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ABSTRACT

Vision-Language-Action (VLA) models have shown promise for robotic control,
but their application to complex household manipulation tasks remains challeng-
ing. In this work, we propose AuxVLA, a comprehensive approach that en-
ables VLA models to control mobile manipulation robots in domestic environ-
ments through both auxiliary task co-training and enhanced input modalities. Our
method addresses the challenges of controlling high-dimensional action spaces
(13 dimensions for both arm and mobile base) where direct imitation learning
typically yields suboptimal results. AuxVLA incorporates two complementary
strategies: (1) leveraging multi-view visual inputs and depth information to pro-
vide richer spatial context, and (2) co-training with auxiliary decoders that predict
interpretable intermediate representations including global robot position, joint
configurations, grasp affordances, target object relative positions, and segmenta-
tion masks from shared visual-language features. Through evaluation on home
rearrangement tasks, AuxVLA demonstrates favorable performance across pick-
ing, placing, opening and closing tasks. We hypothesize that auxiliary supervision
on interpretable representations enhances spatial understanding and scene reason-
ing capabilities, while enriched sensory inputs provide necessary spatial context
for precise manipulation. These findings suggest that combining auxiliary objec-
tives with multi-modal sensing offers a promising direction for VLA models in
mobile manipulation, contributing to the development of more capable domestic
robots.

1 INTRODUCTION

Vision-Language-Action (VLA) models, which leverage the powerful representations of pre-trained
Vision-Language Models (VLMs) (Qwen et al., 2025; Karamcheti et al., 2024b), have emerged as
a leading paradigm for translating natural language commands into robotic actions (Brohan et al.,
2023a; Li et al., 2024a; Qu et al., 2025; Intelligence et al., 2025). These models have demonstrated
remarkable success in learning a wide array of skills, setting new benchmarks for generalization and
semantic understanding in robotic control (Mees et al., 2022; Li et al., 2024b; Black et al., 2024).

However, much of this recent success has been concentrated in constrained, table-top environments
involving single or dual-arm manipulators Kim et al. (2024); Li et al. (2024a). While valuable,
these settings do not capture the complexities of real-world domestic scenarios. Household tasks
require robots to navigate through spaces, interact with articulated objects like doors and drawers,
and reason about their own state relative to a dynamic, unstructured environment. This leap from
static to mobile manipulation introduces significant challenges (Szot et al., 2022; Fu et al., 2024),
including partial observability, high-dimensional continuous action spaces that fuse navigation and
manipulation, and a greater need for robust spatial and scene-level reasoning.

Despite the growing interest in applying VLA models to mobile manipulation, this remains a rel-
atively nascent area of research. Current approaches to household robotics have primarily re-
lied on modular systems that decompose tasks into separate navigation and manipulation compo-
nents (Yarats et al., 2021; Lu et al., 2025; Cheng et al., 2025), or end-to-end learning methods that
struggle with the complexity of unified control (Fu et al., 2024; Chen et al., 2025). The application
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of VLA models to mobile manipulation represents an emerging paradigm that seeks to harness the
rich semantic understanding and reasoning capabilities of large-scale vision-language pre-training
for these challenging scenarios. However, existing VLA architectures, when directly applied to mo-
bile manipulation tasks, exhibit substantial performance limitations. We observe that standard VLA
models trained through direct imitation learning achieve only modest success rates on household
tasks, suggesting that current approaches fail to adequately leverage the sophisticated reasoning
abilities inherent in pre-trained VLMs.

In this work, we investigate how to bridge this gap and explore the applicability of VLA mod-
els to complex mobile manipulation tasks in household settings. We hypothesize that the standard
approach of direct imitation learning—predicting a high-dimensional action vector from a visual-
language representation—provides insufficient supervisory signal for the model to learn the rich,
multi-faceted understanding required for these tasks. To address this, we introduce AuxVLA, a com-
prehensive framework that enhances the learning process through two primary strategies: enriching
the model’s sensory input and providing denser learning signals through auxiliary co-training.

Our work makes the following contributions:

• We propose an efficient co-training strategy that leverages a shared visual-language back-
bone to simultaneously predict actions and a suite of auxiliary tasks, including the robot’s
global position, joint configuration, grasp state, and object-centric properties.

• We demonstrate that these auxiliary objectives act as a powerful form of explicit supervi-
sion, forcing the model to learn more interpretable and spatially aware representations from
its latent features.

