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1. Introduction

Training models with discrete latent variables is challenging due to the difficulty of esti-
mating the gradients. The gradient can be expressed as an expectation, however, in all
but the simplest settings, it is analytically intractable and we must resort to estimating the
gradient using Monte Carlo sampling. This problem is encountered, for example, in mod-
ern variational inference, where we would like to maximize a variational lower bound with
respect to the parameters of the variational posterior. The pathwise gradient estimator,
also known as the reparameterization trick, has low variance and has been instrumental to
the success of variational autoencoders (Kingma and Welling, 2014; Rezende et al., 2014).
Unfortunately, it can only be used with continuous random variables, and finding a similarly
effective estimator for discrete random variables remains an important open problem.

Score-function estimators (Glynn, 1990; Fu, 2006), also known as REINFORCE (Williams,
1992), have historically been the estimators of choice for models with discrete random vari-
ables due to their unbiasedness and few requirements. As they usually exhibit high variance,
previous work has augmented them with variance reduction methods to improve their prac-
ticality (Williams, 1992; Ranganath et al., 2014; Mnih and Gregor, 2014). Motivated by
the efficiency of the pathwise estimator, recent progress in gradient estimators for discrete
variables has primarily been driven by leveraging gradient information. While the model
may only be defined for discrete inputs and hence gradients w.r.t. the random variables
may not be defined, if we can construct a continuous relaxation of the system, then we can
compute gradients of the continuous system and use them in an estimator (Gu et al., 2016;
Jang et al., 2017; Maddison et al., 2017; Tucker et al., 2017; Grathwohl et al., 2018).

While such relaxation techniques are appealing because they result in low variance
estimators, they do so by taking advantage of gradient information from an appropriate
continuous relaxation. In some cases, constructing a natural continuous relaxation is non-
trivial. In other cases, the computational cost of evaluating the function at the relaxed
variable values will be prohibitive, e.g. in conditional computation (Bengio et al., 2013),
where discrete variables specify which parts of a large model should be evaluated and using
a relaxation would require evaluating the entire model every time.

Recently, Yin et al. (2019) introduced a promising alternative to relaxation-based esti-
mators for discrete latent variables, the Augment-REINFORCE-Swap (ARS) and Augment-
REINFORCE-Swap-Merge (ARSM) estimators. Instead of relaxing the variables, ARS and
ARSM reparameterize them as deterministic transformations of underlying continuous vari-
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ables. The estimators leverage coupled samples and a careful construction relying on sym-
metries of the Dirichlet distribution and exponential racing. We observe however that the
continuous augmentation, which is the first step in ARS and ARSM, increases the variance
of the REINFORCE estimator. Inspired by recent work (Dong et al., 2020), we improve
both estimators by analytically integrating out unnecessary randomness introduced by the
augmentation and reducing the variance of the estimator substantially. We show that the
resulting estimators consistently outperform ARS and ARSM. However, we find that RE-
INFORCE with a leave-one-out-baseline (Kool et al., 2019) greatly outperforms ARS and
ARSM in all cases and is competitive or outperforms our improved estimators. As it is a
simpler estimator to implement, we recommend it in practice.

2. Background

We consider the problem of optimizing

Eqθ(z) [fθ(z)] , (1)

with respect to the parameters θ of a factorial discrete distribution qθ(z) =
∏
k Cat(zk;αθ,k)

where k indexes dimension and αθ,k are the logits of the discrete distribution with C choices1.
This situation covers many problems with discrete latent variables, for example, in varia-
tional inference fθ(z) could be the instantaneous ELBO (Jordan et al., 1999) and qθ(z) the
variational posterior.

The gradient with respect to θ is

∇θEqθ(z) [fθ(z)] = Eqθ(z) [fθ(z)∇θ log qθ(z) +∇θfθ(z)] . (2)

It typically suffices to estimate the second term with a single Monte Carlo sample, so for
notational clarity, we omit the dependence of f on θ in the following sections. Monte Carlo
estimates of the first term can have large variance. Low-variance, unbiased estimators of
the first term will be our focus.

