-order approximation

R2(a) =
1

2
∇2
aQ(s, c)(a− ā)2,

where c is the point between [ā, a]. Considering the definition of Equation (45),

||∇aQ(s, a)|| ∗ ||a− ā||

=||∇aQ(s, a)|| ∗ ν ∗ ||
Q′
ψ(s, a0)

||Q′
ψ(s, a0)||

||

=ν.

38

So the error satisfies

R2(a) =
1

2

[
(∇aQ(s, c))T (a− ā)

]2 ≈ 1

2

[
(∇aQ(s, a))T (a− ā)

]2 ≤ 1

2
ν2

as long as ā is close to a, i.e., the derivative between ā and a is approximately constant. In practice,
we use Q′(s, a) as the value of Q′(s, ā) for two reasons: (1) Small ν value leads to approximately
same derivative value at a and ā. (2) Directly use Q′(s, a) will reduce one calculation of gradient for
Q′(s, ā).

In Equation (43), we approximate Eq(at)[||ϵθ(at, t)||22] by sampling a batch of data and the calculation
process is (1) Sample a batch of data a0 from the dataset and sample ϵ from Gaussian distribution
N (0, I). (2) Sample time step index t. (3) Obtain at = αta0 + σtϵ. (4) Get the noise prediction
norm with diffusion model ϵθ(at, t, s). (5) Average on the batch of data.

In Equation (43), u0 serves as a constant baseline to calculate σ̄2
t , where Eµ(at)[||µ̃0|t − u0||22] can be

approximated from the data. (1) We can sample a batch size of data a0 from the dataset and sample ϵ
from Gaussian distribution N (0, I). (2) Sample time step index t. (3) Obtain at = αta0 + σtϵ. (4)
Use the diffusion model to predict µ0|t =

1
αt
(at−σtϵθ(at, t, s)). (5) Calculate Eµ(at)[||µ̃0|t−u0||22]

and average on the batch data.

39

	Introduction
	Related Work
	Offline RL
	Generative Policy Optimization

	Preliminary
	Diffusion Probabilistic Models
	Guided Sampling
	Diffusion Offline RL

	Method
	Intermediate Energy
	Posterior Approximation
	Q Function Training
	Guidance Rescaling

	Experiments
	Environments
	Metrics
	Baselines
	Results

	Discussion
	Differences Discussion
	Intuition Behind Using the Q-function as the Energy Function

	Conclusion
	Pseudocode of AEPO
	Additional Experiments
	Additional Experiments on D4RL Adroit
	Additional Rescaling Ablation
	Parameter Sensitivity
	Computation
	Hyperparameters
	Computational Efficiency
	The Effects of Q-function Training Method
	Limitation Discussion

	The Constrained RL Problem
	Analysis of Exact and Inexact Intermediate Guidance
	Guidance of Intermediate Diffusion Steps
	Discussion of Previous Intermediate Energy Estimation Methods
	Discussion of the Q-function Smoothness and Locality
	Detailed Derivation of Intermediate Guidance
	Detailed Derivation of Posterior Distribution
	Posterior 1
	Posterior 2
	Another Method to Approximate Posterior 0|t

	The Training of Q Function
	Q-function Training with Expectile Regression
	Q Function Training with In-support Softmax Q-Learning
	Q Function Training with Contrastive Q-Learning

	Implementation Details
	Guidance Rescale Strategy
	The Choice of and u0

