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Abstract

Natural language image-caption datasets,001
widely used for training Large Multimodal002
Models, mainly focus on natural scenarios003
and overlook the intricate details of mathe-004
matical figures that are critical for problem-005
solving, hindering the advancement of cur-006
rent LMMs in multimodal mathematical rea-007
soning. To this end, we propose leverag-008
ing code as supervision for cross-modal align-009
ment, since code inherently encodes all in-010
formation needed to generate corresponding011
figures, establishing a precise connection be-012
tween the two modalities. Specifically, we co-013
develop our image-to-code model and dataset014
with model-in-the-loop approach, resulting015
in an image-to-code model, FigCodifier and016
ImgCode-8.6M, the largest image-code dataset017
to date. Furthermore, we utilize FigCodi-018
fier to synthesize novel mathematical figures019
and then construct MM-MathInstruct-3M, a020
high-quality multimodal math instruction fine-021
tuning dataset. Finally, we present MathCoder-022
VL, trained with ImgCode-8.6M for cross-023
modal alignment and subsequently fine-tuned024
on MM-MathInstruct-3M for multimodal math025
problem solving. Our model achieves a new026
open-source state-of-the-art across all six met-027
rics. Notably, it surpasses GPT-4o and Claude028
3.5 Sonnet in the geometry problem-solving029
subset of MathVista, achieving improvements030
of 8.9% and 9.2%. The datasets, code, and031
models will be released upon paper acceptance.032

1 Introduction033

Recently, Large Language Models (LLMs) have034

outperformed humans in complex reasoning at the035

Olympiad competition level (OpenAI et al., 2024;036

DeepSeek-AI et al., 2025). However, the reason-037

ing abilities of Large Multimodal Models (LMMs)038

still fall short of their potential, often struggling039

with even simple tasks, such as simple geometry040

problems (Wang et al., 2024b). Overcoming these041

limitations is essential for advancing toward Artifi- 042

cial General Intelligence (AGI). 043

In our efforts to enhance the mathematical capa- 044

bilities of LMMs, we identify two key challenges 045

that distinguish them from LLMs: (i) Aligning 046

math-related visual and textual details accurately 047

to enable effective problem-solving. (ii) Scaling the 048

generation of diverse new math figures for multi- 049

modal math problem synthesis. 050

Despite significant advancements, LMMs still 051

struggle with effective modality alignment, es- 052

pecially in the math field, primarily due to the 053

scarcity of high-quality, error-free, math-specific 054

cross-modal data. Traditional image caption 055

datasets (Chen et al., 2023; Schuhmann et al., 2022) 056

often focus on natural scenarios and lose details 057

important for math problem-solving, and cannot 058

guarantee correctness, as shown in Figure 1 (a). 059

In contrast, code inherently contains all infor- 060

mation needed to render corresponding image and 061

establish a strict correspondence between the two 062

modalities. In light of this, we propose image-to- 063

code mid-training to enhance math-related cross- 064

modal alignment. We construct an image-to-code 065

model, FigCodifier, which converts math-related 066

images into detailed code capable of rendering new 067

images, as shown in Figure 1 (b). By pairing the 068

generated code with the rendered images, we cre- 069

ate high-quality ⟨ImageC,Code⟩ pairs that are 070

inherently always accurate and contain all details 071

for cross-modal alignment. Using this automated 072

data engine, we construct ImgCode-8.6M, signifi- 073

cantly enhancing LMMs’ cross-modal ability. 074

Additionally, with a higher temperature, our Fig- 075

Codifier can synthesize new images that are more 076

different from the raw images, which enables the 077

synthesis of new diverse images for problem- 078

solving dataset construction. Synthetic data have 079

proven effective for math reasoning (Wang et al., 080

2023a; Gou et al., 2024; Huang et al., 2024), and 081

dataset quality and diversity are the most impor- 082

1



...
# Draw the square
square = np.array([B, D, E, C, B])
plt.plot(square[:, 0], square[:, 1], 'k-', linewidth=2)

# Draw the circle
circle = plt.Circle((1.5, 0.5), np.sqrt(5) / 2, color='k', 
fill=False)
plt.gca().add_artist(circle)

# Draw the lines with labels
plt.plot([B[0], C[0]], [B[1], C[1]], 'k-', linewidth=2)
plt.text(0.5, 1.1, '10.0', fontsize=12, ha='center', 
va='bottom')

plt.plot([B[0], A[0]], [B[1], A[1]], 'k-', linewidth=2)
plt.text(0.1, 1.25, '10.0', fontsize=12, ha='right', 
va='bottom')

# Draw the angle
0.2, r'$30^\circ$', fontsize=12, ha='center', va='bottom')
...

The image shows a geometric figure with points 
labeled A, B, C, D, and E. Point A is at the top of a 
vertical line segment AB, which measures 10 units. 
From B, a 30° angle is formed with the line segment 
extending to D. ...

(a) Captioning example from MAVIS (b) <Code, ImageC> pair and corresponding synthetic images

ImageRaw ImageCCode

✘

Figure 1: (a) Natural language captions often struggle to convey all details in a image and guarantee correctness. (b)
Our approach uses image-translated Code and code-generated ImageC to create ⟨ImageC,Code⟩ pairs. Since
the ImageC is rendered from the Code, the cross-modal alignment is always accurate and contains all the details.
Below are four examples of new figures synthesized based on ImageRaw.