2.1. Augment-REINFORCE-Swap (ARS)

Yin et al. (2019) show that the discrete distribution can be reparameterized by an underlying
continuous augmentation: if π ∼

∏
k Dirichlet(1C) and zk := arg mini πk,ie

−αk,i , then zk ∼
Cat(αk) and

∇αk,cEqθ(z) [f(z)] = Eπ [f(z)(1− Cπk,c)] .

Furthermore, they define a swapped probability matrix

πi�j
k,c :=


πk,i c = j

πk,j c = i

πk,c o.w.

,

1. To simplify notation, we omit the subscripted θ on α in the following sections.
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where πi�j
k has the entries at indices i and j swapped, and zi�j

k := arg minc π
i�j
k,c e

−αk,c .
Using these constructions, they show an important identity

∇αk,cEqθ(z) [f(z)] = Eπ


[
f(zc�j)− 1

C

C∑
m=1

f(zm�j)

]
(1− Cπk,j)︸ ︷︷ ︸

gARSk,c

 ,
which shows that gARSk,c is an unbiased estimator. Importantly, if we fix a reference j and
compute f(zc�j) for all c, we can compute gARSk,c for all k and c with at most C potentially
expensive function evaluations.

2.2. Augment-REINFORCE-Swap-Merge (ARSM)

To further improve the estimator, Yin et al. (2019) suggest averaging over the choice of the
reference j resulting in the ARSM estimator

gARSMk,c :=
1

C

C∑
j=1

[
f(zc�j)− 1

C

C∑
m=1

f(zm�j)

]
(1− Cπk,j).

We can compute gARSMk,c for all k and c with at most C(C−1)/2 + 1 function evaluations.
When C = 2, gARSM reduces to the ARM estimator for binary variables (Yin and Zhou,
2019).

Notably, both ARS and ARSM only evaluate f at discrete values, so do not require a
continuous relaxation. Both are unbiased and we expect them to have low variance because
the learning signal is a difference of evaluations of f . Yin et al. (2019) empirically show
that it performs comparably or outperforms previous methods.

3. Methods

ARS and ARSM heavily rely on a continuous reparameterization of the problem, yet the
original problem only depends on the discrete values. Inspired by the ideas in (Dong et al.,
2020), we can derive an improved estimator by integrating out the extra randomness. Start-
ing with ARS, ideally, we would like to compute

Eπ|z1�j ,...,zC�j

[
gARSk,c

]
=

[
f(zc�j)− 1

C

C∑
m=1

f(zm�j)

]
(1− CEπ|z1�j ,...,zC�j [πk,j ])

=

[
f(zc�j)− 1

C

C∑
m=1

f(zm�j)

]
(1− CE

πk,j |z1�jk ,...,zC�j
k

[πk,j ]),

taking advantage of independence between dimensions (indexed by k). To reduce notational
clutter, we omit the dimension index in the following derivation.

We have reduced the problem to computing

Eπj |z1�j ,...,zC�j [πj ] ,
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however, we were unable to compute the expectation analytically. Instead, we analytically
integrate out some dimensions of π and use Monte Carlo sampling to deal with the rest.
First, we know that

∑
i πi = 1, so one variable is redundant (denote this choice by l). Next,

we show how to integrate the reference index j 6= l (i.e., compute Eπj |π−j,l,z1�j ,...,zC�j [πj ],
where π−j,l denotes π excluding its j-th and l-th elements.).

The known values of π−j,l, z
1�j , ..., zC�j imply lower and upper bounds on πj . First,

because 1 −
∑

i 6=l πi = πl ≥ 0, we conclude that πj ≤ 1 −
∑

i 6=j,l πi. To determine the

implications of the configurations z1�j , ..., zC�j , it is helpful to define additional notation.
Let sc�j := πc�je−α. Let’s look at what the value of zm�j := arg mini s

m�j
i tells us about

πj . We need to consider two cases:

• zm�j = m: This means that sm�j
m = πje−αm is the smallest entry in sm�j : πje−αm ≤

mini 6=m s
m�j
i which implies that πj ≤ mini 6=m e

αmsm�j
i .

eαmsm�j
i contains πl when m = l and i = j or m 6= l and i = l. When m = l and

i = j, we have that eαlsm�j
j = eαlπle

−αj = (1−
∑

n6=j,l πn − πj)eαl−αj . Therefore,

πj ≤
(1−

∑
n6=j,l πn)e−αj

e−αj + e−αl
.

