
Statement: Relevance to the Track

October 2023

The work presented in this paper is highly relevant to the track ”Graph Al-
gorithms and Modeling for the Web” as it directly addresses a significant Web-
related research challenge, under-represented or ambiguous regions in the rela-
tional data. Our research focuses on advancing the capabilities of Graph Neural
Networks (GNNs) indealing with underrepresented regions, such as ambiguous
nodes and regions that exhibit irregular homophily/heterophily or neighborhood
patterns.

The Web produces data of diverse and intricate graph structures, character-
ized by diverse connectivity patterns, varying class distributions, and ambiguous
regions, making the efficient analysis and representation learning of web data an
ongoing challenge. Our work investigate the ambiguity problem within GNN-
produced node embeddings when applied to web-related graph data. Concretely,
we utilize the given relation information and prediction distributions to iden-
tify ambiguous regions, and provide richer learning signals with a neighborhood
contrast algorithm.

In conclusion, our research directly aligns with the goals of the ”Graph Al-
gorithms and Modeling for the Web” track, and our method is designed fully
exploiting the opportunity of relational data. In this work, we provide practical
solutions for enhancing the utility of GNNs in learning high-quality representa-
tions across regions of the graph.
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Disambiguated Node Classification with Graph Neural Networks
Anonymous Author(s)

ABSTRACT
Graph Neural Networks (GNNs) have demonstrated significant
success in learning from graph-structured data across various do-
mains. Despite their great successful, one critical challenge is of-
ten overlooked by existing works, i.e., the learning of message
propagation that can generalize effectively to underrepresented
graph regions. These minority regions often exhibit irregular ho-
mophily/heterophily patterns and diverse neighborhood class distri-
butions, resulting in ambiguity. In this work, we investigate the am-
biguity problemwithin GNNs, its impact on representation learning,
and the development of richer supervision signals to fight against
this problem. We conduct a fine-grained evaluation of GNN, ana-
lyzing the existence of ambiguity in different graph regions and its
relation with node positions. To disambiguate node embeddings, we
propose a novel method, DisamGCL, which exploits additional opti-
mization guidance to enhance representation learning, particularly
for nodes in ambiguous regions. DisamGCL identifies ambiguous
nodes based on temporal inconsistency of predictions and intro-
duces a disambiguation regularization by employing contrastive
learning in a topology-aware manner. DisamGCL promotes dis-
criminativity of node representations and can alleviating semantic
mixing caused by message propagation, effectively addressing the
ambiguity problem. Empirical results validate the efficiency of Dis-
amGCL and highlight its potential to improve GNN performance
in underrepresented graph regions.

ACM Reference Format:
Anonymous Author(s). 2023. Disambiguated Node Classification with Graph
Neural Networks. In Proceedings of ACM Conference (Conference’17). ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
In recent years, learning from graph-structured data has received
significant attention due to its prevalence in various domains [7, 13,
64], including social networks, molecular structures and knowledge
graphs. These applications necessitate the utilization of rich rela-
tional information among entities. Graph neural networks (GNNs) [50]
offers a powerful framework to combine graph signal processing
and convolutions and have shown great ability in representation
learning on graphs. Various GNNs have been proposed. Most of
them adopt message-passing process which learns a node rep-
resentation by iteratively aggregating its neighbors’ representa-
tions [14, 15, 24].
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Along with their success, several concerns have aroused regard-
ing GNNs’ potential weaknesses, e.g., GNNs may showweak perfor-
mance occasionally andmay even be outperformed by simple neural
networks that do not leverage relational information at all [30, 34].
Recent studies suggest that the root cause of this phenomenon
may be the inductive bias inherent in the message propagation
process [32, 54]. For example, a number of works [3, 62, 66] observe
that when the heterophily level of a graph is high, i.e., when con-
nected nodes are more likely to belong to different classes or posses
different attributes, the performance of GNNs tends to decline signif-
icantly. To address this issue, many studies have proposed revisions
to the message propagation process, with strategies such as edge
refinement [1, 34], high-pass signal filters [3, 18], etc.

Despite the ongoing efforts to design more expressive GNN
architectures, there is a crucial problem that has often been over-
looked: real-world graphs can exhibit diverse regions with varying
degrees of heterophily and neighborhood patterns. In such cases,
GNN models may struggle to perform well in regions with irreg-
ular or infrequent structures. Some motivating examples of such
under-represented regions are provided in Fig. 1. These regions
could include homophilous regions in a heterophily graph or nodes
adjacent to both minority and majority classes simultaneously. In
semi-supervised node classification, the most common graph learn-
ing task, only a small fraction of nodes from each class are available
for training. The message propagation mechanism is learned based
on these few-shot labeled nodes and is expected to generalize well
across the entire graph. Considering the inductive bias introduced
by message-passing, we argue that such graph regions may exhibit
distinct neighborhood patterns that are underrepresented, which
we term as “ambiguous regions” or “mixed regions”. The learning
of message-passing-based GNNs is dominated by majority nodes,
potentially resulting in ambiguous and indistinguishable represen-
tations for ambiguous regions despite whether the whole graph is
heterophilous or not. Modern GNNs may have sufficient expressive
power in distinguishing nodes [46] yet the insufficient supervi-
sion signals could be the problem in learning general and robust
models [17].