tant factors. However, the construction of multi-083

modal math problem-solving datasets still relies084

heavily on either question rewriting and generating085

new solutions (Guo et al., 2024; Luo et al., 2025),086

sourcing existing images (Shi et al., 2024; Peng087

et al., 2024), or manually designed figures (Zhuang088

et al., 2024; Zhang et al., 2025b). The diversity089

of images lags significantly behind the diversity of090

text, restricting the overall dataset variety. Unlike091

these methods, with our FigCodifier, generating092

new images becomes significantly easier, as shown093

in Figure 1 (b). This allows us to create diverse new094

math figures at low cost, which has the potential to095

improve LMMs’ mathematical reasoning abilities096

substantially. Our main contributions are:097

1. We co-develop our image-to-code model with098

model-in-the-loop approach, resulting in a FigCod-099

ifier model and ImgCode-8.6M dataset, the largest100

image-code dataset to date.101

2. With our FigCodifier, we construct102

MM-MathInstruct-3M. To our knowledge, this is103

the first high-quality multi-modal problem-solving104

dataset with not only new questions but also diverse105

newly synthesized images.106

3. We present MathCoder-VL, achieving SOTA107

results across all six metrics among comparable-108

size LMMs. We will open-source our models, code109

and datasets.110

2 Related Works111

Multimodal Math Reasoning The mathemati-112

cal reasoning abilities of LMMs have garnered113

widespread attention (Gao et al., 2023; Li et al.,114

2024; Dong et al., 2024b; Hu et al., 2024; Yang 115

et al., 2024c; Han et al., 2024; Guo et al., 2024). 116

Unlike mathematical reasoning tasks in traditional 117

large language models (Zhou et al., 2024; Luo 118

et al., 2023; Yu et al., 2023), multimodal math- 119

ematical reasoning requires LMMs to extract infor- 120

mation from the visual domain and perform cross- 121

modal reasoning. Tasks such as geometric problem- 122

solving are particularly challenging (Chen et al., 123

2021; Wang et al., 2024b). Several studies have 124

attempted to enhance the input of visual mathemati- 125

cal signals by enhancing visual encoders (Liu et al., 126

2024a; Chen et al., 2024a). However, ensuring 127

accurate correspondence between images and text 128

remains a significant challenge. To address this, 129

we propose using code and code-generated images, 130

which inherently maintain precise and sufficient 131

alignment between modalities. 132

Data Synthesis. Methods based on data syn- 133

thesis are favored by academia and industry due 134

to their demonstrated efficiency (Sprague et al., 135

2024; Lu et al., 2023b; Huang et al., 2024; Fu 136

et al., 2024). Numerous fine-tuning (Yu et al., 137

2024; Wang et al., 2023a; Lu et al., 2024b) and 138

pretraining (Gunasekar et al., 2023; Wang et al., 139

2023b; Yang et al., 2024a) studies have explored 140

training on synthetic data generated using language 141

models or predefined templates. MathGLM (Yang 142

et al., 2023) and InternLM-Math (Ying et al., 2024) 143

use templates to generate synthetic numerical op- 144

eration data, while Phi (Gunasekar et al., 2023) 145

produces textbook-quality data with models. Enti- 146

Graph (Yang et al., 2024d) generates diverse text 147
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Figure 2: (a) The iterative training pipeline of our image-to-code model. We use DaTikZ-119K as seed data to
train our first image-to-code model. We start by collecting 3 million math-related images and ultimately synthesize
8.6 million image-code pairs. Our final image-to-code model, FigCodifier, is based on InternVL2-8B (Chen et al.,
2024b), with all model parameters being fully learnable. (b) The pipeline for generating new math problems with
diverse new images. Using the final model from (a), we convert raw images into code and leverage Qwen models to
generate new questions and step-by-step solutions based on the newly synthesized images.

by drawing connections between sampled enti-148

ties. However, efforts on the synthesis of multi-149

modal mathematical reasoning data are primarily150

focused on the diversity and complexity of prob-151

lem or solution text. Math-LLaVA (Shi et al.,152

2024) proposes the MathV360K dataset by clas-153

sifying images based on complexity and enhanc-154

ing questions accordingly. R-CoT (Deng et al.,155

2024), GeoGPT4V (Cai et al., 2024), MammoTH-156

VL (Guo et al., 2024), and Multimath (Peng et al.,157

2024) collect and enhance problems or solutions.158

MAVIS (Zhang et al., 2025b) generates new ge-159

ometry and function images with code but lacks160

diversity, as the codes are design by humans and161

only contain three types. Our work proposes a162

novel method that can synthesize diverse new im-163

ages automatically for crafting problems.164

3 MathCoder-VL165

We developed MathCoder-VL through a two-stage166

process: image-to-code mid-training using the167

ImgCode-8.6M dataset, followed by math instruc-168

tion fine-tuning on MM-MathInstruct-3M. This169

section details the construction of the two datasets.170

3.1 Image-to-Code Model and Data 171

To synthesize image-code pairs and new images, 172

we need models that can generate code to ren- 173

der high-quality mathematical figures. However, 174

even commercial models like Claude 3.5 and GPT- 175

4 struggle to perform image-to-code conversion 176

effectively (Belouadi et al., 2024b). Addition- 177

ally, the largest TikZ dataset to date, DaTikZ (Be- 178

louadi et al., 2024a), contains only 119k TikZ 179

graphics. To address these limitations, we build 180

ImgCode-8.6M and develop our FigCodifier. 181

3.1.1 Collect Math-related Images 182

We start by collecting 3 million math-related im- 183

ages, of which 164K are paired with corresponding 184

TikZ code. The data composition is as follows. 185

DaTikZ Training Set. DaTikZ is designed to fa- 186

cilitate the development of machine learning mod- 187

els capable of generating or manipulating vector 188

graphics in LATEX. We use the 119K image-TikZ 189

code pairs from DaTikZ as our seed data. 190

K12 Problem-Solving Dataset. To diversify 191

our dataset, we included math problems from K12 192

books, exercises, and exams with permission from 193

the data providers. We gathered 4.6 million math 194

problems, of which 996K include at least one im- 195

age. This dataset contains 1.57 million images 196
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from a wide range of math problems across all K12197

grades, spanning 19 subjects, including Statistics,198

Probability, Algebra, Geometry, Functions, Permu-199

tations, Combinations, and more. See Sec. 3.2.1200

for details on the curation process.201

Mathematical Textbooks. Textbooks provide202

structured presentations of math concepts and are203

a valuable resource. We collected 8K PDFs of204

math-related textbooks from online sources, focus-205

ing on titles with keywords like algebra, geometry,206

and probability. These PDFs were converted into207

markdown format, and the images were extracted,208

resulting in 202K diverse math-related images.209

ArXiv. We utilized bulk data from arXiv be-210

tween September 2023 and October 2024, yielding211

45K images with corresponding TikZ code and212

681K images without code, many of which are213

statistical visualizations.214

Open-Source Datasets. MathV360K (Shi et al.,215

2024) consists of 360K question-answer pairs and216

40K images from 24 previous datasets. Multi-217

Math (Peng et al., 2024) contains 300K newly col-218

lected math problems with 280K images, mostly219

consisting of geometry diagrams.220

3.1.2 Iteratively Build Image-to-Code Model221

We train our first image-to-code model using 119K222

image-TikZ pairs sourced from DaTikZ, leveraging223

InternVL-Chat-V1-2-40B (Chen et al., 2024b). As224

the dataset scales beyond one million samples, we225

adopt InternVL2-8B (Chen et al., 2024a) as the226

base model after comprehensively weighing the227

image-to-code performance and cost. The com-228

plete training pipeline is illustrated in Figure 2 (a).229

Synthesis of Image-Code Pairs. To scale the230

size of Image-Code pairs, we used the image-to-231

code model to translate the 3M collected images232

into corresponding code. We then run the gen-233

erated code to render new images, and only the234

successfully generated ⟨ImageC,Code⟩ pairs235

were included in our dataset. This iterative pro-236

cess allowed us to continually generate fresh237

⟨ImageC,Code⟩ pairs and refine the model with238

each new version. Ultimately, we get FigCodi-239

fier and the ImgCode-8.6M.240

TikZ to Python Conversion. In addition to241

TikZ code, we also leverage GPT-4o mini to trans-242

late TikZ code into Python code, which is then243

executed to generate new images. This step sig-244

nificantly expands our dataset, further enhancing245

the model’s capabilities. By diversifying the types246

of code used, the model can generate a broader247

In the given image, the curve y = 0.5x2 
is plotted from x = -1.5 to x = 0.5, and 
the curve y = -0.5x2 is plotted from x = 
0.5 to x = 1.5. The points O, N, and M 
form a triangle where O is the origin, N 
is at (-1, 0), and M is at (-1, 0.5). What 
is the area of the triangle OMN?

