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Abstract

In order for NLP technology to be widely ap-
plicable and useful, it needs to be inclusive
of users across the world’s languages, equi-
table, i.e., not unduly biased towards any par-
ticular language, and accessible to users, par-
ticularly in low-resource settings where com-
pute constraints are common. In this paper, we
propose an evaluation paradigm that assesses
NLP technologies across all three dimensions,
hence quantifying the diversity of users they
can serve. While inclusion and accessibility
have received attention in recent literature, eq-
uity is currently unexplored. We propose to
address this gap using the Gini coefficient, a
well-established metric used for estimating so-
cietal wealth inequality. Using our paradigm,
we highlight the distressed state of diversity of
current technologies for Indian (IN) languages.
Our focus on IN is motivated by their linguistic
diversity and their large, varied speaker pop-
ulation. To improve upon these metrics, we
demonstrate the importance of region-specific
choices in model building and dataset creation
and also propose a novel approach to optimal
resource allocation during fine-tuning. Finally,
we discuss steps that must be taken to mitigate
these biases and call upon the community to in-
corporate our evaluation paradigm when build-
ing linguistically diverse technologies.

1 Introduction

NLP has seen large advances in recent years driven
by the rapid progress in transfer learning (Ruder
et al., 2019; Devlin et al., 2019). The benefits
of these advances, however, are not equally dis-
tributed across the world’s languages (Joshi et al.,
2020) and users. While linguistic diversity and
inclusion have evolved to be a pressing concern
today, measures to quantify these are still lacking.
The progress of any field is tightly coupled with
its evaluation paradigm and the community is in-
centivized to work on highly visible metrics and
benchmarks. In order for users around the world

to reap the benefits of NLP technology, we must
move from an evaluation that focuses on optimizing
raw performance on available test data to a more
holistic user-centric evaluation (Ethayarajh and Ju-
rafsky, 2020; Ruder et al., 2021). For multilingual
systems, such an evaluation should consider three
dimensions: inclusivity, equity, and accessibility.'

Inclusivity is important as NLP technology
should be available to speakers of any language
(European Language Resources Association, 2019).
To this end, recent work (Blasi et al., 2021) quan-
tifies inclusivity of NLP technology across the
world’s languages by weighing task performance
for each language based on its speaker population.

Equity is key as we should aim to develop tech-
nology that does not discriminate against speakers
of any particular language (Kaneko and Bollegala,
2019). State-of-the-art multilingual models in fact
have been shown to perform much better in lan-
guages with access to many pre-training resources
(Hu et al., 2020). To measure such performance
inequity across languages, we propose to use the
Gini coefficient (Dorfman, 1979), a measure that
has been used to represent the income inequality
within social groups.

Finally, accessibility is a concern as the fact that
NLP technology is performant in a given task and
language does not mean that it is usable. State-
of-the-art models have been becoming larger and
larger (Fedus et al., 2021) and the low-resource
setting of many languages often coincide with con-
straints on computational resources (Ahia et al.,
2021). The value a technology provides to a user
thus also needs to consider how easily such technol-
ogy can be run and deployed in practice, which we
quantify based on a model’s efficiency at runtime,
specifically its throughput and memory.

Using our paradigm, we highlight the distressing

"We focus on assessing these dimensions on the language
level. Prior work on equity focuses mainly on subpopulations
within a language (Katell et al., 2020).



state of diversity in current technologies for Indian
(IN) languages. India is a multilingual society with
13609 rationalized languages and dialects being spo-
ken across the country (Chandramouli, 2011). Of
these, 22 scheduled languages?, spoken by almost
97% of the population hold an official recognition
and 121 languages have more than 10,000 speak-
ers. Additionally, 21.92% of its population lives
below the poverty line (RBI, 2021). Therefore,
serving this large varied population justly, requires
a multi-faceted effort and basing our case study on
IN languages directs the way forward.

We evaluate state-of-the-art models across four
standard downstream tasks: Named Entity Recog-
nition (NER), Part-of-Speech Tagging (POS), Nat-
ural Language Inference (NLI) and Question An-
swering (QA). We evaluate a range of state-of-the-
art models and transfer settings (Hu et al., 2020).
We observe that region-specific choices, i.e. region-
specific models (Kakwani et al., 2020; Khanuja
et al., 2021) and Hindi as source language gener-
ally yield the best results. In terms of efficiency, we
find that smaller models are preferable for easier,
syntactic tasks while larger models have the edge
on more complex, semantic tasks.

Our findings, however, also highlight that we are
still a long way from building perfectly inclusive
and equitable NLP technology. Towards bridging
this gap, we explore how we can most effectively
fine-tune pre-trained models. Specifically, we pro-
pose a fully computational approach to model the
space of source and target languages, and derive
the optimal allocation of a fixed annotation budget
to maximize performance on our proposed metrics.

Our contributions are the following: 1) We pro-
pose a holistic evaluation paradigm that assesses
NLP technology based on their inclusivity, equity
and accessibility. 2) Using this paradigm, we eval-
uate model capabilities for IN languages and quan-
tify their shortcomings. 3) We propose a novel
approach to fine-tune these models with the objec-
tive of maximizing performance for the proposed
metrics. 4) We discuss steps that must be taken
to mitigate these biases and call upon the commu-
nity to incorporate our evaluation paradigm when
building models to track progress towards building
lunguistically inclusive and diverse technologies.

2Assamese, Bengali, Bodo, Dogri, Gujarati, Hindi, Kash-
miri, Kannada, Konkani, Maithili, Malayalam, Manipuri,
Marathi, Nepali, Oriya, Punjabi, Tamil, Telugu, Sanskrit,
Santali, Sindhi, Urdu

2 Background and Related Work

Multilingual Models Transformer-based lan-
guage models (LMs) (Vaswani et al., 2017) trained
on massive amounts of text from multiple lan-
guages have enabled the inclusion of an unprece-
dented number of languages in NLP technologies
(Conneau et al., 2019; Devlin et al., 2018). How-
ever, previous research has shown that these models
do not serve all languages equally, with resource-
poor languages in the long tail suffering the most
(Hu et al., 2020; Lauscher et al., 2020). These mod-
els go through a critical step of fine-tuning for the
downstream task before being deployed. Several re-
cent works focus on optimal fine-tuning strategies
that mitigate transfer gaps and improve overall per-
formance across target languages. Lin et al. (2019)
propose a tool that chooses optimal transfer lan-
guages based on linguistic features. Lauscher et al.
(2020) demonstrate the effectiveness of investing
in few-shot in-language training examples. Most
recently, Debnath et al. (2021) show that invest-
ing in an equal number of fine-tuning instances
across target languages performs best. These past
approaches however, have all been heuristically de-
signed based on the knowledge and intuition of the
experimenter, unlike our proposed method that is
purely empirical.