In light of these challenges, our work focuses on providing richer
optimization guidance to GNNs for effectively learning nodes in
these ambiguous regions. This ambiguity problem in the represen-
tation space would be further complicated by the semi-supervised
nodes and potential class imbalances during the learning process [5,
61]. To validate this insight, we empirically analyze the confusion
of several representative GNNs on different regions of real-world
graph datasets. We divide the graph into multiple groups based on
class size and neighborhood distributions, and analyze the model
performance across these regions. Empirical results in Sec. 4 re-
veal that ambiguity exists in different regions and is influenced by
imbalanced classes.

Therefore, in this paper, we propose to enhance representation
learning for classifying nodes in ambiguous regions by exploit-
ing additional optimization guidance. The primary challenges are
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(a) Heterophily regions in a homophily graph (b) Homophily regions in a heterophily graph

Different Node Classes Ambiguous Regions

(c) Regions neighboring minority classes

Figure 1: Examples of ambiguous regions, which exhibit under-represented local structure patterns.

twofold: (1) How can we identify these ambiguous nodes given limited
label information? (2)How can we guide the GNN to address the nodes
that the model is confused about? To tackle these challenges, we
introduce a novel method, DisamGCL. DisamGCL identifies am-
biguous nodes based on the temporal inconsistency of prediction
outputs, as underrepresented instances tend to exhibit more un-
stable behaviors alongside the variation of knowledge captured by
GNN during training. We then design a disambiguation regulariza-
tion objective to reduce noisy messages and enhance discrimination
in a topology-aware manner by encouraging disparity between tar-
get nodes and their direct neighbors with different semantics. A
contrastive learning framework is adopted, incorporating dissimilar
neighbors as negative samples to promote discriminativity and pre-
vent semantic mixing, thereby alleviating the ambiguity problem.
Our main contributions are:
• We investigate a novel problem: the performance degradation

observed in underrepresented graph regions with distinct ego-
graph distributions, stemming from the inherent inductive bias
of message propagation in GNNs.

• We conduct a fine-grained evaluation of representative GNN vari-
ants to assess the ambiguity problem. This analysis underscores
the issue of under-representation during training, shedding light
on the challenges associated with ambiguous regions.

• We propose a novel framework, DisamGCL, which can automat-
ically identify ambiguous nodes and dynamically augment the
learning objective with a contrastive learning framework. Em-
pirical results show the effectiveness of the proposed DisamGCL

2 RELATEDWORK
2.1 Graph Neural Networks
With the growing demand for learning on relational data struc-
tures [9, 13], various graph neural network (GNN) architectures
have emerged, encompassing designs rooted in convolutional neu-
ral networks [4, 25], recurrent neural networks [27, 40], and trans-
formers [12]. Despite their architectural diversity, the majority
of GNNs operate within the paradigm of message-passing [14],
iteratively updating nodes by aggregating messages from their lo-
cal neighborhoods. For example, GCN [25] conveys messages from
neighboring nodes with fixed weights, while GAT [44] employs self-
attention mechanisms to learn varying attention scores for dynamic
message selection. Noteworthy extensions to traditional GNNs
include approaches such as Prototypical-GNN [28] and Memory-
Augmented GNNs [2, 52], which introduce explicit prototypes to

hierarchically model motif structures and enhance data efficiency.
Additionally, works like Factorizable Graphs [56] and Decoupled
Graphs [51] propose methods to unveil latent groups of nodes or
edges and convey messages on disentangled graphs. Recent inves-
tigations have also delved into the trustworthiness [11, 36, 37, 48]
and interpretability [10, 58] of GNNs.

2.2 Contrastive Learning in GNNs
Recently, remarkable progress has been made to adapt Contrastive
Learning (CL) techniques [6, 26] for the graph domain, by con-
structing multiple graph views via augmentations and maximizing
the mutual information between instances with similar semantics
(positive samples) [31, 69]. Existing methods mainly differ in the
selection of graph augmentation techniques and contrastive pretext
tasks. Popular augmentations include node-level attribute manipu-
lation [20, 33, 45], topology-level edge modification [57, 67], graph
diffusions [16, 22] to connect nodes with indirectly connected neigh-
bors, etc. Different pretext tasks can be constructed based on the
assumption of similar “semantics”. Mainstream strategies include
same-scale contrasts and cross-scale contrasts. In same-scale con-
trasts, positive samples are often chosen as the congruent node
representations in other view while representation of other nodes
are used as negative samples [57, 70]. In cross-scale contrasts, MI is
maximized between global graph embeddings and local sub-graph
representations or node representations of the same view [33, 45].
Recently, one critical issue that has gained research attention is the
problem of graph heterophily. Graphs in real-world applications
often exhibit heterophily, where nodes within the same community
or group tend to connect with nodes from different communities,
reflecting diverse relationships or interactions. This phenomenon
poses a unique challenge for traditional graph neural networks
(GNNs) that are typically designed to work under the assumption
of homophily, where nodes within the same community preferen-
tially connect with each other.

2.3 Heterophily in GNNs
Graphs in real-world applications often exhibit heterophily, where a
node tend to connect to nodes of different classes or features, reflect-
ing diverse relationships or interactions. Heterophily has received
lots of attention in recent years [55, 63], and existing heterophilic
GNNs are generally designed from two perspectives: (1) adding
new nodes to the neighborhood to augment the propagated mes-
sage; (2) flexible aggregation of neighborhood messages. Multi-hop
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neighbors are explored in [1, 21, 47, 66] to augment the propagated
messages, which tend to be more robust than using one-hop neigh-
bors alone. Geom-GCN [34] and NL-GNN [30] discover potential
neighbors by measuring the geometric relationships and represen-
tation similarities between node pairs respectively. Addressing the
encoding of low-frequency and high-frequency graph signals, more
powerful spectral kernels have been designed for dynamic aggre-
gation [3, 18]. GPR-GNN [8] assigns learnable weights to combine
the representations via the Generalized PageRank (GPR) technique.
ACM [32] adaptively exploit beneficial neighbor information from
different filter channels for each node.

