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Abstract

In order for NLP technology to be widely ap-001
plicable and useful, it needs to be inclusive002
of users across the world’s languages, equi-003
table, i.e., not unduly biased towards any par-004
ticular language, and accessible to users, par-005
ticularly in low-resource settings where com-006
pute constraints are common. In this paper, we007
propose an evaluation paradigm that assesses008
NLP technologies across all three dimensions,009
hence quantifying the diversity of users they010
can serve. While inclusion and accessibility011
have received attention in recent literature, eq-012
uity is currently unexplored. We propose to013
address this gap using the Gini coefficient, a014
well-established metric used for estimating so-015
cietal wealth inequality. Using our paradigm,016
we highlight the distressed state of diversity of017
current technologies for Indian (IN) languages.018
Our focus on IN is motivated by their linguistic019
diversity and their large, varied speaker pop-020
ulation. To improve upon these metrics, we021
demonstrate the importance of region-specific022
choices in model building and dataset creation023
and also propose a novel approach to optimal024
resource allocation during fine-tuning. Finally,025
we discuss steps that must be taken to mitigate026
these biases and call upon the community to in-027
corporate our evaluation paradigm when build-028
ing linguistically diverse technologies.029

1 Introduction030

NLP has seen large advances in recent years driven031

by the rapid progress in transfer learning (Ruder032

et al., 2019; Devlin et al., 2019). The benefits033

of these advances, however, are not equally dis-034

tributed across the world’s languages (Joshi et al.,035

2020) and users. While linguistic diversity and036

inclusion have evolved to be a pressing concern037

today, measures to quantify these are still lacking.038

The progress of any field is tightly coupled with039

its evaluation paradigm and the community is in-040

centivized to work on highly visible metrics and041

benchmarks. In order for users around the world042

to reap the benefits of NLP technology, we must 043

move from an evaluation that focuses on optimizing 044

raw performance on available test data to a more 045

holistic user-centric evaluation (Ethayarajh and Ju- 046

rafsky, 2020; Ruder et al., 2021). For multilingual 047

systems, such an evaluation should consider three 048

dimensions: inclusivity, equity, and accessibility.1 049

Inclusivity is important as NLP technology 050

should be available to speakers of any language 051

(European Language Resources Association, 2019). 052

To this end, recent work (Blasi et al., 2021) quan- 053

tifies inclusivity of NLP technology across the 054

world’s languages by weighing task performance 055

for each language based on its speaker population. 056

Equity is key as we should aim to develop tech- 057

nology that does not discriminate against speakers 058

of any particular language (Kaneko and Bollegala, 059

2019). State-of-the-art multilingual models in fact 060

have been shown to perform much better in lan- 061

guages with access to many pre-training resources 062

(Hu et al., 2020). To measure such performance 063

inequity across languages, we propose to use the 064

Gini coefficient (Dorfman, 1979), a measure that 065

has been used to represent the income inequality 066

within social groups. 067

Finally, accessibility is a concern as the fact that 068

NLP technology is performant in a given task and 069

language does not mean that it is usable. State- 070

of-the-art models have been becoming larger and 071

larger (Fedus et al., 2021) and the low-resource 072

setting of many languages often coincide with con- 073

straints on computational resources (Ahia et al., 074

2021). The value a technology provides to a user 075

thus also needs to consider how easily such technol- 076

ogy can be run and deployed in practice, which we 077

quantify based on a model’s efficiency at runtime, 078

specifically its throughput and memory. 079

Using our paradigm, we highlight the distressing 080

1We focus on assessing these dimensions on the language
level. Prior work on equity focuses mainly on subpopulations
within a language (Katell et al., 2020).
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state of diversity in current technologies for Indian081

(IN) languages. India is a multilingual society with082

1369 rationalized languages and dialects being spo-083

ken across the country (Chandramouli, 2011). Of084

these, 22 scheduled languages2, spoken by almost085

97% of the population hold an official recognition086

and 121 languages have more than 10,000 speak-087

ers. Additionally, 21.92% of its population lives088

below the poverty line (RBI, 2021). Therefore,089

serving this large varied population justly, requires090

a multi-faceted effort and basing our case study on091

IN languages directs the way forward.092

We evaluate state-of-the-art models across four093

standard downstream tasks: Named Entity Recog-094

nition (NER), Part-of-Speech Tagging (POS), Nat-095

ural Language Inference (NLI) and Question An-096

swering (QA). We evaluate a range of state-of-the-097

art models and transfer settings (Hu et al., 2020).098

We observe that region-specific choices, i.e. region-099

specific models (Kakwani et al., 2020; Khanuja100

et al., 2021) and Hindi as source language gener-101

ally yield the best results. In terms of efficiency, we102

find that smaller models are preferable for easier,103

syntactic tasks while larger models have the edge104

on more complex, semantic tasks.105

Our findings, however, also highlight that we are106

still a long way from building perfectly inclusive107

and equitable NLP technology. Towards bridging108

this gap, we explore how we can most effectively109

fine-tune pre-trained models. Specifically, we pro-110

pose a fully computational approach to model the111

space of source and target languages, and derive112

the optimal allocation of a fixed annotation budget113

to maximize performance on our proposed metrics.114

Our contributions are the following: 1) We pro-115

pose a holistic evaluation paradigm that assesses116

NLP technology based on their inclusivity, equity117

and accessibility. 2) Using this paradigm, we eval-118

uate model capabilities for IN languages and quan-119

tify their shortcomings. 3) We propose a novel120

approach to fine-tune these models with the objec-121

tive of maximizing performance for the proposed122

metrics. 4) We discuss steps that must be taken123

to mitigate these biases and call upon the commu-124

nity to incorporate our evaluation paradigm when125

building models to track progress towards building126

lunguistically inclusive and diverse technologies.127

2Assamese, Bengali, Bodo, Dogri, Gujarati, Hindi, Kash-
miri, Kannada, Konkani, Maithili, Malayalam, Manipuri,
Marathi, Nepali, Oriya, Punjabi, Tamil, Telugu, Sanskrit,
Santali, Sindhi, Urdu