If the input value x is 3, what is the final 
output y according to the diagram?

If the distance between the two lines 
is 2 units, what is the vertical 
distance from point α to the top line?

On which dataset do both Algorithm A 
and Algorithm B achieve the same 
accuracy?

In the diagram, points A, B, C, D, and E 
form a rectangle and a triangle. Point M 
is the midpoint of AC, and point N is 
the midpoint of BE. If the length of AB 
is 2 units, the length of BEis 1 units and 
the length of A is 2 units, what is the 
length of segment MN?

a. (img, code) mid-training

ViT

P
roj

LLM

img

import matplotlib.pyplot as plt

import numpy as np

# Data for the plots

x = np.array([0, 0.02, 0.1])

y1 = np.array([70.2, 70.9, 81.1])

y2 = np.array([77.1, 78.4, 81.1])

# Set up the plot

fig, ax = plt.subplots(figsize=(8, 6))

。。。

. . .

\begin{tikzpicture}

\begin{axis}[

    ybar,

    enlargelimits=0.15,

    legend style={at={(0.5,-0.15)},

      anchor=north,legend columns=-1},

    ylabel={Avg. Metric (\%)},

    xlabel={Amount of Pretraining C  

。。。

ViT

P
roj

LLM

solutions

b. math (pro, sol) sft

Figure 3: Sample questions paired with newly synthe-
sized images, as generated in Figure 2 (b).

range of images, as different code structures pro- 248

duce distinct visual outputs. Through this process, 249

we curate 3.1 million image-Python pairs. 250

Data Cleaning and Deduplication. We imple- 251

ment a rigorous cleaning and deduplication process 252

to ensure data quality: 1. Code Validation: We 253

only retain code that generates a valid image. Over 254

the course of the iterative process, the code success 255

rate improves, rising from 46.5% for TikZ to 81.2% 256

for TikZ and 84.5% for Python on the DaTikZ test 257

set. 2. Deduplication: We apply carefully designed 258

rules to eliminate duplicate or highly similar code, 259

removing 4.4% of the dataset. 3. Quality Filter- 260

ing: Through keyword matching, we filter out low- 261

quality data, such as randomly generated or irrele- 262

vant images, which accounts for 3.7% of the data. 4. 263

Code Length: We remove code that is excessively 264

long, which can introduce unnecessary complexity. 265

5. Image Quality: Images that are almost entirely 266

white—identified through standard deviation and 267

mean pixel value analysis—are removed, account- 268

ing for approximately 0.5% of the data. Details 269

of this process can be found in Appendix A. Af- 270

ter cleaning, we retain 4.3M image-TikZ pairs and 271

4.3M image-Python pairs. 272

3.2 Math Instruction Fine-tuning Data 273

In this section, we introduce the construction of our 274

MM-MathInstruct-3M as shown in Figure 2 (b). 275
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a. Img2Code Mid-training
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import matplotlib.pyplot as plt

import numpy as np

# Data for the plots

x = np.array([0, 0.02, 0.1])

y1 = np.array([70.2, 70.9, 81.1])

y2 = np.array([77.1, 78.4, 81.1])

# Set up the plot

fig, ax = plt.subplots(figsize=(8, 6))

。。。

. . .

\begin{tikzpicture}

\begin{axis}[

    ybar,

    enlargelimits=0.15,

    legend style={at={(0.5,-0.15)},

      anchor=north,legend columns=-1},

    ylabel={Avg. Metric (\%)},

    xlabel={Amount of Pretraining C  

。。。

ViT

P
roj

LLM

solutions

b. Math Instruct Fine-tuning

Figure 4: Two training stages of MathCoder-VL.

3.2.1 Construction of K12-2M Dataset276

We collected 4.6 million math problems with sim-277

ple solutions, where the equations are in image278

format. First, we distinguish math figures from279

equations based on their size, as equations tend to280

be much smaller. Next, we convert the equations281

into LATEX text using MinerU (Wang et al., 2024a).282

This process results in 2 million samples containing283

at least one actual image. To enhance data quality,284

we then use GPT-4o mini to translate the original285

simple solutions into detailed, step-by-step CoT286

solutions, ultimately resulting in K12-2M.287

3.2.2 Synthetic Math Data with New Images288

To generate new multi-modal math problems, we289

follow a structured approach:290

Newly Synthesized Images. We leverage the291

1.57 million raw images from K12-2M, using our292

FigCodifier with a temperature of 0.7 to generate293

new math figures. With a higher temperature, the294

model can produce images that diverge more from295

the raw dataset. More examples of the newly syn-296

thesized images are shown in Appendix B.5.297

Questions Based on New Images. From the298

1.1 million newly generated image-code pairs, we299

use Qwen2.5-72B-Instruct (Team, 2024b) to craft300

math reasoning questions appropriate for a K12301

audience. These questions are based on the visual302

elements (such as patterns, shapes, and numbers)303

present in each image. The questions are designed304

to be concise, self-contained, and to engage the305

reasoning skills of the reader. At this stage, the306

model is not required to provide answers to the307

questions. Details can be found in Appendix B.5.308

Synthesize Solutions. For generating so- 309

lutions, we employ both Qwen2.5-Math-72B- 310

Instruct (Yang et al., 2024b) and Qwen2.5-72B- 311

Instruct (Team, 2024b). Each model independently 312

attempts to solve the question, taking both the ques- 313

tion and image code as inputs. We retain a solution 314

only if both models produce consistent answers, 315

assuming that there is typically one correct answer 316

and multiple possible incorrect ones. The solu- 317

tion pass rate is 51%. Following the data cleaning 318

procedure outlined in Section 3.1.2, we remove du- 319

plicates and overly long samples. The final output 320

consists of 1 million new samples, some of which 321

are illustrated in Figure 3. 322

4 Experiments 323

In this section, we introduce our two-stage train- 324

ing approach: image-to-code mid-training with 325

ImgCode-8.6M, followed by math instruction fine- 326

tuning with MM-MathInstruct-3M. 327

4.1 Training Stages 328

As illustrated in Figure 4, the training process for a 329

single MathCoder-VL model consists of two stages 330

aimed at improving the model’s math-related visual 331

perception and multimodal reasoning capabilities. 332

Image-to-Code Mid-training. In this stage, we 333

use ImgCode-8.6M to improve cross-modal align- 334

ment between mathematical diagrams and language 335

embedding spaces. Both the vision encoder and 336

MLP projector are trainable during this phase. The 337

primary objective is to enhance the vision encoder’s 338

ability to extract mathematic visual features. Since 339

the correspondence between code and image is 340

highly accurate and contains all the detailed in- 341

formation, this stage allows the model to capture 342

intricate patterns, especially those related to math- 343

ematics. These math-related patterns, including 344

geometric shapes, process flows, and other math- 345

ematical representations, are underrepresented in 346

large web-scale datasets like LAION-5B (Schuh- 347

mann et al., 2022). Importantly, we freeze the LLM 348

backbone during this stage to preserve its general 349

language abilities, as we do not require it to gener- 350

ate code for downstream tasks. 351

Math Instruction Fine-tuning. In this stage, as 352

shown in Figure 4, the entire model is fine-tuned on 353

our high-quality multimodal math problem-solving 354

dataset, MM-MathInstruct-3M. This dataset in- 355

cludes 3 million samples, with 1 million gener- 356

ated by our image-to-code model-based data en- 357
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Model #Params MATH-Vision MathVerse MathVista GAOKAO-MM We-Math
(Test) (Testmini) (GPS) (Math) (S1) (S2) (S3)