It is important to note that while our research aligns with this
direction, we primarily focus on addressing the disambiguation
problem encountered by GNNs due to less common neighborhood
patterns. Ambiguity in our context is determined not solely by
comparing local and global homophily ratios but also by consider-
ing factors such as majority/minority class distinctions and node
positions, as discussed in Fig. 2. This highlights a key distinction
between our work and the aforementioned approaches

3 PRELIMINARY
3.1 Notations and Problem Definition
In this paper, we use G = (V, E; 𝑭 ,𝑨) to denote a graph, whereV is
the node set and E ⊂ V×V is the edge set. Nodes are accompanied
by an attribute matrix 𝑭 ∈ R |V |×𝑑 , and 𝑖-th row of 𝑭 is the 𝑑-
dimensional attributes of the corresponding node 𝑖 . E is described
by an adjacency matrix 𝑨 ∈ R |V |× |V | . 𝐴𝑣𝑢 = 1 if there is an edge
between node 𝑣 and 𝑢; otherwise, 𝐴𝑣𝑢 = 0. 𝒀 ∈ R |V | is the class
information for nodes in G, obtained with an unknown labeling
function, and 𝑅(𝒀 )is the number of classes.

We focus on the node-level classification task in this work. Dur-
ing training,V𝐿 ⊂ V is available as the labeled node set and usually
we have |V𝐿 | ≪ |V|. Based on those labeled nodes, a hypothesis
model 𝑓 is trained to learn the unknown labeling function and to
predict the class for unlabeled nodes. The vanilla cross-entropy loss
is usually adopted to train the model, which is given as follows:

min
𝑓

L𝑐𝑒 = −
∑︁
𝑣∈V𝐿

𝑅 (𝒀 )∑︁
𝑦=1

1(𝑦𝑣 == 𝑦) · log(𝑝 (𝑦𝑣 == 𝑦)), (1)

where 𝑦𝑣 is the ground-truth label of node 𝑣 , 1(𝑦𝑣 == 𝑦) indicates
correctness of label 𝑦, 𝑦𝑣 is the label predicted by model 𝑓 , and 𝑝 ()
is the predicted probability.

3.2 Graph Neural Networks
Graph neural networks are able to learn from non-Euclidean data,
combining relational signal processing and convolution kernels on
graphs, and have shown improved empirical performance across a
wide range of graph-based learning tasks [13, 60]. As shown in [14],
most existing GNN layers can be summarized in the following
message-passing framework:

𝒎𝑙+1
𝑣 =

∑︁
𝑢∈N𝑣

M𝑙 (𝒉𝑙𝑣,𝒉𝑙𝑢 ,𝑨𝑣,𝑢 ), 𝒉𝑙+1𝑣 = U𝑙 (𝒉𝑙𝑣,𝒎𝑙+1
𝑣 ) (2)

whereN𝑣 is the set of neighbors of 𝑣 in G and 𝒉𝑙𝑣 denotes represen-
tation of 𝑣 in the 𝑙-th GNN layer. 𝑨𝑣,𝑢 represents the edge between

𝑣 and 𝑢.M𝑙 and U𝑙 are the message function and update function
at layer 𝑙 , respectively.

3.3 Ambiguity of GNNs
Despite their popularity, an increasing number of studies suggest
that GNNs can result in ambiguous node representations due to the
aggregation of neighborhood messages, particularly in scenarios
involving noisy edges or heterophily graphs [32, 54]. In this section,
we focus on the heterophily as an example, as noisy edges can also
be perceived as resulting in nodes with high heterophily.

Heterophily. This problem arises in situations where connected
nodes may possess different attributes or labels that are inconsis-
tent among neighboring nodes, leading to a graph exhibiting low
homophily [32, 66]. For example, the node-level homophily metric
can be defined as:

𝐻node (G) =
1
|V|

∑︁
𝑣∈V

𝐻 𝑣
node =

1
|V|

∑︁
𝑣∈V

��{𝑢 | 𝑢 ∈ N𝑣, 𝑍𝑢,: = 𝑍𝑣,:}
��

𝑑𝑣
,

(3)
where a low value indicates the existence of strong heterophily. Typ-
ically, 𝑍 denotes node labels (for class-wise homophily) or node at-
tribute groups (for attribute-level homophily), and a low 𝐻node (G)
may result in nodes to have mixed representations.

The heterophily problem has been observed to degrade GNN
performance significantly and many solutions have been proposed
by designing more expressive GNN layers [3, 18] or refining graph
structures [30, 34] for graphs with high heterophily. In this work,
we argue that the inductive bias of message-passing exist across
all graphs and may behave differently in various regions of the
graph, and focus on identifying and disambiguating GNN models
by providing richer optimization guidance.

4 ANALYZING GNN BEHAVIORS
To investigate the problem of ambiguity for GNNs on graphs and
evaluate the influence of message propagation across different
graph regions, we condut an in-depth examination of the behavior
of GCN [24] on two real-world graphs: Computer [42] and Blog-
Catalog [43]. The model is trained on the semi-supervised node
classification task, with configurations following Section 6.1. After
the model converges, we test its performance on different graph
regions for a comprehensive understanding of its behavior. Next,
we will first introduce two graph split strategies implemented for
our analysis, followed by a discussion of our empirical findings.