2 Background and Related Work 128

Multilingual Models Transformer-based lan- 129

guage models (LMs) (Vaswani et al., 2017) trained 130

on massive amounts of text from multiple lan- 131

guages have enabled the inclusion of an unprece- 132

dented number of languages in NLP technologies 133

(Conneau et al., 2019; Devlin et al., 2018). How- 134

ever, previous research has shown that these models 135

do not serve all languages equally, with resource- 136

poor languages in the long tail suffering the most 137

(Hu et al., 2020; Lauscher et al., 2020). These mod- 138

els go through a critical step of fine-tuning for the 139

downstream task before being deployed. Several re- 140

cent works focus on optimal fine-tuning strategies 141

that mitigate transfer gaps and improve overall per- 142

formance across target languages. Lin et al. (2019) 143

propose a tool that chooses optimal transfer lan- 144

guages based on linguistic features. Lauscher et al. 145

(2020) demonstrate the effectiveness of investing 146

in few-shot in-language training examples. Most 147

recently, Debnath et al. (2021) show that invest- 148

ing in an equal number of fine-tuning instances 149

across target languages performs best. These past 150

approaches however, have all been heuristically de- 151

signed based on the knowledge and intuition of the 152

experimenter, unlike our proposed method that is 153

purely empirical. 154

User-centric Evaluation At its core, the need 155

for language diversity in technologies is tied to the 156

people it serves. Previous work (Ethayarajh and 157

Jurafsky, 2020; Ma et al., 2021) has highlighted 158

the need for more transparent and user-centric 159

leaderboard evaluation, reporting practically rele- 160

vant statistics such as model size, energy efficiency, 161

and inference latency. It is common for speaker 162

populations of under-represented languages to op- 163

erate in resource-constrained settings. Therefore, 164

in addition to evaluating linguistic diversity, we 165

employ efficiency metrics to assess accessibility 166

of these technologies. With regards to linguistic 167

diversity, Ruder et al. (2021) highlight the need for 168

more fine-grained evaluation across languages and 169

introduce language-specific leaderboards. Blasi 170

et al. (2021) quantify the value of NLP technol- 171

ogy weighed by speaker population and determine 172

utilities of several technologies across the world’s 173

languages. 174

Indian Languages The research community has 175

actively been contributing to the advancement of 176

IN NLP by collecting and open-sourcing data (Kak- 177
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wani et al., 2020; Ramesh et al., 2021; Abraham178

et al., 2020; Roark et al., 2020; Kunchukuttan179

et al., 2017; Khanuja et al., 2020a), building region-180

specific multilingual models (Khanuja et al., 2021;181

Kakwani et al., 2020; Ramesh et al., 2021) and cre-182

ating evaluation benchmarks (Kakwani et al., 2020;183

Khanuja et al., 2020b)3. Several of these efforts184

have been undertaken by AI4Bharat4, a non-profit185

open-source community that has additionally been186

working on developing resources for IN signed lan-187

guages (Sridhar et al., 2020) and creating input188

tools to type in IN scripts. Recently, Google Re-189

search India launched a question answering (QA)190

challenge named ChAII5. Microsoft Research In-191

dia has also made significant contributions to IN192

NLP with several efforts directed towards code-193

mixed language processing6 and building tools and194

datasets for under-represented languages in India7.195

3 Inclusion, Equity and Accessibility196

3.1 Inclusion: Utility, Demand and the Global197

Metric198

The global metric introduced by Blasi et al. (2021)199

helps quantify linguistic inclusion. Formally, this200

metric is composed of the utility of a technology201

weighed by its demand. The utility ul of a system202

for a task and language is its performance normal-203

ized by the best possible performance afforded by204

such a task, i.e.,205

ul =
performancel

theoretical max performance
206

The best possible performance is dictated by207

human-level performance achieved for the corre-208

sponding task.209

Demand dl is characterized by taking into con-210

sideration demographic and linguistic perspectives.211

Under the demographic perspective, the demand212

for a given technology in a language is estimated213

to be proportional to the number of speakers of the214

language itself nl (dl ∝ nl). Under the linguistic215

perspective, the demand across languages is iden-216

tical (dl ∝ 1). These two alternatives, as well as217

any intermediate combination of them, is parame-218

3https://github.com/AI4Bharat/indicnlp_catalog maintains a
list of resources for Indian NLP.

4https://ai4bharat.org/
5https://www.kaggle.com/c/chaii-hindi-and-tamil-question-
answering

6https://www.microsoft.com/en-us/research/project/melange
7https://www.microsoft.com/en-us/research/project/ellora

Figure 1: Graphical Representation of the Gini coeffi-
cient whose value is given by A/(A+B). Please refer to
Section 3.2 for more details.

terized through a single exponent τ : 219

d
(τ)
l =

nτl∑
l′εL nτl′

220

where τ = 1 correspond to a demographic notion 221

of demand and τ = 0 to a linguistic one. The global 222

metric can now be defined as: 223

Mτ =
∑
lεL

d
(τ)
l . ul 224

In essence, Mτ = 0 means that no user bene- 225

fits from language technology and Mτ = 1 corre- 226

sponds to each language user enjoying perfect tech- 227

nology. Importantly, the higher the difference in 228

M under the linguistic and demographic notions 229

of utility, the greater is the bias towards languages 230

with large speaker populations. 231

3.2 Equity: Gini Coefficient 232

While linguistic utility assigns equal weight across 233

languages, it does not take into account inequalities 234

in the performance across languages. A model that 235

achieves a performance of 0.9 in Hindi and 0.1 in 236

Tamil is assigned the same linguistic utility as a 237

model that obtains 0.5 in both languages, despite 238

the first one being much less equitable. We pro- 239

pose to use the Gini coefficient to measure such 240

inequity in language performance. The Gini coef- 241

ficient (Dorfman, 1979) is a measure of statistical 242

dispersion popularly used to quantify income in- 243

equality within a social group. 244

While several past works have highlighted trans- 245

fer gaps in performance across languages (Hu et al., 246

3
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https://www.kaggle.com/c/chaii-hindi-and-tamil-question-answering
https://www.kaggle.com/c/chaii-hindi-and-tamil-question-answering
https://www.microsoft.com/en-us/research/project/melange/
https://www.microsoft.com/en-us/research/project/ellora/


2020), none have quantified this dispersion.8 The247

Gini coefficient has several useful properties com-248

pared to alternative metrics to compute perfor-249

mance inequity such as the standard deviation, the250

difference between minimum and maximum, etc:251

it is a) scale-independent; b) bounded; and c) less252

influenced by outliers (De Maio, 2007).253

The Gini coefficient is mathematically computed254

based on the Lorenz curve, which plots the rela-255

tion between population size and the cumulative256

income earned by that population as shown in Fig-257

ure 1. To plot the Lorenz curve, individuals are258

sorted in increasing order of income (x-axis) and259

their cumulative wealth is plotted on the y-axis. In260

essence, a point (x, y) indicates that the bottom261

x% of the population holds y amount of wealth.262

The line at 45 degrees represents perfect equality263

of incomes. The Gini coefficient G is then calcu-264

lated as the ratio of the area that lies between the265

line of equality and the Lorenz curve (A in Figure266

1), over the total area under the line of equality267

(A + B in Figure 1). If G = 0, every person in268

the population receives an equal percentage of in-269

come and if G = 1, a single person receives 100%270

of the income. Since the axes scale from 0 to 1,271

A + B = 0.5. In essence, if the Lorenz curve is272

represented by the function Y = L(X) then G can273

be given as:274

G =
A

A+ B
= 2A = 1− 2B = 1− 2

∫ 1

0

L(X)dX275

For a population with values yi, i = 1 ... n, that are276

indexed in non-decreasing order (yi ≤ yi+1):277

G =
1

n

(
n + 1− 2

∑n
i=1(n + 1− i)yi∑n

i=1 yi

)
278

3.3 Accessibility: Efficiency Score279

Language technology is only beneficial if it can280

be deployed and accessed by users in a region.281

We employ efficiency to quantify accessibility as282

user devices are resource-constrained in many low-283

resource settings. In line with work on user-centric284

evaluation (Ethayarajh and Jurafsky, 2020; Ma285

et al., 2021), we propose to incorporate efficiency286

into model performance based on two aspects:287

Throughput: The throughput of the model is de-288

fined as the number of instances it can process289

per second on a CPU, assuming that GPUs are290

rarely used for deployment at scale in resource-291

constrained environments.292
8Hu et al. (2020) only considered the difference between En-
glish and other languages as cross-lingual transfer gap.