• We systematically explore how different input modalities, specifically multi-view imagery
and depth information, can provide richer spatial context to improve VLA performance in
mobile manipulation.

• We validate our approach on the challenging ManiSkill-HAB benchmark (Shukla et al.,
2025), showing that AuxVLA achieves average success rates of 73% compared to 60% for
direct imitation learning on home rearrangement tasks, demonstrating the effectiveness of
our proposed enhancements on a common VLA architecture.

These findings suggest that enriching both the inputs and the training objectives is a critical and
promising direction for scaling VLA models to the complexities of real-world domestic robotics.

2 RELATED WORK

Vision-Language-Action models. Vision-Language-Action (VLA) models have emerged as a dom-
inant paradigm for robotic control, leveraging large-scale pretrained models to translate multimodal
prompts into actions. Pioneering works such as Shridhar et al. (2021); Reed et al. (2022); Brohan
et al. (2023b); Liu et al. (2024); Zhang et al. (2024); Qu et al. (2025); Zhang et al. (2025) demon-
strated that end-to-end training on large datasets (O’Neill et al., 2024; Deng et al., 2025) could
produce highly capable policies. Some models discretize the continuous action space (Brohan et al.,
2023a; Kim et al., 2024; Belkhale & Sadigh, 2024), enabling the VLM backbone (Karamcheti et al.,
2024a) to directly predict action tokens in an autoregressive fashion. Others append a specialized
action expert (Black et al., 2024; Li et al., 2024a; Yating Wang, 2025), which generates continu-
ous actions from the VLM’s latent features. Despite their success, the capabilities of these VLA
frameworks are predominantly demonstrated on tabletop manipulation tasks, leaving the challenges
of mobile manipulation largely unaddressed.

Mobile Manipulation. Solving mobile manipulation requires the tight synergy of locomotion and
arm control to carry out human instructions. One dominant strategy employs a hierarchical system
where a Vision-Language Model (VLM) (Achiam et al., 2023) serves as a high-level planner (Wake
et al., 2024), decomposing instructions into simpler subtasks. These subtasks are then handled by
separate, specialized policies for navigation and manipulation (OpenAI et al., 2019; Haarnoja et al.,
2018; Joshi et al., 2020; Fu et al., 2024; Jiang et al., 2025; Cheng et al., 2025). This modularity,
however, isolates the foundation model’s rich, pre-trained knowledge from the final motor control,
limiting its direct influence on physical interaction.
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(a) Head camera view (b) Hand camera view

Figure 1: Multi-view segmentation data used for auxiliary task training. Each group shows (left)
the original RGB observation, (middle) segmentation masks for all objects in the scene with differ-
ent colors representing different object instances, and (right) the processed binary mask highlighting
only the target object of interest. (a) Head camera view provides a global perspective of the manipu-
lation scene. (b) Hand camera view offers a close-up perspective focused on the manipulation area.
The target object masks are derived from the full segmentation by identifying the target object ID
and creating binary masks to focus the model’s attention on the relevant manipulation target.

3 DATASET

We adopt the data generation pipeline from ManiSkill-HAB (Shukla et al., 2025), a benchmark
for low-level manipulation in home rearrangement tasks, and extend it to generate demonstration
data enriched with auxiliary task annotations. The dataset comprises simulation-based trajectories
across three long-horizon household tasks: TidyHouse, PrepareGroceries, and SetTable, totaling
44K episodes with 8.2M transitions.

Task Composition. Each long-horizon task is decomposed into 4 fundamental manipulation sub-
tasks: Pick, Place, Open, and Close, with varying difficulty levels. TidyHouse involves pick-and-
place operations with medium to hard difficulty objects and receptacles. PrepareGroceries focuses
on hard-difficulty pick-and-place scenarios requiring precise manipulation. SetTable includes all
4 subtasks, spanning easy to medium difficulty levels. Pick and place tasks require fine-grained
manipulation control for accurate grasping and positioning, whereas open and close tasks empha-
size broader locomotion and approach strategies. The diversity in task complexity and object types
provides comprehensive coverage of household manipulation scenarios.

