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ABSTRACT

Most existing embedding frameworks rely on Euclidean geometry, which, while
effective for modeling symmetric similarity, struggle to represent richer relational
structures such as asymmetry, hierarchy, and transitivity. Although alternatives
like hypercubes and ellipsoids introduce containment-based semantics, they often
suffer from axis-aligned rigidity, anisotropic bias, and high parameter overhead.
To address these limitations, we propose SpheREx (Spherical Representations
for Hierarchical Expressiveness), a geometric embedding framework that utilizes
isotropic hyperspheres for hierarchical and asymmetrical relation representation.
By representing entities as hyperspheres, SpheREx naturally models contain-
ment, intersection, and mutual exclusion while maintaining rotational invariance
and closed-form inclusion criteria. We formally characterize the geometric and
probabilistic properties of hyperspherical interactions and show that they capture
desirable logical structures. To ensure stable optimization and prevent uncon-
trolled radius growth, we introduce a volume clipping and radius regularization
strategy tailored for asymmetric tasks. We conduct extensive evaluations across
four diverse real-world benchmarks, spanning both text and vision modalities.
SpheREx consistently outperforms 12 competitive baselines, achieving statisti-
cally significant improvements across key evaluation measures. Ablations sup-
ported by qualitative analysis across benchmarks demonstrates the efficacy of hy-
perspheres over state-of-the-art geometric baselines.

1 INTRODUCTION

Hierarchical structures are pervasive in real-world data across domains (Rashid et al., 2021). In NLP,
taxonomies such as WordNet (Fellbaum et al., 1998) and SemEval (Jurgens & Pilehvar, 2016; Bor-
dea et al., 2016) organize concepts via hypernym–hyponym relations, enabling semantic reasoning
and entailment. Hierarchical structures also serve as core infrastructure in numerous high-impact
applications. For instance, e-commerce platforms like Amazon (Mao et al., 2020) and Alibaba (Luo
et al., 2020) use ontologies to structure product catalogs, facilitate user navigation, and personalize
recommendations. Pinterest leverages hierarchical labeling for content discovery and targeted ad-
vertising (Mahabal et al., 2023). These hierarchical structures underpin a wide range of downstream
services, including web content tagging (Liu et al., 2019), document retrieval (Lee et al., 2024), per-
sonalized recommendation (Huang et al., 2019), and hierarchical classification (Gao, 2020), demon-
strating their critical role in structuring modern intelligent systems.

Despite the centrality of hierarchical structures in modern applications, most existing embedding
methods rely on Euclidean vector spaces (Globerson et al., 2004), which are inherently limited in
their ability to encode directionality, containment, and asymmetric relations as shown in Fig. 1(a).
Classical text embedding methods such as Word2Vec (Mikolov et al., 2013) and BERT (Devlin
et al., 2019) learn context-aware representations of textual units. While effective across many NLP
tasks, these embeddings are typically situated in Euclidean space and are optimized for symmetric
semantic similarity rather than relational or hierarchical structure. As shown in Fig. 1(b), they
are often suboptimal for applications that require modeling of asymmetric relationships, such as
hierarchical classification or entailment reasoning (Cohen-Addad et al., 2022).
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Recent studies have explored geometric embeddings that extend beyond point representations to
richer structures such as boxes (Li et al., 2018; Dasgupta et al., 2020; Jiang et al., 2023), enabling
explicit modeling of hierarchy, transitivity, and inclusion. These methods have shown promise in
capturing structural semantics through intersection and containment (c.f. Fig. 1(c)). However, axis-
aligned geometric representations, such as boxes, are prone to high parameter complexity, orien-
tation sensitivity, and local identifiability issues, wherein small changes to the parameters result
in invariant model behavior, leading to ambiguous gradients. These limitations motivate the need
for a representation that combines compact geometric expressiveness with smooth optimization and
interpretability with isotropic relational structures.

(a) Taxonomy

(c) Box Embeddings

X

Y

(b) Vector Embeddings

(d) SpheREx

Figure 1: Concept representations: (a) A
taxonomy with hierarchical relationships; (b)
Euclidean embeddings; (c) box embeddings;
(d) SpheREx uses isotropic hyperspheres
for interpretable hierarchy and entailment.

To address these limitations, we propose SpheREx
(Spherical Representations for Hierarchical
Expressiveness), an embedding framework that
models entities1 as isotropic hyperspheres. Our
formulation leverages geometric interactions, such
as containment, intersection, and disjointness, to
naturally encode both symmetric and asymmetric
semantic relations as shown in Fig. 1(d). Isotropic
hyperspheres provide closed-form inclusion criteria
and exhibit rotational invariance, enabling efficient
reasoning over containment without sensitivity to
orientation. By enforcing an isotropic structure,
SpheREx reduces parameter complexity and avoids
local identifiability issues often encountered in high-
dimensional geometrical embeddings. Furthermore,
it introduces smooth inductive biases that facilitate
optimization and enhance generalization. While
simpler in form, hyperspherical embeddings retain
the expressiveness needed to model semantic asym-
metry and hierarchy through geometric containment
and probabilistic overlap.2

To demonstrate the versatility and effectiveness of
SpheREx, we conduct comprehensive experiments

across four diverse tasks — taxonomy expansion, semantic similarity, probabilistic entailment rea-
soning, and image-based alignment. In taxonomy expansion tasks on the SemEval-2016 Task 13
datasets (Bordea et al., 2016), SpheREx significantly outperforms state-of-the-art methods, achiev-
ing substantial improvements of 21.69% in accuracy, 6.07% in mean reciprocal rank (MRR), and
5.47% in Wu & Palmer (Wu&P) similarity metrics. On the Quora Question Pairs (QQP) dataset,
SpheREx captures symmetric semantic similarity more effectively than vector and geometric base-
lines, yielding the highest AUC-ROC and F1-score under various decision thresholds. For proba-
bilistic entailment reasoning over user preferences on MovieLens-20M, SpheREx exhibits superior
alignment with ground-truth conditional probabilities, attaining the lowest KL divergence and high-
est Pearson and Spearman rank correlations. Finally, in a fine-grained image similarity task on
Caltech-UCSD Birds dataset (Daroya et al., 2024), SpheREx surpasses geometrical and probabilis-
tic baselines, achieving improvements of 6.65% in precision, 3.99% in MRR and 12.43% in mean
rank (MR). These results collectively highlight the robustness and generality of SpheREx frame-
work across symmetric, asymmetric and hierarchical multimodal tasks.

2 RELATED WORK

Geometric embedding methods have become central for modeling hierarchical and relational se-
mantics in language, vision and knowledge graphs (Huang et al., 2023; Xu et al., 2020). To encode
hierarchy and containment, order embeddings (Vendrov et al., 2015) enforce partial ordering through

1Throughout this paper, we use the term entities to refer to the semantic units being embedded. Depending
on the task, these include taxonomy concepts (e.g., categories in SemEval), movies (in MovieLens), questions
(in Quora), or images (in Caltech-UCSD Birds).

2We have uploaded the source code and datasets as supplementary; we are committed to release them upon
acceptance of the paper.
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reversed product cones in Euclidean space, introducing asymmetry. Box embeddings (Vilnis et al.,
2018; Dasgupta et al., 2020; Li et al., 2018) generalize this by modeling entities as axis-aligned hy-
perrectangles, enabling probabilistic reasoning through volume-based overlap. Deterministic coun-
terparts (Jiang et al., 2023) enforce hard containment for relational edges. Despite their expressive-
ness, box-based models suffer from local identifiability issues, where large regions of the parameter
space yield equivalent model behavior, making optimization unstable. To address these challenges,
recent work has proposed smoothing the energy landscape using Gaussian convolution (Dasgupta
et al., 2020), though this leads to gradient sparsity and does not resolve the alignment sensitivity.
Other probabilistic set-based box embeddings, such as Query2Box (Ren et al., 2020), represent
logical queries as axis-aligned boxes for reasoning over multi-hop queries in knowledge graphs,
but still inherit the limitations of non-rotationally invariant geometries. Ellipsoidal embeddings (Li
et al., 2022) improve flexibility over boxes by improving optimization but being anisotropic they
also limit rotation.