Memory Saved: We additionally consider the 293

size of the model as a measure of how expensive a 294

model is to use in practice. Since we wish to mini- 295

mize this metric, we transform memory used into 296

memory saved by subtracting it from a maximum 297

available memory of 16 GB (Ma et al., 2021). We 298

show the memory and throughput values for our 299

models in Appendix A.1. 300

In the efficiency score, we wish to capture the 301

benefit associated with per unit increase in cost, 302

where cost is given by the decrease in throughput 303

or memory saved. The model performance is taken 304

as a proxy for its benefit. Let x denote our set of 305

pre-trained models and M(x) denote metric val- 306

ues. Following Ma et al. (2021), we make two 307

key assumptions: i) All models lie on the same 308

indifference curve9; ii) if M(xi) > M(xi+1) and 309

perf(xi) > perf(xi+1), then there exists a model 310

〈perf(xi+1),M(xi) + (M(xi)−M(xi+1))〉 on the 311

same indifference curve as xi. Under these as- 312

sumptions, we can calculate the average benefit- 313

cost ratio (ABCR) for each metric and define 314

Efficiency(xi) as : 315

Efficiency(xi) =
∑
M

wM ∗
M(xi)

ABCR(M, perf)
316

ABCR(M, perf) = BCR 317

BCR =

{∣∣∣∣∣perf(xi)− perf(xi+1)

M(xi)−M(xi+1)

∣∣∣∣∣1 ≤ i < n

}
318

where we choose wperf = 0.5, wthroughput = 0.25 319

and wmemory = 0.25 as default weights. In prac- 320

tice, these weights can be adjusted as per user re- 321

quirements based on their constraints to calculate 322

the final efficiency score. 323

Note that we compute the ABCR value for each 324

language per task as opposed to prior work fo- 325

cusing on the task alone. Intuitively, we want to 326

calibrate the efficiency of a technology for each lan- 327

guage. For high-resource languages and relatively- 328

simpler tasks, smaller models achieve good perfor- 329

mances and scaling up merely leads to a 1–2% per- 330

formance increase. Here, the ABCR will be low, 331

hence increasing the relative importance of metric 332

M in the efficiency calculation. If we only measure 333

raw performance, larger models are ranked higher, 334

but with efficiency considerations, smaller models 335

9An indifference curve represents the combination of goods
that confer equal utility to the consumer at all points. In
our consideration, these goods are performance, throughput
and memory saved, all of which are desirable properties in a
model.
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Language as bn brx doi en gu hi kn kok ks mai ml
Speakers (in M) 23.6 107.4 1.6 2.8 128.5 60.3 691.6 58.8 2.6 7 14.3 35.6

Language mni mr ne or pa sa sat sd ta te ur -
Speakers (in M) 2.2 99.1 3.4 42.6 36.1 3.1 7.7 3.1 76.6 94.5 63.2 -

Table 1: The number of speakers (in millions) for each of the 22 scheduled languages and English. We take the
sum total of first, second and third language speakers for each language.

fare better. As we move to low-resource languages336

or more complex tasks however, performance dif-337

ferences are significant and using larger models is338

justified both in terms of utility and efficiency.339

3.4 Projected Metrics340

An issue when attempting to compute utility for the341

world’s languages (Blasi et al., 2021) or a subset342

of languages is that data to evaluate models is only343

available in a few languages. All languages with-344

out evaluation data are automatically assigned a345

score of 0, even though models may obtain passable346

performance on them due to cross-lingual transfer347

from related languages. We therefore propose to348

calculate projected estimates of the chosen metrics349

using our best performing model, which may help350

inform future data annotation efforts. Assuming351

that languages from the same family have simi-352

lar linguistic properties and knowing that end-task353

performance is largely influenced by the size of354

pre-training corpora (Lauscher et al., 2020), we355

calculate these estimates based on two factors: the356

language family and the availability of unlabeled357

data. Specifically, for each language without test358

data, we average the performance of all languages359

from the same family that are in the same data re-360

source group according to Joshi et al. (2020) and361

have test data available. If there is no language of362

the same family in the same resource group, we363

average the scores of all languages in the same364

resource group with test data available.10365

3.5 Optimal Allocation of Annotation Budget366

As fine-tuning on a few labeled examples in the tar-367

get language has shown to improve zero-shot trans-368

fer performance, we study how to allocate an anno-369

tation budget across a number of source languages370

S in order to optimize for inclusion and equity371

across a set of target languages T. Previous work372

employs a feature-based approach to select a sin-373

gle source language to maximize performance on374

10An alternative approach is to rely on feature-based perfor-
mance prediction (Xia et al., 2020; Ye et al., 2021), which
we leave for future work.

a target language (Lin et al., 2019) or labels exam- 375

ples across all source languages equally (Debnath 376

et al., 2021). We propose a fully computational ap- 377

proach for modeling the space of source and target 378

languages. This is done by empirically estimating 379

performance of language t ε T on a held-out set, 380

when fine-tuned on x labeled instances of language 381

s ε S, ∀(s, t) pairs, which follows a power-law dis- 382

tribution (Rosenfeld et al., 2019). We now seek to 383

find the optimal allocation {xs : s ∈ S} subject to 384∑
s∈S xs ≤ X (details in Appendix A.5). 385

We follow a simple greedy approach to solve 386

this constrained optimization problem as shown 387

in Table 10. Specifically, at each step we allocate 388

our sample to the source language conferring the 389

highest marginal gain to all target languages, which 390

is quantified by the summation of the increase in 391

the global metric and the reduction in Gini.11 At 392

present, we assign equal weight to each metric but 393

this can be changed according to user preferences. 394

4 Experiments 395

4.1 Experimental setup 396

Languages We base our case-study on the 22 397

scheduled languages of India spoken by 97% of its 398

population. We also include English, since a size- 399

able population of 128.5M speakers report English 400

to be their first, second or third language. We show 401

the number of speakers per language in Table 1. 402

Tasks We select tasks from the XTREME (Hu 403

et al., 2020) benchmark. Dataset details and the hu- 404

man performance (HP) for each task can be found 405

in Table 2. For each task, we only evaluate on IN 406

language test sets. 407

Models Model selection is motivated by two key 408

factors that we wish to explore in our study: i) 409

general v/s region-specific choices; ii) model effi- 410

ciency. We choose IndicBERT, MuRIL and XLM- 411

R, the first two being region-specific models and 412

11Future work may consider more complex approaches that
consider language relatedness based on work on transfer
relationship learning (Zamir et al., 2018; Song et al., 2019).
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Task Dataset Test Langs. HP
NER WikiAnn (Pan et al.,

