
LONGHEADS: Multi-Head Attention is Secretly a Long Context Processor

Anonymous ACL submission

Abstract

Large language models (LLMs) have achieved001
impressive performance in numerous domains002
but often struggle to process lengthy inputs ef-003
fectively and efficiently due to limited length004
generalization and attention’s quadratic com-005
putational demands. Many sought to mitigate006
this by restricting the attention window within007
the pre-trained length. However, these meth-008
ods introduce new issues such as ignoring the009
middle context and requiring additional train-010
ing. To address these problems, we propose011
LONGHEADS, a training-free framework that012
enhances LLM’s long context ability by unlock-013
ing multi-head attention’s untapped potential.014
Instead of allowing each head to attend to the015
full sentence, which struggles with generaliz-016
ing to longer sequences, we allow each head017
to process in-distribution length by selecting018
and attending to important context chunks. To019
this end, we propose a chunk selection strat-020
egy that relies on the inherent correlation be-021
tween the query and the key representations,022
efficiently distributing context chunks to differ-023
ent heads. In this way, each head ensures024
it can effectively process attended tokens025
within the trained length, while different026
heads in different layers can collectively pro-027
cess longer contexts. LONGHEADS works028
efficiently in linear time, fits seamlessly with029
many LLMs that use relative positional encod-030
ing. LONGHEADS achieves 100% accuracy at031
the 128k length on passkey retrieval task, veri-032
fying LONGHEADS’s efficacy in extending the033
usable context window for existing models.034

1 Introduction035

LLMs are usually required to handle tasks with036

long contexts, such as in-context learning (Dong037

et al., 2023), tool learning (Qin et al., 2023), and038

retrieval-augmented generation (Gao et al., 2024).039

However, enabling LLMs to process long contexts040

presents significant challenges. When the context041

length exceeds the pre-training length, the model042

All Heads

Picked ChunkLONGHEADS
All Heads

Head 2

Head n

Head 1

Evicted Tokens

Full Attention

Restricted Attention

Out of Pre-trained Length

0

0.2

0.4

0.6

0.8

1

8k 16k 32k

Accuracy on Passkey Retrieval

NTK LM-INF Ours

Figure 1: Left: Three types of long-context proces-
sors, (a) Attend all contexts but struggle with out-of-
pre-trained length; (b) Attend local context to generate
fluently but lose information; (c) Head attends short
chunks and HEADS attend LONG context. Right: Accu-
racy of three specific methods on passkey retrieval task.