Auxiliary Task Data Distribution. We strategically distribute auxiliary task training based on task
relevance and data availability. For auxiliary tasks involving global position, grasp state, and joint
position (qpos) prediction, we utilize the complete SetTable dataset (8K episodes, 1.6M transi-
tions), which provides comprehensive robot state information across diverse manipulation scenar-
ios. For segmentation masks and object pose estimation, we leverage pick-and-place data from
all three tasks (40K episodes, 8M transitions), as these auxiliary tasks are only meaningful in sce-
narios involving target object manipulation and require clear object identification. Figure 1 shows
an example of the segmentation data. This task-specific data allocation ensures that each auxiliary
decoder receives relevant and sufficient training examples while maximizing the utilization of our
diverse demonstration dataset.

4 MODEL

4.1 OVERALL ARCHITECTURE

AuxVLA is a lightweight 1.3B parameter model consisting of a pre-trained Prismatic VLM (Karam-
cheti et al., 2024a) backbone and an optional action expert, designed to efficiently handle multi-
modal inputs for robotic control tasks. The VLM backbone comprises three key components: (1) a
visual encoder that fuses complementary features from DINOv2 (Oquab et al., 2024) (improving
spatial understanding) and SigLIP (Zhai et al., 2023) (providing rich semantic representations) fol-
lowing dual-encoder approach in Kim et al. (2024), enabling the model to process both RGB and
depth inputs from multiple camera viewpoints; (2) a large language model backbone (Qwen2.5-
0.5B (Qwen et al., 2025)) that serves as the central reasoning component, processing textual instruc-
tions and integrating multi-modal information for decision making; and (3) a trainable projector
that maps high-dimensional vision features to the language embedding space, allowing seamless
fusion of visual and linguistic representations within the transformer architecture.

3
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AuxVLA
LLM Backbone   a

Latent Representation

...

Decoder Joint PositionA

Grasp LabelB SegmentationC

Global PosD E Object Pos
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Auxiliary Module
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13D Robot Action
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Action Head
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Figure 2: AuxVLA Architecture Overview. The model processes multi-modal inputs, including
RGB images and normalized depth maps from head and hand cameras, alongside a natural language
instruction. During training time, the latent representation from LLM is then passed to the decoders
for auxiliary task predictions. Finally, the model predicts a 13-dimensional action vector, generated
either directly by the LLM backbone or through a specialized Flow Matching action expert depend-
ing on task type. The action vector consists of the following: ∆X , a 3D vector representing the
base’s pose (position+orientation); ∆z, a 1D scalar representing the change in the torso’s height;
∆q, a 7D vector representing the change in the arm’s joint angles; ∆G, a 2D vector representing
the change in the gripper’s state (one for each finger).

Additionally, we incorporate an optional 100M parameters Flow Matching (Lipman et al., 2023)
action expert following π0 (Black et al., 2024), which generates continuous, high-precision ac-
tions conditioned on the rich latent representations extracted from the VLM backbone. This dual-
prediction architecture provides flexibility in action generation: the model can either directly predict
discrete action tokens, or leverage the action expert to generate continuous actions. The choice be-
tween these prediction modes can be adapted based on specific task requirements. The complete
architecture, illustrating the flow from multi-modal inputs through the VLM backbone to auxiliary
decoders and action prediction, is shown in Figure 2.

4.2 INPUT MODALITIES

To enhance the spatial understanding and situational awareness of our VLA model, we systemati-
cally investigate the impact of different input modalities beyond standard single-view RGB observa-
tions. Specifically, we explore three key modality enhancements: (1) Multi-view RGB inputs that
incorporate both head-mounted and hand-mounted camera observations, providing complementary
perspectives of the manipulation scene compared to relying solely on head observations; (2) Depth
information from head and hand cameras and normalized through Eq. 1, which offers explicit geo-
metric understanding of object distances and spatial relationships in the environment; and (3) Tem-
poral context through historical observations from the past 4 timesteps, enabling the model to lever-
age sequential information for better action planning. We conduct comprehensive ablation studies to
evaluate the individual and combined effects of these modality additions on task performance. Our
experiments reveal that multi-view RGB observations combined with their corresponding depth im-
ages yields the best performance, significantly improving the model’s ability to understand complex
spatial relationships and object interactions in household manipulation tasks. The detailed ablation
results and analysis of each modality’s contribution are presented in Section 6.

pobs = 1− tanh

(
depth value

1000

)
(1)
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4.3 DECODERS

We design auxiliary decoders that operate on the VLM backbone’s latent representations to enable
multi-task learning. The decoders reconstruct different aspects of the current state, providing com-
plementary supervision signals for various aspects of robotic manipulation. Structure details are
listed in Appendix A.2.

