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Abstract
Many datasets are underspecified, meaning that
there are several equally viable solutions to a
given task. Underspecified datasets can be prob-
lematic for methods that learn a single hypothesis
because different functions that achieve low train-
ing loss can focus on different predictive features
and thus have widely varying predictions on out-
of-distribution data. We propose DivDis, a simple
two-stage framework that first learns a collection
of diverse hypotheses for a task by leveraging un-
labeled data from the test distribution. We then
disambiguate by selecting one of the discovered
hypotheses using minimal additional supervision,
in the form of additional labels or inspection of
function visualization. We demonstrate the ability
of DivDis to find robust hypotheses in image clas-
sification and natural language processing prob-
lems with underspecification.

1. Introduction
Datasets are often underspecified: multiple plausible hy-
potheses each describe the data equally well (D’Amour
et al., 2020), and the data offers no further evidence to pre-
fer one over another. In the presence of such ambiguity,
rigidly choosing a single “best” hypotheis can be subopti-
mal, causing failures when the data distribution is shifted.
For example, examination of a chest X-ray dataset (Oakden-
Rayner et al., 2020) has shown that many images of pneu-
mothorax include a thin drain used to treat the disease. A
classifier can thus erroneously identify such drains as a pre-
dictive feature of the disease, exhibiting degraded accuracy
on the intended distribution of patients not yet being treated.
To not suffer from such failures, it is desirable to have a
model that can discover a diverse collection of alternate
plausible hypotheses.

The standard empirical risk minimization (ERM, Vapnik
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(1992)) paradigm performs poorly when training on un-
derspecified data. The main reason for such failures is
that ERM tends to select the simplest solution without con-
sidering alternatives, using only the most salient features
(Geirhos et al., 2020; Shah et al., 2020; Scimeca et al., 2021).
Using an ensemble of ERM models (Hansen and Salamon,
1990; Lakshminarayanan et al., 2017) has this same problem
because each model still suffers from simplicity bias. While
many recent methods (Ganin et al., 2016; Sagawa et al.,
2020; Liu et al., 2021) improve robustness in distribution
shift settings, we find that they fail on data with more severe
underspecification. This is because, similarly to ERM, these
methods only consider a single solution even in situations
where multiple explanations exist.

We propose Diversify and Disambiguate (DivDis), a two-
stage framework for learning from underspecified data. Our
key idea is to learn a collection of diverse functions that
are consistent with training labels but disagree on unlabeled
target data. DivDis is a single neural network consisting of a
shared backbone feature extractor and multiple heads, each
head representing a different function. As in regular train-
ing, each head is trained to predict labels for training data.
An additional “diversification” loss trains the heads to make
disagreeing predictions on a separate unlabeled dataset from
the target distribution. At test time, we select one member
of the diversified set of hypothesis by querying labels for the
datapoints most informative for disambiguation. We visu-
ally outline this framework in Fig. 1. DivDis is well-suited
for scenarios with underspecified data and distribution shift,
and its heads will not yield a set of diverse functions in
settings where only one function can achieve low training
loss. We evaluate DivDis on several settings in which un-
derspecification limits the performance of prior methods
due to the existence of multiple solutions that achieve low
predictive risk.

2. Diversify and Disambiguate
We now describe Diversify and Disambiguate (DivDis),
a two-stage framework for learning from underspecified
data. We first describe the general framework (Sec. 2.1),
and then a specific implementation of the two DIVERSIFY
(Sec. 2.2) and DISAMBIGUATE (Sec. 2.3) stages as used
in our experiments.
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Figure 1. Our two-stage framework for learning from underspecified data. In the DIVERSIFY stage, we train each head in a multi-headed
neural network to accurately predict the labels of source data while also outputting differing predictions for unlabeled target data. In the
DISAMBIGUATE stage, we choose one of the heads by observing labels for an informative subset of the target data.

2.1. General Framework

As a running example to motivate our algorithm, consider
an underspecified cow-camel image classifiation task in
which the source data includes images of cows with grass
backgrounds and camels with sand backgrounds. We can
imagine two completely different classifiers each achieving
perfect accuracy in the source distribution: one that clas-
sifies by animal and the other by background. The target
dataset is most useful when it includes examples that would
resolve the ambiguity if the labels were known, such as
cows in the desert.

With this motivation, DivDis aims to first find a set of diverse
functions and then choose the best member with minimal
supervision. The DivDis framework consists of two stages.
In the first stage, we DIVERSIFY by training a finite set of
functions that together approximate the set of all functions
that achieve low training loss on the source dataset. This
stage uses both the source and target datasets for training.
The source data ensures that all functions achieve low train-
ing loss, while the target data reveals whether or not the
functions rely on different predictive features. In the second
stage, we DISAMBIGUATE by choosing the best member
among this set of functions, for example, by observing the
label of a target datapoint for which one head is correct and
the others are not.