struggles to adapt to longer position encoding, lead- 043

ing to the out-of-distribution (OOD) issue(Han 044

et al., 2023). And quadratic complexity of atten- 045

tion introduces considerable training and inference 046

costs. Although OOD issue could be addressed 047

by zero-shot learning (Jin et al., 2024), fine-tuning 048

(Chen et al., 2023a; Peng et al., 2023), or re-training 049

(Sun et al., 2022; Press et al., 2022), the required 050

memory and computation still increases quadrati- 051

cally with context length, as shown in Figure 1(a). 052

To alleviate these issues, recent works restrict 053

the attention window to pre-trained length, which 054

reduces the computation cost and avoids the pro- 055

cessing of OOD tokens. One direction is to ex- 056

clude distant tokens (except for a few initial to- 057

kens, Han et al., 2023; Xiao et al., 2023) to restrict 058

the attention window in-distribution, as shown in 059

Figure 1(b). However, these methods could re- 060

sult in losing critical information, degrading per- 061

formance on downstream tasks. The other way to 062

constrain the attention window is to retrieve chunks 063

of long sequences (Mohtashami and Jaggi, 2023; 064

Zhang et al., 2024), but these approaches usually re- 065

quire special operations and continuous fine-tuning, 066

which makes it difficult for existing LLMs to be 067

directly applicable to long sequences. In summary, 068

improving the ability of LLMs to handle long con- 069

1

texts at a low cost is still challenging.070

In this paper, we propose LONGHEADS, a novel071

framework to enhance LLM’s long context abil-072

ity without additional training. The key idea is to073

fully unlock the potential of multi-head attention.074

We utilize the inherent characteristic of multi-head075

attention: different heads focus on different sub-076

spaces of the context, and each head can effec-077

tively process sequences within the pre-training078

length(Michel et al., 2019). As shown in Figure 2079

(c), we limit each head to selecting and attending080

to important contextual chunks within pre-trained081

length, rather than having each head attend to the082

entire sentence, thereby avoiding the OOD prob-083

lem. Furthermore, we leverage the model’s inher-084

ent dot-product attention and propose a chunk se-085

lection strategy to find important chunks for each086

head. Drawing inspiration from the fact that each087

head assigns different attention weights to to-088

kens based on the inherent correlation between089

the query and the key representations, we break090

the input into chunks and create chunk-level fea-091

tures for each block. It utilizes native token-level092

correlation to construct chunk-level queries and key093

representations, which allows each head to utilize094

its existing capabilities (dot-product attention) to095

select chunks based on the attention weights. In096

this way, each head effectively processes selected097

context chunks within the trained length, and all098

heads in all layers work together to handle longer099

contexts. Meanwhile, all operations are based on100

the intrinsic capabilities of multi-head attention,101

allowing LONGHEADS to enhance LLMs without102

additional training.103

To evaluate the effectiveness of LONGHEADS,104

we employ LLaMA-2-7B-Base and LLaMA-2-7B-105

Chat as base models and evaluate on language106

modeling, synthetic retrieval task and long con-107

text benchmark. LONGHEADS achieving nearly108

100% accuracy across context lengths from 4k109

to 32k on the Passkey Retrieval task. On Long-110

Bench, LONGHEADS achieves the state-of-the-art111

(SOTA) performance among restricted attention112

methods. Compared with full attention methods,113

LONGHEADS achieves comparable performance114

on 16K test lengths and the best performance on115

32K test lengths while enjoying linear computa-116

tional cost. The experimental results demonstrate117

that LONGHEADS enables the LLMs to directly118

generalize to longer sequences and achieve com-119

parable or even superior performance compared to120

the methods that require continuous fine-tuning.121

Our contributions can be summarized as follows: 122

• We propose LONGHEADS, a training-free in- 123

ference framework that leverages the structural 124

properties of attention heads to process long se- 125

quences efficiently and effectively. 126

• We design a simple yet effective chunk selection 127

strategy that can accurately select useful chunks 128

and cover the full context. 129

• Experiments demonstrate that LONGHEADS is 130

a SOTA restricted-attention-based long con- 131

text processor and works efficiently in linear 132

time, also with comparable performance to full- 133

attention methods. 134

2 Method 135

In this section, we describe how the LONGHEADS 136

utilizes the inherent ability of multi-head attention 137

to encode and generate long sequences without 138

additional training. 139

2.1 Overview 140

An overview of LONGHEADS is shown in Figure 2. 141

We break the text into chunks and calculate the 142

chunk representations for each chunk (Section 2.2). 143

When generating token x14, we pick the relevant k 144

chunks based on the current token’s query vector 145

and chunk representations. In this way, each atten- 146

tion head of the LONGHEADS selectively focuses 147

on different text chunks according to its preference 148

(Section 2.3). The tokens of attended chunks are 149

then restructured, ensuring the subsequent causal 150

attention always performed within the pre-trained 151

length. 152

When encoding or generating an out-of-length 153

token, a parameter-free chunk selection network 154

picks the relevant k chunks based on the current 155

query vector and chunk representations. Unpicked 156

chunks can be approximated as having zero atten- 157

tion score (Vig, 2019; Abnar and Zuidema, 2020) 158

(this usually holds under the sparsity of the atten- 159

tion mechanism (Correia et al., 2019; Qin et al., 160

2022)), and do not need to be computed. This 161

allows the attention matrix not to increase with 162

length, significantly reducing the memory and com- 163

putational cost (Section 2.4). Other works that re- 164

strict the scope of attention simply ignore distant 165

tokens beyond a few initial tokens, even if they 166

contain information worthy of attention. 167

2

× N blocks

…

Chunk Selection

1.0 0.4 0.50.1

KV Cache

…Selected Chunks of Each Head Query

Value

Key

Chunk Query Vector

Chunk Representation Multi-Head
Attention

FlashAttention & Pooling

FlashAttention

FlashAttention & Pooling

FlashAttention

FlashAttention & Pooling

FlashAttention

FlashAttention & Pooling

FlashAttention

Figure 2: An overview of LONGHEADS’s inference, generating token x14 in the current step. During inference,
LONGHEADS keeps the first chunk for stable computation, combined with the last chunk containing recent tokens.

2.2 Chunk Representation168

Chunk representation is an indicator of whether the169

tokens in this chunk should be attended to. We ob-170

tain chunk representations in a training-free manner171

by utilizing the attention’s intrinsic abilities.172

Formally, given a long input sequence X =173

(x1, ..., xn), we segment it into chunks according to174

a predefined chunk size l, then the input sequence175

can be denoted as X = (C1, ..., Cm),m = ⌈nl ⌉.176

We use attention’s key states to generate chunk rep-177

resentation for each chunk due to the existing atten-178

tion mechanism that relies on query states. There179

are numerous straightforward methods to obtain180

chunk representation, such as mean pooling of the181

key vectors of all tokens in the chunk. However,182

they have demonstrated suboptimal performance183

in preliminary experiments, particularly in select-184

ing the correct chunks. We hypothesize that this is185

attributed to the significance of individual tokens186

within a chunk vary substantially.187

To address the above problem, we should iden-188

tify the tokens that can represent the entire chunk.189

For that purpose, we evaluate each token’s signif-190

icance to the chunk and perform scaled attention191

aggregation on all tokens’ key states to obtain a192

representative chunk representation as follows:193

ci = flash-attention (qci ,Ki,Ki) (1)194

where ci ∈ Rm×d is the chunk representation,195

Ki ∈ Rl×d is the attention’s all key states of196

chunk Ci, qci ∈ R1×d is a query vector to indicate197

which token’s key state is suitable for representing198

the chunk representation, we utilize flash-attention199

(Dao et al., 2022) to perform scaled attention. Next,200

we describe how to create the query vector.201

A good chunk query vector should be able to202

represent the chunk’s full semantic information,203

i.e., the value vector of all tokens in the entire204

chunk. However, different tokens do not contribute 205

equally to the semantic representation, e.g., con- 206

tent words hold a higher semantic weight, while 207

function words contribute less. Utilizing the in- 208

herent dot-product similarity between token-level 209

query and key representations, we construct seman- 210

tic weights for each token through a bidirectional 211

self-attention aggregation. From the perspective of 212

message passing, semantically rich content words 213

will transmit more of their information to other 214

tokens, whereas function words transmit little. Fi- 215

nally, the query vectors qci that successfully summa- 216

rize the complete semantics are obtained by mean- 217

pooling of the aggregated representations, and can 218

be formalized as follows. 219

Oi = flash-attention(Qi,Ki,Vi) 220

qci = mean (Oi) , (2) 221

where Qi, Ki, and Vi ∈ Rl×d are all query states, 222

key states, and value states of chunk Ci respec- 223

tively. Both Ki and Vi can be directly accessed 224

from the KV cache, whereas Qi requires tempo- 225

rary storage during the calculation of the current 226

chunk’s representation and is released thereafter. 227

2.3 Chunk Selection Strategy 228

During the encoding or generation of the next token 229

(denoted by xj), we employ a query-aware chunk 230

selection strategy, picking the k most relevant 231

chunks from those already generated. Based on 232

prior knowledge, there are two mandatory chunks. 233

One is aligning with Xiao et al. (2023)’s find- 234

ings, acknowledging the essential role of the few 235

start tokens of a sentence in preserving the stabil- 236

ity of LLMs. If the few start tokens are missing 237

from the context, the pre-trained LLMs will com- 238

pletely lose their expressive ability (i.e., exhibit 239

3

very high perplexity). To ensure fluency, all at-240

tention heads uniformly select the first chunk (i.e.,241

C1) of the sentence. Otherwise, the LLM cannot242

handle downstream tasks (as demonstrated in the243

Ablation Study). The other is assigning the last244

chunk (i.e., C−1) to all attention heads, in order245

to provide the model with the local information246

necessary for generation.247

Next, we pick the remaining k− 2 most relevant248

chunks for each attention head. In the attention249

module of LLMs, the dot product score reflects250

the relevance of the context token to the current251

token. Inspired by it, we pick target chunks by the252

dot product similarity between the current token’s253

query state qj and the chunk representation ci.254

P = {C1}∪{Ci | rank(qj ·ci) ≤ k−2}∪{C−1},
(3)255

where P is the final set of selected chunks, and256

the rank(·) function outputs the rank of the current257

chunk’s computed similarity among all candidates.258

In this way, different attention heads across the lay-259

ers naturally attend to different parts of the context,260

retrieving the important chunks for inference.261

Position Remapping. There are text chunks in262

the set P that exceed the pre-training length, so263

the positional encoding of P needs to be remapped.264

The total length of the selected chunks is controlled265

to be within the pre-training length L, i.e., k∗l < L.266

Here, LONGHEADS restructures the picked chunks267

and concatenates them, while preserving the or-268

der of precedence. In Figure 3, the current head269

attends to chunks (1, 2, 5, 7) among the eight can-270

didate chunks. The positions are assigned as [1, 4l],271

in contrast to the original text positions, which272

would be [1, l]∪ [l+1, 2l]∪ [4l+1, 5l]∪ [6l+1, 7l].273

Position remapping avoids the out-of-distribution274

problem encountered when extending the context275

even without further training.