User-centric Evaluation At its core, the need
for language diversity in technologies is tied to the
people it serves. Previous work (Ethayarajh and
Jurafsky, 2020; Ma et al., 2021) has highlighted
the need for more transparent and user-centric
leaderboard evaluation, reporting practically rele-
vant statistics such as model size, energy efficiency,
and inference latency. It is common for speaker
populations of under-represented languages to op-
erate in resource-constrained settings. Therefore,
in addition to evaluating linguistic diversity, we
employ efficiency metrics to assess accessibility
of these technologies. With regards to linguistic
diversity, Ruder et al. (2021) highlight the need for
more fine-grained evaluation across languages and
introduce language-specific leaderboards. Blasi
et al. (2021) quantify the value of NLP technol-
ogy weighed by speaker population and determine
utilities of several technologies across the world’s
languages.

Indian Languages The research community has
actively been contributing to the advancement of
IN NLP by collecting and open-sourcing data (Kak-



wani et al., 2020; Ramesh et al., 2021; Abraham
et al., 2020; Roark et al., 2020; Kunchukuttan
et al., 2017; Khanuja et al., 2020a), building region-
specific multilingual models (Khanuja et al., 2021;
Kakwani et al., 2020; Ramesh et al., 2021) and cre-
ating evaluation benchmarks (Kakwani et al., 2020;
Khanuja et al., 2020b)°. Several of these efforts
have been undertaken by AI4Bharat*, a non-profit
open-source community that has additionally been
working on developing resources for IN signed lan-
guages (Sridhar et al., 2020) and creating input
tools to type in IN scripts. Recently, Google Re-
search India launched a question answering (QA)
challenge named ChAII’. Microsoft Research In-
dia has also made significant contributions to IN
NLP with several efforts directed towards code-
mixed language processing® and building tools and
datasets for under-represented languages in India’.

3 Inclusion, Equity and Accessibility

3.1 Inclusion: Utility, Demand and the Global
Metric

The global metric introduced by Blasi et al. (2021)
helps quantify linguistic inclusion. Formally, this
metric is composed of the utility of a technology
weighed by its demand. The utility uj of a system
for a task and language is its performance normal-
ized by the best possible performance afforded by
such a task, i.e.,

performance;

1= -
theoretical max performance

The best possible performance is dictated by
human-level performance achieved for the corre-
sponding task.

Demand d; is characterized by taking into con-
sideration demographic and linguistic perspectives.
Under the demographic perspective, the demand
for a given technology in a language is estimated
to be proportional to the number of speakers of the
language itself nj (dj o< nj). Under the linguistic
perspective, the demand across languages is iden-
tical (dj o< 1). These two alternatives, as well as
any intermediate combination of them, is parame-

*https://github.com/Al4Bharat/indicnlp_catalog maintains a
list of resources for Indian NLP.

*https://ai4bharat.org/

Shttps://www.kaggle.com/c/chaii-hindi-and-tamil-question-
answering

®https://www.microsoft.com/en-us/research/project/melange

"https://www.microsoft.com/en-us/research/project/ellora
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Figure 1: Graphical Representation of the Gini coeffi-
cient whose value is given by A/(A+B). Please refer to
Section 3.2 for more details.

terized through a single exponent 7:
an = M
Zl/ el nf;

where 7 = 1 correspond to a demographic notion
of demand and 7 = 0 to a linguistic one. The global
metric can now be defined as:

M, =Y d7y
leLk

In essence, M, = 0 means that no user bene-
fits from language technology and M = 1 corre-
sponds to each language user enjoying perfect tech-
nology. Importantly, the higher the difference in
M under the linguistic and demographic notions
of utility, the greater is the bias towards languages
with large speaker populations.

3.2 Equity: Gini Coefficient

While linguistic utility assigns equal weight across
languages, it does not take into account inequalities
in the performance across languages. A model that
achieves a performance of 0.9 in Hindi and 0.1 in
Tamil is assigned the same linguistic utility as a
model that obtains 0.5 in both languages, despite
the first one being much less equitable. We pro-
pose to use the Gini coefficient to measure such
inequity in language performance. The Gini coef-
ficient (Dorfman, 1979) is a measure of statistical
dispersion popularly used to quantify income in-
equality within a social group.

While several past works have highlighted trans-
fer gaps in performance across languages (Hu et al.,
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2020), none have quantified this dispersion.® The
Gini coefficient has several useful properties com-
pared to alternative metrics to compute perfor-
mance inequity such as the standard deviation, the
difference between minimum and maximum, etc:
it is a) scale-independent; b) bounded; and c) less
influenced by outliers (De Maio, 2007).

The Gini coefficient is mathematically computed
based on the Lorenz curve, which plots the rela-
tion between population size and the cumulative
income earned by that population as shown in Fig-
ure 1. To plot the Lorenz curve, individuals are
sorted in increasing order of income (x-axis) and
their cumulative wealth is plotted on the y-axis. In
essence, a point (x, y) indicates that the bottom
x% of the population holds y amount of wealth.
The line at 45 degrees represents perfect equality
of incomes. The Gini coefficient G is then calcu-
lated as the ratio of the area that lies between the
line of equality and the Lorenz curve (A in Figure
1), over the total area under the line of equality
(A 4+ B in Figure 1). If G = 0, every person in
the population receives an equal percentage of in-
come and if G = 1, a single person receives 100%
of the income. Since the axes scale from O to 1,
A + B = 0.5. In essence, if the Lorenz curve is
represented by the function Y = L(X) then G can
be given as:

A
G_A+B

1
:2A:172B:172/ L(X)dX
0

For a population with values yj, i = 1 ... n, that are
indexed in non-decreasing order (y; < yi+1):

Zin:1(n +1- i)Yi)
D i Vi

3.3 Accessibility: Efficiency Score

Language technology is only beneficial if it can
be deployed and accessed by users in a region.
We employ efficiency to quantify accessibility as
user devices are resource-constrained in many low-
resource settings. In line with work on user-centric
evaluation (Ethayarajh and Jurafsky, 2020; Ma
et al., 2021), we propose to incorporate efficiency
into model performance based on two aspects:

G:1<n+12

n

Throughput: The throughput of the model is de-
fined as the number of instances it can process
per second on a CPU, assuming that GPUs are
rarely used for deployment at scale in resource-
constrained environments.