2.2. DIVERSIFY : Train Disagreeing Heads

As described previously, the DIVERSIFY stage learns a
diverse collection of functions by comparing predictions
for the target set while minimizing training error. We use
a labeled source dataset DS = {(x1, y1), . . .} along with
an unlabeled target dataset DT = {xt

1, . . .}. We represent
and train multiple functions using a multi-headed neural
network with N heads. For an input datapoint x, we denote
the prediction of head i as fi(x) = ŷi. We ensure that each
head achieves low predictive risk on the source domain by
minimizing the cross-entropy loss for each head Lxent(fi) =
Ex,y∼DS [l(fi(x), y)].

We train the heads to produce predictions that are close to

being statistically independent from each other. Concretely,
we minimize the mutual information between each pair of
predictions:

LMI(fi, fj) = DKL (p(ŷi, ŷj) || p(ŷi)⊗ p(ŷj)) , (1)

where DKL (· || ·) is the KL divergence and ŷi is the predic-
tion fi(x) for x ∼ DT. In practice, we optimize this quantity
using empirical estimates of the distributions p(ŷi, ŷj) and
p(ŷi)⊗ p(ŷj).

To prevent functions from collapsing to degenerate solu-
tions such as predicting a single label for the entire target set
while maintaining good source accuracy, we also include
an optional regularization loss for each head which regular-
izes the marginal predicted label distribution on the target
dataset:

Lreg(fi) = DKL (p(ŷi) || p(y)) , (2)

where p(y) is the label distribution in the source dataset DS
without using an additional hyperparameter. The overall
objective for the diversify stage is a linear combination with
weight hyperparameters λ1, λ2 ∈ R:∑

i

Lxent(fi) + λ1

∑
i ̸=j

LMI(fi, fj) + λ2

∑
i

Lreg(fi). (3)

We note that the computation for (1) is easily parallelized
in modern deep learning libraries; we provide an implemen-
tation in Appendix B. In practice, the cost of computing
the objective (3) is dominated by the cost of feeding two
batches—one source and one target—to the network. The
time- and space- complexity of one step in the DIVERSIFY
stage is approximately ×2 compared to a standard SGD step
in optimizing ERM with the source data, and both can be
reduced by using a smaller batch size.

2.3. DISAMBIGUATE : Select the Best Head

Once we have learned a diverse set of functions that all
achieve good training performance, we need to disambiguate
by selecting one of the functions. This disambiguation stage
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requires information beyond the given source and target
datasets. For example, once our model has learned both the
animal and background classifiers for the cow-camel task,
we can quickly see which is right by asking for the ground-
truth label of an image of a cow in the desert. We now
present two different strategies for head selection during the
DISAMBIGUATE stage.

Active querying. To select the best head with a minimal
amount of supervision, we propose an active querying pro-
cedure, in which the model acquires labels for the most
informative subset of the unlabeled target dataset DT. We
sort each target datapoint x ∈ DT according to the total dis-
tance between head predictions

∑
i ̸=j |fi(x)− fj(x)|. We

then select a subset of the target dataset, which has the m
datapoints (i.e. m ≪ |DT|) with the highest value of this
metric. Finally, we select the head with the highest accuracy
with respect to this labeled subset.

Random querying. A simple alternative to the active query-
ing strategy is random querying, in which we label a random
subset of the target dataset DT. Beyond its simplicity, an
advantage of this procedure is that one can perform label-
ing in advance because the datapoints to be labeled do not
depend on the results of the DIVERSIFY stage. However,
random querying is substantially less label-efficient than
active querying because the set will likely include unam-
biguous datapoints for which labels are less informative for
head selection.

We emphasize that existing OOD methods tune hyperparam-
eters using target set labels, and thus the active and random
query strategies require no more information than previ-
ous approaches. Unless stated otherwise, we use the active
querying strategy because of its superior label efficiency,
requiring as little as a single label (m = 1). Additionally,
as long as the best head is selected, the choice of disam-
biguation method only affects label efficiency, and the final
performance does not change.

3. Experiments
Through our experimental evaluation, we aim to answer
the following questions. (1) Can DivDis tackle image and
language classification problems with severe underspecifi-
cation, in which simplicity bias hinders the performance of
existing approaches? (2) How sensitive is DivDis to hyper-
parameters, and what data assumptions are needed to tune
DivDis? (3) How does DivDis compare to unsupervised do-
main adaptation algorithms, which also leverage unlabeled
data from the target domain?

3.1. Tasks with Complete Spurious Correlation

We evaluate DivDis on datasets with a complete correlation,
where the source distribution has a spuriously correlated
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Figure 2. Hyperparameter grids for DivDis on the Waterbirds
dataset. Rows and columns indicate λ1 and λ2, respectively..
We show three metrics: average accuracy on the source and target
distributions and worst-group accuracy on the target distribution.
The high correlation between the three metrics indicates that we
can tune the hyperparameters of DivDis using only held-out la-
beled source data.

attribute that can predict the label perfect accuracy. To make
this problem tractable, we leverage unlabeled target data DT
for which the spurious attribute is not completely correlated
with labels, as in the toy classification task (Fig. 3). Introduc-
ing complete correlations makes the problem considerably
harder than existing subpopulation shift problems, because
classifiers based on the spurious attribute can achieve per-
fect training loss. To our knowledge, complete correlation
is not addressed by prior approaches and remains unsolved.
In fact, in many of the problems we consider (Fig. 4a and
Tab. 1) existing methods for subpopulation shift do not per-
form significantly better than random guessing.