Picked

chunks

Figure 3: Demonstration of Position Remapping.276

2.4 Inference with LONGHEADS277

We separately describe the encoding of long in-278

puts and the generation of long outputs during the279

inference. Here we describe only the modified280

multi-head causal attention layer.281

Computation and Memory in Encoding Phase. 282

When the LONGHEADS receives long inputs, it 283

first computes the representations of all chunks in 284

parallel. This can be quickly achieved through two 285

passes of flash-attention, with the number of tokens 286

involved in the attention equal to the chunk size 287

(i.e., l=256, which is much smaller than the length 288

of the input, e.g., n=16k). The second step is to 289

select the k most relevant chunks for each query 290

based on chunk representations and to obtain their 291

key and value representations, making the attention 292

window equals to k∗l=w (e.g., w=2k, which is also 293

much smaller than n). Finally, length-restricted 294

causal flash-attention is performed efficiently. 295

Computation and Memory in Generation Phase. 296

During the generation process, LONGHEADS first 297

performs chunk selection, then loads the Key-Value 298

representations of the picked k chunks for length- 299

constrained causal attention. When generating with 300

very large inputs (e.g. 100K), the KV cache (except 301

the chunk representations) can be offloaded to CPU 302

to significantly reduce memory usage, and we only 303

load the picked chunks into the GPU memory. We 304

always retain the query-key-value representations 305

of recent tokens (not exceeding the chunk size) 306

during the generation process. When the number of 307

recent tokens equals the chunk size, we compute a 308

chunk representation, similar to the encoding phase, 309

and append it to the previous chunk representations. 310

Overall, the time complexity approximates an 311

LLM with window attention O(w2) (window size 312

w is equal to k ∗ l). Memory usage of the decoding 313

phase approximates O(n+w2), and can be further 314

reduced to O(k ∗ l + w2), avoiding a quadratic 315

increase in costs with sequence length. We empiri- 316

cally evaluate the LONGHEADS’ memory footprint 317

and speed in Appendix D. 318

3 Experiment 319

We evaluate the proposed LONGHEADS primarily 320

using the LLaMA-2 (Touvron et al., 2023) consider- 321

ing its wide adoption and popularity. The effective- 322

ness of LONGHEADS is evaluated on three kinds of 323

tasks: language modeling, synthetic retrieval task 324

and long context benchmark. 325

3.1 Settings 326

Implementation. Our method is applied to 327

LLaMA-2-7B base and chat models for empiri- 328

cal studies. In our setup, we set the size of each 329

chunk l to be 256. During each inference step, we 330

4

PG19 Proof-pile

Method 4k 16k 32k 4k 16k 32k

Full Attention
PI-16K 7.42 6.72 >103 2.98 2.61 >103

NTK 6.98 9.58 19.3 2.99 3.00 4.05

Restricted Attention
LLaMA-2-7B 6.98 >103 >103 2.99 >103 >103

LM-Infinite 6.98 7.33 7.75 2.99 2.96 3.10
Landmark 10.03 10.13 10.14 4.98 4.86 4.92
LONGHEADS 6.98 8.15 8.41 2.99 3.26 3.42

Table 1: Sliding window perplexity of different context
window extension methods on PG19 and Proof-pile.
LONGHEADS extends the original LLaMA-2’s context
window length to 32k with 2k attention window.

employ our chunk selection strategy to perform331

query-aware chunk selection. All evaluations are332

conducted on a single NVIDIA A100 GPU.333

Baselines. The following types of baselines are334

chosen for comparison. 1) The method with full335

attention, including “Dynamic NTK” interpolation336

(NTK, Emozilla, 2023) and Position Interpolation337

(PI, Chen et al., 2023a). 2) The method with re-338

stricted attention, including LM-Infinite (Han et al.,339

2023) and Landmark-Attention (Mohtashami and340

Jaggi, 2023). The implementation details of base-341

lines are in Appendix A.342

3.2 Long Context Language Modeling343

The experiment on long context language model-344

ing is performed with two datasets: PG19 (Rae345

et al., 2019) and Proof-pile dataset (Azerbayev346

et al., 2023). Details are shown in Appendix B.1.347

The evaluation results are reported in Table 1.348

Although the PPL of LLaMA-2-7B-Base model349

and PI remain low within the pre-training context350

length, it increases significantly when the context351

exceeds this window. The NTK approach can main-352

tain low PPL values for sequences up to 16k length,353

but PPL rises significantly at 32k context length. In354

contrast, LONGHEADS, Landmark Attention and355

LM-infinite successfully maintain a low PPL score356

even at a sequence length of 32k.357

3.3 Retrieval-Based Evaluation358

We conduct experiments on the passkey retrieval359

task introduced by (Mohtashami and Jaggi, 2023).360

This task challenges a language model to accurately361

locate and retrieve a simple passkey (a five-digit362

random number) in a long text sequence and we363

show the test example in Appendix E. The passkey364

4k 8k 12k 16k 20k 24k 28k 32k
Context Length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Fine-tuned
PI-16K
Landmark

Training-free
Llama-2-7B
LM-Infinite
NTK
LongHeads

Figure 4: The evaluation of passkey retrieval task at
different context lengths. LONGHEADS achieves a com-
parable performance as Landmark Attention and outper-
forms other methods.

is placed with various context lengths (ranging 365

from 4k to 32k with 4k interval). For each con- 366

text length, we perform 50 tests with the passkey 367

placed at a random position in the context. 368

In Figure 4, we can see that all the models can 369

output the passkey within the pretrained length. 370

The base model completely fails at the extended 371

length. The NTK and LM-Infinite induce a sig- 372

nificant drop in accuracy for models at lengths 373

surpassing 6k tokens, with accuracy falling below 374

20% when token lengths exceed 16k. LM-Infinite 375

can only access 10% passkey with its local win- 376

dow, despite having low PPL at 32k length. Con- 377

versely, Landmark Attention and LONGHEADS 378

consistently retrieve with nearly 100% accuracy re- 379

gardless of sequence length. We further test LONG- 380

HEADS to 128k length after offloading KV cache 381

to CPU, the results are shown in Appendix F. 382

We further test “Needle in a Haystack” (gkam- 383

radt, 2023) passkey retrieval, the results are shown 384

in Appendix G. 385

3.4 Long Context Benchmark Evaluation 386

Language modeling tasks have proven to be insuf- 387

ficient metrics for ensuring success in downstream 388

tasks (Sun et al., 2021), while synthetic password 389

retrieval tasks often do not align with real-world 390

scenarios. It is significant to conduct real down- 391

stream task evaluations to more comprehensively 392

reflect the model’s long sequence capabilities. We 393

opt LongBench (Bai et al., 2023) for downstream 394

NLP task evaluation, the details are shown in Ap- 395

pendix B.2. The results are listed in Table 2. We 396

also conduct experiments on LLaMA-2-7B-Chat 397

model, and the results are shown in Appendix I. 398

5

Method
FT Single-Doc QA Multi-Doc QA Summarization Few-shot Learning Synthetic Code