$Hu et al. (2020) only considered the difference between En-
glish and other languages as cross-lingual transfer gap.

Memory Saved: We additionally consider the
size of the model as a measure of how expensive a
model is to use in practice. Since we wish to mini-
mize this metric, we transform memory used into
memory saved by subtracting it from a maximum
available memory of 16 GB (Ma et al., 2021). We
show the memory and throughput values for our
models in Appendix A.1.

In the efficiency score, we wish to capture the
benefit associated with per unit increase in cost,
where cost is given by the decrease in throughput
or memory saved. The model performance is taken
as a proxy for its benefit. Let x denote our set of
pre-trained models and M(x) denote metric val-
ues. Following Ma et al. (2021), we make two
key assumptions: i) All models lie on the same
indifference curve’; ii) if M(x;) > M(xj,1) and
perf(x;) > perf(xiy1), then there exists a model
(perf(xi+1), M(Xi) + (M(Xl) — M(Xi+1))> on the
same indifference curve as x;. Under these as-
sumptions, we can calculate the average benefit-
cost ratio (ABCR) for each metric and define
Efficiency(x;) as :

. M(x;
Efficiency(x;) = ZWM * ABCR((M)Perf)
M b

ABCR(M, perf) = BCR
1<i< n}

BCR:{

where we choose Wpert = 0.5, Winroughput = 0.25
and Wiemory = 0.25 as default weights. In prac-
tice, these weights can be adjusted as per user re-
quirements based on their constraints to calculate
the final efficiency score.

Note that we compute the ABCR value for each
language per task as opposed to prior work fo-
cusing on the task alone. Intuitively, we want to
calibrate the efficiency of a technology for each lan-
guage. For high-resource languages and relatively-
simpler tasks, smaller models achieve good perfor-
mances and scaling up merely leads to a 1-2% per-
formance increase. Here, the ABCR will be low,
hence increasing the relative importance of metric
M in the efficiency calculation. If we only measure
raw performance, larger models are ranked higher,
but with efficiency considerations, smaller models

perf(x;) — perf(xj41)
M(x) — M(xi41)

° An indifference curve represents the combination of goods
that confer equal utility to the consumer at all points. In
our consideration, these goods are performance, throughput
and memory saved, all of which are desirable properties in a
model.



Language as bn  brx doi en

gu hi kn kok ks mai ml

Speakers (in M)

1285 603 691.6 58.8 2.6 7

143 356

23.6 1074 16 28

Language mni  mr ne or pa

sa sat sd ta te ur -

Speakers (inM) | 2.2 99.1 34

42.6 36.1

3.1 1.7 31 766 945 632 -

Table 1: The number of speakers (in millions) for each of the 22 scheduled languages and English. We take the
sum total of first, second and third language speakers for each language.

fare better. As we move to low-resource languages
or more complex tasks however, performance dif-
ferences are significant and using larger models is
justified both in terms of utility and efficiency.

3.4 Projected Metrics

An issue when attempting to compute utility for the
world’s languages (Blasi et al., 2021) or a subset
of languages is that data to evaluate models is only
available in a few languages. All languages with-
out evaluation data are automatically assigned a
score of 0, even though models may obtain passable
performance on them due to cross-lingual transfer
from related languages. We therefore propose to
calculate projected estimates of the chosen metrics
using our best performing model, which may help
inform future data annotation efforts. Assuming
that languages from the same family have simi-
lar linguistic properties and knowing that end-task
performance is largely influenced by the size of
pre-training corpora (Lauscher et al., 2020), we
calculate these estimates based on two factors: the
language family and the availability of unlabeled
data. Specifically, for each language without test
data, we average the performance of all languages
from the same family that are in the same data re-
source group according to Joshi et al. (2020) and
have test data available. If there is no language of
the same family in the same resource group, we
average the scores of all languages in the same
resource group with test data available.'”

3.5 Optimal Allocation of Annotation Budget

As fine-tuning on a few labeled examples in the tar-
get language has shown to improve zero-shot trans-
fer performance, we study how to allocate an anno-
tation budget across a number of source languages
S in order to optimize for inclusion and equity
across a set of target languages T'. Previous work
employs a feature-based approach to select a sin-
gle source language to maximize performance on

10 An alternative approach is to rely on feature-based perfor-
mance prediction (Xia et al., 2020; Ye et al., 2021), which
we leave for future work.

a target language (Lin et al., 2019) or labels exam-
ples across all source languages equally (Debnath
et al., 2021). We propose a fully computational ap-
proach for modeling the space of source and target
languages. This is done by empirically estimating
performance of language t € T on a held-out set,
when fine-tuned on x labeled instances of language
s €S, V(s, t) pairs, which follows a power-law dis-
tribution (Rosenfeld et al., 2019). We now seek to
find the optimal allocation {xs : s € S} subject to
Y ses Xs < X (details in Appendix A.5).

We follow a simple greedy approach to solve
this constrained optimization problem as shown
in Table 10. Specifically, at each step we allocate
our sample to the source language conferring the
highest marginal gain to all target languages, which
is quantified by the summation of the increase in
the global metric and the reduction in Gini.'! At
present, we assign equal weight to each metric but
this can be changed according to user preferences.

4 Experiments

4.1 Experimental setup

Languages We base our case-study on the 22
scheduled languages of India spoken by 97% of its
population. We also include English, since a size-
able population of 128.5M speakers report English
to be their first, second or third language. We show
the number of speakers per language in Table 1.

Tasks We select tasks from the XTREME (Hu
et al., 2020) benchmark. Dataset details and the hu-
man performance (HP) for each task can be found
in Table 2. For each task, we only evaluate on IN
language test sets.

Models Model selection is motivated by two key
factors that we wish to explore in our study: i)
general v/s region-specific choices; ii) model effi-
ciency. We choose IndicBERT, MuRIL and XLM-
R, the first two being region-specific models and

"Future work may consider more complex approaches that
consider language relatedness based on work on transfer
relationship learning (Zamir et al., 2018; Song et al., 2019).