MLP-based Decoders. We implement three regression and classification decoders using similar
MLP architectures with progressive dimensionality reduction. The Global Position Decoder pre-
dicts the robot’s 2D coordinates (x, y), the Grasp Success Decoder performs binary classification
to determine grasping state, and the Object Pose Decoder predicts 7-dimensional object poses (3D
position + quaternion orientation). Their respective loss functions are defined in Eq. 2, where p̂
and p are predicted and ground truth global positions, y and ŷ are ground truth and predicted grasp
labels, t represents 3D position, and q represents quaternion orientation.

Transformer-based QPos Decoder. For the 12-dimensional joint configuration prediction, we em-
ploy a Vision Transformer architecture with learnable mask tokens that attend to VLM features
through multi-head self-attention. This design captures complex joint dependencies while lever-
aging spatial understanding from VLM features, using fixed sine-cosine positional encodings and
MSE loss for joint angle regression as shown in Eq. 3, where Ĵ and J are predicted and ground truth
12-dimensional joint configurations.

CNN-based Mask Decoder. The segmentation decoder generates 128×128 binary masks for target
objects using an efficient CNN upsampling pathway. Starting from 8×8 spatial resolution, it progres-
sively upsamples through transposed convolutions with GELU activations and batch normalization,
optimized for large-scale training on our dataset using binary cross-entropy loss as shown in Eq. 3,
where M̂ and M are predicted and ground truth segmentation masks.

Lpos = MSE(p̂,p), Lobj = ∥t̂− t∥22 + (1− |q̂ · q|), Lgrasp = CrossEntropy(ŷ, y) (2)

Lqpos = MSE(Ĵ,J), Lseg = CrossEntropy(M̂,M) (3)
Multi-task Loss Function. The total training loss combines the main action prediction loss with
weighted auxiliary losses:

Lauxiliary = λposLpos + λgraspLgrasp + λqposLqpos + λobjLobj + λsegLseg (4)

where the λs are task-specific weighting coefficients tuned to balance contributions across diverse
auxiliary objectives. Each decoder operates independently on shared VLM representations, enabling
simultaneous learning of complementary manipulation aspects.

5 TRAINING SCHEME

We adopt a progressive multi-stage training approach to effectively integrate auxiliary decoders
and flow-matching action head with the pre-trained VLM backbone while preserving the model’s
foundational capabilities.

5.1 PRELIMINARY EXPERIMENT

Our preliminary experiments revealed that directly co-training randomly initialized auxiliary de-
coders with the VLM backbone led to performance degradation. This phenomenon occurs because
the untrained decoders generate large, noisy gradients that interfere with the learned representations
in the pre-trained VLM.

5.2 TWO-STAGE PROGRESSIVE TRAINING

To address this challenge, we implement a two-stage training strategy that balances auxiliary task
learning with preservation of VLM representations:

Stage 1: Decoder Adaptation. We freeze the gradient flow from auxiliary decoders to the VLM
backbone, allowing only the discrete action token prediction path from the VLM to update the
backbone parameters. During this phase, the randomly initialized decoders learn to interpret and
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Figure 3: Multi-stage Training Scheme. Stage 1: Decoder adaptation phase where auxiliary de-
coders are trained while gradient flow to the VLM backbone is blocked, allowing decoders to learn
from fixed VLM representations. Stage 2: Joint refinement phase with full gradient flow enabled,
co-training all auxiliary decoders with the VLM backbone. Stage 3: Action head training phase
where the VLM backbone is frozen to train the flow matching action head in isolation.

utilize the fixed latent representations from the VLM without disrupting the backbone’s pre-trained
knowledge, while the VLM continues learning to predict discrete action tokens for robot control.
This stage enables the auxiliary decoders to adapt to the VLM’s representational space and establish
reasonable baseline performance on their respective tasks, while maintaining the VLM’s core action
prediction capabilities through discrete token generation.

Stage 2: Joint Refinement. After the decoders have stabilized, we enable full gradient flow, allow-
ing auxiliary task losses to backpropagate through the entire network. In this phase, the auxiliary
objectives guide the refinement of VLM representations to better capture manipulation-relevant fea-
tures such as spatial relationships, object properties, and robot state information. The combined
supervision from multiple tasks encourages the backbone to learn more comprehensive and robust
representations that benefit the primary action prediction objective. This progressive approach en-
sures that auxiliary tasks enhance rather than hinder the model’s learning process, as demonstrated
by our ablation studies in Section 6.