Avg.
Tokens NQA Qspr. MulFi HQA WMQA Musq. GRpt QMSM MulN TREC TriQA SMSM PsgC PsgR Lcc Repo

Full Attention
NTK - 16.47 29.62 31.42 31.31 28.75 10.20 22.70 17.65 6.31 64.67 77.36 37.95 3.99 5.12 65.64 52.97 31.38
PI-16k 0.85B 21.37 31.78 36.67 37.56 27.47 15.98 13.55 20.69 1.18 63.00 89.24 25.64 5.67 11.33 67.05 56.02 32.76

Restricted Attention
LM-Infinite - 14.34 20.75 26.18 20.37 20.08 5.87 16.70 7.01 2.28 54.67 76.69 15.64 4.30 7.00 62.90 52.74 25.47
Landmark 0.80B 11.35 23.91 20.96 26.95 26.25 5.22 17.74 19.15 9.84 42.67 80.73 35.45 5.73 7.00 59.74 42.76 27.22
LONGHEADS - 14.51 21.58 30.32 30.07 25.28 9.15 24.74 20.26 6.30 55.00 83.26 34.27 2.45 9.39 65.01 50.65 30.14

w/ NTK init - 16.48 28.63 31.36 31.19 28.67 13.54 22.85 17.63 6.38 65.33 77.49 38.07 4.32 4.97 65.56 52.87 31.58
w/ PI init 0.85B 21.43 31.78 36.64 37.63 27.33 15.98 13.36 20.57 1.30 63.00 89.57 25.86 5.67 11.33 66.93 48.96 32.33

Extend to 32k
NTK - 5.74 29.05 31.39 28.98 27.03 9.34 22.00 15.13 5.40 64.67 48.34 34.50 3.89 4.85 57.54 45.29 27.07
PI-16k 0.85B 8.43 30.15 35.20 29.47 24.72 1.74 13.23 12.59 1.30 55.00 66.15 19.16 5.42 11.33 33.21 27.21 23.39
LM-Infinite - 10.87 20.58 26.19 19.48 20.40 16.52 5.26 2.51 6.14 55.00 82.78 11.26 4.30 6.67 64.88 56.02 25.55
Landmark 0.80B 13.88 23.69 21.06 28.04 25.78 11.52 17.70 19.11 10.68 41.00 77.15 35.61 5.70 7.00 58.22 40.97 27.32
LONGHEADS - 13.38 21.81 30.33 29.59 24.90 11.48 27.43 19.87 6.07 55.00 81.15 33.56 2.79 10.06 63.75 47.97 29.95

w/ NTK init - 9.01 27.67 31.68 30.04 27.06 8.31 22.44 17.20 5.41 63.33 54.61 35.13 4.09 4.70 60.59 48.92 28.14
w/ PI init 0.85B 20.28 31.39 37.15 36.45 26.55 15.30 14.75 20.68 1.30 62.00 88.35 22.81 5.33 11.33 66.93 54.28 32.00

Table 2: The results of different methods based on the LLaMA-2-7B-Base model on LongBench. FT Tokens
indicate the number of tokens used for continuous training.

Comparison with Restricted Attention Methods.399

LONGHEADS surpasses the current methods with400

restricted attention. Specifically, LONGHEADS per-401

forms better than the method with the sliding win-402

dow mechanism on LongBench (+4.67 vs. LM-403

Infinite). Compared to the method with chunking404

strategy (i.e., Landmark Attention), LONGHEADS405

exceeds the average score by 2.92 on LongBench406

without additional training. This indicates that the407

chunk selection strategy in LONGHEADS can accu-408

rately supplement LLMs with relevant contextual409

information, enabling efficient and effective under-410

standing on long sequences.411

Comparison with Full Attention Methods. Full412

attention methods can increase the maximum se-413

quence length of LLMs but also raise computa-414

tional and memory costs. LONGHEADS can be415

augmented with PI or NTK methods during the en-416

coding phase, achieving comparable or even better417

results with a shorter window size, significantly re-418

ducing computational overhead. This suggests that419

LONGHEADS has the potential for scalability, and420

can be strengthened with a stronger base model.421

Performance when extending to 32k Con-422

text window. A desirable attribute for RoPE-423

extension methods is that the models should main-424

tain their performance when directly extending425

to a longer context window. When extending to426

32k context windows, PI and NTK methods strug-427

gle with the out-of-demonstration issue and tend428

to compromise model performance. In contrast,429

LONGHEADS maintains its performance and out- 430

performs all the baseline methods. 431

4 Discussion 432

4.1 Analysis 433

In this section, we explore how different attention 434

heads handle long contexts and whether they find 435

important information. We set LONGHEADS’s at- 436

tention window to 2048 and analyze on passkey 437

retrieval and summary tasks. We visualize the tests 438

for both tasks in Figure 5 and show the statistical 439

results in Table 3. The details of analytical experi- 440

ments are in Appendix C. 441

Attention heads focus on important parts in con- 442

text. On the passkey retrieval task, shown in Fig- 443

ure 5(a), all attention heads focused on the same 444

chunk containing the answer and predicted it accu- 445

rately. Even when the passkey is not successfully 446

predicted in Figure 5(b), the chunks containing 447

the answer are still selected by multiple heads. In 448

contrast, on the summary task in Figure 5(c), the 449

attention heads spread their focus more evenly to 450

summarize the entire information. Similarly, Table 451

3 reveals a lower uniformity score for the summary 452

task compared to the passkey retrieval task. These 453

findings suggest that our chunk selection strategy 454

results in a more uniform distribution of selections 455

in the summary task, while the distribution in the 456

passkey retrieval task is more concentrated. We 457

attribute this to the specificity of chunks required 458

for the passkey retrieval task, whereas the sum- 459

6

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031
Chunk

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

La

ye
r

(a) Passkey Retrieval Task (Success)

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031
Chunk

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

La

ye
r

(b) Passkey Retrieval Task (Fail)

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031
Chunk

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

La

ye
r

(c) Summarization Task

0

5

10

15

20

25

30

At

te
nt

io
n

He
ad

s

Figure 5: Visualization of chunks selected by different attention heads at each layer represented by color blocks. For
the passkey retrieval task, the chunk containing the passkey is delineated with a red border. In example (b), the red
border encompasses two chunks due to the passkey-containing sentence coincidentally spanning two chunks. We
conduct a statistical analysis to investigate the influence of chunking the key into different chunks in Appendix H.