Task Dataset
NER | WikiAnn (Pan et al.,

Test Langs. | HP
bn, en, gu,| 97.6

2017, Rahimi et al., | hi, ml, mr,
2019) pa, ta, te, ur

POS | Universal Dependen- | en, hi, mr, ta, | 97
cies v2.6 (Nivre et al., | te, ur
2018)

NLI | XNLI (Conneau et al., | en, hi, ur 92.8
2018)

QA | XQuAD (Artetxe | bn, en, hi, te | 91.2;
et al., 2019); TyDiQA- 90.1
GoldP (Clark et al.,
2020)

Table 2: Finetuning Tasks and Datasets. HP denotes
the human performance for each task. For QA, HP is
91.2 F1 for XQuAD and 90.1 F1 for TyDiQA.

Language | NER POS NLI QA
English | 20,000 | 21,261 392,702 88,602
Hindi 5,000 | 13,305 | 392,702 (-tran) | 88,602 (-tran)

Table 3: Number of training instances for English and
Hindi. (-tran) denotes that the English fine-tuning set
has been translated to Hindi.

the third being a state-of-the-art model trained on
100+ languages. We consider both the base and
large versions for MuRIL and XLLM-R. IndicBERT
follows the ALBERT architecture (Lan et al., 2019)
and is hence much smaller than the base versions
of both models. IndicBERT is trained on 11 IN lan-
guages, XLM-R includes 15 and MuRIL is trained
on 16 IN languages (details in Appendix A.2).

Fine-tuning Following convention, we initially
fine-tune the selected models using training data
in English (EN) given the availability of labeled
data across tasks. However, several past works
have highlighted that this choice is sub-optimal and
one can obtain much better performance by trans-
ferring from closely related languages (Lauscher
et al., 2020; Cotterell and Heigold, 2017; Dong
et al., 2015; Turc et al., 2021). To examine its ef-
fect in our case-study, we additionally fine-tune
models on Hindi (HI) because: i) 15 out of 22 lan-
guages belong to the same language family as HI
(Indo-Aryan); ii) we have training data available
for all tasks in HI'?; iii) HI has the highest speaker
population, which may lead to higher demographic
utility and is also a future-safe choice to obtain an-
notations for any task. Table 3 summarizes training
data statistics for EN and HI.

Training sets for NLI and QA have been machine-translated
from English, which has been shown to perform similar to
human-generated train sets (Turc et al., 2021).

Metric Train Lang. Model NER | PoS | NLI | QA | Average
IndicBERT | 16.5 | 16.1 | 6.5 | 5.3 11.1
XLM-Rpase | 27.0 | 21.4 | 103 | 13.8 18.1
English MuRILpase | 334 | 20.7 | 10.5 | 149 19.9
XLM-Rjarge | 28.7 | 219 | 11.0 | 15.6 193
Mr—o 1 MuRILjarge | 315 | 21.3 | 11.1 | 159 20.0
(Linguistic) IndicBERT | 23.7 | 17.6 | 6.6 | 4.8 132
XLM-Rpase | 304 | 22.4 | 10.6 | 13.5 19.2
Hindi MuRILpase | 34.0 | 22.7 | 10.8 | 14.7 20.6
XLM-Riarge | 33.0 | 224 | 115 | 15.2 20.5
MuRILjrge | 334 | 224 | 114 | 157 20.7
IndicBERT | 39.2 | 44.2 | 36.6 | 28.4 37.1
XLM-Rpase | 59.2 | 58.1 | 43.6 | 49.9 52.7
English MuRILpase | 69.6 | 54.7 | 45.5 | 53.8 55.9
XLM-Rjarge | 612 | 60.3 | 46.6 | 56.6 56.2
Mq— 1 MuRILjrge | 682 | 58.6 | 47.4 | 57.9 58.0

IndicBERT | 61.0 | 61.6 | 39.8 | 299 | 48.1
XLM-Rpee | 70.3 | 66.7 | 458 | 50.6 | 58.3
Hindi MuRILpaee | 75.1 | 673 | 468 | 547 | 61.0
XLM-Riarge | 744 | 66.8 | 49.4 | 532 | 60.9
MuRILjyge | 748 | 665 | 49.2 | 54.6 | 613
IndicBERT | 0.67 | 0.81 | 0.92 | 0.84 | 0.81
XLM-Rygee | 0.61 | 0.76 | 0.88 | 0.83 | 0.77
MuRILpye | 059 | 0.76 | 0.88 | 0.83 | 0.76
XLM-Rigge | 0.6 | 075 [ 0.88 | 0.83 | 0.77
MuRILjge | 0.59 | 0.76 | 0.88 | 0.83 | 077

(Demographic)

English

Gini Coeff. | TndicBERT | 0.68 | 0.8 | 0.01 | 0.83 | 0.81
XLM-Rpaee | 059 | 0.75 | 0.87 | 0.83 | 0.76
Hindi | MuRILpae | 0.59 | 0.75 | 0.87 | 0.83 | 0.76
XEM-Riarge | 0.59 | 076 | 0.88 | 0.83 | 0.7
MuRILy,pe | 059 | 075 | 0.87 | 0.83 | 0.76
IndicBERT | 22.3 | 37.4 | 373 | 27.1 | 310
XLM-Rpge | 324 | 412 39.1 | 37.2 | 374
English | MuRILygse | 39.5 | 400 | 39.1 | 37.2 | 39.8
XLM-Riuge | 33.1 | 416 | 404 | 412 | 39.1
. MuRILiage | 364 | 40.6 | 409 | 420 | 399
Efficiency T TndicBERT | 313 [ 408 | 37.6 | 256 | 338
XLM-Rpaee | 36.2 | 43.1 | 40.1 | 364 | 39.0
Hindi | MuRILpee | 40.2 | 43.7 | 410 | 394 | 4L1
XIM-Riarge | 37.9 | 426 | 42.3 | 400 | 407
MuRILjag | 38.5 | 42.5 | 419 | 413 | 411
Table 4: Zero-shot fine-tuning results.  Overall,

MuRILjarge scores highest on the utility metrics, the
Gini coefficient is relatively high across all models
and both MuRIL},se and MuRILj,,¢c are, on average,
equal with regards to efficiency. Note that the metrics
are computed considering all 23 languages as detailed
in Section 4.1. More discussions in Section 4.2.