A similar computation is required for the case m 6= l and i = l.

• zm�j 6= m: This means that πje−αm is larger than the smallest entry in sm�j :
πje−αm ≥ mini s

m�j
i which implies that πj ≥ mini e

αmsm�j
i . As above, we can

eliminate πl from the bounds.

Finally, we aggregate the inequalities to compute the lower and upper bounds. Because
π ∼ Dirichlet(1C) is a uniform distribution over the simplex, πj |π−j,l, z1�j , ..., zC�j will be
uniformly distributed over an interval, which means that it suffices to compute the lower
and upper bounds to compute the expectation.

In principle, we should be able to apply similar ideas to ARSM. We plan to implement
this in the full version of the paper.

3.1. Leveraging symmetry

We can take advantage of symmetry to further integrate out extraneous randomness. Let
δk = 1

z1�jk =···=zC�j
k

. Then, we have

Eπ|δk=1

[
gARSk,c

]
= Eπ|δk

[[
f(zc�j)− 1

C

C∑
m=1

f(zm�j)

]
(1− Cπk,j)

]

= Eπk|δk=1

[(
Eπ−k

[
f(zc�j)

]
− 1

C

C∑
m=1

Eπ−k
[
f(zm�j)

])
(1− Cπk,j)

]
.

Now, we claim that inside the expectation Eπ−k
[
f(zm�j)

]
is constant with respect to m.

First, we know that z1�j
k = · · · = zC�j

k inside the expectation and that the dimensions
indexed by k are independent. Because π ∼

∏
k Dirichlet(1C), Dirichlet(1C) is symmetric,
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and we are taking an unconditional expectation over the remaining dimensions, the value
is invariant to the swapping operation. As a result, the entire expression vanishes. Thus,
we conclude that

gARSk,c(1− δk)

is still an unbiased estimator. A similar argument holds for gARSM. This is complementary
to the approach in the previous subsection and can done in combination

gARS+k,c := E
πk,j |πk,−jl,z1�jk ,...,zC�j

k

[
gARSk,c(1− δk)

]
,

where we choose l 6= j uniformly randomly. This is the estimator we use in our experiments.

4. Experiments
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Figure 1: Training a non-linear Categorical VAE with stochastic hidden units of 10/5/3/2
categories on dynamically binarized MNIST dataset by maximizing the ELBO.
We plot the train ELBO (left column), test 100-sample bound (middle column),
and the variance of gradient estimator (right column). We plot the mean and one
standard error based on 5 runs from different random initializations

5



Coupled Gradient Estimators for Discrete Latent Variables

We benchmark the proposed gradient estimators by training Variational Auto-Encoders
with categorical latent variables. To facilitate comparison with ARS and ARSM, we use
the same architecture as in (Yin et al., 2019). Briefly, the model has a single layer of 20
categorical latent variables which are mapped to Bernoulli logits with an MLP with two
hidden layers of 256 and 512 of LeakyReLU units (Xu et al., 2015) with 0.2 negative slope.
The encoder mirrors the structure with two hidden layers of 512 and 256 LeakyReLU units.

For ARSM, we reduce the variance only by leveraging the symmetry (Section 3.1) and
call the resulting estimator ARSM+. We train models with 10/5/3/2-dimensional cate-
gorical latent variables on dynamically binarized MNIST. For comparison, we train models
with ARM, ARSM, and an n-sample REINFORCE estimator with a leave-one-out base-
line (REINFORCE LOO) (Kool et al., 2019). To match computation, REINFORCE LOO
uses C samples for comparing against ARS/ARS+, and uses C(C − 1)/2 + 1 samples for
ARSM/ARSM+, where C is the number of categories.