(a) Hypersphere (b) Hyperellipsoid

Figure 2: Isotropic hypersphere (r1 = r2)
vs. anisotropic ellipsoid (r1 ̸= r2).

In contrast to these anisotropic geometric methods,
our approach represents each entity as an isotropic
hypersphere in latent space. This removes the need
for axis alignment, making our embeddings rotation-
ally invariant and more stable during training. Un-
like ellipsoids, which require more parameters and
are sensitive to orientation, hyperspheres have equal
radii (isotropic) in all dimensions. Our method also
supports both soft and strict relational constraints, en-
abling accurate modeling of asymmetric and hierar-
chical relationships. Overall, the simplicity, efficiency, and expressiveness of hyperspheres make
our method a robust alternative for structured semantic representation.

3 THE SPHEREX MODEL

3.1 HYPERSPHERE REPRESENTATION

Definition 3.1 (Local Identifiability). A geometric embedding space is locally identifiable if small
changes in parameters lead to distinct semantic representations. Formally, for θ ∈ Ω, there exists a
neighborhood N (θ) such that L(x | θ′) ̸= L(x | θ) for all θ′ ∈ N (θ).

Box and ellipsoidal embeddings often violate this property, as different parameterizations can yield
the same containment, leading to flat loss surfaces and unstable gradients (Vilnis et al., 2018; Das-
gupta et al., 2020). In contrast, hypersphere embeddings improve identifiability by using fewer
parameters and enforcing stricter containment. Each entity is modeled as a closed hypersphere in
Rd as

{
x ∈ Rd : ∥x− c∥2 ≤ r

}
, where c ∈ Rd is the center and r ∈ R+ is the radius. Each hy-

persphere defines a measurable region that can be treated as a probabilistic event by assigning it an
indicator variable.

Definition 3.2 (Indicator Random Variable). Given a probability space (Ω, E , P ) and event E ∈
E , the indicator variable 1E : Ω → {0, 1} is defined as

∫
Ω
1E(ω) dP (ω) = P (E).

Definition 3.3 (Spherical Probability Model). Let (Ωsphere, E , Psphere) be a probability space.
A collection of probabilistic hyperspheres {Sphere(Xi)}Ni=1 is defined as Sphere(Xi) ={
x ∈ Rd : ∥x− ci∥2 ≤ ri

}
with center ci and radius ri. The corresponding indicator variable

Xi(x) = 1Sphere(Xi)(x) evaluates to 1 if x lies inside Sphere(Xi). The set {X1, . . . , XN} defines a
probabilistic hypersphere model over (Ωsphere, E , Psphere).

Motivation for Hyperspherical Embeddings. An n-dimensional hypersphere or ellipsoid E ⊂
Rn is defined by a center c ∈ Rn and either a scalar radius r ∈ R+ (for hyperspheres) or a positive
semi-definite matrix R ∈ Rn×n (for ellipsoids). While ellipsoids allow for axis-specific scaling and
rotation, their anisotropic geometry introduces higher model complexity, orientation sensitivity, and
increased risk of overfitting due to the larger number of parameters.

To promote geometric simplicity and reduce model capacity, we constrain representations to
isotropic hyperspheres with a scalar radius. As illustrated in Fig. 2, hyperspheres (a) have equal
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radii across axes (r1 = r2), unlike ellipsoids (b) with axis-specific scaling (r1 ̸= r2). This isotropy
yields rotational invariance and uniform curvature, enabling smoother optimization and better gen-
eralization. The uniform boundary also allows compact, principled modeling of containment, in-
tersection, and latent hierarchies. We formalize key geometric and statistical properties below.

Figure 3: Modeling in-
tersection via auxiliary
hypersphere.

Theorem 1 (Rotational Invariance). Let Sdr(c) ={
x ∈ Rd | ∥x− c∥2 = r

}
denote a d-dimensional hypersphere of

radius r > 0 centered at c ∈ Rd. For any orthogonal matrix Q ∈ Rd×d

satisfying Q⊤Q = I , we have Q · Sdr(c) = Sdr(Qc).

Theorem 2 (Uniform Hyperspherical Distribution). Let x ∼
U(Sd−1) be a random vector sampled uniformly from the unit hyper-
sphere Sd−1 ⊂ Rd. Then the distribution is rotationally invariant, and
its density is constant over the surface. That is, for any two measur-
able patches Av1

, Av2
⊆ Sd−1 with equal surface measure, we have

P(x ∈ Av1
) = P(x ∈ Av2

).

Theorem 3 (Compactness-Induced Generalization). Let Msphere and Mellipsoid denote the
parameter manifolds of hyperspheres and ellipsoids, respectively. Then, dim(Msphere) <
dim(Mellipsoid) implying that hyperspherical models exhibit lower capacity and improved general-
ization bounds due to reduced parameter complexity.

The proofs of these theorems are given in Appendix A.

3.2 RELATIONAL SEMANTICS IN HYPERSPHERICAL EMBEDDINGS

We consider the interaction between two hyperspheres embedded in Rn, each defined by a center
ca, cb ∈ Rn and radii ra, rb ∈ R+, as shown in Fig. 3. The first-order relation between them is

governed by the Euclidean distance, d = ∥ca − cb∥2 =
(∑n

i=1(ca,i − cb,i)
2
) 1

2 .

Figure 4: Projection of entity e onto the hypersphere.

Sphere interactions are determined by
the distance d between centers and radii
ra, rb: they are disjoint if d > ra + rb;
externally tangent if d = ra + rb; inter-
secting if |ra − rb| < d < ra + rb; inter-
nally tangent if d = |ra − rb|; and nested
if d < |ra − rb|. These spatial config-
urations enable hyperspheres to represent
logical and semantic relations through geometric inclusion. We model the intersection of two hy-
perspheres as a hypersphere incircling the intersection, called auxiliary hypersphere. The center ci
and radius ri of the auxiliary hypersphere are given as ci = ca+((ra− rb+d)/(2d))(cb− ca) and
ri = (ra + rb − d)/2.

3.3 PROJECTION TO HYPERSPHERICAL SPACE

To encode entities in a geometry that supports structured semantic reasoning, we project each entity
e ∈ E into a hyperspherical embedding space. As illustrated in Figure 4, the projection pipeline
consists of two stages. First, a latent encoder fη(·) maps the raw input e, such as a textual de-
scription, image, or identifier – into a dense vector representation ze ∈ Rd: ze = fη(e). Then, a
projection network fϕ(·) transforms ze into the parameters of a hypersphere, defined by a center
ce = f

(c)
ϕ (ze) ∈ Rd and a radius re = exp(f (r)

ϕ (ze)) ∈ R+, where exp(x) = ex while f
(c)
ϕ

and f
(r)
ϕ are separate multilayer perceptrons (MLPs) to predict the center and radius, respectively.

The exp(·) function ensures non-negativity of the radius. This yields a hyperspherical embedding
Sphere(e) = (ce, re), which serves as the geometric representation of entity e in latent space.

4
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3.4 TRAINING OBJECTIVES

To align hyperspherical embeddings with semantic structure, we define objectives based on geomet-
ric and probabilistic principles. These operate on positive and negative pairs to capture containment,
intersection, and disjointness. We jointly optimize geometric constraints, inclusion scores, and reg-
ularization terms to ensure stability and interpretability. Key objectives are defined below.