4.1 Graph-split Strategies
Our aim is to understand how the message-passing mechanism
influences model performance across regions that exhibit varying
ego-graph patterns, such as regions at the boundary of different
classes or those adjacent to minority nodes. To this end, we propose
two graph-split strategies.

The first strategy is designed to analyze the relationship between
GNN’s accuracy, node labels, and the level of heterophily. Con-
cretely, we start by grouping node classes into three categories
based on their frequencies, namely Majority, Middle, and Minority
classes. The frequency thresholds of three groups are obtained by
evenly splitting the range of class frequencies into three pieces.
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Figure 2: Analyze GNN performance on different node groups.

Nodes within each class are then further divided into three sub-
groups based on their neighbors: those with high homophily (Same-
class), those with high heterophily and most neighbors from minor-
ity classes (Minor-class), and those with high heterophily but most
neighbors are not of minority classes (Others). The separation of
heterophilous nodes into Minor and Others allows us to examine
the influence of heterophily when most neighbors are from classes
of different sizes.

The second strategy focuses specifically on nodes adjacent to mi-
nority classes. Initially, nodes are clustered into two groups based
on whether they are connected to nodes of minority classes (mi-
nority classes are obtained in the same way as the last strategy).
Subsequently, these groups are further divided based on the degree
of homophily exhibited. This separation allows us to examine the
performance of GNN at different positions, whether near the bound-
ary of minority classes, and simultaneously evaluate the impact of
heterophily.

4.2 Empirical Findings
In Fig. 2, we illustrate the accuracy of the trained GNN w.r.t each
node group, under both splitting strategies. Several key observa-
tions can be derived from the results:

• The heterophily problem impacts nodes of different classes in
diverse ways. For nodes belonging to majority classes, an in-
crease in heterophily leads to a substantial drop in performance.
However, this is not always the case for minority nodes (as seen
in Fig.2(a)) and middle-sized nodes (as shown in Fig.2(b)). For
these classes, higher heterophily does not necessarily equate
to a decline in performance; in some instances, it may even
enhance it.

• For nodes with high heterophily, the class of most neighbors
would also influence GNN’s performance (as shown in Fig.2(a)).
For heterophilous nodes of majority and middle classes, when
most neighbors are from minority classes, their performance
drop would be larger.

• The detrimental effect of heterophily is considerably more sig-
nificant in regions distant from minority classes than those in
the proximity (as indicated in Fig. 2(c)).

These findings suggest that heterophily itself may not be the
root of the issue, but rather the difficulty of learning a generaliz-
able propagation mechanism. The varying impacts of heterophily
could be attributed to difference in frequency of ego-graph patterns

across classes. For nodes within majority classes, a high-homophily
ego-graph pattern may predominate, whereas, for nodes in minor-
ity classes, a substantial proportion may exhibit high heterophily,
resulting in increased resilience against the effects of heterophily.
Furthermore, during training, the pattern where most neighbors
belong to minority classes might be relatively rare, which can lead
to confusion in the aggregated message for nodes in these regions.

These observations inspire us to investigate the potential for
enhancing the disambiguation of GNNs. This might be achieved by
developing additional learning signals for nodes in ambiguous re-
gions, rather than relying exclusively on the sparse labels available.

5 DISAMBIGUATED NODE REPRESENTATION
LEARNING

To address the issue of ambiguity in node representations, which
arises due to their positions in the graph and ego-graph structures,
we introduce a novel framework called DisamGCL. This frame-
work dynamically identifies ambiguous regions of the graph and
guides their learning processes with contrasts in the neighborhood.
DisamGCL can be easily utilized as an auxiliary objective for down-
stream tasks, and we will present details of it in this section.

5.1 Discovery of Nodes in Mixed Regions
The analysis in Sec. 4 indicates that nodes located in certain re-
gions of graph, such as those where classes are mixed or exhibit
minority neighborhood patterns, are subject to ambiguity due to
GNN message-propagation. As GNNs are learned in a data-driven
manner, the existence of these ambiguous regions may be sensitive
to factors like the distribution of labeled data, specific GNN layer
architectures, optimization strategies, etc. Therefore, one major
challenge is efficiently identifying nodes with ambiguous repre-
sentations. Prior studies have demonstrated that the model tend to
exhibit unstable predictions across different training stages for in-
stances that the model is difficult to learn or generalize [65]. Hence,
we propose a method to identify nodes in ambiguous regions by
analyzing the consistency of label prediction outputs.

Concretely, for each node 𝑣 , we adopt a memory cell 𝒆𝑣 ∈ R𝑅 (𝒀 )

to encode the historical variance of predicted label distributions for
4
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𝑣 . After each training epoch 𝑡 , we update 𝒆𝑣 as follows:

𝒆𝑡𝑣 = 𝜇 · 𝒆𝑡−1𝑣 + (1 − 𝜇) · 𝑝𝑡 (𝑦𝑣),

𝑠𝑡𝑣 =

𝑅 (𝒀 )∑︁
𝑦=1

−𝒆𝑡𝑣,𝑦 · log(𝒆𝑡𝑣,𝑦),
(4)

where 𝜇 is a hyper-parameter determining the weight given to
historical memory, and 𝑝𝑡 (𝑦𝑣) is the probability distribution over
classes for node 𝑣 at time 𝑡 , predicted by the current model. 𝒆𝑣
encodes the historical prediction distribution of node 𝑣 , and will be
more flat for ambiguous nodes (less consistent predictions) while
sharper for others (consistent predictions). Ambiguity score 𝑠𝑡𝑣 en-
codes the uncertainty and temporal variance for the prediction of
node 𝑣 , and is normalized to the scale [0, 1]. Nodes receiving mixed
messages can be exposed with a high ambiguity score, and we select
them using a threshold in the experiments.