Input Cover Uniformity Hit Rate

Length Rate Top 1 Top 5

Passkey Retrieval
4k 100 0.52 0.55 0.96
8k 100 0.52 0.89 0.96

16k 99.2 0.60 0.99 1.00
32k 82.0 0.76 0.98 0.98

Summary
4k 100 0.31 / /
8k 100 0.44 / /

16k 100 0.49 / /
32k 100 0.57 / /

Table 3: Statistical results with different sequence
lengths. Cover Rate is defined as the percentage of
selected chunks out of the total number of chunks. Uni-
formity of the distribution of chunk selection is evalu-
ated by the Gini coefficient, with lower values indicating
a more uniform distribution. Hit Rate means the proba-
bility that the top-1 and top-5 selected chunks contain
the correct answer in the past key retrieval task.

mary task necessitates various parts of the text to460

formulate a comprehensive answer. Moreover, the461

probability of the top 5 selected chunks containing462

the answer is almost 100% across all test lengths463

in Table 3. These results suggest that our chunk se-464

lection strategy adaptively fits the characteristics of465

different tasks, and allows different attention heads466

to concentrate on task-related content.467

Attention heads can handle long sequences in a468

short window. In Figure 5, the lower layer atten-469

tion heads focus on the more dispersed text in both470

tasks, while the upper layer attention heads focus471

more on specific chunks. We speculate that dif-472

ferent attention heads naturally focus on different473

parts of the information in the text at lower layers,474

collecting and aggregating the entire long docu- 475

ment information in a short length, while the upper 476

layer attention heads are responsible for process- 477

ing the aggregated information, mainly focusing on 478

the chunks needed to complete the task. In Table 479

3, the Cover Rate is 100% in most cases. Given 480

that different heads in each layer can select varying 481

chunks, the maximum theoretical length accessi- 482

ble by LONGHEADS is |P | × n_heads×n_layers 483

(e.g., the maximum length for LLaMA-2-7B with 484

4k attention window is 512k). These observations 485

demonstrate that we have successfully utilized a 486

limited attention window to capture almost all in- 487

formation from the entire long document. 488

4.2 Ablation Study 489

We conduct ablation experiments to investigate 490

the influence of chunk selection strategy, attention 491

heads flexibility, number of chunks K, and chunk 492

size l. The ablation study is constructed on Long- 493

Bench and the results are presented in Table 4. 494

Effect of Chunk Selection Strategy. We find 495

that the performance when selecting the highest- 496

scoring chunks significantly surpasses that of the 497

lowest-scoring (Last K) chunks, and even Ran- 498

dom P\{C1, C−1} yields better results than Last 499

K Selection. We also observe a significant per- 500

formance degradation when the first chunk is not 501

preserved(Random P and w/o C1). This is be- 502

cause the absence of the first chunk results in the 503

model’s output distribution collapsing directly. Our 504

findings are consistent with StreamingLLM (Xiao 505

et al., 2023) and LM-Infinite (Han et al., 2023). 506

7

Method Setting LongBench Avg.

LONGHEADS 30.14
- Random P 7.12
- Random P\{C1, C−1} 28.77
- Last K Selection 26.22
- w/o C1 14.06
- Fix Head 29.46
- Fix Layer 28.78
- Fix Head & Layer 28.72
- Number of Chunks K = 8 29.09
- Number of Chunks K = 4 26.64
- Chunk Size l = 512 29.95
- Chunk Size l = 128 29.35

Table 4: Ablation study on LongBench, by default
l = 256, K = 16, and Top K Selection. Random P
means all chunks are randomly selected and Random
P\{C1, C−1} means keep the first and last chunk and
randomly select the remaining chunks.

Effect of Heads Flexibility. When the flexibility507

of attention heads is constrained, the model’s per-508

formance is compromised to varying degrees (-0.68509

Fix Head, -1.36 Fix Layer, -1.42 Fix Head&Layer).510

This demonstrates that within the LONGHEADS511

framework, the collaboration of different attention512

heads in each layer plays a crucial role.513

Effect of Number of Chunks & Chunk Size. In-514

creasing the number of chunks in a text may pro-515

vide more information, but the benefits show a516

diminishing return. This indicates that four chunks517

provide enough information to ensure performance,518

and eight chunks are already adequate to access the519

entire sequence’s information with chunk selection520

strategy, Different chunk sizes do not lead to a sig-521

nificant impact on the results, indicating larger or522

smaller chunk sizes are feasible for LONGHEADS.523

5 Related Work524

Expanding Positional Encoding (PE). Context525

extension studies typically target the popular RoPE526

encoding, aiming to scale unseen PE into the527

space of positions seen during pre-training. Chen528

et al. (2023a), and concurrently kaiokendev (2023)529

discovered that interpolating the position indices530

within the pre-trained limit works well with the531

help of a small amount (a few billion, Chen et al.,532

2023a) of fine-tuning. However, position interpola-533

tion (PI) equally stretches all dimensions of RoPE,534

neglecting the variations in frequency. As an alter-535

native, Bloc97 (2023b) proposed the “NTK-aware”536

interpolation by taking the loss of high-frequency537

components into account. Subsequently, Emozilla538

(2023) proposed the “Dynamic NTK” interpolation539

method, which performs well without the need for 540

fine-tuning. Bloc97 (2023a) introduced the “NTK- 541

by-parts” interpolation method, which performs the 542

best when fine-tuned on a small amount of longer- 543

context data. Peng et al. (2023) proposed YaRN, 544

an improved method to efficiently extend the con- 545

text window by fine-tuning on less than 0.1% of 546

the original pre-training data. This work directly 547

modifies the PE to expand to a theoretically infinite 548

context length. In contrast, our method does not 549

require modifying the PE, and only a finite chunk 550

participates in the attention calculation, which im- 551

proves efficiency and reduces memory usage. 552

Restricted Attention. In addition, the global 553

causal attention could be restricted to local atten- 554

tion, thus avoiding exceeding the pre-trained posi- 555

tion length. ReRoPE (Su, 2023) truncates all con- 556

text lengths to the max length during pretraining. 557

LM-Infinite (Han et al., 2023) restricted the global 558

attention window into a chevron-shaped window, 559

retaining only a few tokens from the beginning of 560

the text and a local window. Mohtashami and Jaggi 561

(2023) insert a learnable landmark token after each 562

text fragment with a fixed length, and use these 563

landmarks to retrieve relevant fragments. Zhang 564

et al. (2024) similarly insert a learnable beacon to- 565

ken and use its representation to summarise the cor- 566

responding whole fragment. Although restricted at- 567

tention offers advantages in terms of memory usage 568

and inference speed, they risk losing valuable con- 569

text information. Existing methods employ local 570

windows that are either fixed or selected through 571

fine-tuning. In our approach, local windows are 572

flexibly composed of chunks from the context and 573

do not rely on additional fine-tuning. 574

6 Conclusion 575

We present LONGHEADS, a novel, training-free 576

framework for efficiently processing long contexts 577

in pre-trained LLMs. Utilizing the intrinsic capa- 578

bilities of attention heads, LONGHEADS smartly 579

segments and assigns long text to relevant heads, 580

streamlining the handling of extended sequences 581

without extra computational load. Experiment 582

results validate LONGHEADS’s superiority in re- 583

stricted attention setups and its competitive edge 584

against full attention methods when applied to the 585

LongBench suite. Our approach paves the way for 586

performance breakthroughs in long context LLM 587

operations, leveraging existing model structures to 588

unlock new potential without further training. 589

8

Limitations590

We summarize the limitations of our method as591

follows: (1) Splitting the text into chunks may592

disrupt the continuity of the content. When the593

correct answer is in the middle of two chunks,594

this kind of splitting can affect the performance595

of downstream tasks. (2) The theoretical maximum596

length accessible by LONGHEADS is confined to597

|P | × n_heads×n_layers. LONGHEADS cannot598

fully access inputs that surpass this threshold. How-599

ever, LONGHEADS can still perform well on long600

document tasks by selecting important parts from601

the context. (3) The success of LONGHEADS in602

downstream tasks depends on the non-parametric603

chunk selection function. For complex compre-604

hension tasks, the effectiveness of the selection605

function may be affected.606

References607

Samira Abnar and Willem Zuidema. 2020. Quantifying608
attention flow in transformers.609