Real data with complete correlation. We evaluate DivDis
on existing benchmarks modified to exhibit complete corre-
lation. Using the Waterbirds (Sagawa et al., 2020), CelebA
(Liu et al., 2015), and MultiNLI (Gururangan et al., 2018)
datasets, we alter the source dataset to include only majority
groups while keeping target data intact. We denote these
tasks as Waterbirds-CC, MultiNLI-CC, etc to distinguish
from the original benchmarks. These -CC tasks are con-
siderably more difficult than the original benchmarks, and
introduce a specific challenge not addressed in the existing
literature: leveraging the difference in source and target
data distribution to encode and subsequently disambiguate
tasks with high degrees of underspecification. To our best
knowledge, no prior methods are designed to address such
complete correlations.

As the closest existing problem setting is subpopulation shift,
we show the performance of ERM, JTT (Liu et al., 2021),
and Group DRO (Sagawa et al., 2020) as a naive point of
comparison. We also include a random guessing baseline
as a lower bound on performance. Quantitative results in
Tab. 1 show that DivDis outperforms previous methods by
8% to 30% in worst-group accuracy. Prior methods for sub-
population shift showed subpar performance on these tasks:
notably, ERM, JTT, and GDRO all fail to do better than
random guessing in the Waterbirds-CC task. This is hardly
surprising; methods based on loss upweighting such as JTT
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Waterbirds-CC CelebA-CC-1 CelebA-CC-2 MultiNLI-CC

Avg (%) Worst (%) Avg (%) Worst (%) Avg (%) Worst (%) Avg (%) Worst (%)

Random 50.0 50.0 50.0 50.0 50.0 50.0 33.3 33.3

ERM 60.5± 1.6 7.0± 1.5 70.9± 2.0 57.0± 5.8 73.1± 0.9 41.1± 2.6 53.2± 1.5 22.8± 2.5
JTT (Liu et al., 2021) 44.6± 1.9 26.5± 1.4 71.4± 1.9 51.2± 5.4 78.7± 0.8 59.8± 1.1 80.0± 4.0 40.5± 2.3
GDRO (Sagawa et al., 2020) 55.6± 4.8 47.1± 8.9 71.6± 0.3 59.3± 2.6 71.6± 2.4 61.3± 2.3 79.1± 3.4 39.8± 1.4

DivDis - reg 87.2± 0.8 77.5± 4.7 91.0± 0.4 85.9± 1.0 79.7± 0.4 69.3± 1.9 80.3± 0.6 67.6± 4.0
DivDis 87.6± 1.4 82.4± 1.9 90.8± 0.4 85.6± 1.1 79.5± 0.2 68.5± 1.7 79.9± 1.2 71.5± 2.5

Table 1. Modified Waterbirds, CelebA, and MultiNLI datasets with complete correlation between labels and a spurious attribute. DivDis
outperforms previous methods in terms of both average and worst-group accuracy.

Waterbirds Worst Acc CelebA Worst Acc

Tuned with: Worst Average Worst Average

CVaR DRO (Levy et al., 2020) 75.9% 62.0% 64.4% 36.1%
LfF (Nam et al., 2020) 78.0% 44.1% 77.2% 24.4%
JTT (Liu et al., 2021) 86.7% 62.5% 81.1% 40.6%

DivDis 85.6% 81.0% 55.0% 55.0%

Table 2. Worst-group test accuracies in the Waterbirds and CelebA tasks, when tuning
hyperparameters with respect to average and worst-group accuracies. DivDis is
substantially more robust to hyperparameter choice in both tasks, allowing us to tune
hyperparameters without group labels.

Test Acc

Pseudo-Label (Lee et al., 2013) 67.7 ± 8.2
DANN (Ganin et al., 2016) 68.4 ± 9.2
FixMatch (Sohn et al., 2020) 71.0 ± 4.9
CORAL (Sun et al., 2016) 77.9 ± 6.6
NoisyStudent (Xie et al., 2019) 86.7 ± 1.7
DivDis (ours) 90.4 ± 1.8

Table 3. Accuracy on the OOD test set of
Camelyon17-WILDS. All methods in this ta-
ble leverage unlabeled target data, and DivDis
shows the best accuracy.

and Group DRO are expected to perform poorly in these
problems, because -CC tasks violate their implicit assump-
tion of having minority points in the source data to upweight.
In contrast, DivDis is well-suited to this challenging setting,
and deals with complete correlation by leveraging unlabeled
target data to find different predictive features of the labels.