Random Chance - 7.2 12.4 21.6 - - - -
Human - 68.8 64.9 48.4 - - - -

Closed-source LMMs

Qwen-VL-Plus (Bai et al., 2023) - 10.8 21.3 35.5 33.8
Qwen-VL-Max (Bai et al., 2023) - 15.6 35.9 46.1 - 40.8 30.3 20.6
GPT-4V (OpenAI, 2023) - 22.8 39.4 50.5 45.0 65.5 49.2 38.2
GPT-4-turbo (OpenAI, 2024a) - 30.3 43.5 58.3 50.0 - - -
GPT-4o (OpenAI, 2024b) - 30.4 50.8 64.7 - 72.8 58.1 43.6
Claude3-Opus (Anthropic, 2024) - 27.1 31.8 52.9 - - - -
Claude3.5-Sonnet (Anthropic, 2024) - 37.9 49.0 64.4 - - - -
Gemini-1.5-Pro (Team, 2024a) - 19.2 51.1 58.9 - 56.1 51.4 33.9

Open-source LMMs

LLaVA-1.5-13B (Liu et al., 2024b) 13B 11.0 12.7 22.7 16.3 35.4 30.0 32.7
SPHINX-V2-13B (Lin et al., 2023) 13B - 16.1 16.4 - - - -
IXC-2-VL (Dong et al., 2024a) 7B 14.5 25.9 63.0 - 47.0 33.1 33.3
Deepseek-VL (Lu et al., 2024a) 8B - 19.3 28.4 20.0 32.6 26.7 25.5
Qwen2-VL (Wang et al., 2024c) 8B 19.2 33.6 40.9 25.0 59.1 43.6 26.7
InternVL-Chat-2B-V1-5 (Gao et al., 2024) 2B 15.3 23.1 37.5 17.5 34.3 26.1 20.0
InternVL2-8B (Chen et al., 2024a) 8B 20.0 35.9 62.0 32.5 59.4 43.6 35.2
InternVL2-26B (Chen et al., 2024a) 26B 23.1 40.0 54.3 33.4 51.0 39.2 46.1
InternVL2-76B (Chen et al., 2024a) 76B 23.6 42.8 67.8 41.2 65.2 49.4 49.1
IXC-2.5-Reward (Zang et al., 2025) 7B 19.0 18.8 63.5 - 44.4 35.3 27.9

Open-source Math LMMs

G-LLaVA-7B (Gao et al., 2023) 7B - 16.6 48.7 - 32.4 30.6 32.7
Math-LLaVA-13B (Shi et al., 2024) 13B 15.7 22.9 57.7 - 38.7 34.2 34.6
InfiMM-Math (Han et al., 2024) 7B - 34.5 - - - - -
MathGLM-Vision-9B (Yang et al., 2024c) 9B 19.2 44.2 64.4 - - - -
Math-PUMA-Qwen2 (Zhuang et al., 2024) 8B 14.0 33.6 48.1 - 53.3 39.4 36.4
Math-PUMA-DS (Zhuang et al., 2024) 7B - 31.8 39.9 - 45.6 38.1 33.9
Multimath-7B (Peng et al., 2024) 7B 16.3 27.7 66.8 - - - -
MAVIS-7B (Zhang et al., 2025b) 7B 19.2 35.2 64.1 - 57.2 37.9 34.6

MathCoder-VL-2B 2B 21.7 35.4 66.4 37.5 52.0 42.2 38.8
∆ Over Base Model +6.4 +12.3 +28.9 +20.0 +17.7 +16.1 +18.8

MathCoder-VL-8B 8B 26.1 46.5 73.6 51.2 65.4 58.6 52.1
∆ Over Base Model +6.1 +10.6 +11.6 +18.7 +6.0 +15.0 +16.9

Table 1: Comparison of model performances across various math benchmarks. MATH-Vision (Wang et al., 2024b),
MathVerse (Zhang et al., 2025a), MathVista (Lu et al., 2023a), and We-Math (Qiao et al., 2024) are in English,
while GAOKAO-MM (Zong and Qiu, 2024) is in Chinese. The best results of closed-source LMMs are highlighted
in red . The best and second-best results of open-source LMMs are highlighted in blue and green respectively.
(GPS: geometry problem solving, S1: one-step problems, S2: two-step problems, S3: three-step problems)

gine. To the best of our knowledge, this is the first358

data engine capable of generating multimodal math359

problem-solving data that includes not only new360

textual content but also new diverse math figures.361

4.2 Experimental Setup362

We use InternVL-Chat-2B-V1-5 (Gao et al., 2024)363

and InternVL2-8B (Chen et al., 2024a) as the base364

models for our experiments.365

Implementation Details. We train the model for366

one epoch across two stages. In the first stage, we367

use a batch size of 1024 and a learning rate of 2e-5.368

In the second stage, we use a batch size of 512369

and a learning rate of 4e-5. To efficiently train the370

computationally intensive models, we utilize Deep-371

Speed at ZeRO-1 stage (Rajbhandari et al., 2020)372

and flash attention (Dao et al., 2022). The 2B and373

8B models are trained on 32 and 64 NVIDIA A800374

80GB GPUs, respectively. To ensure reproducibil-375

ity, we fix the random seed and employ greedy 376

decoding during testing. 377

Benchmarks. We assess our models across 378

a diverse set of widely recognized mathematical 379

benchmarks. The MATH-Vision (Wang et al., 380

2024b) dataset includes 3,040 visually contextu- 381

alized math problems sourced from real-world 382

competitions. MathVista (Lu et al., 2023a) is a 383

well-known dataset designed for evaluating reason- 384

ing in visual contexts. MathVerse (Zhang et al., 385

2025a) emphasizes core mathematical skills such 386

as plane geometry, solid geometry, and functions. 387

GAOKAO-MM (Zong and Qiu, 2024) is based on 388

the Chinese College Entrance Examination. Many 389

tasks in MathVista require more emphasis on natu- 390

ral image recognition rather than math reasoning 391

abilities (Wang et al., 2024b), so we only report re- 392

sults on the Geometry Problem Solving (GPS) sub- 393

set. Collectively, these datasets cover a wide spec- 394
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Model MATH-V Geometry Averageangle area length

Closed-source LMMs

GPT-4o 17.3 29.8 30.1 25.7
GPT-4V 22.0 22.2 20.9 21.7
Gemini-1.5-Pro 14.5 14.4 16.5 15.1

Open-source LMMs

Qwen2-VL-8B 19.1 22.4 22.5 21.3
InternVL2-8B 20.8 22.4 20.5 21.2
InternVL2.5-8B 22.0 19.4 15.4 18.9