5.2 Disambiguation with Augmented Contrasts
Based on previous analysis, one important reason of ambiguity is
the inductive bias in message propagation. With noisy neighbor-
hoods, aggregated messages may also be indiscriminative, resulting
in ambiguous node representations with mixed semantics. To ad-
dress this problem, we propose to disambiguate these nodes by aug-
menting the learning process with a contrastive learning objective,
encouraging stronger distinctions from their dissimilar neighbors.
Through contrasts in the embedding space, their representations
will be guided to cluster towards closer node groups instead of
staying in areas with mixed semantics.

Concretely, we use JSD loss [19] for contrastivity. For a selected
ambiguous node 𝑣 , the JSD contrastive objective is as follows:

min
𝑓

L𝑐𝑠,𝑣 =
1

|Z+𝑣 |
∑︁

𝒛𝑢 ∈Z+𝑣
𝑠𝑝 (−𝑇 (𝒛𝑣, 𝒛𝑢 )) +

1
|Z−𝑣 |

∑︁
𝒛𝑢 ∈Z−𝑣

𝑠𝑝 (𝑇 (𝒛𝑣, 𝒛𝑢 )),

(5)
where 𝑇 (·) represents a compatibility estimation function imple-
mented as a dot-product, 𝑓 is the model for representation learning,
and 𝑠𝑝 (·) denotes the softplus activation function. The positive and
negative node groups Z+𝑣 and Z−𝑣 are selected based on semantic
differences within the neighborhood to encourage distinction from
dissimilar neighbors, which will be introduced below. The full con-
trastive loss is L𝑐𝑠 =

∑
𝑣∈V′ L𝑐𝑠,𝑣 , with V′ denoting the set of

ambiguous nodes.
As we focus on ambiguity that stems from message passing, we

select Z+𝑣 and Z−𝑣 for 𝑣 based on its consistency with the neighbor-
hood. Neighbors that carry higher semantic similarities should be
selected as positive samples Z+𝑣 while those dissimilar ones should
be included in Z−𝑣 . This contrast will push 𝒛𝑣 closer to those of
Z+𝑣 instead of demonstrating mixed semantics, thereby encourag-
ing a more discriminative representation. Concretely, we utilize its
neighbors as follows:

Z𝑡,+𝑣 := {𝒛𝑘 ∈ 𝑁 (𝒛𝑣) | 𝑇 (𝒛𝑘 , 𝒛𝑣) > 𝜖1 · max
𝒛𝑢 ∈𝑁 (𝒛𝑣 )

𝑇 (𝒛𝑢 , 𝒛𝑣)}

Z𝑡,−𝑣 := {𝒛𝑘 ∈ 𝑁 (𝒛𝑣) | 𝑇 (𝒛𝑘 , 𝒛𝑣) ≤ 𝜖2 · max
𝒛𝑢 ∈𝑁 (𝒛𝑣 )

𝑇 (𝒛𝑢 , 𝒛𝑣)}
(6)

𝑁 (𝒛𝑣) denotes the embeddings of nodes neighboring to target node
𝑖 , and 𝜖1, 𝜖2 are controlling variables which are set to 0.75 and
0.4 respectively in experiments. Due to the problem of sparsity

Algorithm 1 Disambiguated GNN Learning

Require: G = (V, E; 𝑭 ,𝑨), {𝑦𝑣 | 𝑣 ∈ V𝐿}
1: Random initialize model parameters
2: for 𝑡 in 𝑡𝑚𝑎𝑥 And Not Converged do
3: if 𝒆, 𝒔 is initialized then
4: Select ambiguous nodes with a threshold on the normal-

ized ambiguity score 𝒔
5: For each ambiguous node, put its neighbors into positive

and negative groups as Eq. 6
6: For each ambiguous node, augment its positive group with

similar distant nodes as Sec. 5.2
7: Optimize 𝑓 to minimize L𝑐𝑒 + 𝜆L𝑐𝑠

8: else
9: Optimize 𝑓 to minimize L𝑐𝑒

10: end if
11: if 𝑡%𝑇 = 0 then
12: if 𝒆, 𝒔 is initialized then
13: Update historical prediction memory 𝒆 and 𝒔 following

Eq. 4
14: else
15: Initialize 𝒆 with the predicted label prediction, compute

𝒔 as Eq. 4
16: end if
17: end if
18: end for
19: return Trained hypothesis model 𝑓

and potential heterophily issue, using neighbors alone may be
insufficient for finding semantically consistent nodes and guiding
the contrastive process. Addressing this issue, we further introduce
embeddings of similar yet non-connected nodes:{𝒛𝑢 ∉ 𝑁 (𝒛𝑣) |
𝑇 (𝒛𝑘 , 𝒛𝑣) ≥ T }, in which T is the threshold of similarity. At each
step we randomly sample 𝐾 instances from this auxiliary set to
augment Z𝑡,+𝑣 . In experiments, T is set to 0.7 and 𝐾 is set to 8.