Geometric Objectives. To align hyperspherical embeddings with semantic relations, we define a
unified margin-based objective that handles both containment and disjointness constraints. Given a
pair of entities (e1, e2), represented by hyperspheres with centers c1, c2 ∈ Rd and radii r1, r2 ∈ R+,
we define,

Lgeom =

{
max (0, ∥c1 − c2∥2 − (r2 − r1 − γ)) , if e1 ⊆ e2 (containment),
max (0, r1 + r2 + ϵ− ∥c1 − c2∥2) , if e1 ⊥ e2 (disjointness),

(1)

where γ and ϵ are margin hyperparameters for containment and disjointness, respectively.

Probabilistic Objective. We model inclusion using a radius-based approximation of volume, in-
spired by prior box embedding methods. However, computing exact auxiliary hypersphere volumes
is both computationally intensive and numerically unstable due to exponential scaling and numer-
ical instability, especially when r < 1, leading to vanishing gradients. Fortunately, for isotropic
hyperspheres, volume scales linearly with radius (Vol(Sphere(e)) ∝ r), allowing efficient and sta-
ble approximation without explicit volume computation. We therefore use radius as a proxy for
volume. Given two entities e1 and e2, represented as hyperspheres Sphere(e1) and Sphere(e2), we
define the inclusion probability as,

P (e1 | e2) ≈
Vol(Sphere(e1) ∩ Sphere(e2))

Vol(Sphere(e2))
≈ Vol(Sphere(ei))

Vol(Sphere(e2))
≈ ri

r2
. (2)

In general, we train SpheREx with cross-entropy losses and apply task-specific objectives depend-
ing on the nature of each task, as detailed in Section 4.

4 EXPERIMENTS

We conduct comprehensive experiments across diverse tasks and modalities to demonstrate the ef-
fectiveness of SpheREx. These include hierarchical representation, semantic entailment, recom-
mendation, and vision-language alignment. We evaluate on multiple benchmark datasets spanning
these tasks, allowing us to assess the generalizability of hyperspherical representations across sym-
metric, asymmetric, and hierarchical relationships across multiple modalities.

4.1 TAXONOMY REPRESENTATION AND EXPANSION

Experiment Setting. We evaluate the effectiveness of SpheREx on the taxonomy expansion task,
representing hierarchical and asymmetrical relationships using real-world benchmark datasets – Se-
mEval 2016 Task 13 (Bordea et al., 2016), which consists of datasets in environment (SEMEVAL16-
ENV), science (SEMEVAL16-SCI) and food (SEMEVAL16-FOOD) domains. Taxonomy expansion
involves adding leaf nodes to an existing taxonomy (also called “seed taxonomy”). Each dataset
comprises a seed taxonomy and a set of query terms to be integrated. For each query term, we aim
to identify the appropriate anchor node within the seed taxonomy to which it should be attached. For
training, positive examples are constructed by pairing query terms with their correct anchor nodes,
while negative examples are generated by pairing query terms with randomly selected non-parent
nodes. During inference, we rank all candidate anchors in the seed taxonomy for a query node by
computing the extent of probabilistic overlap with ties being broken by choosing the parent with
smaller radius/volume. We employ standard evaluation metrics used in taxonomy expansion tasks,
such as accuracy (Acc), Mean Reciprocal Rank (MRR), and Wu & Palmer similarity (Wu&P), to
assess model performance against BERT+MLP (Devlin et al., 2019), TAXI (Panchenko et al., 2016),
TaxoExpan (Shen et al., 2020), STEAM (Yu et al., 2020) and BoxTaxo (Jiang et al., 2023) baselines.
The latent encoder used in this case is BERT which encodes the definitions of queries and entities in
the seed taxonomy. We employ geometrical and probabilistic losses to train the model. Experimen-
tal details, including dataset statistics, baseline descriptions, preprocessing steps, loss functions, and
hyperparameter settings, etc, are discussed in Appendix B.
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Table 1: Performance comparison between SpheREx and baseline methods. Results for each
method are presented as meanstd-dev in percentage across three runs with three random seeds.
The best performance is marked in bold, while the best baseline is underlined.

Dataset SEMEVAL16-ENV SEMEVAL16-SCI SEMEVAL16-FOOD

Metric Acc MRR Wu&P Acc MRR Wu&P Acc MRR Wu&P

BERT+MLP 12.61.1 23.91.6 48.30.8 12.21.7 19.71.4 45.11.1 12.71.8 17.41.3 49.11.2

TAXI 18.51.3 N/A 47.70.4 13.81.4 N/A 33.10.7 20.91.1 N/A 41.60.2

TaxoExpan 10.74.1 28.73.8 48.51.7 24.25.4 40.33.3 55.61.9 24.64.7 38.43.1 52.62.2

STEAM 34.13.4 44.32.1 65.21.4 34.84.5 50.72.5 72.11.7 29.55.2 39.33.2 62.50.8

BoxTaxo 32.35.8 45.73.2 73.11.2 26.34.5 41.13.1 61.61.4 28.35.1 43.94.6 64.71.6

SpheREx 43.11.1 50.60.7 77.60.4 47.21.2 57.50.6 75.10.2 30.42.3 41.31.1 63.10.6
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Figure 5: Comparison of boxes (a, b) and hyper-
spheres (c, d) for “water”, “stagnant water”, and
“water pollutant” across four dimensions.
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Figure 6: Effect of dimensionality on Acc, MRR
and Wu&P on taxonomy expansion benchmarks.

Results, Ablations and Case Study. We observe from Table 1 that SpheREx consistently out-
performs the baseline methods across most metrics, demonstrating a significant performance gain.
However, on the SEMEVAL16-FOOD dataset, while the performance on MRR and Wu&P slightly
declines due to poor quality of definitions provided, SpheREx still remains the strongest among
all baselines on these metrics, especially accuracy. Furthermore, Fig. 5 compares the geometric
behavior of box and hyperspherical embeddings. Fig. 5 (a) and (b) illustrate that axis-aligned box
embeddings exhibit anisotropic behavior, with side lengths varying a lot across dimensions, increas-
ing complexity and making boxes biased towards seen data. In contrast, Fig. 5(c) and (d) show that
SpheREx enforces isotropy through equal-radius hyperspheres across dimensions, providing rota-
tional invariance and more structured allocation of space. Moreover, Fig. 6 demonstrates the impact
of embedding dimensionality, as performance initially improves with increasing dimensions, but
degrades beyond a threshold due to the challenges of modeling in high-dimensional spaces. These
results highlight the core advantages of SpheREx’s geometric formulation which are isotropy, space
efficiency, and reduced overfitting in high-dimensional regimes. These findings underscore the im-
portance of isotropic geometry and dimensional regularization in achieving expressive, stable, and
generalizable embeddings for hierarchically structured reasoning tasks.

4.2 MOVIELENS

Experiment Setting. We also evaluate SpheREx on a conditional reasoning task using the
MOVIELENS-20M dataset. The objective is to estimate the likelihood of a user liking movie A given
that they liked movie B, modeling asymmetric semantic dependencies common in recommendation
and implication-based reasoning3. Following prior works (Dasgupta et al., 2020; Li et al., 2018), we
extract all user-movie pairs with ratings greater than 4.0 (indicating strong preference), and prune
to include only those movies with at least 4,000 user ratings. We compute the conditional probabil-
ity P (A | B) = #users rating both A and B>4

#users rating B>4 , which serves as a weak supervision signal for annotating
movie pairs. To model this relationship, we leverage the auxiliary hyperspherical intersection be-

3Implication-based reasoning infers user preferences by leveraging transitive semantic links, where liking
one item (e.g., movie A) suggests a probable preference for a related item (e.g., movie B).