3.2. Underspecification from Distribution Shift

Do we need group labels for hyperparameter tuning?
Existing methods for learning from data with subpopula-
tion shift (Levy et al., 2020; Nam et al., 2020; Liu et al.,
2021) typically tune hyperparameters using group label an-
notations, making them only deployable in scenarios where
group labels are available. To examine the dataset assump-
tions required to successfully tune DivDis’s hyperparam-
eters, we ran a hyperparameter sweep over (λ1, λ2). We
measured three metrics using held-out data: (1) average
accuracy on DS, (2) average accuracy on DT, and (3) worst-
group accuracy on DT.

We see a clear correlation between these three metrics on
the Waterbirds and CelebA datasets (Fig. 2, Fig. 9). Notably,
we see that tuning the hyperparameters of DivDis with re-
spect to average accuracy on DS yields close an optimal
model for worst-group accuracy on the target distribution.
In Tab. 2, we contrast DivDis to existing methods reported
by Liu et al. (2021). Note that this table corresponds to our
second weakest data assumption (labeled target data), and
Fig. 2 suggests that the hyperparameters of DivDis can even
be tuned using labeled source data, which is readily avail-
able in all supervised learning problems. This experiment

demonstrates that compared to previous methods for distri-
bution shift, DivDis’s hyperparameters require substantially
less information to tune.

Comparison with unsupervised domain adaptation meth-
ods. Finally, we evaluate DivDis on the Camelyon17-
WILDS benchmark (Sagawa et al., 2022), a tumor clas-
sification dataset where the objective is to generalize to
images collected from a new hospital. This benchmark pro-
vides unlabeled data from the test domain hospitals, which
DivDis can use during the DIVERSIFY stage. We com-
pare against several approaches that can also leverage this
unlabeled data: Pseudo-Label (Lee et al., 2013), FixMatch
(Sohn et al., 2020), CORAL (Sun et al., 2016), and NoisyS-
tudent (Xie et al., 2019). Quantitative results in Tab. 3 show
that DivDis outperforms these methods, achieving above
90% OOD test set accuracy. This experiment demonstrates
that DivDis can effectively leverage unlabeled data for un-
derspecification arising from variation in real-world data
collection conditions.

4. Conclusion
We proposed Diversify and Disambiguate (DivDis), a two-
stage framework for learning from underspecified data. Our
experiments show that DivDis has substantially higher per-
formance when learning from datasets with high degrees of
underspecification (Tab. 1), at the modest cost of unlabeled
target data and a few corresponding labels. DivDis was also
effective in problem settings with milder underspecification
(Tab. 2, Tab. 3), which include minority examples and thus
satisfy the data assumptions of existing methods. To our
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knowledge, our method is the first to address this problem
setting in the context of underspecification.
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A. Related Work
Underspecification. Prior works have discussed the underspecified nature of many datasets (D’Amour et al., 2020; Oakden-
Rayner et al., 2020). Underspecification is especially problematic when the bias of deep neural networks towards simple
functions (Arpit et al., 2017; Gunasekar et al., 2018; Shah et al., 2020; Geirhos et al., 2020; Pezeshki et al., 2021) is not
aligned with the true function. Yet, these works do not present a general solution. As we find in Section 3, DivDis can
address underspecified datasets, even when one viable solution is much simpler than another, since only one of the heads
can represent the simplest solution. Our notion of near-optimal sets can be seen as an extension of Rashomon sets (Fisher
et al., 2019; Semenova et al., 2019) to the unsupervised domain adaptation setting. Active learning methods (Cohn et al.,
1996; Hanneke et al., 2014) are also related in that they handle underspecification by reducing ambiguity. Our MI-based
diversity term resembles a common active learning criterion (Houlsby et al., 2011), but a key difference is that we directly
optimize a set of models with respect to our criterion.

Ensemble methods. Our approach is related to ensemble methods (Hansen and Salamon, 1990; Dietterich, 2000; Laksh-
minarayanan et al., 2017), which aggregate the predictions of multiple learners. Ensembles have been shown to perform
best when each member produces errors independently of one another (Krogh et al., 1995), a property we exploit by
maximizing disagreement on unlabeled test data. Previous works have extended ensembles by learning a diversified set of
functions (Pang et al., 2019; Parker-Holder et al., 2020; Wortsman et al., 2021; Rame and Cord, 2021; Sinha et al., 2021).
While the DIVERSIFY stage similarly learns a collection of diverse functions, our approach differs in that we directly
optimize for diversity on a separate target dataset. Two recent works leverage unlabeled target data to learn a set of diverse
functions. Teney et al. (2021) introduce a gradient orthogonality constraint with respect to features from a pre-trained
backbone. However, this approach does not consider classifier selection (i.e. the DISAMBIGUATE stage), relying on an
oracle instead, and requires sufficiently compact pre-trained features. Concurrently to our work, Pagliardini et al. (2022)
propose to sequentially train a set of functions with a diversity loss on target data. In contrast, DivDis requires a single
network and training loop regardless of the number of heads. Furthermore, Sec. 3 demonstrates that DivDis scales to larger
datasets.