Zhangir Azerbayev, Bartosz Piotrowski, Hailey610
Schoelkopf, Edward W. Ayers, Dragomir Radev, and611
Jeremy Avigad. 2023. Proofnet: Autoformalizing612
and formally proving undergraduate-level mathemat-613
ics.614

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,615
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao616
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,617
and Juanzi Li. 2023. Longbench: A bilingual, multi-618
task benchmark for long context understanding.619

Bloc97. 2023a. Add NTK-Aware interpolation "by620
parts" correction.621

Bloc97. 2023b. NTK-Aware Scaled RoPE allows622
LLaMA models to have extended (8k+) context size623
without any fine-tuning and minimal perplexity degra-624
dation.625

Shouyuan Chen, Sherman Wong, Liangjian Chen, and626
Yuandong Tian. 2023a. Extending context window627
of large language models via positional interpolation.628

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai,629
Zhijian Liu, Song Han, and Jiaya Jia. 2023b. Lon-630
glora: Efficient fine-tuning of long-context large lan-631
guage models.632

Together Computer. 2023. Redpajama: An open633
source recipe to reproduce llama training dataset.634
https://github.com/togethercomputer/635
RedPajama-Data.636

Gonçalo M. Correia, Vlad Niculae, and André F. T.637
Martins. 2019. Adaptively sparse transformers.638

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, 639
and Christopher Ré. 2022. Flashattention: Fast and 640
memory-efficient exact attention with io-awareness. 641

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong 642
Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei Li, and 643
Zhifang Sui. 2023. A survey on in-context learning. 644

Emozilla. 2023. Dynamically Scaled RoPE further in- 645
creases performance of long context LLaMA with 646
zero fine-tuning. 647

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, 648
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Qianyu Guo, 649
Meng Wang, and Haofen Wang. 2024. Retrieval- 650
augmented generation for large language models: A 651
survey. 652

gkamradt. 2023. Needle in a haystack - pressure testing 653
llms. 654

Chi Han, Qifan Wang, Wenhan Xiong, Yu Chen, Heng 655
Ji, and Sinong Wang. 2023. Lm-infinite: Simple 656
on-the-fly length generalization for large language 657
models. 658

Hongye Jin, Xiaotian Han, Jingfeng Yang, Zhimeng 659
Jiang, Zirui Liu, Chia-Yuan Chang, Huiyuan Chen, 660
and Xia Hu. 2024. Llm maybe longlm: Self-extend 661
llm context window without tuning. 662

kaiokendev. 2023. Things iḿ learning while training 663
superhot. 664

Paul Michel, Omer Levy, and Graham Neubig. 2019. 665
Are sixteen heads really better than one? 666

Amirkeivan Mohtashami and Martin Jaggi. 2023. Land- 667
mark attention: Random-access infinite context 668
length for transformers. 669

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and En- 670
rico Shippole. 2023. Yarn: Efficient context window 671
extension of large language models. 672

Ofir Press, Noah Smith, and Mike Lewis. 2022. Train 673
short, test long: Attention with linear biases enables 674
input length extrapolation. In International Confer- 675
ence on Learning Representations. 676

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, 677
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang, 678
Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su, 679
Huadong Wang, Cheng Qian, Runchu Tian, Kunlun 680
Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen 681
Zhang, Yining Ye, Bowen Li, Ziwei Tang, Jing Yi, 682
Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong, 683
Yaxi Lu, Weilin Zhao, Yuxiang Huang, Junxi Yan, 684
Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng 685
Yang, Tongshuang Wu, Heng Ji, Zhiyuan Liu, and 686
Maosong Sun. 2023. Tool learning with foundation 687
models. 688

Zhen Qin, Weixuan Sun, Hui Deng, Dongxu Li, Yun- 689
shen Wei, Baohong Lv, Junjie Yan, Lingpeng Kong, 690
and Yiran Zhong. 2022. cosformer: Rethinking soft- 691
max in attention. 692

9

http://arxiv.org/abs/2005.00928
http://arxiv.org/abs/2005.00928
http://arxiv.org/abs/2005.00928
http://arxiv.org/abs/2302.12433
http://arxiv.org/abs/2302.12433
http://arxiv.org/abs/2302.12433
http://arxiv.org/abs/2302.12433
http://arxiv.org/abs/2302.12433
http://arxiv.org/abs/2308.14508
http://arxiv.org/abs/2308.14508
http://arxiv.org/abs/2308.14508
https://github.com/jquesnelle/scaled-rope/pull/1
https://github.com/jquesnelle/scaled-rope/pull/1
https://github.com/jquesnelle/scaled-rope/pull/1
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
http://arxiv.org/abs/2306.15595
http://arxiv.org/abs/2306.15595
http://arxiv.org/abs/2306.15595
http://arxiv.org/abs/2309.12307
http://arxiv.org/abs/2309.12307
http://arxiv.org/abs/2309.12307
http://arxiv.org/abs/2309.12307
http://arxiv.org/abs/2309.12307
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
http://arxiv.org/abs/1909.00015
http://arxiv.org/abs/2205.14135
http://arxiv.org/abs/2205.14135
http://arxiv.org/abs/2205.14135
http://arxiv.org/abs/2301.00234
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
http://arxiv.org/abs/2312.10997
http://arxiv.org/abs/2312.10997
http://arxiv.org/abs/2312.10997
http://arxiv.org/abs/2312.10997
http://arxiv.org/abs/2312.10997
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
http://arxiv.org/abs/2308.16137
http://arxiv.org/abs/2308.16137
http://arxiv.org/abs/2308.16137
http://arxiv.org/abs/2308.16137
http://arxiv.org/abs/2308.16137
http://arxiv.org/abs/2401.01325
http://arxiv.org/abs/2401.01325
http://arxiv.org/abs/2401.01325
https://kaiokendev.github.io/til#extending-context-to-8k
https://kaiokendev.github.io/til#extending-context-to-8k
https://kaiokendev.github.io/til#extending-context-to-8k
http://arxiv.org/abs/1905.10650
http://arxiv.org/abs/2305.16300
http://arxiv.org/abs/2305.16300
http://arxiv.org/abs/2305.16300
http://arxiv.org/abs/2305.16300
http://arxiv.org/abs/2305.16300
http://arxiv.org/abs/2309.00071
http://arxiv.org/abs/2309.00071
http://arxiv.org/abs/2309.00071
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
http://arxiv.org/abs/2304.08354
http://arxiv.org/abs/2304.08354
http://arxiv.org/abs/2304.08354
http://arxiv.org/abs/2202.08791
http://arxiv.org/abs/2202.08791
http://arxiv.org/abs/2202.08791