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison of embedding methods with and without volume clipping. Results
of Box, GumbelBox and SpheREx are on dimension 6. Results for each method are presented as
meanstd-dev in percentage across three runs with three random seeds. ↑ indicates higher is better,
while ↓ indicates lower is better. The best performance is marked in bold, while the best baseline is
underlined.

With Volume Clipping Without Volume Clipping
Model KL ↓ Pearson ↑ Spearman ↑ KL ↓ Pearson ↑ Spearman ↑
BERT 0.09950.0043 0.24140.0299 0.29410.0267 0.09950.0043 0.24140.0299 0.29410.0267

PMF 0.60210.0345 0.48910.0069 0.29330.0126 0.60210.0345 0.48910.0069 0.29330.0126

POE 0.62220.0155 0.46580.0047 0.28140.0072 0.62220.0155 0.46580.0047 0.28140.0072

Box 0.06620.0181 0.75000.0538 0.68470.0741 0.07110.0232 0.75080.0550 0.68690.0774

GumbelBox 0.04010.0133 0.71950.0233 0.65190.0287 0.03440.0042 0.75700.0678 0.68390.0832

SpheREx 0.03970.0073 0.81180.0328 0.78970.0514 0.04000.0079 0.81180.0328 0.79020.0523
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Figure 7: Example of clipped and un-
clipped volumes.
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Figure 8: Effect of increasing embedding dimensionality
on model performance for the MovieLens-20M dataset.

tween embedding regions and frame the task as a regression problem, where the model is trained
on these weak probabilistic labels to predict the conditional probability P (A | B). We learn the
conditional probability by optimizing the model using mean square error (MSE) loss. We evaluate
model performance on the test set using KL divergence, Pearson, and Spearman rank correlations
between the predicted and empirical probabilities. The latent encoder utilized here is BERT.

Results, Ablations and Case Study. As shown in Table 2, SpheREx achieves the best perfor-
mance over baselines – BERT (Devlin et al., 2019), PMF (Mnih & Salakhutdinov, 2007), POE
(Lai & Hockenmaier, 2017), Box (Dasgupta et al., 2020) and GumbelBox (Li et al., 2018) across
KL divergence, Spearman and Pearson rank correlations. We compare two architectural variants of
SpheREx – one with unconstrained hypersphere volumes and another with clipped volume con-
straints, as illustrated in Fig. 7 for movies “Toy Story” and “Toy Story 3”. While unconstrained
volume expansion is beneficial in hierarchical settings such as taxonomy expansion, where accom-
modating nested hyperspheres is advantageous, it introduces challenges in asymmetric modeling
tasks. Specifically, unlike box embeddings that can leverage anisotropy to enforce disjointness
along selective dimensions, isotropic hyperspheres require uniformly larger radii to achieve sepa-
ration, which can lead to excessive capacity and diminished discrimination amongst entities. We
find that applying volume clipping effectively regularizes this behavior, leading to improved perfor-
mance in asymmetric reasoning. For baselines not based on geometric embeddings, such as BERT,
POE, and PMF, we use the same results in both cases. Moreover, Fig. 8 shows that the performance
improves on increasing dimensions for asymmetrical relationship loss. Details regarding the infer-
ence setup, dataset statistics, preprocessing steps, loss formulations, and hyperparameter settings,
are provided in Appendix C.

4.3 DOCUMENT SIMILARITY ON QUORA QUESTION PAIRS

Experiment Setup. We analyze the symmetric property modeling capability of isotropic hyper-
spheres using the Quora Question Pairs (QQP) dataset, which involves determining whether two
questions express the same meaning. This task requires capturing symmetric semantic similarity

7
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Table 3: Performance comparison of embedding methods under different decision thresholds (25%,
50%, 75%). The best performance is marked in bold, while the best baseline is underlined.

Threshold 25% 50% 75%
Model Precision Recall F1 Precision Recall F1 Precision Recall F1 AUC-ROC
BERT 0.6585 0.7559 0.7038 0.6816 0.7325 0.7061 0.7041 0.7056 0.7048 0.8359
POE 0.6398 0.7180 0.6785 0.6583 0.7120 0.6827 0.6820 0.6845 0.6831 0.8034
Box 0.5967 0.9386 0.7296 0.6782 0.8751 0.7642 0.8006 0.7085 0.7517 0.8960
GumbelBox 0.4251 0.9942 0.5956 0.6600 0.8011 0.7238 0.6151 0.8622 0.7180 0.8560

SpheREx 0.6378 0.9432 0.7604 0.7433 0.8568 0.7873 0.8705 0.5347 0.6625 0.9099

Table 4: Performance comparison on the Caltech-UCSD Birds-200-2011 dataset. ↑ indicates higher
is better, while ↓ indicate lower is better. Results for each method are presented as meanstd-dev
in percentage across three runs with three random seeds. The best performance is marked in bold,
while the best baseline is underlined.

Model Without Volume Clipping With Volume Clipping

Precision ↑ MR ↓ MRR ↑ Precision ↑ MR ↓ MRR ↑

CLIP1 0.0513 ± 0.004 10.568 ± 1.612 0.1750 ± 0.625 0.0513 ± 0.004 10.568 ± 1.612 0.1750 ± 0.625
CLIP2 0.1154 ± 0.051 8.241 ± 1.131 0.3166 ± 0.241 0.1154 ± 0.051 8.241 ± 1.131 0.3166 ± 0.241
Box 0.7354 ± 0.024 1.432 ± 0.57 0.8479 ± 0.034 0.8119 ± 0.009 1.607 ± 0.26 0.8823 ± 0.012
GumbelBox 0.7393 ± 0.035 1.513 ± 0.32 0.8487 ± 0.011 0.8974 ± 0.061 1.201 ± 0.46 0.9397 ± 0.017

SpheREx 0.7820 ± 0.021 1.269 ± 0.34 0.8835 ± 0.019 0.9572 ± 0.014 1.051 ± 0.25 0.9772 ± 0.015

between questions. The QQP dataset consists of question pairs labeled as duplicates (positive) or
non-duplicates (negative). We represent each question as a hypersphere and enforce that positive
pairs have overlapping hyperspheres with similar volumes, while negative pairs remain disjoint.
Specifically, we compute conditional inclusion probabilities P (A | B) and P (B | A) to ensure
symmetric relationship and avoid hierarchical correlation. A pair of questions is predicted as nega-
tive (not similar) if their corresponding hyperspheres are disjoint, and positive otherwise. However,
disjointness alone can be insufficient, as even a small overlap would yield a positive prediction.
Therefore, we introduce a threshold-based criterion wherein if the overlap between the two hyper-
spheres falls below a specified ratio, the pair is classified as negative or disjoint. The evaluation
metrics used are Precision, Recall, F1-Score, and AUC-ROC. The latent encoder used in this case is
BERT which encodes the question pairs. Details on how the overlaps are computed are provided in
Appendix D.

Results and Ablations. SpheREx achieves the highest AUC-ROC score, outperforming all base-
line methods, namely BERT (Devlin et al., 2019), Box (Dasgupta et al., 2020), POE (Lai & Hocken-
maier, 2017) and GumbelBox (Li et al., 2018) as shown in Table 3. This indicates the strong ability
of SpheREx to capture symmetric semantic similarity between question pairs. Fig. 9 shows that
at a 50% overlap threshold, the model maintains a good balance between Precision and F1-score,
achieving highest F1 score, although as threshold increases, the precision also increases. Therefore,
at 50% threshold, SpheREx yields optimal performance. Full details of the experimental setup,
including dataset statistics, baseline configurations, metric computation, loss functions, and hyper-
parameter settings, are discussed in Appendix D.