2017; Rahimi et al.,
2019)

bn, en, gu,
hi, ml, mr,
pa, ta, te, ur

97.6

POS Universal Dependen-
cies v2.6 (Nivre et al.,
2018)

en, hi, mr, ta,
te, ur

97

NLI XNLI (Conneau et al.,
2018)

en, hi, ur 92.8

QA XQuAD (Artetxe
et al., 2019); TyDiQA-
GoldP (Clark et al.,
2020)

bn, en, hi, te 91.2;
90.1

Table 2: Finetuning Tasks and Datasets. HP denotes
the human performance for each task. For QA, HP is
91.2 F1 for XQuAD and 90.1 F1 for TyDiQA.

Language NER POS NLI QA
English 20,000 21,261 392,702 88,602
Hindi 5,000 13,305 392,702 (-tran) 88,602 (-tran)

Table 3: Number of training instances for English and
Hindi. (-tran) denotes that the English fine-tuning set
has been translated to Hindi.

the third being a state-of-the-art model trained on413

100+ languages. We consider both the base and414

large versions for MuRIL and XLM-R. IndicBERT415

follows the ALBERT architecture (Lan et al., 2019)416

and is hence much smaller than the base versions417

of both models. IndicBERT is trained on 11 IN lan-418

guages, XLM-R includes 15 and MuRIL is trained419

on 16 IN languages (details in Appendix A.2).420

Fine-tuning Following convention, we initially421

fine-tune the selected models using training data422

in English (EN) given the availability of labeled423

data across tasks. However, several past works424

have highlighted that this choice is sub-optimal and425

one can obtain much better performance by trans-426

ferring from closely related languages (Lauscher427

et al., 2020; Cotterell and Heigold, 2017; Dong428

et al., 2015; Turc et al., 2021). To examine its ef-429

fect in our case-study, we additionally fine-tune430

models on Hindi (HI) because: i) 15 out of 22 lan-431

guages belong to the same language family as HI432

(Indo-Aryan); ii) we have training data available433

for all tasks in HI12; iii) HI has the highest speaker434

population, which may lead to higher demographic435

utility and is also a future-safe choice to obtain an-436

notations for any task. Table 3 summarizes training437

data statistics for EN and HI.438

12Training sets for NLI and QA have been machine-translated
from English, which has been shown to perform similar to
human-generated train sets (Turc et al., 2021).

Metric Train Lang. Model NER PoS NLI QA Average

Mτ=0 ↑

English

IndicBERT 16.5 16.1 6.5 5.3 11.1
XLM-Rbase 27.0 21.4 10.3 13.8 18.1
MuRILbase 33.4 20.7 10.5 14.9 19.9
XLM-Rlarge 28.7 21.9 11.0 15.6 19.3
MuRILlarge 31.5 21.3 11.1 15.9 20.0

(Linguistic)

Hindi

IndicBERT 23.7 17.6 6.6 4.8 13.2
XLM-Rbase 30.4 22.4 10.6 13.5 19.2
MuRILbase 34.0 22.7 10.8 14.7 20.6
XLM-Rlarge 33.0 22.4 11.5 15.2 20.5
MuRILlarge 33.4 22.4 11.4 15.7 20.7

Mτ=1 ↑

English

IndicBERT 39.2 44.2 36.6 28.4 37.1
XLM-Rbase 59.2 58.1 43.6 49.9 52.7
MuRILbase 69.6 54.7 45.5 53.8 55.9
XLM-Rlarge 61.2 60.3 46.6 56.6 56.2
MuRILlarge 68.2 58.6 47.4 57.9 58.0

(Demographic)

Hindi

IndicBERT 61.0 61.6 39.8 29.9 48.1
XLM-Rbase 70.3 66.7 45.8 50.6 58.3
MuRILbase 75.1 67.3 46.8 54.7 61.0
XLM-Rlarge 74.4 66.8 49.4 53.2 60.9
MuRILlarge 74.8 66.5 49.2 54.6 61.3

Gini Coeff. ↓

English

IndicBERT 0.67 0.81 0.92 0.84 0.81
XLM-Rbase 0.61 0.76 0.88 0.83 0.77
MuRILbase 0.59 0.76 0.88 0.83 0.76
XLM-Rlarge 0.6 0.75 0.88 0.83 0.77
MuRILlarge 0.59 0.76 0.88 0.83 0.77

Hindi

IndicBERT 0.68 0.8 0.91 0.83 0.81
XLM-Rbase 0.59 0.75 0.87 0.83 0.76
MuRILbase 0.59 0.75 0.87 0.83 0.76
XLM-Rlarge 0.59 0.76 0.88 0.83 0.77
MuRILlarge 0.59 0.75 0.87 0.83 0.76

Efficiency ↑

English

IndicBERT 22.3 37.4 37.3 27.1 31.0
XLM-Rbase 32.4 41.2 39.1 37.2 37.4
MuRILbase 39.5 40.0 39.1 37.2 39.8
XLM-Rlarge 33.1 41.6 40.4 41.2 39.1
MuRILlarge 36.4 40.6 40.9 42.0 39.9

Hindi

IndicBERT 31.3 40.8 37.6 25.6 33.8
XLM-Rbase 36.2 43.1 40.1 36.4 39.0
MuRILbase 40.2 43.7 41.0 39.4 41.1
XLM-Rlarge 37.9 42.6 42.3 40.0 40.7
MuRILlarge 38.5 42.5 41.9 41.3 41.1

Table 4: Zero-shot fine-tuning results. Overall,
MuRILlarge scores highest on the utility metrics, the
Gini coefficient is relatively high across all models
and both MuRILbase and MuRILlarge are, on average,
equal with regards to efficiency. Note that the metrics
are computed considering all 23 languages as detailed
in Section 4.1. More discussions in Section 4.2.