Robustness and causality. Many recent methods aim to produce robust models that succeed even in conditions of
distribution shift (Tzeng et al., 2014; Ganin et al., 2016; Arjovsky et al., 2019; Sagawa et al., 2020; Nam et al., 2020;
Creager et al., 2021; Liu et al., 2021). While our work is similarly motivated, we address a class of problems that these
previous methods fundamentally cannot handle. By nature of learning only one function, these robustness methods cannot
disambiguate problems where the true function is truly ambiguous, in the sense that functions based on two different features
can both be near-optimal. DivDis handles such scenarios by learning multiple functions in the DIVERSIFY stage and then
choosing the correct one in the DISAMBIGUATE stage with minimal added supervision. This research direction is also
related to inferring the causal structure (Pearl, 2000; Schölkopf, 2019) of observed attributes. Although many causality
works focus on situations in which interventions are impossible, we explore inherently ambiguous problems where some
form of intervention is necessary to succeed. Additionally, recent methods for extracting causality from observational data
have been most successful in low-dimensional settings (Louizos et al., 2017; Goudet et al., 2018; Ke et al., 2019), whereas
our method easily scales to large convolutional networks for image classification problems.

B. Parallel Implementation of Mutual Information Objective
import torch
from einops import rearrange

def mutual_info_loss(probs):
""" Input: predicted probabilites on target batch. """
B, H, D = probs.shape # B=batch_size, H=heads, D=pred_dim
marginal_p = probs.mean(dim=0) # H, D
marginal_p = torch.einsum("hd,ge->hgde", marginal_p, marginal_p) # H, H, D, D
marginal_p = rearrange(marginal_p, "h g d e -> (h g) (d e)") # H^2, D^2

joint_p = torch.einsum("bhd,bge->bhgde", probs, probs).mean(dim=0) # H, H, D, D
joint_p = rearrange(joint_p, "h g d e -> (h g) (d e)") # H^2, D^2

kl_divs = joint_p * (joint_p.log() - marginal_p.log())
kl_grid = rearrange(kl_divs.sum(dim=-1), "(h g) -> h g", h=H) # H, H
pairwise_mis = torch.triu(kl_grid, diagonal=1) # Get only off-diagonal KL divergences
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return pairwise_mis.mean()

This implementation is based on the PyTorch (Paszke et al., 2019) and einops (Rogozhnikov, 2022) libraries. It demonstrates
that the mutual information objective (1) is easily parallelized across the input batch using standard tensor operations.

C. Experimental Setup
C.1. Detailed Dataset Descriptions

Toy classification task. Our toy binary classification data is constructed as follows. The source dataset DS has binary
labels with equal aggregate probability p(y = 0) = p(y = 1) = 1

2 . Each datapoint is a 2-dimensional vector, and the data
distribution for each class in the source dataset is:

p(x | y = 0) = Unif([−1, 0]× [0, 1])

p(x | y = 1) = Unif([0, 1]× [−1, 0]).

In contrast, the data distribution for each class in the target dataset is:

p(x | y = 0) = Unif([−1, 0]× [−1, 1])

p(x | y = 1) = Unif([0, 1]× [−1, 1]).

Labels are balanced for the target dataset. Put differently, the target dataset has a larger span than the source dataset, and the
labels of the target dataset reveal that the true decision boundary is the Y -axis.

CXR-14 pneumothorax classification. The CXR-14 dataset (Wang et al., 2017) is a large-scale dataset for pathology
detection in chest radiographs. We evaluate on the binary pneumothorax classification task, which has been reported to
suffer from hidden stratification: a subset of the images with the disease include a chest drain, a common treatment for the
condition (Oakden-Rayner et al., 2020).

Waterbirds dataset. Each image in the Waterbirds dataset is constructed by pasting a waterbird or landbird image to a
background drawn from the Places dataset (Zhou et al., 2017). There are two backgrounds in this dataset – water and land,
where each category of birds is spuriously correlated with one background. Specifically, there are 4,795 training samples,
where 3,498 samples are from "waterbirds in water" and 1,057 samples are from "landbirds in land". "Waterbirds in land"
and "landbirds in water" are considered as minority groups, where 184 and 56 samples are included, respectively.

CelebA dataset. The CelebA dataset (Liu et al., 2015) is a large-scale image dataset with over 200, 000 images of celebrities,
each with 40 attribute annotations. We construct four different completely correlated problem settings, each based on a pair
of attributes. The pair of attributes consists of a label attribute and a spurious attribute, and we remove all examples from the
two minority groups in the source dataset. The four problem settings are summarized below. Our task construction is similar
to that of Sagawa et al. (2020), which uses hair color as the label and gender as the spurious attribute.