4.4 IMAGE SIMILARITY

Experiment Setting. We assess SpheREx’s capability to capture asymmetric semantic relation-
ships in the visual modality using the Caltech-UCSD Birds-200-2011 dataset, adhering to the pro-
tocol established in (Daroya et al., 2024). We subsample 20 semantic classes from the full dataset
to construct training and evaluation subsets. The task involves aligning fine-grained visual instances
(bird images) with their corresponding class-level semantic representations. Training is performed
on triplets comprising an image, its associated ground-truth class, and a randomly sampled negative
class. Hyperspherical embeddings are optimized such that the image hypersphere is fully contained

8
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Figure 9: Performance comparison across varying thresholds on QQP dataset.

Table 5: p-values
across datasets.

Dataset p-value

MovieLens 0.0217
Birds 0.0172
Quora 0.0474
Taxonomy 0.0427

within its true class hypersphere while remaining disjoint from the negative class hypersphere. Addi-
tionally, inter-class label hyperspheres are constrained to remain disjoint using margin-based disjoint
loss to enforce semantic exclusiveness across class representations. Both image and label embed-
dings are generated using the CLIP ViT-H/14 encoder pretrained on the LAION-2B dataset. We
compare against two CLIP-based baselines – CLIP1, which concatenates latent representations of
image and label followed by a binary classifier trained with logistic loss; and CLIP2, which employs
a margin-based ranking loss to optimize semantic alignment between image and label embeddings.
We evaluate the performance of SpheREx against baselines using Precision, Mean Rank (MR) and
MRR given that it is an asymmetrical labeling task requiring ranking of labels. Details such as data
processing, model training, inference, evaluation metrics are provided in Appendix E.

Results and Case Study. Table 4 shows that SpheREx consistently outperforms all baselines,
demonstrating its effectiveness in modeling multimodal semantic relationships in a shared space.
SpheREx achieves improvements of 6% in precision, 25% in MR, and 4.5% in MRR without vol-
ume clipping, and 6.65%, 12.43%, and 3.99% improvements, respectively, with clipping. Among
the baselines, Box and GumbelBox perform best, underscoring the utility of geometric embeddings
for capturing asymmetry in multimodal reasoning tasks. Furthermore, the consistent gains observed
across all models after applying volume clipping highlight the importance of constraining represen-
tational capacity to preserve disjointness and containment in asymmetrical settings.

4.5 STATISTICAL TESTS

To assess the statistical significance of performance improvements achieved by SpheREx, we con-
duct paired t-tests against the strongest baseline for each dataset. As shown in Table 5, all p-values
fall below the standard significance threshold of 0.05. This confirms that the observed gains are
not due to random chance and are statistically significant across all evaluated domains. Specifi-
cally, we observe that the gains are most pronounced on recommendation and image-classification
tasks, and smaller (but still significant) on taxonomy expansion and document similarity. This pat-
tern suggests that SpheREx is particularly effective for multimodal information-retrieval/semantic
alignment settings while remaining competitive on purely textual tasks. Overall, these results un-
derscore the robustness and cross-domain consistency of SpheREx’s performance.

5 CONCLUSION

We proposed SpheREx, a unified hyperspherical embedding framework that models entities as
isotropic hyperspheres to encode both symmetric and asymmetric semantic relationships through
geometric interactions like containment, intersection, and disjointness. Our formulation provided
closed-form inclusion criteria, compact parameterization, and rotational invariance, enabling inter-
pretable and efficient reasoning in both textual and visual modalities. We conducted extensive evalu-
ations across four diverse tasks – taxonomy expansion on SemEval datasets, probabilistic reasoning
on MovieLens, semantic similarity on Quora, and fine-grained visual alignment on Caltech-UCSD
Birds-200-2011. SpheREx consistently outperformed strong baselines, including vector-based,
probabilistic, and box-based models. Specifically, it achieved up to a 10% accuracy and 5.38%
MRR gain over BoxTaxo in taxonomy expansion, reduces KL divergence by up to 25% on Movie-
Lens compared to Box and GumbelBox, and achieves superior F1 and AUC-ROC scores over BERT
and POE on Quora. Furthermore, SpheREx outperformed classical and geometric vision-language
baselines in multimodal alignment tasks. These results validate the expressiveness and robustness
of hyperspherical embeddings for structured representation learning across modalities.
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REPRODUCIBILITY STATEMENT

We release code, configuration files, and scripts to reproduce all results, figures, and tables. The
package includes data–preprocessing code with exact splits, training and evaluation scripts, and
metric computation. We provide pretrained checkpoints and fixed random seeds, and we log soft-
ware/hardware versions; deterministic flags are enabled where possible. Minor nondeterminism due
to inherent computational randomness may remain but does not affect conclusions. A single A100
80 GB GPU is sufficient; see Appendices B,C, D and E.
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APPENDIX

A PROOF OF THEOREMS

A.1 PROOF OF THEOREM 1 - ROTATIONAL INVARIANCE

Proof. Let x ∈ Sdr(c), so that ∥x− c∥2 = r. Consider the transformed point z = Qx. Then:

∥z−Qc∥2 = ∥Qx−Qc∥2 = ∥Q(x− c)∥2.

Since Q is orthogonal, it preserves the Euclidean norm:

∥Q(x− c)∥2 = ∥x− c∥2 = r.

Thus, z ∈ Sdr(Qc), proving:
Q · Sdr(c) ⊆ Sdr(Qc).

To prove the reverse inclusion, let z ∈ Sdr(Qc). By definition of the hypersphere, this implies:

∥z−Qc∥2 = r.

Define x = Q⊤z. Since Q⊤ is also orthogonal (being the inverse of Q), we have:

∥x− c∥2 = ∥Q⊤z− c∥2 = ∥Q⊤(z−Qc)∥2 = ∥z−Qc∥2 = r.

So x ∈ Sdr(c), and since z = Qx, we get z ∈ Q · Sdr(c). This proves:

Sdr(Qc) ⊆ Q · Sdr(c).

Combining both inclusions, we conclude:

Q · Sdr(c) = Sdr(Qc).

A.2 PROOF OF THEOREM 2 - UNIFORM HYPERSPHERICAL DISTRIBUTION

Proof. Let x ∼ U(Sd−1) denote the uniform distribution on the unit hypersphere Sd−1 ⊂ Rd. By
definition of the uniform distribution on a continuous manifold, the probability density function
f(x) is constant with respect to the surface (Hausdorff) measure on Sd−1:

f(x) =
1

|Sd−1|
, ∀x ∈ Sd−1.

where |Sd−1| denotes the surface area of the hypersphere.

Now consider any two measurable subsets A1, A2 ⊆ Sd−1 such that µ(A1) = µ(A2), where µ is the
surface measure. Let Q ∈ SO(d) be an orthogonal transformation (rotation) such that Q(A1) = A2.
Because the uniform distribution on Sd−1 is invariant under rotations, we have:

P(x ∈ A1) = P(x ∈ QA1) = P(x ∈ A2).

Thus, any two sets with equal surface area have equal probability mass under the uniform distribu-
tion. In particular, for any points v1,v2 ∈ Sd−1 and any neighborhoods Av1

, Av2
around them with

equal measure, we have:
P(x ∈ Av1

) = P(x ∈ Av2
).

This proves that the density is symmetric and rotationally invariant across the sphere.