4.2 Zero-shot transfer results 439

Where are we today? We report results of 440

fine-tuning models on EN and HI in Table 4. 441

Overall, the linguistic and demographic global 442

utility metric is highest for MuRILlarge, when 443

fine-tuned on HI. Generally, the linguistic metric is 444

much worse than the demographic one, indicating 445

that past efforts have been skewed towards 446

populous languages, leaving under-represented 447

languages behind. We also observe that utility 448

increases with region-specific choices, both in 449

pre-training and fine-tuning. The Gini coefficient 450

remains relatively high at around 0.76 even for 451

the best models, which highlights the disparity in 452

performance even among languages within a single 453

region13. For comparison, for OECD countries 454

from 2008–2009, the Gini coefficient on income 455

for the entire population ranged between 0.34 and 456

13For completeness, we calculate the Gini coefficient only
across languages with evaluation data in Appendix A.3.
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Metric NER PoS NLI QA Average
Mτ=0 ↑ 51.9 60.5 18.5 50.7 45.4
Mτ=1 ↑ 81.0 81.9 58.8 79.1 75.2

Gini Coeff. ↓ 0.31 0.29 0.79 0.4 0.44

Table 5: Projected Metrics that include estimated
MuRILlarge performances for all languages supported
by the model. Refer to Section 4.2 for more details.

0.53 while the Gini coefficient for the entire world457

has been estimated to be between 0.61 and 0.68458

(Hillebrand et al., 2009; Klugman and Nations,459

2010).460

461
How to handle the lack of evaluation data? In462

large part, this can be attributed to the absence of463

evaluation sets across tasks, with as few as 3 (out464

of 23) languages having test sets for XNLI. As465

detailed in Section 3.4, languages with no test data466

are assigned a score of zero, even if models would467

obtain non-zero performance. Hence, we calculate468

projected estimates using our best-performing469

model MuRILlarge in Table 5. While there is a470

significant increase across all metrics, the absolute471

values are still low with the linguistic utility being472

below 50%.473

474
How accessible are these models? With regards475

to the efficiency metric, averaging across languages476

and tasks, MuRILlarge and MuRILbase perform477

equally. MuRILbase has a higher efficiency score478

(1-3 points) for simpler token-level tasks like NER479

and POS, while MuRILlarge has higher scores480

on complex, semantic tasks like NLI (<1 point)481

and QA (2-5 points). Larger, more expressive482

models may thus be preferable in the latter483

cases despite being costlier on the accessibility484

front, since smaller models cannot obtain good485

performance. We illustrate per language efficiency486

scores in Appendix A.1 and discuss fine-grained487

observations.488

489
What is the way forward? Overall, the absolute490

values of the global metric and the Gini coefficient491

indicate that there lies great potential in both in-492

creasing the utility of our models and making them493

more equitable. Since model performances largely494

reflect the amount of raw data used in pre-training495

(Lauscher et al., 2020), creating equitable unla-496

beled data resources would alleviate these issues.497

However, this is an ambitious undertaking that is498

extremely resource intensive and can certainly not499

be achieved for 6500 languages in the near future.500

We thus investigate how limited amounts of data501

Metric Budget Model
Fine-tuning Strategy

English Hindi Egalitarian Greedy

Mτ=0 ↑

1,000
XLM-Rlarge 24.8 28.8 31.1 31.8
MuRILlarge 27.5 31.6 35.1 35.1

5,000
XLM-Rlarge 27.3 33.0 35.8 35.3
MuRILlarge 30.4 33.4 37.2 37.5

10,000
XLM-Rlarge 26.8 - 36.4 36.6
MuRILlarge 33.8 - 38.1 38.5

Mτ=1 ↑

1,000
XLM-Rlarge 54.0 66.2 65.4 65.3
MuRILlarge 60.4 71.3 74.1 73.6

5,000
XLM-Rlarge 59.4 74.4 75.4 75.7
MuRILlarge 65.4 74.8 78.2 78.3

10,000
XLM-Rlarge 59.0 - 77.6 77.6
MuRILlarge 70.5 - 79.6 79.9

Gini Coeff. ↓

1,000
XLM-Rlarge 0.6 0.6 0.59 0.59
MuRILlarge 0.6 0.6 0.58 0.58

5,000
XLM-Rlarge 0.6 0.59 0.59 0.59
MuRILlarge 0.59 0.59 0.58 0.58

10,000
XLM-Rlarge 0.61 - 0.59 0.59
MuRILlarge 0.59 - 0.58 0.58

Gini Coeff. ↓

1,000
XLM-Rlarge 0.087 0.07 0.061 0.06
MuRILlarge 0.079 0.071 0.044 0.039

5,000
XLM-Rlarge 0.088 0.057 0.049 0.058

(10 languages) MuRILlarge 0.062 0.066 0.042 0.039

10,000
XLM-Rlarge 0.011 - 0.051 0.052
MuRILlarge 0.05 - 0.04 0.033

Table 6: Performance on NER under different annota-
tion budgets. We observe that the greedy approach (
Section 3.5) performs best across all metrics. We also
report the Gini Coeff. calculated across 10 languages
for which we have test data. Note that the HI train set
has 5,000 examples only. Details in Section 4.3.

can be used to maximally improve utility and equity 502

during fine-tuning. 503

4.3 Few-shot results 504

Problem Formulation For few-shot fine- 505

tuning, we focus on NER where sufficient 506

labeled training data for seven IN languages 507

is available. We employ the source languages 508

S = {bn, en, hi,ml,mr, ta,ur} and seek to 509

optimize metrics on the target languages 510

T = {bn, en, gu, hi,ml,mr, pa, ta, te,ur}. In 511

each setting, we have a limited annotation budget, 512

which we can divide among the source languages. 513

We compare against several competitive baselines: 514

i) using only examples from EN or HI respec- 515

tively; ii) distributing the annotation budget in 516

an egalitarian (uniform) way across all source 517

languages (Debnath et al., 2021); iii) the greedy 518

approach proposed in Section 3.5. For the greedy 519

approach, we illustrate the best-fit curves for each 520

(s, t) pair in Appendix A.5 (Table 11). As the 521

original calculation of the Gini coefficient takes 522

into account all 23 IN languages, we also calculate 523

the metric over our 10 target languages only, to 524

observe how it differs across baselines.14 525

14In the original calculation, languages with no test sets have
zero performance. Therefore, dispersion in the performances
of our target language set is not as effectively captured and
differences across alternative approaches are not observable.
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Results We show the results under various anno-526