Label attribute Spurious attribute

CelebA-CC-1 Mouth_Slightly_Open Wearing_Lipstick
CelebA-CC-2 Attractive Smiling
CelebA-CC-3 Wavy_Hair High_Cheekbones
CelebA-CC-4 Heavy_Makeup Big_Lips

MultiNLI dataset. Given a hypothesis and a promise, the task of MultiNLI dataset is to predict if the hypothesis is entailed
by, neutral with, or contradicts with the promise. The spurious correlation exists between contradictions and the presence
of the negation words nobody, no, never, and nothing (Gururangan et al., 2018). The whole MultiNLI dataset is divided
into six groups, where each spurious attribute belongs to {"no negation", "negation"} and each label belongs to {entailed,
neutral, contradictory}. There are 206,175 samples in total, where the smallest group only has 1,521 samples (entailment
with negations).

Camelyon17-WILDS dataset. This dataset is part of the U-WILDS benchmark (Sagawa et al., 2022). Input images of
patches from lymph node sections are given, and the task is to classify as either a tumor or normal tissue. Evaluation is
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Class 1 Class 2 Unlabeled

Figure 3. Left: synthetic 2D classification task with underspecification. Right: decision boundaries of 20 linear functions discovered by
the DIVERSIFY stage. Together, these functions span the set of linear decision boundaries consistent with the data.

performed on OOD hospitals for which labels are unseen during training. The model is given unlabeled validation images
from the OOD hospitals.

C.2. DivDis Hyperparameter Settings

We show below the hyperparameters used in our experiments:

Toy Clasification MNIST-CIFAR Waterbirds CXR-14 Waterbirds-CC CelebA-CC MultiNLI-CC

N 2, 20 2 2 2 2 2 2
λ1 10 10 1, 10, 100, 1000 10 10 10 1000
λ2 10 10 0.1, 1, 10, 100 10 0, 10 0, 10 0, 0.1
m 1 1 16 16 16 16 16

D. Additional Experiments
2D classification task. We start with a synthetic 2D binary classification problem, with the goal of understanding the
set of functions learned during the DIVERSIFY stage of DivDis. The task is shown in Fig. 3 (left): inputs are points in
2-dimensional space, and the source dataset has points only in the second and fourth quadrants, making the unlabeled points
in the first and third quadrants ambiguous. We train a network with two heads and measure the target domain accuracy of
each head throughout the DIVERSIFY stage of DivDis. Learning curves and decision boundaries, visualized in ??, show
that DivDis initially learns to fit the source data, after which the two heads diverge to functions based on different predictive
features of the data. We show an extended visualization with additional metrics in the appendix (Fig. 5).

Coverage of near-optimal set on 2D classification. To further understand how well DivDis can cover the set of near-optimal
functions, we trained a 20-head model on the same 2D classification task, where each head is a linear classifier. Results
in Fig. 3 show that the heads together span the set of linear classifiers consistent with the source data. Note that this set
includes the function learned by standard ERM, the diagonal decision boundary (y = x). This result suggests that given
enough heads, the set of functions learned by DivDis sufficiently covers the set of near-optimal functions, including the
simplest function typically learned by ERM.

Comparison with ensembles. We compare the diversity of the functions produced by the DIVERSIFY stage to that
of independently trained models. On a 3-dimensional version of the binary classification task, we trained DivDis and
ensembles with {2, 3, 5} members. We measure how much each function relies on each of the three input dimensions
through the Pearson correlation coefficient between each input dimension and the prediction, Due to space constraints, we
show visualizations in Fig. 6 of Appendix D. Each of the functions learned by DivDis depend on different input features,
whereas independently trained models use all features equally. This experiment demonstrates that the diversity in a vanilla
ensemble cannot effectively cover the set of near-optimal functions, and is therefore insufficient for underspecified problems.
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Figure 4. (a) Accuracy of ERM and DivDis on MNIST-CIFAR data. (b) Number of labels used for disambiguation with the active
querying and random querying strategies. (c) Grad-CAM visualization of two learned heads on a randomly sampled datapoint from the
MNIST-CIFAR source dataset. See Sec. 3.1 for details.

Learning curves on toy task. In Fig. 5, we show learning curves of cross-entropy loss and mutual information loss
during training. The learning curves show that cross-entropy loss decreases first, at which point both of the heads represent
functions similar to the ERM solution. Afterwards, the mutual information loss decreases, causing the functions represented
by the two heads to diverge.

Visualization of functions on 3D toy task. We examine the extent to which the DIVERSIFY stage can produce different
functions by visualizing which input dimension each function relies on. We modify the synthetic binary classification task
to have 3-dimensional inputs and train DivDis with {2, 3, 5} heads. For each head, we visualize the Pearson correlation
coefficient between each input dimension and output. We normalize this 3-dimensional vector to sum to one and plot
each model as a point on a 2-simplex in Fig. 6, with independently trained functions as a baseline. The results show
that the DIVERSIFY stage acts as a repulsive force between the functions in function space, allowing the collection of
heads to explore much closer to the vertices. This experiment also demonstrates why vanilla ensembling is insufficient for
underspecified problems: the diversity due to random seed is not large enough to effectively cover the set of near-optimal
functions.