4.2 Zero-shot transfer results

Where are we today? We report results of
fine-tuning models on EN and HI in Table 4.
Overall, the linguistic and demographic global
utility metric is highest for MuRILj,ge, When
fine-tuned on HI. Generally, the linguistic metric is
much worse than the demographic one, indicating
that past efforts have been skewed towards
populous languages, leaving under-represented
languages behind. We also observe that utility
increases with region-specific choices, both in
pre-training and fine-tuning. The Gini coefficient
remains relatively high at around 0.76 even for
the best models, which highlights the disparity in
performance even among languages within a single
region'®. For comparison, for OECD countries
from 2008-2009, the Gini coefficient on income
for the entire population ranged between 0.34 and

For completeness, we calculate the Gini coefficient only
across languages with evaluation data in Appendix A.3.



Metric NER | PoS | NLI | QA | Average

M;=o T 51.9 | 60.5 | 18.5 | 50.7 454

M;=1 T 81.0 | 81.9 | 58.8 | 79.1 75.2
Gini Coeff. | | 0.31 | 0.29 | 0.79 | 0.4 0.44

Table 5:  Projected Metrics that include estimated
MuRILjarge performances for all languages supported
by the model. Refer to Section 4.2 for more details.

0.53 while the Gini coefficient for the entire world
has been estimated to be between 0.61 and 0.68
(Hillebrand et al., 2009; Klugman and Nations,
2010).

How to handle the lack of evaluation data? In
large part, this can be attributed to the absence of
evaluation sets across tasks, with as few as 3 (out
of 23) languages having test sets for XNLI. As
detailed in Section 3.4, languages with no test data
are assigned a score of zero, even if models would
obtain non-zero performance. Hence, we calculate
projected estimates using our best-performing
model MuRILjapge in Table 5. While there is a
significant increase across all metrics, the absolute
values are still low with the linguistic utility being
below 50%.

How accessible are these models? With regards
to the efficiency metric, averaging across languages
and tasks, MuRILjyree and MuRILpaee perform
equally. MuRILy,,¢ has a higher efficiency score
(I-3 points) for simpler token-level tasks like NER
and POS, while MuRILj,,g. has higher scores
on complex, semantic tasks like NLI (<1 point)
and QA (2-5 points). Larger, more expressive
models may thus be preferable in the latter
cases despite being costlier on the accessibility
front, since smaller models cannot obtain good
performance. We illustrate per language efficiency
scores in Appendix A.1 and discuss fine-grained
observations.

What is the way forward? Overall, the absolute
values of the global metric and the Gini coefficient
indicate that there lies great potential in both in-
creasing the utility of our models and making them
more equitable. Since model performances largely
reflect the amount of raw data used in pre-training
(Lauscher et al., 2020), creating equitable unla-
beled data resources would alleviate these issues.
However, this is an ambitious undertaking that is
extremely resource intensive and can certainly not
be achieved for 6500 languages in the near future.
We thus investigate how limited amounts of data

. Fine-tuning Strategy
Metric Budget Model English | Hindi | Egalitarian | Greedy

1000 | XEMRppge | 248|288 311 31.8

i MuRILjarge | 275 31.6 35.1 35.1

XLM-Riarge | 27.3 33.0 358 353

M=o ® 3,000 MuRILjarge | 304 33.4 37.2 375
XLM-Riarge | 26.8 - 36.4 36.6

10,000 MuRILjarge | 33.8 - 38.1 38.5

1000 | XEMRpage | 540|662 654 653

’ MuRILjyge | 60.4 71.3 74.1 73.6

XLM-Riarge | 594 74.4 754 757

M=t ? 3,000 MuRILjarge | 654 74.8 782 78.3
XLM-Riarge | 59.0 - 71.6 71.6

10,000 MuRILjyrge | 705 - 79.6 79.9

1.000 XLM-Rjarge 0.6 0.6 0.59 0.59

? MuRILjge 0.6 0.6 0.58 0.58

- XLM-Riarge 0.6 0.59 0.59 0.59
Gini Coeff. L | 5000 |y RILe | 059 | 059 | 058 0.58
XLM-Rijarge | 0.61 - 0.59 0.59

10,000 MuRILjyrge | 0.59 - 0.58 0.58

1.000 XLM-Rjarge | 0.087 0.07 0.061 0.06
’ MuRILjyge | 0.079 | 0.071 0.044 0.039

Gini Coeff. | 5.000 XLM-Rjarge | 0.088 | 0.057 0.049 0.058
(10 languages) ) MuRILjarge | 0.062 | 0.066 0.042 0.039
10.000 XLM-Riarge | 0.011 - 0.051 0.052
’ MuRILjypge | 0.05 - 0.04 0.033

Table 6: Performance on NER under different annota-
tion budgets. We observe that the greedy approach (
Section 3.5) performs best across all metrics. We also
report the Gini Coeff. calculated across 10 languages
for which we have test data. Note that the HI train set
has 5,000 examples only. Details in Section 4.3.

can be used to maximally improve utility and equity
during fine-tuning.

4.3 Few-shot results

Problem Formulation For few-shot fine-
tuning, we focus on NER where sufficient
labeled training data for seven IN languages
is available. We employ the source languages
S = {bn, en, hi,ml, mr, ta,ur} and seek to
optimize metrics on the target languages
T = {bn, en, gu, hi, ml, mr, pa, ta, te, ur}. In
each setting, we have a limited annotation budget,
which we can divide among the source languages.
We compare against several competitive baselines:
i) using only examples from EN or HI respec-
tively; ii) distributing the annotation budget in
an egalitarian (uniform) way across all source
languages (Debnath et al., 2021); iii) the greedy
approach proposed in Section 3.5. For the greedy
approach, we illustrate the best-fit curves for each
(s,t) pair in Appendix A.5 (Table 11). As the
original calculation of the Gini coefficient takes
into account all 23 IN languages, we also calculate
the metric over our 10 target languages only, to
observe how it differs across baselines.'*

“In the original calculation, languages with no test sets have
zero performance. Therefore, dispersion in the performances
of our target language set is not as effectively captured and
differences across alternative approaches are not observable.