tation budgets in Table 6. Overall, we find that our527

method yields a higher global metric under most528

budgets (5 of 6 cases) and also yields a lower Gini529

coefficient under all budget schemes. The optimal530

allocations for each budget are shown in Table 12.531

As we can see, the greedy algorithm converges to a532

solution that is close to uniform. This provides fur-533

ther evidence for the benefits of an egalitarian dis-534

tribution of annotation budget in order to maximize535

performance across all languages as the expected536

marginal gain for languages that have been under-537

represented during training will be highest. Both538

the egalitarian and greedy approaches significantly539

outperform fine-tuning on EN or HI only, where540

the former approaches outperform fine-tuning on541

10,000 examples of EN with a limited budget of542

1,000 examples by 1–3%.543

5 Discussion544

Building evaluation datasets Having uncov-545

ered the linguistic inequity and exclusivity of cur-546

rent NLP technologies, we seek to identify practi-547

cal measures we can take in order to mitigate these548

biases. As a first step, it is paramount to build549

representative evaluation sets for all languages as550

they are required to accurately measure utility and551

equity. Out of the 23 languages in our case study,552

most do not have evaluation data across tasks de-553

spite holding official recognition and being spoken554

by 97% of the population. In light of the bene-555

fits of an egalitarian data distribution during few-556

shot learning, we also recommend the collection of557

small amounts of data across many languages for558

training, in order to maximize marginal gain.These559

datasets should be collected at the grass-roots level,560

involving the community they need to serve to561

capture culturally relevant phenomenon. A prime562

example of this is the Masakhane organisation15563

steering efforts towards data collection in African564

languages, involving the local community. Incen-565

tivizing rural, low-income workers to provide for566

such data also serves as a viable source of sup-567

plementary income, and does not degrade dataset568

quality (Abraham et al., 2020).569

Trading off multilinguality and regionality570

From a modeling perspective, multilingual pre-571

trained models have been instrumental to NLP572

systems supporting an unprecedented number of573

15https://www.masakhane.io/

languages, because of their zero-shot transfer ca- 574

pabilities. However, while these are a big step 575

towards linguistic inclusion, they are subject to 576

limitations such as highly skewed pre-training dis- 577

tributions and limited transfer to under-represented 578

languages (Hu et al., 2020; Lauscher et al., 2020), a 579

bias towards the source language, and sub-optimal 580

tokenization (Wang et al., 2021). A way to com- 581

bat these issues is to make region-specific choices, 582

both in pre-training and fine-tuning, as observed 583

in Section 4.2. Localizing the problem also en- 584

ables one to incorporate linguistic expertise and 585

provide support for culturally relevant phenomena 586

like transliteration or code-mixing. Despite this, 587

we must be wary of excessive fragmentation in 588

pre-training as it leads to higher maintenance costs 589

and there is a possibility that these benefits will 590

be overcome with advances in compute and model 591

capacity in the near-future. Optimal fine-tuning 592

however, is promising, as evidenced in Section 4.3 593

where we observe significant gains in moving away 594

from the zero-shot paradigm. There is still a lot 595

of room for improvement, however, as the best 596

linguistic utility is still less than 40%. 597

6 Conclusion 598

We have proposed a framework for the evaluation 599

of NLP technology based on inclusivity, equity, and 600

accessibility. To quantify equity, we have proposed 601

to use the Gini coefficient, a standard metric to mea- 602

sure income inequality within social groups. Focus- 603

ing on Indian languages, we have assessed to what 604

extent several modeling and data choices affect 605

the value NLP technology confers to users, high- 606

lighting the importance of region-specific choices 607

and efficient models. We have also proposed an 608

algorithmic method for resource allocation for task- 609

specific fine-tuning, which outperforms a purely 610

egalitarian distribution of data labeling. Finally, 611

we highlight the importance of building represen- 612

tative evaluation sets from the grass-roots level to 613

enable tracking progress, and discuss how even 614

with the best modeling strategies, we have a long 615

road ahead in building inclusive, equitable systems. 616

While region-specific choices help to a certain ex- 617

tent, building a single global multilingual model 618

without compromising on the three metrics is some- 619

thing we should move towards in the future. We sin- 620

cerely hope our evaluation paradigm aids in track- 621

ing the community’s progress in building linguisti- 622

cally diverse technologies. 623
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A Appendix869

A.1 Efficiency870

As detailed in Section 3.3, we report the throughput871

and memory for each model and task in Table 7.872

For NLI, POS and NER, the maximum sequence873

length is 128 and for QA it’s 384.874

We plot per-language efficiency scores for two875

tasks namely POS and QA in Figure 2 for all mod-876

els when fine-tuned on English. For most lan-877

guages, efficiency scores drop when we move from878

the base to large versions in POS, and for EN even879

the smallest model, IndicBERT, has an efficiency880

score similar to large models. However for QA,881

we observe a uniform gain in efficiency across lan-882

guages as we move to larger models.883

A.2 Pre-training Languages884

In Section 4.1, we choose IndicBERT, MuRIL and885

XLM-R as pre-trained multilingual models to base886

our analysis upon. IndicBERT is trained on 11 IN887

languages that include Assamese (as), Bengali (bn),888

Gujarati (gu), Hindi (hi), Kannada (kn), Malayalam889

(ml), Marathi (mr), Oriya (or), Punjabi (pa), Tamil890

(ta), Telugu (te). XLM-R includes 15 IN languages891

in training with the addition of Nepali (ne), Sanskrit892

(sa), Sindhi (sd) and Urdu (ur) over IndicBERT893

Model Metric NER PoS NLI QA

IndicBERT
Memory 129MB

Throughput 22.61 20.18 22.91 10.48
Perf (HI) 59.1 78.5 70.3 49.5

XLM-Rbase

Memory 1040MB
Throughput 24.39 23.15 26.37 14.91

Perf (HI) 68.4 82.3 78.5 70.7

MuRILbase

Memory 909MB
Throughput 23.81 23.06 26.23 15.65

Perf (HI) 75.7 83.4 79.7 76.6

XLM-Rlarge

Memory 2090MB
Throughput 9.35 9.95 10.35 4.1

Perf (HI) 74.0 81.8 84.5 79.0

MuRILlarge

Memory 1890MB
Throughput 9.8 9.93 10.5 4.22

Perf (HI) 76.4 81.5 84.1 81.7

Table 7: The throughput is given by the number of in-
stances processed per second by the fine-tuned models
on CPU.

Metric Train Lang. Model NER PoS NLI QA Average

Gini Coeff. ↓

English

IndicBERT 0.155 0.107 0.051 0.091 0.101
XLM-Rbase 0.095 0.067 0.058 0.048 0.067
MuRILbase 0.047 0.086 0.048 0.03 0.052
XLM-Rlarge 0.084 0.06 0.049 0.026 0.055
MuRILlarge 0.051 0.086 0.051 0.027 0.057

Hindi

IndicBERT 0.173 0.073 0.004 0.041 0.073
XLM-Rbase 0.067 0.037 0.039 0.046 0.047
MuRILbase 0.062 0.032 0.036 0.012 0.035
XLM-Rlarge 0.057 0.04 0.033 0.029 0.04
MuRILlarge 0.065 0.057 0.033 0.014 0.042

Table 8: Gini Coefficient for all models calculated only
across languages having evaluation sets for each task.

and MuRIL is trained on 16 IN languages, with the 894

addition of Kashmiri (ks) over XLM-R. 895

A.3 Gini Coefficient 896

As mentioned in Section 4.2, calculating the gini 897

coefficient across all 23 languages doesn’t reflect 898

the dispersion in performances across languages for 899

which we have test sets. To compare between base- 900

lines, we additionally report the Gini coefficient 901

evaluated only across those languages for which 902

we have test sets as shown in Table 8. We observe 903

that region-specific choices (MuRILbase fine-tuned 904

on HI) lead to the lowest value, similar to what we 905

observe with the global metric. 906

A.4 Fine-tuning Details 907

We fine-tune all models using the hyperparame- 908

ters mentioned in Table 9 for each task and model 909

consistently throughout the paper. We make an ex- 910

ception for IndicBERT when fine-tuning on NER, 911

where we fine-tune for 15 epochs instead of 10, to 912

reach convergence. 913
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Figure 2: Efficiency scores per-language, per-task when models are fine-tuned on EN