A.3 PROOF OF THEOREM 3 - COMPACTNESS-INDUCED GENERALIZATION

Proof. We compare the intrinsic dimensionality of the parameter manifolds underlying hyperspher-
ical and hyperellipsoidal representations in Rd, which serve as proxies for model capacity in geo-
metric embedding spaces.

(1) Hyperspherical Manifold: A hypersphere in Rd is uniquely specified by:
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• A center vector c ∈ Rd (translation),

• A scalar radius r ∈ R+ (isotropic scaling).

The parameter space of all hyperspheres thus forms a manifold of dimension:

dim(Msphere) = dim(c) + dim(r) = d+ 1.

(2) Hyperellipsoidal Manifold: A hyperellipsoid is characterized by:

• A center vector c ∈ Rd,

• A symmetric positive semi-definite matrix A ∈ Rd×d encoding axis-specific scaling and
rotation.

The space of symmetric d× d matrices is of dimension:

dim(A) =
d(d+ 1)

2
.

Therefore, the total number of degrees of freedom is:

dim(Mellipsoid) = d+
d(d+ 1)

2
.

(3) Dimensional Comparison: Subtracting yields:

dim(Mellipsoid)− dim(Msphere) =
d(d+ 1)

2
− 1 > 0 for all d ≥ 2.

This shows that the hyperellipsoidal manifold admits strictly more geometric degrees of freedom
than the hyperspherical manifold.

(4) Implication for Generalization: From a statistical learning perspective, models defined on
higher-dimensional parameter spaces have increased capacity, which can lead to overfitting with-
out sufficient regularization. The compactness and isotropy of hyperspherical embeddings induce
stronger inductive biases and restrict the hypothesis class, which typically improves generalization
bounds (e.g., via lower Rademacher complexity or VC-dimension).

Hence, the dimensional compactness of Msphere relative to Mellipsoid implies tighter generalization
guarantees under standard complexity measures in statistical learning theory.

B TAXONOMY EXPANSION

As discussed in Experiments (Section 4), taxonomy expansion task is addition of new entities to
an existing taxonomy. We discuss the preliminaries of the task, data generation, model training,
inference and evaluation.

Preliminaries. We discuss the notations, formal problem statement of taxonomy expansion as,
Definition B.1. Taxonomy: A taxonomy T o = (N o, Eo) is defined as a hierarchical directed
acyclic graph (DAG), where each node n ∈ N o denotes a concept, and each directed edge ⟨np, nc⟩ ∈
Eo captures a semantic ”parent-to-child” relationship from parent node np to its child nc.

A taxonomy T o, commonly referred to as a seed taxonomy, is often constructed manually and
therefore tends to be small in scale and lacking in coverage. As new concepts continuously arise, a
key challenge is to accurately incorporate these unseen entities into the existing structure of T o. In
this work, we formally define this challenge as the taxonomy expansion problem.
Definition B.2. Taxonomy Expansion: Given a seed taxonomy T o = (N o, Eo) and a set of emerg-
ing concepts C, the task is to update the seed taxonomy to T = (N o∪C, Eo∪R), where R is the set
of newly created relationships linking existing entities Eo with emerging entities C. Since surface
names of entities alone lack true semantics, entity descriptions D are used to augment representa-
tions. Moreover, during inference, query node q ∈ C identifies its best-suited parent node np ∈ N o

by maximizing the matching score (np = argmaxa∈N 0 f(a, q)).
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Self-supervised Data Generation. Given an initial taxonomy T o = (N o, Eo), we construct train-
ing data via a self-supervised strategy. Specifically, we begin by withholding 20% of the leaf
nodes to serve as a test set, while the remaining portion of the taxonomy is retained as the train-
ing taxonomy. Within this training structure, each edge ⟨np, nc⟩ ∈ Eo–where np denotes the
parent and nc the child or query node–forms a positive training pair ⟨np, nc⟩. To obtain nega-
tive examples, we fix nc as the query term and randomly draw N anchor nodes {n′

pl
}Nl=1 from

the training taxonomy. These anchors are structurally related to nc through relations like siblings,
cousins, uncles, or ancestors, while explicitly excluding its true parent or any of its descendants.
For each edge, we thus form a training instance X consisting of one positive and N negative pairs,
X = {⟨np, nc⟩, ⟨n′

p1
, nc⟩, . . . , ⟨n′

pN
, nc⟩}. By iterating over all edges in Eo, we compile the com-

plete self-supervised training dataset: X = {X1, . . . ,X|Eo|}.

Model Training. We optimize our model using a weighted combination of geometric and prob-
abilistic loss functions, each enforcing distinct structural and semantic constraints as described in
Section 3.4. We use Mean Squared Error loss for geometric containment and disjoint. These loss
functions are designed to penalize undesired intersections between incompatible hyperspherical em-
beddings, particularly for negative samples. However, a trivial solution where an embedding col-
lapses to an infinitesimally small volume would artificially minimize both losses without learning
meaningful representations. To mitigate this, we introduce a radius regularization term that enforces
a lower bound on the radius of each entity hypersphere. Specifically, for an entity embedding Be

with radius re, we define the regularization loss as:

Lr = (re − ϕ)2,

where ϕ is a predefined threshold ensuring that re remains sufficiently large to preserve the expres-
siveness of the learned hyperspherical representation.

To help in containment of child hypersphere inside the parent hypersphere, we aim to bring the child
closer to the parent than other possible candidates. We implement a contrastive loss on the distance
between the centers of the nodes. Let d+ denote the distance between the center of the hypersphere
corresponding to the child and the center of hypersphere of its corresponding parent and d− denote
the distance of center of the child hypersphere to the center of hypersphere of negative parent. The
contrastive loss for a single training sample is defined as:

Lcon = max(0, d+ − d−).

For large taxonomies, nodes at greater depths may be forced to small volumes, introducing a bias
when being considered as candidates for query nodes. To enforce geometric consistency between
nested hyperspheres, we introduce a penalty based on the radius ratio between a child and its parent
hypersphere. Let rc and rp denote the child and parent radii, and d be the dimensionality of the
space. The ratio of volumes is given by:

v =

(
rc
rp

)
.

We apply a soft penalty when v < ρmin, using a smooth weight defined as:

Lrad = (σ (λ(ρmin − v)))2,

where σ(·) is the sigmoid function and λ is a sharpness hyperparameter.

The overall training objective is defined as a weighted combination of distinct loss components:

Ltotal = αLgeom + γ(Lr + Lcon + Lrad) + δLprob,

where Lgeom enforces geometric constraints such as containment and disjointness, Lprob aligns pre-
dicted and target probabilities via probabilistic scoring, Lr regularizes the minimum radius, Lcon
penalizes undesired containment violations, and Lrad enforces smooth radius scaling. The coeffi-
cients α, γ, and δ modulate the relative importance of each component.

Inference. Given a query concept c ∈ C, the objective during inference is to identify its most
semantically appropriate parent np ∈ N o from the existing seed taxonomy. For each candidate
np, we compute a probabilistic containment score using the normalized volume of the auxiliary
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Table 6: Hyperparameters for Taxonomy Expansion

Name Value Significance
n 3 number of layers in hypersphere projector
hidden 64 Dimension of hidden layer in hypersphere projector
dropout 0.05 Dropout rate for regularization
margin 0.05 Minimum margin enforced for containment
ϵ -0.1 Minimum margin enforced for disjointness
ϕ 0.5 Minimum radius of hypersphere
α 0.25 Weight of geometric loss
γ 1.0 Weight of regularization loss
δ 0.5 Weight of probabilistic loss
negsamples 25 or 50 Number of negative parent samples
ρmin 0.2 Minimum ratio of rchild/rparent
lambda 8 Sharpness parameter for sigmoid function in radius ratio loss
epochs 30 Number of training epochs
batch size 200 Batch size
lr 2× 10−5 Learning rate
θ 0.3 Weight of distance metric used in final scoring
Optimizer AdamW Optimizer used
Seeds 42, 97, 137 Seeds used

hypersphere formed by the intersection of the embeddings of c and np. In parallel, we evaluate the
Euclidean distance between the centers of the hyperspherical embeddings of c and np, normalize
these distances across all candidates, and invert them to yield a similarity-based distance score. The
final matching score is computed as a convex combination of the containment and distance-based
similarity scores. Candidates are ranked based on these composite scores, and the top-scoring node
is selected as the predicted parent. Although the current framework selects a single parent (top-1),
it can be naturally extended to a top-k setting for multi-parent or hierarchical candidate expansion.