Results We show the results under various anno-
tation budgets in Table 6. Overall, we find that our
method yields a higher global metric under most
budgets (5 of 6 cases) and also yields a lower Gini
coefficient under all budget schemes. The optimal
allocations for each budget are shown in Table 12.
As we can see, the greedy algorithm converges to a
solution that is close to uniform. This provides fur-
ther evidence for the benefits of an egalitarian dis-
tribution of annotation budget in order to maximize
performance across all languages as the expected
marginal gain for languages that have been under-
represented during training will be highest. Both
the egalitarian and greedy approaches significantly
outperform fine-tuning on EN or HI only, where
the former approaches outperform fine-tuning on
10,000 examples of EN with a limited budget of
1,000 examples by 1-3%.

5 Discussion

Building evaluation datasets Having uncov-
ered the linguistic inequity and exclusivity of cur-
rent NLP technologies, we seek to identify practi-
cal measures we can take in order to mitigate these
biases. As a first step, it is paramount to build
representative evaluation sets for all languages as
they are required to accurately measure utility and
equity. Out of the 23 languages in our case study,
most do not have evaluation data across tasks de-
spite holding official recognition and being spoken
by 97% of the population. In light of the bene-
fits of an egalitarian data distribution during few-
shot learning, we also recommend the collection of
small amounts of data across many languages for
training, in order to maximize marginal gain.These
datasets should be collected at the grass-roots level,
involving the community they need to serve to
capture culturally relevant phenomenon. A prime
example of this is the Masakhane organisation'>
steering efforts towards data collection in African
languages, involving the local community. Incen-
tivizing rural, low-income workers to provide for
such data also serves as a viable source of sup-
plementary income, and does not degrade dataset
quality (Abraham et al., 2020).

Trading off multilinguality and regionality
From a modeling perspective, multilingual pre-
trained models have been instrumental to NLP
systems supporting an unprecedented number of

Shttps://www.masakhane.io/

languages, because of their zero-shot transfer ca-
pabilities. However, while these are a big step
towards linguistic inclusion, they are subject to
limitations such as highly skewed pre-training dis-
tributions and limited transfer to under-represented
languages (Hu et al., 2020; Lauscher et al., 2020), a
bias towards the source language, and sub-optimal
tokenization (Wang et al., 2021). A way to com-
bat these issues is to make region-specific choices,
both in pre-training and fine-tuning, as observed
in Section 4.2. Localizing the problem also en-
ables one to incorporate linguistic expertise and
provide support for culturally relevant phenomena
like transliteration or code-mixing. Despite this,
we must be wary of excessive fragmentation in
pre-training as it leads to higher maintenance costs
and there is a possibility that these benefits will
be overcome with advances in compute and model
capacity in the near-future. Optimal fine-tuning
however, is promising, as evidenced in Section 4.3
where we observe significant gains in moving away
from the zero-shot paradigm. There is still a lot
of room for improvement, however, as the best
linguistic utility is still less than 40%.

6 Conclusion

We have proposed a framework for the evaluation
of NLP technology based on inclusivity, equity, and
accessibility. To quantify equity, we have proposed
to use the Gini coefficient, a standard metric to mea-
sure income inequality within social groups. Focus-
ing on Indian languages, we have assessed to what
extent several modeling and data choices affect
the value NLP technology confers to users, high-
lighting the importance of region-specific choices
and efficient models. We have also proposed an
algorithmic method for resource allocation for task-
specific fine-tuning, which outperforms a purely
egalitarian distribution of data labeling. Finally,
we highlight the importance of building represen-
tative evaluation sets from the grass-roots level to
enable tracking progress, and discuss how even
with the best modeling strategies, we have a long
road ahead in building inclusive, equitable systems.
While region-specific choices help to a certain ex-
tent, building a single global multilingual model
without compromising on the three metrics is some-
thing we should move towards in the future. We sin-
cerely hope our evaluation paradigm aids in track-
ing the community’s progress in building linguisti-
cally diverse technologies.


https://www.masakhane.io/
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A Appendix

A.1 Efficiency

As detailed in Section 3.3, we report the throughput
and memory for each model and task in Table 7.
For NLI, POS and NER, the maximum sequence
length is 128 and for QA it’s 384.

We plot per-language efficiency scores for two
tasks namely POS and QA in Figure 2 for all mod-
els when fine-tuned on English. For most lan-
guages, efficiency scores drop when we move from
the base to large versions in POS, and for EN even
the smallest model, IndicBERT, has an efficiency
score similar to large models. However for QA,
we observe a uniform gain in efficiency across lan-
guages as we move to larger models.

A.2 Pre-training Languages

In Section 4.1, we choose IndicBERT, MuRIL and
XLM-R as pre-trained multilingual models to base
our analysis upon. IndicBERT is trained on 11 IN
languages that include Assamese (as), Bengali (bn),
Gujarati (gu), Hindi (hi), Kannada (kn), Malayalam
(ml), Marathi (mr), Oriya (or), Punjabi (pa), Tamil
(ta), Telugu (te). XLM-R includes 15 IN languages
in training with the addition of Nepali (ne), Sanskrit
(sa), Sindhi (sd) and Urdu (ur) over IndicBERT
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Model Metric | NER | PoS [ NLI | QA
Memory 129MB
IndicBERT | Throughput | 22.61 | 20.18 [ 22.91 | 10.48
| Perf(HI) | 59.1 | 785 | 703 | 49.5
Memory 1040MB
XLM-Riase | Throughput | 24.39 | 23.15 | 26.37 | 14.91
| Perf(HI) | 684 | 823 [ 785 | 707
Memory 909MB
MuRILp,se | Throughput | 23.81 | 23.06 [ 26.23 | 15.65
| Perf(HI) | 757 | 834 | 79.7 | 766
Memory 2090MB
XLM-Ryurge | Throughput | 9.35 | 9.95 [ 10.35 | 4.1
| Perf(HI) | 74.0 | 81.8 | 845 | 79.0
Memory 1890MB
MuRILj,ge | Throughput | 9.8 | 9.93 [ 10.5 | 422
Perf (HI) | 764 | 81.5 | 84.1 | 81.7

Table 7: The throughput is given by the number of in-
stances processed per second by the fine-tuned models
on CPU.