Noisy dimension. To see if DivDis can effectively combat simplicity bias, we further evaluate on a harder variant of the
2D classification problem in which we add noise along the x-axis. This noise makes the “correct” decision boundary have
positive non-zero risk, making it harder to learn than the other function. Results in Fig. 7 demonstrate that even in such a
scenario, DivDis recovers both the x-axis and y-axis decision boundaries, suggesting that DivDis can be effective even in
scenarios where ERM relies on spurious features due to simplicity bias.

Overcoming simplicity bias on MNIST-CIFAR data. The MNIST-CIFAR task was originally used by (Shah et al., 2020)
as an extreme example for demonstrating severe simplicity bias in neural networks. Each datapoint is a concatenation of one
image each from the MNIST and CIFAR datasets, and labels are binary. The source dataset is completely correlated: the first
class consists of (MNIST zero, CIFAR car) images, and the second class (MNIST one, CIFAR truck). The unlabeled target
dataset is not correlated: we take random samples from MNIST ∈ {zero, one} and CIFAR ∈ {car, truck} and concatenate
them. We evaluate on variants of MNIST-CIFAR with different levels of underspecification. We denote the mix ratio of DS
as r ∈ [0, 1], where r = 0 indicates completely correlated data as described above, and r = 1 indicates the distribution of
the target set. Values of r between zero and one indicate a mixture of the two distributions. Fig. 4a shows the target domain
accuracy of DivDis and ERM after training with mix ratios in {0, 0.2, 0.4, 0.6, 0.8, 1.0}. For this experiment, we use active
querying with m = 1 for disambiguation. ERM fails to do better than random guessing (50%) in the completely correlated
setting represented by mix ratio zero, whereas DivDis achieves over 75% accuracy in this challenging problem. For higher
ratios, the performance of the two methods converge to a similar value, because mix ratio 1 represents an i.i.d. setting where
the source and target distributions are identical.

Comparison of DISAMBIGUATE strategies on MNIST-CIFAR data. Using MNIST-CIFAR data with a complete
correlation, we plot the average final accuracy after the DISAMBIGUATE stage for both the active query and random query
strategies, for different number of labels used. Fig. 4b shows that active querying in particular is very efficient, and one label
suffices for finding the head with highest target data accuracy. We further show the viability of disambiguation on source
data: Fig. 4c shows Grad-CAM (Selvaraju et al., 2017) visualizations of two heads on a randomly sampled image from the
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Acc AUC AUC (drain) AUC (no-drain)

ERM 0.883 0.828 0.904 0.717
Pseudo-label 0.898 0.835 0.904 0.721
DivDis 0.934 0.836 0.902 0.737

Table 4. Pneumothorax classification metrics on the test set of CXR-14. In addition to overall accuracy and AUC, we measure AUC
separately on the two subsets of the positive class, drain and no-drain. DivDis shows higher AUC on the no-drain subset, which is more
indicative of the intended population of patients not yet being treated. Performance gains on the no-drain subset also contribute positively
to the overall metrics (Acc and AUC).

Table 5. CelebA dataset with complete correlation between 4 different pairs of attributes. DivDis outperforms previous methods in all but
one setting.

CelebA-CC-1 CelebA-CC-2 CelebA-CC-3 CelebA-CC-4

Avg (%) Worst (%) Avg (%) Worst (%) Avg (%) Worst (%) Avg (%) Worst (%)

ERM 70.9± 2.0 57.0± 5.8 73.1± 0.9 41.1± 2.6 87.0± 0.7 71.9± 2.6 63.9± 3.5 23.0± 1.4
JTT 44.6± 1.9 26.5± 1.4 71.4± 1.9 51.2± 5.4 64.8± 4.4 34.0± 10.2 67.4± 1.4 49.3± 8.2
GDRO 71.6± 0.3 59.3± 2.6 71.6± 2.4 61.3± 2.3 88.2± 0.6 83.7± 0.8 65.0± 1.6 21.7± 1.5

DivDis w/o reg 91.0± 0.4 85.9± 1.0 79.7± 0.4 69.3± 1.9 79.5± 0.6 62.0± 2.6 84.7± 0.5 67.4± 1.8
DivDis 90.8± 0.4 85.6± 1.1 79.5± 0.2 68.5± 1.7 80.6± 0.4 67.1± 1.9 84.8± 0.4 73.5± 2.6

source dataset. Even though the two heads predict the same label, they respectively focus on distinct features of the data: the
MNIST region and the CIFAR region. Since we know that the true predictive feature is the CIFAR image, we can select the
second head based on this single datapoint, and nothing beyond what was used during training.

CelebA hyperparameter grid. In Fig. 9, we show an additional hyperparameter grid for the CelebA dataset. This grid
shows a strong corrleation between metrics with respect to hyperparameter choice, indicating that DivDis can be tuned using
only labeled source data.

Additional Grad-CAM plots on MNIST-CIFAR data. In Fig. 8, we show additional Grad-CAM plots for MNIST-CIFAR
data, on 6 more random datapoints from the source dataset. Compared to the example given in the main text, these examples
are just as informative in terms of which head is better.