Implementation Details. SpheREx is implemented using PyTorch, with the baselines, excluding
BERT+MLP, sourced from the respective repositories of their original authors. We finetune all pa-
rameters of the latent projector model BERT for SpheREx. All training and inference tasks were
conducted on an 48GB NVIDIA A6000 GPU to ensure high computational efficiency. Hyperparam-
eters are discussed in Table 6.

Evaluation Metrics. During inference, both the baselines and SpheREx rank all candidate terms
for each query node. For a given the query set C, the predictions generated by baselines and
SpheREx are represented as

{
ŷ1, ŷ2, · · · , ŷ|C|

}
while the corresponding true labels are represented

as
{
y1, y2, · · · , y|C|

}
. Following BoxTaxo (Jiang et al., 2023), we adopt three metrics to evaluate

the performance of baselines and SpheREx as follows,

• Accuracy (Acc): It counts the number of predicted parent for each query term exactly matching
the ground-truth parent as,

Acc = Hit@1 =
1

|C|

|C|∑
i=1

I (yi = ŷi), (3)

where I(·) represents the indicator function.
• Mean Reciprocal Rank (MRR): It computes the average reciprocal rank of the query term’s true

hypernym among within the predicted candidate list as,

MRR =
1

|C|

|C|∑
i=1

1

rank (yi)
. (4)

• Wu & Palmer Similarity (Wu&P): It measures the closeness of the predicted term with the
ground-truth parent based on their depth and the depth of their least common ancestor (LCA) in
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Table 7: Hyperparameters for experiments on MovieLens

Name Value Significance
n 3 number of layers in hypersphere projector
hidden 64 Dimension of hidden layer in hypersphere projector
embed size 6 Dimensionality of the embedding space
batch size 512 Batch size
lr 2× 10−5 Learning rate
δ 1.0 Weight of probabilistic loss
γ 1.0 Weight of regularization loss
ϕ 0.05 Minimum radius of hyperspheres
epochs 60 Number of training epochs
Optimizer AdamW Optimizer used
Seeds 42, 97, 137 Seeds used

the taxonomy as,

Wu&P =
1

|C|

|C|∑
i=1

2× DEPTH (LCA (ŷi, yi))

DEPTH (ŷi) + DEPTH (yi)
, (5)

where DEPTH(·) is the depth of a node in the seed taxonomy.

C MOVIELENS

As discussed in Experiments (Section 4), We construct an item-item interaction dataset from user-
item ratings. We discuss the data processing, metrics used, model training, and evaluation.

Data Preprocessing. We construct a filtered subset of the MovieLens-20M dataset by retaining
only those user-item interactions where the rating is greater than 4, thereby focusing on strong
positive preferences. To ensure sufficient statistical support, we restrict the movie set to those with
at least 4000 ratings, resulting in a total of 418 unique movies. We then perform a stratified 90:10
split over these movies to create disjoint training and test sets. The training set comprises ordered
movie pairs (Ma,Mc) used to estimate conditional probabilities P (Ma | Mc), where Ma ∈ A
denotes a candidate antecedent and Mc ∈ C denotes a conditioning context from the training set
C ⊂ A. This yields a total of 156,793 training samples. For each movie, we construct a textual
context by concatenating its title and genre descriptors, which is then tokenized and encoded using a
pretrained BERT encoder. The resulting [CLS] token embedding is used as the input representation
for the model.

Model Training. For each training pair (M1,M2), we SpheREx predicts conditional probability
Ppred(M1 | M2) by evaluating the normalized volume of intersection between the hyperspherical
embeddings of the two movies using auxiliary hypersphere. This probabilistic containment score is
regressed against the empirical ground-truth estimate Ptrue(M1 | M2) using the Mean Squared Error
(MSE) loss Lmse = (Ptrue − Ppred)

2. To prevent hyperspheres from collapsing or growing exces-
sively, thereby trivializing the containment computation, we apply a radius regularization penalty to
each entity embedding.

Evaluation. For evaluation, we treat each held-out movie Mb ∈ B = A \C as the query item and
estimate the conditional probabilities P (Ma | Mb) for all Ma ∈ A \ {Mb}, resulting in a total of
17,557 test instances. For each query movie Mb, we construct the ground-truth probability vector
P based on empirical co-occurrence statistics from user ratings, and the corresponding predicted
vector P̂ generated by the model. Both vectors are normalized to form valid probability distribu-
tions. Evaluation metrics, KL divergence, Pearson correlation, and Spearman rank correlation, are
computed between P and P̂ for each query. The final performance is reported by averaging these
metric values across all test movies Mb ∈ B.
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Evaluation Metrics. To evaluate the performance of our model and baselines on the probabilistic
reasoning task using the MovieLens-20M dataset, we employ three standard metrics that assess the
alignment between the predicted and ground-truth conditional probabilities: KL divergence, Pearson
correlation, and Spearman rank correlation. Let the predicted conditional probability distribution
over movie pairs be denoted as {P̂i}|C|i=1 and the corresponding empirical probabilities derived from
user data as {Pi}|C|i=1, where C denotes the set of movie pairs:

• Kullback–Leibler Divergence (KL): It quantifies the divergence between the predicted distribu-
tion P̂i and the ground-truth distribution Pi as,

KL =
1

|C|

|C|∑
i=1

Pi log

(
Pi

P̂i

)
, (6)

where lower KL indicates better alignment with the empirical distribution.

• Pearson Correlation Coefficient: It measures the linear correlation between the predicted and
true probabilities,

Pearson =
Cov(P̂ , P )

σP̂ · σP
, (7)

where Cov(·) denotes the covariance and σ the standard deviation of the respective distributions.

• Spearman Rank Correlation: It assesses the monotonic relationship between the predicted and
true rankings of probabilities, defined as,

Spearman = 1−
6
∑|C|

i=1 d
2
i

|C|(|C|2 − 1)
, (8)

where di is the difference between the ranks of Pi and P̂i. Higher values indicate better ordinal
agreement.

Implementation Details. SpheREx and all baselines are implemented using PyTorch. We fine-
tune all parameters of the latent projector model BERT for all baselines and SpheRExexcept PMF.
All training and inference tasks were conducted on an 48GB NVIDIA A6000 GPU to ensure high
computational efficiency. Hyperparameters are discussed in Table 7.

D QUORA QUESTION PAIR DATASET

Data Preprocessing. We begin by filtering out samples containing null or malformed questions
from the Quora Question Pairs (QQP) dataset. A uniformly random subset comprising one-third
of the cleaned dataset is selected, followed by an 80:20 stratified split into training and test sets,
resulting in 107,827 training and 26,959 test instances. Each instance is formatted as a triplet
(qa, qb,sim), where qa and qb denote the two questions and sim ∈ {0, 1} indicates their semantic
similarity. The textual input for each question is tokenized and processed using a pre-trained BERT
encoder, with the [CLS] token representation extracted to serve as the input embedding for the
SpheREx projection module.