5.3 Overall Algorithm
The proposed L𝑐𝑠 can be seamlessly incorporated with the down-
stream node classification loss L𝑐𝑒 in Eq. 1. The full objective is
given as:

min
𝑓

L𝑐𝑒 + 𝜆L𝑐𝑠 , (7)

where 𝜆 controls the weight of our disambiguation loss. A detailed
algorithm is summarized in Alg. 1. We will update the estimation
of ambiguous nodes every 𝑇 iterations, and within each iteration,
contrasts between identified nodes and their augmented neighbors
will be conducted.

The proposed algorithm can also be used in together with other
contrastive learning methods, which are designed to utilize those
vast amount of unlabeled nodes.

6 EXPERIMENTS
We now demonstrate the effectiveness of DisamGCL in alleviating
ambiguity of nodes in the mixed regions, through experiments on
five node classification datasets. Particularly, we want to answer
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Table 1: Results in node classification on three benchmark datasets.

Method Cora BlogCatalog Computer

ACC MacroF AUROC ACC MacroF AUROC ACC MacroF AUROC

SRGNN 80.5±1.5 79.6±1.7 89.3±0.9 45.7±2.2 45.1±1.6 82.0±1.4 76.2±1.3 75.8±2.3 86.8±0.7
DropEdge 81.1±1.5 80.2±1.1 89.6±0.7 45.5±1.8 45.2±1.6 82.2±1.2 75.9±1.7 75.9±2.6 86.9±0.6
Focal 80.9±1.3 79.8±1.6 89.6±0.7 45.2±2.1 44.6±1.7 81.7±1.5 77.3±1.9 75.7±2.1 87.0±0.5

ReNode 81.4±1.6 80.6±1.8 89.7±0.6 45.9±2.3 45.6±1.5 82.7±1.3 77.1±1.5 75.6±2.1 86.6±0.7
TopoImb 80.6±1.7 79.3±1.9 89.5±1.1 46.1±1.8 45.6±1.9 82.1±1.1 77.4±1.9 75.9±1.9 87.1±0.5

CE 80.8±1.2 79.9±1.5 89.8±0.8 45.3±2.1 44.8±1.8 81.9±1.3 76.9±1.6 75.5±2.4 86.7±0.6
+ DisamGCL 81.5±1.3 81.0±1.4 89.7±0.6 47.2±2.2 47.6±1.3 85.3±0.5 78.3±1.5 76.3±2.3 87.4±0.4

SupCon 80.6±1.5 79.7±1.7 89.7±0.9 46.5±2.3 46.2±1.8 82.5±1.6 78.7±1.3 77.1±1.9 88.7±0.7
+ DisamGCL 81.7±1.4 80.9±1.6 89.8±0.5 48.6±1.9 48.5±1.2 84.9±0.6 80.1±1.7 79.6±2.5 89.3±0.5

DGI 80.7±1.9 79.6±2.0 89.8±0.8 45.9±1.8 46.4±2.2 82.7±1.3 78.8±1.4 74.7±2.4 88.8±0.6
+ DisamGCL 81.3±1.2 80.3±1.5 89.7±0.5 48.3±1.6 48.6±1.6 85.1±0.8 79.6±1.8 76.5±2.2 89.1±0.8

Table 2: Results in node classification on three heterophily graph datasets.

Method Squirrel Chameleon Actor

ACC MacroF AUROC ACC MacroF AUROC ACC MacroF AUROC

SRGNN 55.9±1.4 56.1±1.8 78.2±0.8 54.1±1.9 55.6±1.6 83.1±0.8 50.5±1.8 48.1±1.3 85.4±0.9
DropEdge 57.3±1.6 56.7±1.7 78.7±0.9 53.7±2.1 55.3±1.5 83.0±0.8 51.3±1.1 48.9±1.2 86.3±0.8
Focal 54.7±2.1 55.2±2.3 78.1±0.9 53.3±2.5 54.7±1.7 82.4±1.3 50.9±1.2 48.7±1.4 85.6±0.6

ReNode 56.3±1.8 56.6±1.9 78.8±1.0 54.3±1.7 55.7±1.7 83.1±0.9 51.4±1.8 48.8±1.6 85.9±1.1
TopoImb 57.1±1.5 56.8±1.5 79.1±0.3 54.5±2.2 56.1±1.4 82.8±0.8 51.3±1.5 48.3±1.5 85.9±0.8

CE 56.8±1.6 56.3±1.6 78.4±0.6 53.6±2.3 55.3±1.7 82.9±0.9 50.8±1.4 48.5±1.2 85.6±0.7
+ DisamGCL 57.6±1.7 57.2±1.4 79.5±0.7 55.6±1.9 56.4±1.4 83.2±0.4 51.9±1.1 49.1±2.5 87.7±0.4

SupCon 55.4±1.9 55.2±1.7 77.8±0.5 55.7±2.1 55.9±1.8 83.2±0.7 51.2±2.5 49.7±1.2 86.7±0.8
+ DisamGCL 56.9±1.9 57.1±1.6 78.4±0.8 56.6±1.8 56.9±1.6 83.5±0.5 53.2±1.6 52.3±1.9 88.4±0.5

DGI 53.9±2.1 52.7±1.5 77.6±0.5 53.5±2.2 54.4±2.1 82.3±0.7 51.9±1.7 49.1±1.4 86.4±0.9
+ DisamGCL 55.7±1.6 56.1±1.8 80.3±0.6 56.7±2.3 56.9±1.6 83.4±0.5 53.4±1.6 51.2±2.6 88.1±0.6

the following research questions: (i) RQ1 Can the proposed Dis-
amGCL improve the overall performance of node classification?
(ii) RQ2 Would DisamGCL successfully detect ambiguous nodes in
the mixed regions? (iii) RQ3 How would DisamGCL generalize to
different GNN layer variants? And how sensitive would DisamGCL
be towards its weight and the threshold of ambiguity score?