Open-source Math LMMs

Math-LLaVA-13B 20.2 18.4 17.6 18.7
Multimath-7B 20.1 16.4 21.3 19.3
Math-PUMA-8B 11.7 15.8 12.2 13.2

MathCoder-VL-8B 48.6 32.2 32.1 37.6

Table 2: Comparison of model performances on the
three plane geometry subsets of MATH-Vision (Wang
et al., 2024b). The best and second-best results are
highlighted in red and blue respectively.

trum of mathematical challenges, ranging from ele-395

mentary word problems to advanced college-level396

exercises in both English and Chinese, providing a397

comprehensive evaluation of model capabilities.398

Baselines. We compare our approach against399

a range of base models with strong mathematical400

capabilities and similar sizes. Our selected base-401

lines include both closed-source and open-source402

LMMs. Both general LMMs and math-focused403

LMMs are incorporated. For general LMMs,404

we include powerful models like GPT-4o (Ope-405

nAI, 2024b), Qwen2-VL (Wang et al., 2024c) and406

IXC-2.5-Reward (Zang et al., 2025). For math-407

focused LMMs, we choose recent models such408

as MathGLM-Vision (Yang et al., 2024c), Math-409

PUMA (Zhuang et al., 2024), Multimath (Peng410

et al., 2024), and MAVIS (Zhang et al., 2025b).411

4.3 Main Results412

We evaluate MathCoder-VL across several bench-413

marks, analyzing its performance from the perspec-414

tives of mathematical subjects and input modalities.415

Overall Performances. As shown in Table 1,416

MathCoder-VL demonstrates strong performance417

across multiple mathematical benchmarks, partic-418

ularly in comparison to other open-source mod-419

els. MathCoder-VL-8B achieves the highest accu-420

racy among open-source LMMs of similar sizes,421

with 26.1% on MATH-Vision, 46.5% on Math-422

Verse, and an impressive 73.6% on the Math-423

Vista (GPS). These results show a notable improve-424

ment over its base model, InternVL2-8B, by 6.1%,425

10.6%, and 11.6% on the respective benchmarks. 426

The smaller model also demonstrates strong ca- 427

pabilities, with MathCoder-VL-2B outperforming 428

MathGLM-Vision-9B by 2.5% and Multimath-7B 429

by 5.4% on MATH-Vision. MathCoder-VL-8B 430

significantly outperforms InternVL2-76B, with a 431

gap of 2.5% on MATH-Vision, 3.7% on Math- 432

Verse, 5.8% on MathVista (GPS), and 10.0% on 433

GAOKAO-MM Math. The model’s performance 434

in Chinese is also noteworthy, with MathCoder- 435

VL-8B reaching 51.2% on GAOKAO-MM, outper- 436

forming all other open-source LMMs. 437

Compared to closed-source models, MathCoder- 438

VL-8B remains competitive, outperforming sev- 439

eral proprietary models. It surpasses GPT-4V on 440

all four benchmarks and exceeds GPT-4-turbo by 441

3.0% on MathVerse. It also outperforms the newest 442

Claude3.5-Sonnet (64.4% vs 73.6%) and GPT-4o 443

(64.7% vs 73.6%) on MathVista (GPS). However, 444

it still falls short of top-tier closed-source LMMs 445

in some areas. For example, it lags behind GPT-4o 446

by 3.0% on MATH-Vision. 447

Performance on multi-step problems. 448

MathCoder-VL-8B exhibits robust performance 449

on multi-step problems, outperforming GPT-4o on 450

both two-step (58.6% vs 58.1%) and three-step 451

problems (52.1% vs 43.6%) on We-Math (Qiao 452

et al., 2024). Our MM-MathInstruct-3M, which 453

provides step-by-step solutions for every problem, 454

enhances the model’s Chain-of-Thought (Wei et al., 455

2022) reasoning ability. Notably, MathCoder- 456

VL-8B surpasses InternVL2-76B by a significant 457

margin, achieving a 20.7% improvement on 458

two-step problems and a 3.0% improvement on 459

three-step problems, while only slightly edging it 460

out by 0.2% on one-step problems. This demon- 461

strates that, as a math-specific language model, 462

MathCoder-VL excels over general open-source 463

models, particularly on complex problems. 464

Outstanding Ability in Geometry. When eval- 465

uating MathCoder-VL’s capabilities in geometry, 466

its performance on the MathVista (GPS) stands 467

out. Additionally, we present the detailed accuracy 468

of the model on the plane geometry subsets from 469

MATH-Vision, as shown in Table 2. MathCoder- 470

VL excels across all three plane geometry subsets 471

in MATH-V, achieving an impressive average score 472

of 37.6%, which surpasses GPT-4o by 11.9%. No- 473

tably, the model scored exceptionally well in each 474

of the three subsets—angle, area, and length—with 475

scores of 48.6%, 32.2%, and 32.1%, respectively. 476

This superior performance can be attributed to 477
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Model Image-to-Code Math Instruction MATH-Vision MathVerse MathVista MathVista GAOKAO-MM
Mid-training Fine-tuning (Test) (Testmini) (Testmini) (GPS) (Math)

InternVL-Chat-2B-V1-5 ✗ ✗ 15.3 23.1 41.1 37.5 17.5

✗ K12-2M 20.3 27.2 37.0 45.7 30.0
+5.0 +4.1 -4.1 +8.2 +12.5

✓ K12-2M 22.0 33.0 39.4 64.4 33.8
+1.7 +5.8 +2.4 +18.7 +3.8

MathCoder-VL-2B ✓
K12-2M 21.7 35.4 44.4 66.4 37.5

+ New-1M -0.3 +2.4 +5.0 +2.0 +3.7

Table 3: Ablation study of image-to-code mid-training and math instruction fine-tuning dataset on MathCoder-VL-
2B. K12-2M + New-1M dataset is our MM-MathInstruct-3M.

Mid- Fine- MathVerse
training tuning TD TL VD VO All

✗ ✗ 27.5 25.8 20.1 18.1 23.1

✗ 2M 36.7 30.7 25.3 15.9 27.2
✓ 2M 40.9 34.5 31.1 26.9 33.0

+4.2 +3.8 +5.8 +11.0 +5.8

✗ 2M+1M 40.7 32.4 30.1 19.8 30.8
✓ 2M+1M 43.7 36.9 34.1 27.2 35.4

+3.0 +4.5 +4.0 +7.4 +4.6

Table 4: Effects of image-to-code mid-training on model
performances with varying degrees of input content in
multi-modality on MathVerse (Zhang et al., 2025a).