Model Training. For each training instance (qa, qb,sim), we apply three complementary objec-
tives: the geometric loss Lg , the probabilistic loss Lp, and the radius regularization loss Lr, as
described in Section 3.4. To enforce the symmetry inherent in the semantic similarity relation, each
sample is augmented with its reversed counterpart (qb, qa,sim). If sim = 1, we encourage strong
semantic alignment by minimizing the containment-based overlap loss between the hyperspherical
embeddings of qa and qb. Conversely, when sim = 0, we apply a disjointness constraint that penal-
izes overlap between non-similar question embeddings. The final training objective is expressed as
a weighted combination of the form:

L = αLg + γLr + δLp,

where α, δ, and γ are the respective weighting coefficients.
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Table 8: Hyperparameters for experiments on Quora

Name Value Significance
n 3 number of layers in hypersphere projector
hidden 64 Dimension of hidden layer in hypersphere projector
embed size 6 Dimensionality of the embedding space
batch size 512 Batch size
lr 2× 10−5 Learning rate
α 1.0 Weight of geometric loss
γ 1.0 Weight of regularization loss
δ 1.0 Weight of probabilistic loss
ϕ 0.05 Minimum radius of hyperspheres
τ 0.5 Threshold for assigning classes
epochs 30 Number of training epochs
Optimizer AdamW Optimizer used
Seeds 42, 97, 137 Seeds used

Inference. To determine the semantic similarity between two query embeddings (q1, q2), we com-
pute a soft matching score fscore(q1, q2) based on the degree of geometric overlap between their
hyperspherical representations. Specifically, we define,

fscore(q1, q2) = 1− ∥c1 − c2∥2
r1 + r2

,

where ci and ri denote the center and radius of the hypersphere corresponding to qi, for i = 1, 2.
For the box-based baselines, we have considered,

fscore(q1, q2) = min
j=1,..n

(
1− cj1 − cj2

rj1 + rj2

)
where n represents the number of dimensions, and rj refers to side length in the particular dimen-
sion. The score captures the normalized proximity of the hyperspheres’ centers, scaled by their total
spread. A pair is classified as semantically similar (simpred = 1) if fscore(q1, q2) > τ , and dissimilar
(simpred = 0) otherwise, where τ is a predefined decision threshold. This formulation ensures that
higher scores correspond to greater overlap and thus higher semantic affinity.

Evaluation Metrics. To assess the performance of SpheREx and baseline models on the QQP
dataset, we employ standard classification metrics – Precision, Recall, and F1-score. Given a pair
of questions (q1, q2) and the corresponding ground-truth similarity label y ∈ {0, 1}, we compute
the similarity score fscore(q1, q2) as a function of the geometric overlap between their hyperspherical
embeddings. A binary prediction ŷ is assigned by thresholding this score with a tunable parameter
τ , i.e., ŷ = I[fscore(q1, q2) > τ ]. We evaluate predictions over the entire test set and report:

• Precision: The proportion of predicted similar pairs that are truly similar,

Precision =
TP

TP + FP
,

where TP and FP denote the number of true positives and false positives, respectively.
• Recall: The proportion of truly similar pairs correctly identified by the model,

Recall =
TP

TP + FN
,

where FN is the number of false negatives.
• F1-score: The harmonic mean of precision and recall, providing a balanced measure of classifi-

cation performance,

F1 = 2 · Precision · Recall
Precision + Recall

.

We also study model performance under varying threshold values τ to assess robustness in semantic
similarity estimation. Final metrics are averaged across three random seeds for statistical reliability.
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Table 9: Hyperparameters for experiments on Caltech-UCSD Birds-200-2011 Dataset

Name Value Significance
n 3 number of layers in hypersphere projector
hidden 64 Dimension of hidden layer in hypersphere projector
embed size 6 Dimensionality of the embedding space
batch size 32 Batch size
lr 1× 10−7 Learning rate
α 1.0 Weight of geometric disjoint loss
γ 1.0 Weight of regularization loss
δ 1.0 Weight of probabilistic loss
ϕ 0.05 Minimum radius of hyperspheres
epochs 60 Number of training epochs
Optimizer AdamW Optimizer used
Seeds 42, 97, 137 Seeds used

Implementation Details. SpheREx and all baselines are implemented using PyTorch. We fine-
tune all parameters of the latent projector model BERT for all baselines and SpheREx. All training
and inference tasks were conducted on an 48GB NVIDIA A6000 GPU to ensure high computational
efficiency. Hyperparameters are discussed in Table 8.

E CALTECH-UCSD BIRDS-200-2011 DATASET

Data Preprocessing. The CUB-200-2011 dataset consists of 11,987 bird images spanning 200
fine-grained species categories. We randomly select a subset of 20 classes and apply an 80:20 train-
test split within this subset. Each image is preprocessed using the standard input pipeline from the
open clip library and encoded using the CLIP ViT-H/14 model pretrained on the LAION-2B
dataset to obtain a dense image representation.

For each class label l ∈ L, we construct a text prompt in the form “A label of ¡class name¿” and
encode it using the same CLIP model to obtain the corresponding text embedding. We employ two
separate SpheREx projection heads: one for image embeddings and another for text embeddings,
ensuring modality-specific hyperspherical representations.

During training, for each image instance i, we sample its corresponding positive label lp and uni-
formly select a negative label ln ̸= lp from the remaining class set. Each training triplet (i, lp, ln)
is used to optimize the model with respect to both containment and disjointness constraints, en-
couraging the hyperspherical embedding of the image to lie within that of the correct label while
maintaining separation from unrelated labels.

Model Training. Given each training triplet (i, lp, ln), where i denotes the image embedding,
lp the correct label (positive), and ln a randomly sampled incorrect label (negative), the training
objective optimizes both probabilistic and geometric consistency. Specifically, we enforce that the
probabilistic containment score satisfies P (lp | i) ≈ 1 and P (ln | i) ≈ 0, where P (l | i) is computed
as the normalized volume of intersection between the hyperspherical embedding of i and l.

In parallel, we enforce geometric disjointness between the hyperspheres of lp and ln using a margin-
based separation constraint, preventing semantic collapse between unrelated classes. To avoid de-
generate solutions (e.g., vanishing radii), we introduce a radius regularization term for each of the
three hyperspheres (i, lp, ln) to ensure their radii remain above a fixed minimum threshold. The
final loss is composed of a weighted combination of probabilistic alignment, geometric separation,
and radius regularization components.

Inference. During inference, given a test image embedding itest, we compute a probabilistic match-
ing score fscore(itest, l) for each candidate label l ∈ L. The scoring function is derived from the nor-
malized volume of intersection between the hyperspherical embeddings of the image and the label,
effectively capturing the semantic compatibility between modalities. We then rank all labels based
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on their respective scores and assign the label with the highest score as the predicted class for itest,
i.e., l∗ = argmaxl∈L fscore(itest, l).

Evaluation. We formulate the image-to-label prediction task as a ranking problem and evaluate
model performance using three standard metrics: Accuracy (Hit@1), which measures the propor-
tion of test images where the top-ranked label exactly matches the ground-truth; Mean Rank (MR),
which computes the average position of the correct label in the ranked list; and Mean Reciprocal
Rank (MRR), which calculates the average inverse rank of the correct label, thereby emphasizing
early correct retrievals. These metrics collectively assess both exact match performance and the
overall quality of the predicted ranking.

Implementation Details. SpheREx and all baselines are implemented using PyTorch. We fine-
tune all parameters of the latent projector model CLIP for all baselines and SpheREx. All training
and inference tasks were conducted on an 48GB NVIDIA A6000 GPU to ensure high computational
efficiency. Hyperparameters are discussed in Table 9.
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