As shown in Figure 1, the proposed estimators, ARS+/ARSM+, significantly outper-
form ARS/ARSM. Surprisingly, we find that both ARS and ARSM underperform the sim-
pler REINFORCE LOO baseline in all cases. For C = 2, ARS+2 and ARSM+ outperform
REINFORCE LOO; however, for C > 2, REINFORCE LOO is superior and the gap in-
creases as C does. This suggests that partially integrating out the randomness is insufficient
to account for the variance introduced by the continuous augmentation.

5. Conclusion

While we achieved our goal of improving ARS and ARSM, along the way we discovered that
the methods that we built upon were inferior to a simpler baseline. In practice, we suggest
using REINFORCE LOO as it achieves competitive or superior performance in all of the
cases we evaluated. However, in spite of this negative result, we still believe the techniques
and careful benchmarking in this paper will be valuable to the community.
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Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating
gradients through stochastic neurons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013.

Zhe Dong, Andriy Mnih, and George Tucker. DisARM: An antithetic gradient estimator
for binary latent variables. arXiv preprint arXiv:2006.10680, 2020.

Michael C Fu. Gradient estimation. Handbooks in operations research and management
science, 13:575–616, 2006.

Peter W Glynn. Likelihood ratio gradient estimation for stochastic systems. Communica-
tions of the ACM, 33(10):75–84, 1990.

Will Grathwohl, Dami Choi, Yuhuai Wu, Geoff Roeder, and David Duvenaud. Backprop-
agation through the void: Optimizing control variates for black-box gradient estimation.
In International Conference on Learning Representations, 2018.

2. In this case, ARS+ reduces to DisARM (Dong et al., 2020).

6



Coupled Gradient Estimators for Discrete Latent Variables

Shixiang Gu, Sergey Levine, Ilya Sutskever, and Andriy Mnih. MuProp: Unbiased back-
propagation for stochastic neural networks. In International Conference on Learning
Representations, 2016.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-
softmax. In International Conference on Learning Representations, 2017.

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An
introduction to variational methods for graphical models. Machine learning, 37(2):183–
233, 1999.

Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. In International
Conference on Learning Representations, 2014.

Wouter Kool, Herke van Hoof, and Max Welling. Buy 4 reinforce samples, get a baseline
for free! In Deep RL Meets Structured Prediction ICLR Workshop, 2019.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The Concrete Distribution: A
Continuous Relaxation of Discrete Random Variables. In International Conference on
Learning Representations, 2017.

Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief networks.
In Proceedings of The 31st International Conference on Machine Learning, pages 1791–
1799, 2014.

Rajesh Ranganath, Sean Gerrish, and David M Blei. Black box variational inference. In
AISTATS, pages 814–822, 2014.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropaga-
tion and approximate inference in deep generative models. In Proceedings of The 31st
International Conference on Machine Learning, pages 1278–1286, 2014.

George Tucker, Andriy Mnih, Chris J Maddison, John Lawson, and Jascha Sohl-Dickstein.
REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models.
In Advances in Neural Information Processing Systems 30, 2017.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine learning, 8(3-4):229–256, 1992.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activa-
tions in convolutional network. arXiv preprint arXiv:1505.00853, 2015.

Mingzhang Yin and Mingyuan Zhou. ARM: Augment-REINFORCE-merge gradient for
stochastic binary networks. In International Conference on Learning Representations,
2019.

Mingzhang Yin, Yuguang Yue, and Mingyuan Zhou. ARSM: Augment-REINFORCE-swap-
merge estimator for gradient backpropagation through categorical variables. In Proceed-
ings of the 36th International Conference on Machine Learning, 2019.

7


	Introduction
	Background
	Augment-REINFORCE-Swap (ARS)
	Augment-REINFORCE-Swap-Merge (ARSM)

	Methods
	Leveraging symmetry

	Experiments
	Conclusion