MathCoder-VL’s enhanced understanding of ge-478

ometry figures, enabling it to effectively process479

and interpret geometric shapes and measurements.480

4.4 Ablation Study481

In this session, we analyze the impact of various482

components of the training pipeline.483

Ablation on Impact of Image-to-Code Mid-484

training. From Table 3, we can observe the impact485

of image-to-code mid-training on the model’s rea-486

soning ability. Comparing the results without mid-487

training to those with mid-training, performance488

improvements are noted in MATH-Vision (+1.7%),489

MathVerse (+5.8%), MathVista (GPS) (+18.7%),490

and GAOKAO-MM (Math) (+3.8%), highlighting491

its contribution to enhanced multi-modal mathe-492

matical reasoning. The most significant gain is ob-493

served in MathVista (GPS), suggesting that image-494

to-code mid-training strengthens spatial and graph-495

ical problem-solving capabilities and improves un-496

derstanding of geometry figures.497

Ablation on Impact of Input Modality. Table 4498

illustrates the impact of image-to-code mid-training499

on MathVerse across different modality domi-500

nance levels: Text-Dominant (TD), Text-Lite (TL),501

Vision-Dominant (VD), and Vision-Only (VO).502

Across all categories, mid-training with image-to-503

code leads to improved performance, with an over- 504

all gain of 5.8% and 4.6%. Notably, the largest 505

improvement is seen in the VO setting, where per- 506

formance increases by 11.0% and 7.4%, indicat- 507

ing that image-to-code mid-training significantly 508

enhances the model’s ability to process purely vi- 509

sual inputs, while the smallest improvements are 510

observed in TD (+3.8%) and TL (+3.0%). This sug- 511

gests that image-to-code mid-training effectively 512

enhances multi-modal reasoning, particularly in 513

scenarios where vision plays a more dominant role. 514

Ablation on Impact of Newly Synthesized Im- 515

ages. As shown in Table 3, the MathCoder-VL-2B 516

model generally benefits from the math instruc- 517

tion fine-tuning dataset based on newly synthe- 518

sized images. Performance improvements are ob- 519

served across multiple benchmarks: MathVerse 520

(+2.4%), MathVista-Testmini (+5.0%), MathVista- 521

GPS (+2.0%), and GAOKAO-MM (Math) (+3.7%), 522

with only a slight decrease on MATH-Vision of 523

0.3%. Notably, MathVista shows a significant in- 524

crease of 5.0%, suggesting that the new synthetic 525

math problems contribute to a broader diversity 526

of instructions. This enhanced diversity likely im- 527

proves the model’s generalization capabilities, par- 528

ticularly as many tasks in MathVista differ substan- 529

tially from traditional math problem-solving. 530

5 Conclusion 531

In this paper, we propose a model-based multi- 532

modal data engine. Using this data engine, we 533

construct two datasets: ImgCode-8.6M for accurate 534

cross-modal alignment and MM-MathInstruct-3M, 535

a math problem-solving dataset featuring diverse 536

newly synthesized images. Leveraging these 537

datasets, we develop MathCoder-VL-2B and 8B 538

models trained with image-to-code mid-training 539

and math instruction fine-tuning. MathCoder-VL 540

achieves a new state-of-the-art among open-source 541

models for multi-modal mathematical reasoning. 542
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6 Limitations543

One limitation of our work is that544

MM-MathInstruct-3M focuses primarily on545

mathematics and does not intentionally include546

other STEM subjects, such as physics and chem-547

istry. Additionally, our dataset consists entirely of548

English text and does not incorporate math-related549

content in other languages, such as Chinese. Due550

to computational resource constraints, we only551

trained 2B and 8B models. Future work could552

address these limitations by expanding the dataset553

to include other subjects and languages and by554

training larger language models. Furthermore,555

this paper primarily focuses on image-to-code556

mid-training and math instruction fine-tuning, so557

we did not apply reinforcement learning methods,558

such as GRPO, in the post-training phase, which559

could further improve performance on mathemat-560

ical reasoning tasks. In the future, we plan to561

explore these methods with MathCoder-VL.562
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Figure 5: The pipeline for processing the K12 math problem-solving dataset.

A Details of K12 Data Process1027

In this section, we provide additional details about1028

processing the newly collected K12 math problem-1029

solving dataset. The overall pipeline for data pro-1030

cessing is illustrated in Figure 5.1031

A.1 Data Cleaning1032

The primary objective of the data cleaning pro-1033

cess is to curate a dataset that consists exclusively1034

of multi-modal math problems. These problems1035

should include both textual descriptions and mathe-1036

matical expressions represented in LATEX code and1037

math figures. In the raw dataset, a significant num-1038

ber of equations were provided solely as images, as1039

shown in Figure 6. To address this, we employed1040

the MinerU tool to convert these equation images1041

into LaTex-formatted equations, ensuring a consis-1042

tent and standardized representation of mathemati-1043

cal content. Furthermore, problems that contained1044

only equation images are excluded from the dataset.1045

This cleaning process ensures that the final dataset1046

is rich, diverse, and appropriately structured for1047

addressing K12 math problems that require multi-1048

modal reasoning.1049

A.2 Data Augmentation1050

Figure 7 presents a structured system prompt de-1051

signed for processing K-12 mathematical problems.1052

It outlines a comprehensive workflow for translat-1053

ing, solving, and formatting math problems from1054

a JSON object. The prompt includes explicit in-1055

structions for translation into English, step-by-step1056

solution generation, and concise answer presenta-1057

tion, ensuring clarity and correctness in the output.1058

One example of the GPT4o-mini’s output is shown1059

in Figure 8.1060

Figure 6: Example of a raw math problem that only
contains equation images. Such problems are filtered
out after converting the images into LATEX equations
using MinerU.

B Details of Image-to-Code 1061

B.1 Code Ability 1062

TikZ is a powerful and flexible package for creat- 1063

ing vector graphics in LATEX. It is based on the 1064

PGF (Portable Graphics Format) system and is 1065

known for its high-quality output and extensive 1066

customization options. TikZ allows users to cre- 1067

ate a wide range of graphics, from simple shapes 1068

and diagrams to complex illustrations and plots. 1069

Its strength lies in its ability to seamlessly in- 1070

tegrate with LATEX documents, ensuring that the 1071

fonts, styles, and layout of the graphics match the 1072

document’s overall design. TikZ is particularly 1073

useful for creating precise, technical illustrations, 1074

flowcharts, and scientific figures. The syntax of 1075

TikZ is based on a series of commands that de- 1076

fine paths, nodes, and styles, making it highly pro- 1077

grammable and suitable for generating graphics 1078

algorithmically. Some examples of images gener- 1079

ated by TikZ are shown in Figure 10. 1080

On the other hand, Matplotlib is a popular plot- 1081

ting library in Python that provides a wide range 1082
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K12 Process Prompt

System Prompt:

You are an expert in mathematical problem-solving, LaTeX formatting, and structured data extraction. Please present
all results in English and well-formatted LaTeX, converting HTML to LaTeX as needed. You will be provided with a
JSON object containing the following fields: ["question", "option_a", "option_b", "option_c", "option_d", "option_e",
"answer1", "answer2", "parse"].

User Prompt:

Please process the provided JSON object by following these steps:

1. **Translation:**
- Translate the math problem and any accompanying options into English.
- If the problem includes multiple-choice options, format them as a bulleted list.
- If no options are available, return an empty option list (‘[]‘).
- For problems with multiple sub-questions, separate each sub-question as an individual item in another list.