6.1 Experiment Settings
Datasets. In experiment, we adopt 6 real-world datasets, includ-
ing three benchmarks with low heterophily: Cora [41], BlogCat-
alog [43] and Computer [42], and three benchmarks frequently
used as graphs exhibiting varying degrees of heterophily: Squir-
rel [66], Chameleon [66] and Actors [34]. Details of these datasets
are provided below.

• Cora The Cora dataset is a citation network used for transductive
node classification. It comprises a single large graph with 2, 708
nodes representing academic papers across 7 different fields
(classes). Each node attribute is derived from a bag-of-words
representation of the paper’s content, and the graph includes a
total of 5, 429 citation edges.

• BlogCatalog The BlogCatalog dataset1 is a social network con-
taining 10, 312 nodes (bloggers) from 38 classes and 333, 983
friendship edges. Each node is associated with a 64-dimensional
embedding vector obtained using DeepWalk, as described in [35].

• Computer This Amazon product co-purchase network features
13, 752 nodes representing products across 10 categories (classes),
and includes 491, 722 edges. Each edge denotes that the corre-
sponding products are frequently bought together. The attributes
for each node are derived from bag-of-words representations of
the product reviews.

• Squirrel, ChameleonThe Squirrel and Chameleon datasets [34]
consist of Wikipedia web pages discussing specific topics. They
are frequently used as examples of graphs exhibiting varying
degrees of heterophily [66]. Nodes represent web pages and
edges denote mutual links. Nodes are categorized into 5 classes.
The Squirrel dataset contains 5, 201 nodes and 401, 907 edges,
whereas Chameleon comprises 2, 277 nodes and 65, 019 edges.

• Actor The Actor dataset is a social network describing rela-
tionships among a set of actors (nodes), and is often utilized
as a benchmark for graphs with high heterophily. Both node
attributes and edges are extracted from Wikipedia descriptions,

1http://www.blogcatalog.com
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and the task is to categorize actors into five different classes. The
dataset includes 4, 600 nodes and 30, 019 edges in total.

Baselines. To conduct a comprehensive empirical comparison,
we consider two categories of baseline. (1) We test three learning
frameworks, including the conventional node classification based
on cross-entropy (CE) and two contrastive learning methods Sup-
Con [69] and DGI [45]. Note that DGI is originally designed for
unsupervised learning. We implement it in the joint-learning set-
ting for fairer comparisons, the same as others. (2) We compare
with several augmented learning strategies that can be used for
GNNs. Specifically, SRGNN [68] incorporates distribution of test
nodes into training, Focal loss [29] emphasizes those challenging-
to-learn nodes, DropEdge [38] augments the graph by creating
more diverse neighborhood patterns, ReNode [5] reweights labeled
nodes based on their relative positions and TopoImb [59] considers
the frequency of ego-graph structures of labeled nodes.

Configurations. All experiments are conducted on a 64-bit
machine with Nvidia A6000, and ADAM optimization algorithm is
used to train all the models. Learning rate is initialized to 0.001, with
weight decay being 5𝑒−4 and the maximum training epoch as 8, 000.
For all datasets, the train/validation/test split is set to 0.5 : 1 : 8.5.
If not emphasized otherwise, a two layer GCN is adopted, 𝜆 is set
to 1.0, and threshold for selecting ambiguous nodes is set to 0.8.

Evaluation Metrics. Following existing works [23, 39], we
adopt three criteria: classification accuracy(ACC), Macro F-measure,
and mean AUCROC score. ACC is computed on all testing exam-
ples at once, AUC-ROC score illustrates the probability that the
corrected class is ranked higher than other classes, and Macro F
gives the harmonic mean of precision and recall for each class. Both
AUCROC score and Macro F are calculated separately for each class
and then non-weighted average over them, therefore can better
reflect the performance on minority groups.

6.2 DisamGCL for Node Classification
To answer RQ1, in this section, we compare the performance on
node classification between proposed DisamGCL and all aforemen-
tioned baselines. DisamGCL is incorporated into all three learning
frameworks, CE, SupCon andDGI.Models are tested on 6 real-world
datasets, and each experiment is conducted 3 times to alleviate the
randomness. The average results with standard deviation for three
datasets with low heterophily are reported in Table 1 and those for
three datasets with high heterophily are reported in Table 2.

From the tables, we can observe that our proposed DisamGCL
shows a consistent improvement across all three learning frame-
works, outperforming all baselines on six datasets with a clear mar-
gin. For example, DisamGCL shows an improvement of 2.2 point in
Macro F on BlogCatalog and 2.5 point in Macro F on chameleon for
the DGI backbone. These results indicate that through automatic
discovery of ambiguous nodes and neighborhood-aware contrasts,
our approach is better at learning representations for nodes. Be-
sides, the improvement tends to be larger in terms of Macro F score
compared to mean accuracy, which indicates that DisamGCL is
beneficial for minority classes.