Effect of ratio. We test various values between 0 and 1 for the regularizer loss (2), on the Waterbirds benchmark. Fig. 10
shows that even using a ratio of 0.1 yields close to 80% worst-group accuracy, demonstrating that the performance of DivDis
is not very sensitive to this hyperparameter.

CXR pneumothorax classification. To investigate whether DivDis can disambiguate naturally occurring spurious correla-
tions, we consider the CXR-14 dataset (Wang et al., 2017), a large-scale dataset for pathology detection in chest radiographs.
We evaluate on the binary pneumothorax classification task, which has been reported to suffer from hidden stratification: a
subset of the images with the disease include a chest drain, a common treatment for the condition (Oakden-Rayner et al.,
2020). We train DivDis with two heads to see whether it can disambiguate between the visual features of chest drains and
lungs as a predictor for pneumothorax. In addition to ERM, we compare against the semi-supervised learning method
Pseudo-label (Lee et al., 2013), to see how much of the performace gain of DivDis can be attributed to the unlabeled target
set alone. In Tab. 4, we show test split accuracy and AUC, along with AUC for the subset of positive samples with and
without a chest drain. Our experiments show that DivDis achieves higher AUC in the no-drain split while doing marginally
worse on the drain split, indicating that the chosen head is relying more on the visual features of the lung. The overall
metrics (Acc and AUC) indicate that this performance gain in the no-drain subset also leads to better performance in overall
metrics.
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Table 6. CXR dataset test set metrics

Accuracy AUC AUC (drain) AUC (no-drain)

ERM 0.883± 0.006 0.828± 0.001 0.904± 0.008 0.717± 0.005
Pseudolabel 0.898± 0.015 0.835± 0.004 0.904± 0.007 0.721± 0.007
DivDis 0.934± 0.014 0.836± 0.007 0.902± 0.006 0.737± 0.001

E. Finite-hypothesis Generalization Bound for Head Selection
Proposition 1. Let the N heads have risk l1 ≤ l2 . . . ≤ lN ∈ R on the target dataset, and let ∆ = l2 − l1. The required
number of i.i.d. labels from the target set to select the best head with probability ≥ 1− δ is m = 2(log 2N−log δ)

∆2 .

Proof. Given m i.i.d. samples, Hoeffding’s inequality gives us for all ϵ > 0,

P
[
l − l̂ > ϵ

]
≤ 2 exp

(
−2mϵ2

)
. (4)

The event of failing to select the best head is a superset of the following event, for which we can bound the probability as:

P
[(∣∣∣l1 − l̂1

∣∣∣ > ∆

2

)
∨
(∣∣∣l2 − l̂2

∣∣∣ > ∆

2

)
∨ . . . ∨

(∣∣∣lN − l̂N

∣∣∣ > ∆

2

)]
≤ 2N exp

(
−m∆2

2

)
. (5)

Solving for δ = 2N exp
(
−m∆2

2

)
, we get the sample size bound

m∗ =
2(log 2N − log δ)

∆2
. (6)



Diversify and Disambiguate: Learning from Underspecified Data

Figure 5. Extended visualization for the 2D classification task (Fig. 3), with additional curves for the cross-entropy and mutual information
losses. Note that only accuracy is measured with target data, and the cross-entropy and mutual information losses are the training metrics
for DIVERSIFY measured on source data. Until around iteration 100, the model initially decreases cross-entropy at the cost of increasing
mutual information. The decision boundaries at this stage are similar for the two heads. Afterwards, both the mutual information and
cross-entropy decrease, leading to the heads having very different decision boundaries.
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Figure 6. Visualization of {2, 3, 5} functions trained independently (top row) and with DivDis (bottom row). Vertices of the 2-simplex
represent the three dimensions of the input data. The functions learned by DivDis are much more diverse compared to independent
training.

Head #1 Head #2

Figure 7. Functions learned by DivDis on a variant of the synthetic classification task, where the labeled source dataset has noise along
the x-axis. The second head recovers the Y -axis decision boundary even though it is harder to learn due to the noise. This indicates that
DivDis can successfully overcome simplicity bias and learn functions that ERM would not consider.
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Figure 8. Additional GradCAM visualizations of two learned heads on 6 examples from the source dataset of the MNIST-CIFAR task.
These examples sufficiently differentiate the best of the two heads, demonstrating the viability of the source data inspection strategy for
the DISAMBIGUATE stage.
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Figure 9. Grids for DivDis’s two hyperparameters (λ1, λ2) on the CelebA dataset. Rows indicate λ1 and columns indicate λ2. We show
three metrics measured with held-out datapoints: average accuracy on the source and target distributions and worst-group accuracy on the
target distribution. We average each metric across three random seeds. The high correlation between the three metrics indicates that we
can tune the hyperparameters of DivDis using only held-out labeled source data.
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Figure 10. Worst-group accuracy on the Waterbirds benchmark when using different ratio values for p(y) in the regularizer loss (2). The
plot shows that the performance of DivDis is not very sensitive to this hyperparameter.