Task
Batch Learning No. of Warmup Max. seq.
Size Rate Epochs Ratio Length

NER 32 2e-5 10 0.1 128
POS 32 2e-5 10 0.1 128
NLI 64 2e-5 3 0.1 128
QA 32 3e-5 2 0.1 384

Table 9: Hyperparameter details for each fine-tuning
task

A.5 Budget Allocation914

In Section 3.5, we describe an empirical budget915

allocation scheme for fine-tuning of pre-trained916

models that can jointly optimize on our proposed917

metrics. We follow a greedy approach to solve918

this problem, as shown in Table 10. In this pa-919

per, we solve this for one task, namely NER, but920

the methodology proposed is generally extensible921

to any task and combination of languages since it922

is purely empirical. We select seven source lan-923

guages for which we have enough training data and924

fine-tune MuRILlarge and XLM-Rlarge for each925

of these source languages independently, for two926

epochs. During fine-tuning, we evaluate on each of927

our target languages after every 10 steps of training.928

Given our batch-size is 32, we gather data-points929

at a step size of 320 training instances. Conse-930

quently, say we have 5000 training instances for931

a source language, we gather approximately 30932

sample points for that source language and any tar-933

get language. Using these, we plot best-fit curves934

for ∀(s, t) pairs using the scipy.optimize.curve_fit935

package. Given a function, f(x), curve_fit uses non-936

linear least squares to fit f(x) to the observed data-937

points. We define f(x)s,t = as,t + bs,t ∗ x−cs,t , be-938

cause the relation between model performance939

and training data follows a power-law distribution940

(Rosenfeld et al., 2019). The best-fit curves for941

each source and target pair are shown in Table942

11. The visualizations of the best-fit curves for943

a sample training language (Tamil) are shown in 944

Figures 3, 4. Having determined constant values 945

{as,t,bs,t, cs,t} ∀(s, t) independently, we proceed 946

with finding the optimal allocation using the algo- 947

rithm described in Table 10. We solve this for three 948

different budgets, i.e., 1,000; 5,000 and 10,000 and 949

the optimal allocations for each budget are shown 950

in Table 12. 951

12



Greedy Algorithm
1: Input: Fine-tuning labeled data ∀s ε S. A fixed budget of labeled data instances X
2: Initialize: Set the total number of allocated instances to zero, i.e., allocated = 0, the number of

allocated samples for each source language to zero, i.e. samples[s] = 0∀s ε S, the current global metric
for each source language to -inf, i.e. current_gm[s] = −inf∀s ε S and the current gini coefficient for
each source language to 1, i.e. current_gini[s] = 1∀s ε S

3: while allocated < X do
4: highest_marginal_gain = 0
5: for s in S do
6: gms =

∑
tεT d

(τ)
t ∗ (as,t + bs,t ∗ (samples[s] + 1)−cs,t)

7: ginis = F[abs(performances,t(samples[s] + 1))∀t ε T]
8: ∆gms = gms − current_gm[s]
9: ∆ginis = current_gini[s]− ginis
10: marginal_gain = α ∗∆gms + β ∗∆ginis
9: if marginal_gain > highest_marginal_gain do
10: highest_marginal_gain = marginal_gain
11: best_language = s
12: best_gm = gms

13: best_gini = ginis
14: end if
15: end for
16: samples[s] = samples[s] + 1
17: allocated = allocated + 1
18: current_gm[best_language] = best_gm
19: current_gini[best_language] = best_gini
20: end while

Table 10: A greedy approach to solve constrained optimization for the budget allocation problem as described in
Appendix A.5

Figure 3: Best-fit curves for XLM-R when fine-tuned on Tamil for each of the target languages.

Figure 4: Best-fit curves for MuRIL when fine-tuned on Tamil for each of the target languages.
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Test Train
MuRIL XLM-R

Edge Weight R-squared Edge Weight R-squared

bn

bn 1.2− 29.0 ∗ x−0.5 0.88 1.3− 11.5 ∗ x−0.4 0.93
en 1.2− 11.4 ∗ x−0.4 0.78 1.1− 8.1 ∗ x−0.3 0.89
hi 1.4− 9.4 ∗ x−0.3 0.85 1.1− 8.1 ∗ x−0.3 0.92
ml 1.2− 10.7 ∗ x−0.3 0.86 2.3− 4.8 ∗ x−0.1 0.92
mr 1.9− 6.5 ∗ x−0.2 0.88 1.9− 4.6 ∗ x−0.1 0.93
ta 1.2− 10.5 ∗ x−0.3 0.83 1.3− 6.1 ∗ x−0.2 0.90
ur 1.0− 13.5 ∗ x−0.4 0.88 1.0− 6.5 ∗ x−0.3 0.91

en

bn 0.9− 4.4 ∗ x−0.3 0.86 1.0− 5.2 ∗ x−0.3 0.90
en 1.1− 16.4 ∗ x−0.4 0.82 1.1− 14.6 ∗ x−0.4 0.85
hi 1.0− 5.6 ∗ x−0.3 0.88 1.0− 7.6 ∗ x−0.3 0.90
ml 1.9− 3.5 ∗ x−0.1 0.88 1.0− 6.1 ∗ x−0.3 0.86
mr 1.2− 3.2 ∗ x−0.2 0.84 1.2− 4.8 ∗ x−0.2 0.91
ta 0.8− 4.2 ∗ x−0.3 0.76 0.7− 6.9 ∗ x−0.4 0.76
ur - 0.88 1.0− 3.9 ∗ x−0.2 0.90

gu

bn 2.6− 4.3 ∗ x−0.1 0.93 1.0− 4.8 ∗ x−0.3 0.88
en 0.9− 5.5 ∗ x−0.3 0.80 0.7− 11.3 ∗ x−0.5 0.78
hi 1.2− 5.4 ∗ x−0.2 0.87 0.7− 13.3 ∗ x−0.5 0.86
ml 1.2− 7.8 ∗ x−0.3 0.85 1.6− 4.3 ∗ x−0.2 0.90
mr 1.1− 6.4 ∗ x−0.3 0.87 1.1− 6.0 ∗ x−0.3 0.85
ta 0.8− 11.3 ∗ x−0.4 0.78 1.0− 7.6 ∗ x−0.3 0.84
ur 1.4− 3.4 ∗ x−0.1 0.91 1.6− 3.2 ∗ x−0.1 0.89