Model
IndicBERT
XLM-Rpase
MuRILpgase
XLM-Riarge

NER
0.155
0.095
0.047
0.084
0.051
0173
0.067
0.062
0.057
0.065

NLI
0.051
0.058
0.048
0.049
0.051
31 0.004°
0.039
0.036
0.033
0.033

Metric Train Lang. Average
0.101
0.067
0.052

0.055

English

Gini Coeff. |

IndicBERT
XLM-Rpase
MuRILpage
XLM-Rigrge
MuRILjarge

Table 8: Gini Coefficient for all models calculated only
across languages having evaluation sets for each task.

and MuRIL is trained on 16 IN languages, with the
addition of Kashmiri (ks) over XLM-R.

A.3 Gini Coefficient

As mentioned in Section 4.2, calculating the gini
coefficient across all 23 languages doesn’t reflect
the dispersion in performances across languages for
which we have test sets. To compare between base-
lines, we additionally report the Gini coefficient
evaluated only across those languages for which
we have test sets as shown in Table 8. We observe
that region-specific choices (MuRILy, g fine-tuned
on HI) lead to the lowest value, similar to what we
observe with the global metric.

A.4 Fine-tuning Details

We fine-tune all models using the hyperparame-
ters mentioned in Table 9 for each task and model
consistently throughout the paper. We make an ex-
ception for IndicBERT when fine-tuning on NER,
where we fine-tune for 15 epochs instead of 10, to
reach convergence.
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Figure 2: Efficiency scores per-language, per-task when models are fine-tuned on EN
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Task Batch | Learning | No. of | Warmup | Max. seq.
Size Rate Epochs | Ratio Length
NER | 32 2e-5 10 0.1 128
POS 32 2e-5 10 0.1 128
NLI 64 2e-5 3 0.1 128
QA 32 3e-5 2 0.1 384
Table 9: Hyperparameter details for each fine-tuning
task

A.5 Budget Allocation

In Section 3.5, we describe an empirical budget
allocation scheme for fine-tuning of pre-trained
models that can jointly optimize on our proposed
metrics. We follow a greedy approach to solve
this problem, as shown in Table 10. In this pa-
per, we solve this for one task, namely NER, but
the methodology proposed is generally extensible
to any task and combination of languages since it
is purely empirical. We select seven source lan-
guages for which we have enough training data and
fine-tune MuRILjsrge and XLM-Ry,ge for each
of these source languages independently, for two
epochs. During fine-tuning, we evaluate on each of
our target languages after every 10 steps of training.
Given our batch-size is 32, we gather data-points
at a step size of 320 training instances. Conse-
quently, say we have 5000 training instances for
a source language, we gather approximately 30
sample points for that source language and any tar-
get language. Using these, we plot best-fit curves
for V(s, t) pairs using the scipy.optimize.curve_fit
package. Given a function, f(x), curve_fit uses non-
linear least squares to fit f(x) to the observed data-
points. We define f(x)s ¢ = ag s + bst * X, be-
cause the relation between model performance
and training data follows a power-law distribution
(Rosenfeld et al., 2019). The best-fit curves for
each source and target pair are shown in Table
11. The visualizations of the best-fit curves for
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a sample training language (Tamil) are shown in
Figures 3, 4. Having determined constant values
{ast, bst,Cs ¢} V(s,t) independently, we proceed
with finding the optimal allocation using the algo-
rithm described in Table 10. We solve this for three
different budgets, i.e., 1,000; 5,000 and 10,000 and
the optimal allocations for each budget are shown
in Table 12.



Greedy Algorithm

1: Input: Fine-tuning labeled data Vs € S. A fixed budget of labeled data instances X

2: Initialize: Set the total number of allocated instances to zero, i.e., allocated = 0, the number of
allocated samples for each source language to zero, i.e. samples[s] = 0Vs € S, the current global metric
for each source language to -inf, i.e. current_gm[s] = —infVs e S and the current gini coefficient for
each source language to 1, i.e. current_gini[s] = 1Vs € S

3:  while allocated < X do

4 highest_marginal_gain = 0

5 for sin S do

6 gmy = Yr A7 # (g + by * (samplesfs] + 1))

7

8

9

ginis = Flabs(performances ¢ (samples]s] + 1))Vt ¢ T]
Agmg = gmg — current_gm|s]
: Aginis = current_gini[s] — ginis