2. **Step-by-Step Solution:**
- Provide a detailed, step-by-step solution to the problem, referencing "answer1", "answer2", and "parse".
- Adhere to the solution process provided by "answer1", "answer2", and "parse", as they are correct.

3. **Short Answer:**
- Specify the answer(s) in a list format, where each item is a single word or phrase.
- Answer(s) should adhere to that provided by "answer1", "answer2", and "parse".
- For multiple-choice questions, return one of A, B, C, D, or E.
- For proof-based questions, return "proven".
- For problems with sub-questions, provide the answer for each sub-question in the same order as the sub-question

list.

**Input JSON:**

```json

[Raw Json Data]

```

Figure 7: Prompt for processing, solving, and formatting K-12 math problems from structured JSON input.

{
    "question": "Given that the domain of the function $f(x)$ is $[-1,5]$, and some corresponding values are shown in the 
table, the graph of the derivative $y=f^{\\\\prime}(x)$ is shown in the image. The following statements about $f(x)$ are 
made: ① The local maximum points of the function $f(x)$ are at $0$ and $4$; ② The function $f(x)$ is decreasing on the 
interval $[0,2]$; ③ If the maximum value of $f(x)$ is $2$ when $x \\\\in [-1,t]$, then the maximum value of $t$ is $4$; 
④ The function $y=f(x)$ has at most $2$ zeros. Which of the following statements are correct? (       )",
    "options": [
        "①②",
        "③④",
        "①②④",
        "②③④.",
        "[]"
    ],
    "sub_questions": [],
    "solution": "Analysis of the problem: From the graph of the derivative, we can see that the function $y=f(x)$ is 
increasing on the intervals $(-1,0)$ and $(2,4)$ where the derivative is positive. It is decreasing on the intervals 
$(0,2)$ and $(4,5)$ where the derivative is negative. Therefore, statement ① that the local maximum points of the 
function $f(x)$ are at $0$ and $4$ is correct. Statement ② that the function $f(x)$ is decreasing on the interval $[0,2]$ 
is also correct. Statement ③ is incorrect because if the maximum value of $f(x)$ is $2$ when $x \\\\in [-1,t]$, then the 
maximum value of $t$ is actually $5$, not $4$. Statement ④ is correct because the function $y=f(x)$ can have at most $2$ 
zeros, especially when $f(2)<0$, which allows for two zeros. Thus, the correct statements are ①, ②, and ④. Therefore, 
the correct answer is C.",
    "final_answers": ["C"]
}

Figure 8: Example output generated by GPT4o-mini, showcasing the translation, step-by-step solution, and short
answer extraction for a given math problem.
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. . .

\begin{tikzpicture}

\begin{axis}[

    ybar,

    enlargelimits=0.15,

    legend style={at={(0.5,-0.15)},

      anchor=north,legend columns=-1},

    ylabel={Avg. Metric (\%)},

    xlabel={Amount of Pretraining Corpus (Millions)},

    symbolic x coords={0,0.02,0.1},

    xtick=data,

    ytick={65,70,75,80,85},

    ymajorgrids=true,

    grid style=dashed,

    bar width=15pt,

    nodes near coords,

    every node near coord/.append style={font=\tiny},

    nodes near coords align={vertical},

    ]

\addplot coordinates {(0,70.2) (0.02,70.9) (0.1,81.1)};

\addplot coordinates {(0,77.1) (0.02,78.4) (0.1,81.1)};

\end{axis}

\end{tikzpicture}

. . .

import matplotlib.pyplot as plt

import numpy as np

# Data for the plots

x = np.array([0, 0.02, 0.1])

y1 = np.array([70.2, 70.9, 81.1])

y2 = np.array([77.1, 78.4, 81.1])

# Set up the plot

fig, ax = plt.subplots(figsize=(8, 6))

# Plot the bars

bar_width = 0.15

bar_positions = np.arange(len(x))

ax.bar(bar_positions - bar_width/2, y1, bar_width, label='Plot 

1')

ax.bar(bar_positions + bar_width/2, y2, bar_width, label='Plot 

2')

# Set the xticks and labels

ax.set_xticks(bar_positions)

ax.set_xticklabels(x)

# Customize the plot
. . .

# Display the values on top of the bars
. . .

# Layout so plots do not overlap

fig.tight_layout()

Figure 9: Comparison between Python code and TiKZ code.

Figure 10: Some example of images generated by TikZ.

of tools for creating static, animated, and interac-1083

tive visualizations. It is widely used in scientific1084

computing, data analysis, and machine learning for1085

generating publication-quality figures. Matplotlib1086

supports various types of plots, including line plots,1087

scatter plots, bar charts, histograms, and more. One1088

of its key strengths is its flexibility and ease of use,1089

allowing users to quickly generate visualizations1090

with a few lines of code. Matplotlib also offers1091

extensive customization options, enabling users to1092

adjust every aspect of a plot, from line styles and1093

colors to axis labels and legends. Additionally, it1094

integrates well with other Python libraries such as1095

NumPy and Pandas, making it a versatile tool for1096

data visualization in the Python ecosystem. Some1097

examples of images generated by Python are shown1098

in Figure 11.1099

When comparing the syntax of Python’s Mat-1100

plotlib and LATEX’s TikZ for creating plots and 1101

graphics, the differences are quite pronounced as 1102

shown in Figure 9. Matplotlib, being a Python 1103

library, follows a procedural programming style, 1104

where functions are called to add elements to a plot. 1105

In contrast, TikZ, which is part of the LATEX ecosys- 1106

tem, uses a declarative style, where user describe 1107

the elements of the graphic in a more structured, 1108

often nested, manner. While Matplotlib’s syntax is 1109

more straightforward and easier to learn for those 1110

familiar with Python, TikZ offers greater control 1111

over the visual details of the plot, making it a 1112

preferred choice for complex, publication-quality 1113

graphics. 1114

B.2 Prompt Templates 1115

To facilitate the generation of code from images, 1116

we designed two structured prompt templates that 1117
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Figure 11: Some example of images generated by Python.

guide the process of converting visual elements1118

into executable code as shown in Figure12.1119

B.3 TikZ to Python1120

To enhance the capabilities of our image-to-code1121

model, we use GPT4o-mini to translate TikZ code1122

into Python code. Figure 13 illustrates the detailed1123

prompt used for this translation. The prompt in1124

Figure 13 is designed to guide the conversion of1125

LATEX TikZ code into Python code using popu-1126

lar plotting libraries like Matplotlib. It ensures1127

that the resulting Python code is executable, accu-1128

rately reproduces the visual details of the TikZ dia-1129

gram, and avoids overlaps between elements such1130

as points, labels, and text for better readability. The1131

prompt also emphasizes the correct formatting of1132

LATEX mathematical expressions to maintain visual1133

clarity and precision in the generated plots. This1134

structured approach helps bridge the gap between1135

LATEX-based graphics and Python-based visualiza-1136

tion.1137

In Figure 5, we compare images generated from1138

the original TikZ code with those generated from1139

the translated Python code. The results demonstrate1140

that the images produced by the Python code are1141

highly similar to the original images, showcasing1142

the effectiveness of our translation approach.1143

B.4 Data Cleaning1144

We remove low-quality image-code pairs from our1145

dataset. Figure 14 illustrates four types of low-1146

quality samples: (a) Almost blank images: We1147

remove images with a standard deviation (std) of1148

pixel values less than five. (b) Images with random1149

lines or shapes: These are filtered out by analyzing1150

(a) Image-to-TikZ Prompt:

Please generate the corresponding TikZ code that ac-
curately represents the visual elements in the image.
TikZ is a powerful tool for creating vector graph-
ics within LaTeX documents. Your generated code
should be precise, well-structured, and should recre-
ate the image as faithfully as possible.
<image>

The image can be generated using the following
TikZ code:

```tikz

[code]

```

(b) Image-to-Python Prompt:

Please provide the Python code needed to reproduce
this image.
<image>

The image can be generated using the following
Python code:

```python

[code]

```

Figure 12: Prompt templates of our Image-to-Code
Dataset.
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TikZ-to-Python Prompt

System Prompt:

You are an expert in both LaTeX (specifically TiKZ) and Python (specifically Matplotlib).

User Prompt:

Translate the provided TiKZ code into Python code using appropriate plotting libraries, such as Matplotlib. Pay close
attention to the following requirements:

1. **Avoid Overlapping**: Ensure that points, labels and text elements have different positions to avoid any overlap,
enhancing readability.

2. **LaTeX Formatting**: Accurately interpret and format any LaTeX equations or mathematical expressions to ensure
they render correctly in the image.

3. **Executable Code**: Ensure that the Python code is complete and can be executed directly without errors.

Hereś the TiKZ code:

```latex

[TiKZ Code]

```

Make sure to wrap your resulting Python code in the following format:

```python

[your python code here]

```

Figure 13: Prompt for translating LaTeX TiKZ code into Python Matplotlib code with a focus on accuracy,
readability, and executability.

and filtering the corresponding code. (c) Images1151

with black squares: This issue arises when images1152

with blank backgrounds are converted incorrectly1153

during preprocessing, resulting in completely black1154

images. We addressed this by removing the af-1155

fected data and optimizing the conversion logic. (d)1156

Images with externally loaded content: We identify1157

and remove such data by detecting commands in1158

the code that access local files.1159

B.5 Performance of img2code model1160

The img2code model aims to bridge the gap be-1161

tween visual data and code generation by trans-1162

lating images into accurate and meaningful code1163

representations. This section evaluates the model’s1164

progression through iterative training and high-1165

lights its ability to synthesize new, diverse images.1166

By comparing the performance of the initial and1167

final versions of the model and exploring its capa-1168

bilities with high-temperature synthesis, we demon-1169

strate its advancements in accuracy and creative1170

output.1171

Comparison Between Initial and Final Mod- 1172

els. Our img2code model was trained iteratively, 1173

culminating in a final version trained on 8.6 million 1174

image-code pairs. The performance improvements 1175

from the initial to the final model are demonstrated 1176

in Figures 6, 7, 8, and 9. These figures highlight 1177

the significant advancements in accuracy and the 1178

quality of the generated code and corresponding 1179

images as the model evolved through successive 1180

training cycles. 1181

Synthesize New Images with High Tempera- 1182

ture. Using the final iteration of the Img2Code-8B 1183

model, we synthesized new images from 1.57 mil- 1184

lion raw images in the foundational dataset. By 1185

setting a temperature of 0.7, the model was able to 1186

generate more diverse and creative outputs, devi- 1187

ating meaningfully from the original dataset. The 1188

results of this high-temperature synthesis are illus- 1189

trated in Figures 10, 11, 12, 13, 14, and 15. These 1190

figures demonstrate the model’s ability to produce 1191

innovative and varied image outputs suitable for 1192

diverse applications. 1193
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(a) (b) (c) (d)

Figure 14: Examples of low-quality image-code pairs removed from the dataset. (a) Almost blank images with
very low pixel variation. (b) Images containing random lines or shapes. (c) Images with black squares caused by
incorrect preprocessing. (d) Images generated using external files accessed through the code.

Synthesize New Problems Based on New im-1194

ages. The Problem Synthesis Prompt shown in1195

Figure 15 is designed to encourage creative and1196

meaningful engagement with visual data by craft-1197

ing math reasoning questions that are both acces-1198

sible and challenging for a K-12 audience. This1199

process involves analyzing patterns, shapes, and1200

numerical relationships present in an image, then1201

constructing a single, concise question that stimu-1202

lates analytical thinking. The prompt ensures that1203

the generated question is self-contained, solvable1204

using the visible information in the image, and1205

includes any essential details that may not be im-1206

mediately apparent. By adhering to these guide-1207

lines, educators and content creators can develop1208

visually engaging problems that promote critical1209

reasoning and mathematical exploration, fostering1210

a deeper connection between visual interpretation1211

and problem-solving skills.1212

Problem Synthesis Prompt

Please create a **math reasoning question** for a
K-12 audience based on the image generated by the
following code. The question must adhere to these
criteria:

1. **Image Engaging**: The question must utilize
visible patterns, shapes, numbers, or other elements
present in the image to engage reasoning skills.

2. **Single Question**: Write a single, standalone
question. The question should be concise and self-
contained, without any subparts. You do not need to
provide an answer to the question.

3. **Self-Sufficiency**: The recipient will only see
the image, not the code. Include any essential details
from the code (e.g., coordinates, hidden axes, specific
data points, or labels) that are necessary for solving
the question but may not be visible in the image.

4. **Solvability**: Ensure the question can be solved
using only the visible information in the image and
the question text.

Below is the code that generates the image:

```python/tikz

[Image Code]

```

### Question:

Figure 15: Prompt for synthesizing math reasoning prob-
lems based on synthesized images.
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TiKZ Python TiKZ Python TiKZ Python

Table 5: Comparison of images generated from the original TiKZ code and the translated Python code.
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Origin Image Initial Model Final Model Origin Image Initial Model Final Model

Table 6: Comparison of image-to-code performance between the initial and final models.
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Origin Image Initial Model Final Model Origin Image Initial Model Final Model

Table 7: Comparison of image-to-code performance between the initial and final models.

22



Origin Image Initial Model Final Model Origin Image Initial Model Final Model

Table 8: Comparison of image-to-code performance between the initial and final models.
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Origin Image Initial Model Final Model Origin Image Initial Model Final Model

Table 9: Comparison of image-to-code performance between the initial and final models.
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New Images from One Seed Image New Images from One Seed Image

Table 10: New images synthesized with seed images form K12-2M.
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New Images from One Seed Image New Images from One Seed Image

Table 11: New images synthesized with seed images form K12-2M
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New Images from One Seed Image New Images from One Seed Image

Table 12: New images synthesized with seed images form K12-2M
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New Images from One Seed Image New Images from One Seed Image

Table 13: New images synthesized with seed images form arXiv
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New Images from One Seed Image New Images from One Seed Image

Table 14: New images synthesized with seed images form MathV360k
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New Images from One Seed Image New Images from One Seed Image

Table 15: New images synthesized with seed images form MathV360k
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