hi

bn 0.9− 17.2 ∗ x−0.5 0.88 1.2− 4.8 ∗ x−0.2 0.94
en 1.0− 11.7 ∗ x−0.4 0.83 0.9− 8.6 ∗ x−0.4 0.88
hi 1.1− 23.9 ∗ x−0.5 0.90 1.3− 9.5 ∗ x−0.3 0.92
ml 1.1− 12.4 ∗ x−0.4 0.85 1.4− 5.7 ∗ x−0.2 0.90
mr 1.1− 17.6 ∗ x−0.5 0.85 2.0− 5.3 ∗ x−0.2 0.93
ta 1.0− 19.1 ∗ x−0.5 0.78 1.1− 8.7 ∗ x−0.3 0.88
ur 1.0− 8.0 ∗ x−0.3 0.92 1.2− 4.6 ∗ x−0.2 0.94

ml

bn 1.1− 5.9 ∗ x−0.3 0.88 1.3− 4.3 ∗ x−0.2 0.92
en 1.2− 5.0 ∗ x−0.2 0.85 0.8− 7.6 ∗ x−0.3 0.85
hi 2.1− 5.0 ∗ x−0.1 0.86 1.0− 10.8 ∗ x−0.4 0.90
ml 1.1− 21.4 ∗ x−0.5 0.83 1.3− 7.8 ∗ x−0.3 0.90
mr 1.5− 7.3 ∗ x−0.3 0.86 1.4− 6.4 ∗ x−0.3 0.91
ta 1.1− 12.8 ∗ x−0.4 0.81 1.1− 10.0 ∗ x−0.4 0.86
ur 1.1− 5.1 ∗ x−0.2 0.89 1.1− 4.7 ∗ x−0.2 0.89

mr

bn 1.0− 9.3 ∗ x−0.4 0.88 1.1− 5.1 ∗ x−0.2 0.89
en 0.9− 8.8 ∗ x−0.3 0.81 0.9− 7.6 ∗ x−0.3 0.87
hi 1.3− 10.3 ∗ x−0.3 0.86 1.1− 9.6 ∗ x−0.4 0.91
ml 1.1− 15.2 ∗ x−0.4 0.83 1.3− 6.4 ∗ x−0.3 0.90
mr 1.2− 21.9 ∗ x−0.5 0.86 1.6− 7.6 ∗ x−0.3 0.92
ta 1.1− 17.3 ∗ x−0.4 0.79 1.1− 10.7 ∗ x−0.4 0.85
ur 1.2− 5.2 ∗ x−0.2 0.92 1.3− 4.2 ∗ x−0.2 0.91

pa

bn 1.0− 6.4 ∗ x−0.3 0.86 0.9− 4.2 ∗ x−0.3 0.82
en 1.2− 4.0 ∗ x−0.2 0.84 1.1− 2.9 ∗ x−0.2 0.85
hi 1.9− 5.9 ∗ x−0.2 0.84 1.8− 4.0 ∗ x−0.1 0.93
ml 1.0− 9.7 ∗ x−0.4 0.83 1.2− 3.6 ∗ x−0.2 0.87
mr 2.7− 5.3 ∗ x−0.1 0.88 1.3− 3.9 ∗ x−0.2 0.84
ta 1.4− 6.3 ∗ x−0.2 0.86 1.0− 4.7 ∗ x−0.2 0.84
ur 1.2− 4.5 ∗ x−0.2 0.92 0.8− 4.2 ∗ x−0.3 0.87

ta

bn 1.1− 7.2 ∗ x−0.3 0.89 1.0− 4.6 ∗ x−0.2 0.93
en 1.0− 7.9 ∗ x−0.3 0.83 0.8− 6.7 ∗ x−0.3 0.86
hi 1.4− 6.7 ∗ x−0.3 0.90 1.2− 5.9 ∗ x−0.3 0.92
ml 1.0− 14.1 ∗ x−0.4 0.83 1.3− 4.7 ∗ x−0.2 0.92
mr 1.3− 9.7 ∗ x−0.3 0.86 2.7− 5.0 ∗ x−0.1 0.94
ta 1.1− 19.7 ∗ x−0.5 0.79 1.2− 9.4 ∗ x−0.3 0.88
ur 1.2− 5.0 ∗ x−0.2 0.92 1.5− 3.4 ∗ x−0.1 0.92

te

bn 1.1− 5.4 ∗ x−0.3 0.90 0.8− 4.7 ∗ x−0.3 0.88
en 0.8− 10.1 ∗ x−0.4 0.79 0.7− 6.7 ∗ x−0.4 0.83
hi 1.0− 9.7 ∗ x−0.4 0.91 0.9− 7.3 ∗ x−0.3 0.86
ml 1.0− 15.3 ∗ x−0.4 0.83 1.1− 5.6 ∗ x−0.3 0.88
mr 1.0− 12.5 ∗ x−0.4 0.87 1.7− 4.5 ∗ x−0.2 0.93
ta 1.0− 16.5 ∗ x−0.4 0.81 1.0− 7.7 ∗ x−0.3 0.87
ur 1.4− 4.2 ∗ x−0.2 0.91 1.4− 3.1 ∗ x−0.1 0.90

ur

bn 0.6− 11.3 ∗ x−0.5 0.86 - 0.76
en 1.1− 5.5 ∗ x−0.2 0.83 1.0− 5.9 ∗ x−0.3 0.81
hi 2.6− 4.8 ∗ x−0.1 0.85 - 0.96
ml 1.1− 8.2 ∗ x−0.3 0.80 2.5− 5.0 ∗ x−0.1 0.85
mr 4.3− 6.1 ∗ x−0.1 0.87 5.2− 7.0 ∗ x−0.0 0.91
ta 1.1− 5.0 ∗ x−0.2 0.83 1.2− 5.2 ∗ x−0.2 0.83
ur 1.0− 42.2 ∗ x−0.6 0.87 1.1− 20.9 ∗ x−0.5 0.90

Table 11: Power-law equations empirically determined
for each source and target pair. Please refer to Section
A.5 for more details

Metric Budget Model bn en hi ml mr ta ur

GMτ=0

1,000
XLM-Rlarge 128 157 145 134 133 163 140
MuRILlarge 137 135 134 158 142 159 135

5,000
XLM-Rlarge 704 792 693 794 696 628 693
MuRILlarge 743 644 749 783 745 852 484

10,000
XLM-Rlarge 1322 1349 1400 1481 1457 1479 1512
MuRILlarge 1302 1468 1379 1421 1425 1448 1557

GMτ=1

1,000
XLM-Rlarge 126 160 159 134 129 163 129
MuRILlarge 142 136 152 143 148 157 122

5,000
XLM-Rlarge 710 805 713 803 707 639 623
MuRILlarge 744 644 761 772 747 848 484

10,000
XLM-Rlarge 1308 1363 1456 1465 1459 1471 1478
MuRILlarge 1308 1488 1396 1406 1416 1441 1545

Table 12: Optimal allocations under different budgets.
Please refer to Section A.5 for more details
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