Jack W. Rae, Anna Potapenko, Siddhant M. Jayaku-693
mar, and Timothy P. Lillicrap. 2019. Compressive694
transformers for long-range sequence modelling.695

Jianlin Su. 2023. Rectified rotary position embeddings.696
https://github.com/bojone/rerope.697

Simeng Sun, Kalpesh Krishna, Andrew Mattarella-698
Micke, and Mohit Iyyer. 2021. Do long-range lan-699
guage models actually use long-range context?700

Yutao Sun, Li Dong, Barun Patra, Shuming Ma, Shao-701
han Huang, Alon Benhaim, Vishrav Chaudhary, Xia702
Song, and Furu Wei. 2022. A length-extrapolatable703
transformer.704

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-705
bert, Amjad Almahairi, Yasmine Babaei, Nikolay706
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti707
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton708
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,709
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,710
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-711
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan712
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,713
Isabel Kloumann, Artem Korenev, Punit Singh Koura,714
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-715
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-716
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-717
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-718
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,719
Ruan Silva, Eric Michael Smith, Ranjan Subrama-720
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-721
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,722
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,723
Melanie Kambadur, Sharan Narang, Aurelien Ro-724
driguez, Robert Stojnic, Sergey Edunov, and Thomas725
Scialom. 2023. Llama 2: Open foundation and fine-726
tuned chat models.727

Jesse Vig. 2019. Visualizing attention in transformer-728
based language representation models.729

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song730
Han, and Mike Lewis. 2023. Efficient streaming731
language models with attention sinks.732

Peitian Zhang, Zheng Liu, Shitao Xiao, Ninglu Shao,733
Qiwei Ye, and Zhicheng Dou. 2024. Soaring from734
4k to 400k: Extending llm’s context with activation735
beacon.736

A Baseline Implementation Details 737

We conduct experiments on 4 methods as our base- 738

lines.We illustrate the details of each baseline as 739

follows: 740

For NTK, we set the scale factor of NTK to 2.0 741

for base model and 1.0 for chat model. For LM- 742

Infinite, we set the number of preserved initial to- 743

kens to 10 and the local window at the end to 4096 744

tokens. In the context of training-free methods, 745

we did not evaluate StreamingLLM (Xiao et al., 746

2023) as their framework does not support inputs 747

exceeding 4K tokens, and their method is similar 748

to LM-Infinite. For Position Interpolation method 749

performed on 8K and 16K context, we use the Red- 750

pajama (Computer, 2023) dataset for training. Fol- 751

lowing (Chen et al., 2023b), we set the per-device 752

batch size as 1 and gradient accumulation steps as 753

8, which means that the global batch size equals 754

64, using 8 GPUs. We train the models for 1000 755

steps. For Landmark-Attention, we adopted their 756

configuration settings for consistency. We finetune 757

LLaMA-2-7B Base model for 15000 steps using 758

their method. We fine-tune the model with context 759

length 512 on Redpajama dataset. 760

B Evaluation Details 761

B.1 Language Modeling Evaluation Details 762

We evaluate the long context language modeling 763

performance on the book corpus dataset PG19 (Rae 764

et al., 2019) and the cleaned Arxiv Math proof-pile 765

dataset (Azerbayev et al., 2023). For both datasets, 766

a subset of one hundred instances from the test 767

corpus is utilized to gauge language modeling pro- 768

ficiency. Following (Press et al., 2022), we evaluate 769

perplexity by using a sliding window approach with 770

S = 256. 771

B.2 Long Context Benchmark Evaluation 772

Details 773

Following Jin et al. (2024); Zhang et al. (2024), we 774

opt Longbench (Bai et al., 2023) for downstream 775

NLP task evaluation, including Single-Document 776

Question Answering (QA), Multi-Document QA, 777

Summarization, Few-shot Learning, and Code 778

Completion. To ensure a more balanced and ratio- 779

nal evaluation of the model’s long-text capabilities, 780

we employed tasks from LongBench-E to replace 781

the corresponding tasks in Longbench for our test- 782

ing. We follow LongBench (Bai et al., 2023) to 783

evaluate the models on 16k context window sizes 784

by truncating the prompt from the middle when the 785

10

http://arxiv.org/abs/1911.05507
http://arxiv.org/abs/1911.05507
http://arxiv.org/abs/1911.05507
https://github.com/bojone/rerope
http://arxiv.org/abs/2109.09115
http://arxiv.org/abs/2109.09115
http://arxiv.org/abs/2109.09115
http://arxiv.org/abs/2212.10554
http://arxiv.org/abs/2212.10554
http://arxiv.org/abs/2212.10554
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/1904.02679
http://arxiv.org/abs/1904.02679
http://arxiv.org/abs/1904.02679
http://arxiv.org/abs/2309.17453
http://arxiv.org/abs/2309.17453
http://arxiv.org/abs/2309.17453
http://arxiv.org/abs/2401.03462
http://arxiv.org/abs/2401.03462
http://arxiv.org/abs/2401.03462
http://arxiv.org/abs/2401.03462
http://arxiv.org/abs/2401.03462

Method 4k 16k 32k 128k

Time(s) Mem(GB) Acc(%) Time(s) Mem(GB) Acc(%) Time(s) Mem(GB) Acc(%) Time(s) Mem(GB) Acc(%)

Llama2 0.03 18.8 100 - OOM - - OOM - - OOM -
Flash Atten 0.03 17.2 100 0.11 30.8 0 0.21 49.0 0 - OOM -
LM-Infinite 0.05 17.2 32 0.10 38.6 14 0.17 65.6 8 - OOM -
LongHeads 0.03 19.0 96 0.08 29.9 94 0.11 47.1 98 4.14∗ 42.3∗ 100∗

Table 5: Statistical results with decoding speed, memory usage, and passkey retrieval accuracy. Decoding speed
(seconds / per token) is averaged over 100 token inferences at each length. Memory consumption corresponds to
peak GPU usage during inference. ∗ denotes LONGHEADS with offloading the Key-Value (KV) cache to the CPU.
Passkey retrieval accuracy is tested by 50 tests at each length. All tests are conducted on a single NVIDIA A100
80GB GPU.