6.3 Ability of Detecting Nodes in Mixed Regions
To addressRQ2, we visualize the average ambiguity scores assigned
to node groups defined in Section 4. We present the results of the
variantCE+DisamGCL in Fig. 3. In this figure, the blue bars represent
the average accuracy within each node group, while the green bars
indicate the average ambiguity score.

From the visualization, it is evident that for both Computer
and BlogCatalog datasets, groups with lower accuracy tend to be
assigned higher ambiguity scores. Notably, nodes belonging to mi-
nority classes, exhibiting high heterophily, and located near class
boundaries are typically assigned larger weights. These findings
validate the ability of our proposed DisamGCL in accurately identi-
fying nodes with greater ambiguity in their classification.

6.4 DisamGCL for Different GNN Backbones
To answer RQ3 w.r.t generality across GNN variants,we vary the
GNN backbone across GCN [24], Sage [15], GIN [53], and SGC [49].
We examine the performance of the CE both before and after in-
corporating DisamGCL. Given the changed model architecture, the
weight 𝜆 is adjusted through a grid search to achieve optimal perfor-
mance, while all other configurations remain unchanged as Sec. 6.1.
Each experiment is randomly run for 3 times on Cora, BlogCatalog
and Actor, with results in Tab. 3. The observed results demonstrate
a consistent performance improvement across all settings, validat-
ing both the generality and efficacy of our proposed method across
diverse GNN architectures.

6.5 Sensitivity Analysis
To answerRQ3 concerning hyperparameter sensitivity, we conduct
a set of analysis with model CE+DisamGCL. Unless specified other-
wise, all configurations remain unchanged, and each experiment is
randomly run 3 times. Results are presented below.

Hyperparameter 𝜆. Weight of our proposed contrastive loss
in Eq. 7 is analyzed in Fig. 4. It can be observed that DisamGCL
performs relatively better with 𝜆 set to the range [0.8, 1.0]. A per-
formance decline can be observed when 𝜆 exceeds 1.0, as L𝑐𝑠 could
be noisy and overshadow node classification loss.

Ambiguity Threshold. As shown in Fig. 5, a threshold value
around [0.6, 0.8] yields the best results. A threshold that is too low
could lead to the identification of non-ambiguous nodes (as Fig. 3),
which could undermine the effectiveness of the neighborhood-wise
contrasts. On the other hand, a too high threshold will fail to detect
nodes in ambiguous regions.

Ambiguity Estimation.We further analyze the hyperparam-
eter for ambiguity estimation, 𝜇 in Eq. 4. From Fig. 6, it can be
observed that setting it within [0.5, 0.6] may obtain the better per-
formance, and the sensitivity towards it is low on both Computer
and Actor datasets.

7 CONCLUSION
In this study, we delved into the challenge of performance degra-
dation experienced by GNNs in specific graph regions, namely
’ambiguous regions’. We identified that this degradation arises from
the inherent inductive bias of message propagation and the under-
representation of such regions during the training process. A novel
framework, Method Name, is designed to autonomously detect
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Figure 3: Analyze ambiguity score on different node groups.

Table 3: Results of DisamGCL in node classification with varying GNN backbones.

Model Cora BlogCatalog Actor

ACC MacroF AUROC ACC MacroF AUROC ACC MacroF AUROC

Sage 83.7±1.3 81.8±1.7 89.8±0.7 46.4±1.7 46.2±1.7 82.1±1.5 73.8±1.2 69.7±1.5 86.4±0.8
+DisamGCL 84.9±1.4 82.4±1.4 89.9±0.8 47.6±1.4 47.8±1.8 84.7±1.9 74.6±1.3 70.8±1.6 88.3±0.9

GCN 80.8±1.2 79.9±1.5 89.8±0.8 45.3±2.1 44.8±1.8 81.9±1.3 50.8±1.4 48.5±1.2 85.6±0.7
+DisamGCL 81.5±1.3 81.0±1.4 89.7±0.6 47.2±2.2 47.6±1.3 85.3±0.5 51.9±1.1 49.1±2.5 87.7±0.4

GIN 82.3±1.6 80.1±1.8 89.7±0.9 46.3±1.6 46.1±1.9 82.1±1.1 71.1±1.6 68.6±1.3 85.8±0.9
+DisamGCL 83.5±1.5 81.8±1.6 89.8±1.2 47.4±1.9 47.7±2.1 84.7±1.2 72.9±1.5 69.9±1.7 87.9±0.6

SGC 78.5±1.6 78.6±1.8 89.2±1.1 43.6±1.8 43.7±1.7 81.4±1.8 66.7±1.9 63.6±1.6 83.2±0.7
+DisamGCL 80.3±1.6 79.8±1.3 89.5±0.7 45.9±2.3 45.9±1.6 83.4±1.2 70.6±1.5 67.7±2.1 84.9±0.6
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Figure 4: Sensitivity analysis over the weight of our proposed
neighborhood-wise contrasts.
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Figure 5: Sensitivity analysis over the threshold for identify-
ing ambiguous nodes.

these ambiguous nodes and promote more discriminative repre-
sentations through neighbor-wise contrasts. Empirical analysis
validated the efficacy of our proposed framework on both the accu-
rate identification of ambiguous regions and the improvement of
GNN performance. In the future, further explorations can be made
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Figure 6: Sensitivity analysis over 𝜇 for updating node ambi-
guity estimation.

towards multimodal graphs: extending our approach to address am-
biguity in graphs with multiple types of nodes, edges, or attributes.
We also plan to integrate with other self-supervised learning strate-
gies, which holds the potential to further boost GNNs’ robustness
and generalization capabilities.
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