10: marginal_gain = a *x Agmg + 3 * Aginig

9: if marginal_gain > highest_marginal_gain do

10: highest_marginal_gain = marginal_gain

11: best_language = s

12: best_gm = gmg

13: best_gini = ginig

14: end if

15:  end for

16:  samples[s| = samples[s] + 1

17: allocated = allocated + 1

18:  current_gm[best_language] = best_gm

19:  current_gini[best_language] = best_gini

20: end while

Table 10: A greedy approach to solve constrained optimization for the budget allocation problem as described in
Appendix A.5
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Figure 4: Best-fit curves for MuRIL when fine-tuned on Tamil for each of the target languages.
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Test | Train MuRIL XLM-R
Edge Weight R-squared Edge Weight R-squared
bn [ 1.2—-29.0%x 0% 0.88 1.3 —11.5%x 07 0.93
en | 1.2—11.4%x 04 0.78 1.1 —8.1#%x03 0.89
hi 1.4 —9.4%x03 0.85 1.1 —8.1#%x03 0.92
bn | ml | 1.2—10.7+x %3 0.86 2.3 —4.8%x 01 0.92
mr | 1.9-6.5x%x02 0.88 1.9 — 4.6 xx 01 0.93
ta | 1.2—10.5%x793 0.83 1.3 -6.1%x 02 0.90
ur | 1.0 —13.5%x 04 0.88 1.0 — 6.5 %x 03 0.91
bn | 0.9 —44xx 03 0.86 1.0 —52%x 03 0.90
en | 1.1—16.4x%x04 0.82 1.1 — 14.6 % x 04 0.85
hi 1.0 — 5.6 %x 03 0.88 1.0 - 7.6+ x 703 0.90
en ml 1.9 —3.5%x 01 0.88 1.0 — 6.1 %xx03 0.86
mr | 1.2 -3.2%x 02 0.84 1.2 —4.8%x 02 0.91
ta 0.8 —4.2x703 0.76 0.7-6.9%x 04 0.76
ur - 0.88 1.0 —3.9%x02 0.90
bn | 2.6 —43%xx 0T 0.93 1.0 — 4.8 xx 03 0.88
en | 0.9—55%x03 0.80 0.7—11.3xx7 05 0.78
hi | 1.2-54%x02 0.87 0.7 - 133 % x5 0.86
gu | ml | 1.2-78%x03 0.85 1.6 — 4.3 % x 92 0.90
mr | 1.1 —6.4%x 03 0.87 1.1 —-6.0%x03 0.85
ta |08—11.3%x 04 0.78 1.0 - 7.6 +x 03 0.84
ur 1.4 —34%x 01 0.91 1.6 —3.2%x 01 0.89
bn [0.9-17.2%x 05 0.88 1.2 —4.8%x 02 0.94
en | 1.0—11.7%x 04 0.83 0.9 —8.6%x 04 0.88
hi | 1.1-23.9%x 0% 0.90 1.3 -95%x 03 0.92
hi | ml | 1.1—12.4%x04 0.85 1.4 —5.7%x02 0.90
mr | 1.1 -17.6 x5 0.85 2.0 —5.3%x 02 0.93
ta | 1.0 —19.1%x7 0 0.78 1.1 —8.7+x 03 0.88
ur 1.0 - 8.0%x 03 0.92 1.2 — 4.6 %x 02 0.94
bn | 1.1-59%x 03 0.88 1.3 —4.3%x 02 0.92
en | 1.2-50%x 02 0.85 0.8 —7.6%x03 0.85
hi | 21-50%x01 0.86 1.0 - 10.8 xx 04 0.90
ml | ml | 1.1—214%x0%% 0.83 1.3 - 7.8%x 03 0.90
mr | 1.5-73%x 03 0.86 14— 64%x03 0.91
ta | 1.1—12.8%x 04 0.81 1.1 —10.0 % x 04 0.86
ur 1.1—51%x 92 0.89 1.1 —4.7%x02 0.89
bn | 1.0-93xx 04 0.88 1.1-51#%x 02 0.89
en | 0.9—-88xx 03 0.81 0.9 —7.6%x03 0.87
hi |1.3-10.3%x03 0.86 1.1 -9.6%x 04 0.91
mr | ml | 1.1-152%x 94 0.83 1.3 —6.4%x 03 0.90
mr | 1.2 -21.9%x 05 0.86 1.6 — 7.6 xx 03 0.92
ta | 1.1—-17.3%x 04 0.79 1.1 —10.7%x 04 0.85
ur 1.2 -52%x 02 0.92 1.3 -4.2%x702 0.91
bn | 1.0—-6.4xx03 0.86 0.9 —-4.2xx03 0.82
en | 1.2—-4.0%x02 0.84 1.1 -29#%x02 0.85
hi 1.9 —5.9%x02 0.84 1.8 — 4.0 xx 01 0.93
pa | ml | 1.0-9.7%x%4 0.83 1.2 -3.6%x02 0.87
mr | 2.7-53%x 0! 0.88 1.3 -3.9%x 02 0.84
ta | 1.4—6.3%x 02 0.86 1.0 —4.7%x702 0.84
ur 1.2 —4.5%x 02 0.92 0.8 —4.2%x03 0.87
bn | 1.1-72%x 03 0.89 1.0 —4.6 xx 02 0.93
en 1.0 —7.9%x03 0.83 0.8—6.7%x03 0.86
hi 1.4 —6.7+x03 0.90 1.2 - 59 %x03 0.92
ta ml | 1.0 — 14.1 % x 04 0.83 1.3 —4.7%x02 0.92
mr | 1.3-9.7xx03 0.86 2.7 —5.0%x 01 0.94
ta | 1.1 —19.7%x7 05 0.79 1.2 -94%x 03 0.88
ur | 1.2 -5.0%x0? 0.92 1.5 — 3.4 %x 01 0.92
bn | 1.1—5.4%x 03 0.90 0.8 —4.7xx 03 0.88
en |0.8—10.1%x04 0.79 0.7—6.7%x 04 0.83
hi 1.0 — 9.7+ x 04 0.91 0.9 —7.3%x03 0.86
te ml | 1.0 —15.3 % x 04 0.83 1.1 -56%x 03 0.88
mr | 1.0 —12.5 % x 04 0.87 1.7 —4.5%x 02 0.93
ta | 1.0-16.5%x"04 0.81 1.0 = 7.7+ x93 0.87
ur | 1.4 —42xx02 091 1.4 —3.1%x 01 0.90
bn [ 0.6 —11.3%x 0% 0.86 - 0.76
en 1.1 —55%x 02 0.83 1.0 — 5.9 % x 03 0.81
hi | 2.6—4.8x%x 01 0.85 - 0.96
ur m | 1.1-82xx 93 0.80 2.5 —5.0%x 01 0.85
mr | 4.3 —6.1xx0! 0.87 5.2 —7.0%x 00 0.91
ta 1.1—5.0%x02 0.83 1.2 -52%x 02 0.83
ur | 1.0 —42.2%x 706 0.87 1.1 —20.9 % x99 0.90

Table 11: Power-law equations empirically determined
for each source and target pair. Please refer to Section

A.5 for more details
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Metric | Budget Model bn en hi ml mr ta ur
1.000 XLM-Riarge | 128 | 157 | 145 | 134 | 133 | 163 | 140

’ MuRILjapge | 137 135 134 158 142 159 135
XLM-Riarge | 704 | 792 | 693 | 794 | 696 | 628 | 693

GMro | 3000 1 \p RIL e | 743 | 644 | 749 | 783 | 745 | 852 | 4s4
10.000 XLM-Riarge | 1322 | 1349 | 1400 | 1481 | 1457 | 1479 | 1512
’ MuRILjarge | 1302 | 1468 | 1379 | 1421 | 1425 | 1448 | 1557

1.000 XLM-Riarge | 126 160 159 134 129 163 129

’ MuRILjarge | 142 | 136 | 152 | 143 148 | 157 | 122
XLM-Rjarge | 710 | 805 | 713 803 | 707 | 639 | 623

GMr=1 | 5,000 l\/IuRILlar; 744 | 644 | 761 772 | 747 848 | 484
10.000 XLM-Riarge | 1308 | 1363 | 1456 | 1465 | 1459 | 1471 | 1478
? MuRILjarge | 1308 | 1488 | 1396 | 1406 | 1416 | 1441 | 1545

Table 12: Optimal allocations under different budgets.

Please refer to Section A.5 for more details