Input Prompt:
There is an important info hidden inside a lot of irrele-
vant text. Find it and memorize them. I will quiz you
about the important information there. [Garbage context]
The pass key is {pass_key}. Remember it. {pass_key}
is the pass key. [Garbage context]

Instruction:
What is the pass key? The pass key is

Table 6: Prompt details for passkey retrieval.

task length exceeds a designated context window786

size.787

For LONGHEADS, the attention window size is788

set to 4k. LONGHEADS can be integrated with789

other extrapolation methods belonging to the Full790

Attention methods, significantly reducing their791

computational cost. LONGHEADS w/ NTK init792

refers to integrated “Dynamic NTK” interpola-793

tion (Emozilla, 2023). LONGHEADS w/ PI init794

refers to integrated Position Interpolation (Chen795

et al., 2023a).796

C Analysis Experiments Details797

We conduct analytical experiments on the tasks of798

passkey retrieval and summary. For the passkey799

retrieval task, we compiled statistics for the results800

with sequence lengths of 4k, 8k, 16k, and 32k, as801

mentioned in Section 3.3. Regarding the summary802

task, we select the government report dataset from803

the LongBench, from which we chose 5 samples804

each for lengths of 4k, 8k, 16k, and 32k for statisti-805

cal analysis.806

D Efficiency Analysis807

We empirically evaluate the LONGHEADS’ mem-808

ory footprint and speed. In comparison to the809

full attention method with Flash-Attention 2 (Dao810

et al., 2022), as the context length increases, LONG-811

HEADS exhibits superior throughput and reduced812

memory consumption (achieving a speedup of 1.4x813

4k 16k 32k 64k 128k
Context Length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Llama-2-7B
LongHeads
Llama-2-7B
LongHeads

Figure 6: The evaluation of passkey retrieval task from
4k to 128k.

on 16k and 1.9x on 32k). Compared to current 814

methods such as LM-Infinite(Han et al., 2023), 815

LONGHEADS demonstrates distinct advantages in 816

memory and throughput across various lengths. 817

LONGHEADS also offers a trade-off between 818

memory and time by offloading the Key-Value 819

(KV) cache to the CPU. After this offloading pro- 820

cess, the model achieves 100% accuracy on the 821

passkey retrieval task at a text length of 128k, with 822

the peak GPU memory usage being only 42.3 GB. 823

The offloading operation is flexible and is triggered 824

when memory is insufficient. 825

E Passkey Retrieval Example 826

We provide the prompt details for the passkey re- 827

trieval test in Table 6. For tests of different lengths, 828

we use garbage context of varying lengths to pad 829

the text, ensuring that the position of the passkey is 830

randomly inserted. 831

F LONGHEADS on 128k Context 832

We further extend LLaMA-2-7b to 128k with 833

LONGHEADS without additional training. LONG- 834

HEADS achieves 100% accuracy at 128k length 835

on passkey retrieval task, the results are shown in 836

Figure 6. After offloading the KV cache to CPU, 837

11

1K 8k 16k 32k 50k

0%

33%

67%

100%

Llama2 Acc: 7.7%

1K 8k 16k 32k 50k

LM-Infinite Acc: 26.4%

1K 8k 16k 32k 50k

NTK Acc: 24.2%

1K 8k 16k 32k 50k

0%

33%

67%

100%

PI Acc: 31.2%

1K 8k 16k 32k 50k

Landmark Acc: 97.1%

1K 8k 16k 32k 50k

LongHeads Acc: 99.6%

De
pt

h
of

 P
as

sk
ey

Figure 7: Testing “Needle in a Haystack” Passkey Retrieval with a 50K Context. The X-axis represents the input
context length, and the Y-axis indicates the depth of the passkey within the document. For each depth, we run 10
different test cases.

Passkey Unsplit Passkey Split

Acc. 96.9% (690/712) 87.5% (77/88)

Table 7: Statistical analysis of the effects of splitting the
passkey into different chunks.

peak GPU memory usage is 26.51GB and 44.48838

GB when inference with 64k and 128k context.839

G “Needle in a Haystack” Passkey840

Retrieval841

Following (gkamradt, 2023), We place the passkey842

at various document depths, ensuring that they are843

distributed uniformly. For each document depth,844

we run 10 times with different passkeys and we845

test the input sequence length from 1k to 50k with846

a 3k interval. The performance results are shown847

in Figure 7. Notably, LONGHEADS outperforms848

other baselines and achieves an overall accuracy849

score of 99.6% across all examples tested.850

H Chunking Influence851

We conduct a statistical analysis to investigate the852

influence of chunking the key into different chunks853

on the performance of the passkey retrieval task.854

We statistic all test samples (800 in total) of dif-855

ferent lengths in the passkey task, calculating the856

accuracy when the passkey is divided and undi-857

vided into different chunks, as shown in Table 7.858

I More Results on LongBench859

Tabel 8 shows that LONGHEADS also has strong860

performance on LLaMA2-7b-Chat models. When861

encoding is enhanced with NTK, LONGHEADS is 862

able to achieve comparable performance to the full 863

attention method. 864

12

Method
FT Single-Doc QA Multi-Doc QA Summarization Few-shot Learning Synthetic Code

Avg.
Tokens NQA Qspr. MulFi HQA WMQA Musq. GRpt QMSM MulN TREC TriQA SMSM PsgC PsgR Lcc Repo

Chat Model
LM-Infinite - 0.00 18.57 25.33 9.87 11.73 0.48 11.30 2.99 8.72 32.50 29.22 13.82 5.61 5.20 34.19 24.55 14.63
NTK - 15.18 30.89 36.14 35.10 25.79 13.53 31.48 20.21 23.86 61.67 80.94 39.43 7.40 13.33 48.96 42.45 32.90
LONGHEADS - 11.61 22.98 23.76 31.28 24.10 8.87 25.36 20.24 16.18 50.67 79.98 36.74 6.39 9.67 53.85 44.22 29.12

w/ NTK init - 16.87 30.32 38.59 36.04 26.72 10.21 31.28 20.91 24.46 55.67 76.72 39.07 6.07 14.67 49.97 40.27 32.37

Table 8: The results of different methods based on the LLaMA-2-7B-Chat model on LongBench.

13

	Introduction
	Method
	Overview
	Chunk Representation
	Chunk Selection Strategy
	Inference with LongHeads

	Experiment
	Settings
	Long Context Language Modeling
	Retrieval-Based Evaluation
	Long Context Benchmark Evaluation

	Discussion
	Analysis
	Ablation Study

	Related Work
	Conclusion
	Baseline Implementation Details
	Evaluation Details
	Language Modeling Evaluation Details
	Long Context Benchmark Evaluation Details

	Analysis Experiments Details
	Efficiency Analysis
	Passkey Retrieval Example
	LongHeads on 128k Context
	``Needle in a Haystack'' Passkey Retrieval
	Chunking Influence
	More Results on LongBench