5.3 TRAINING THE ACTION HEAD

Beyond the two-stage progressive training for auxiliary decoders, we introduce an additional training
phase specifically for the optional flow matching action head. Our initial experiments revealed
that training the flow matching action head alongside the VLM backbone, leads to optimization
difficulties. Despite preventing the flow matching gradients from affecting the VLM parameters, the
denoising loss still fails to converge effectively when trained concurrently with other objectives.

Stage 3: Isolated Action Head Training. To address this challenge, we implement a third training
stage where we completely freeze all parameters of the pre-trained VLM backbone and train only
the flow matching action head. In this stage, the action head learns to generate continuous 13-
dimensional actions by denoising from the rich, frozen latent representations provided by the VLM
backbone. This complete isolation allows the flow matching objective to converge properly without
any interference from concurrent training processes, enabling the action head to develop robust
action generation capabilities.

6 EXPERIMENTS

6.1 IMPLEMENTATION DETAILS

Given that VLA models for mobile manipulation remains a nascent research direction, we acknowl-
edge that established baselines for these complex household tasks are relatively limited. Our experi-
mental setup therefore focuses on demonstrating the effectiveness of our proposed auxiliary training
strategies against a straightforward baseline implementation of direct imitation learning on the same
architecture.

6
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Pick Place Open Close

Method All Obj. All Obj. Fridge Drawer Fridge Drawer Avg.

OpenVLA (Kim et al., 2024) 0.00 0.19 0.02 0.00 0.00 0.04 0.04
+ Multiview 0.06 0.35 0.14 0.38 0.00 0.53 0.24

+ Multiview + Depth 0.12 0.41 0.43 0.30 0.00 0.67 0.32

Base VLM + Multiview 0.06 0.53 0.60 0.30 0.63 0.93 0.52
+ Multiview + Depth 0.16 0.56 0.67 0.36 0.83 1.00 0.60

+ Multiview + Depth + History 0.00 0.47 0.57 0.40 0.47 1.00 0.49

Table 1: Performance comparison between models taking different modalities of inputs. The Base
VLM (Belkhale & Sadigh, 2024) uses DINOv2 + SigLIP as dual visual encoder and Qwen2.5-0.5B
as LLM backbone. Reported numbers are success rates for each task. The best results are bolded.

All models are implemented in PyTorch and trained on 8 NVIDIA A100 GPUs. We use an Adam
optimizer with constant learning rate 2e−5. Global batch size is set to 512. For the weights of losses
in Eq. 4, we set λpos = 1.0, λgrasp = 5.0, λqpos = 1.0, λobj = 1.0, λseg = 1.0. The models
with segmentation decoders are train on pick and place subtasks for 5 epochs, while the others are
train on all 6 subtasks for 10 epochs. We evaluate all models using the evaluation pipeline from
ManiSkill-HAB (Shukla et al., 2025). For each task, we run 30 episodes and calculate the mean
success rate. Sample visualization episodes can be found in Appendix A.1.

6.2 INPUT MODALITIES

Table 1 demonstrates the significant impact of enhanced input modalities on VLA model perfor-
mance across different household manipulation tasks. All the models in this table are train on
SetTable dataset for 10 epochs. The results reveal several key insights about the importance of
multi-modal sensory information for robotic control.

Baseline. The original OpenVLA model (∼7B parameters) (Kim et al., 2024) with single-view
RGB input achieves extremely poor performance across all tasks (0.04 average success rate) after
trained with same number of epochs as our models, highlighting the limitations of standard vision-
language models when applied directly to complex household manipulation scenarios. This baseline
establishes the critical need for enhanced sensory inputs in domestic robotics applications.

Multi-view and Depth Benefits. The addition of multi-view observations and depth information to
the OpenVLA baseline demonstrates substantial improvements across all task categories. OpenVLA
with enhanced modalities (multi-view + depth) achieves a dramatic 8× improvement in average
success rate (from 0.04 to 0.32), with particularly notable gains in drawer manipulation tasks where
success rates increase from near-zero to 0.30-0.67. This improvement validates the importance of
richer sensory information for spatial reasoning in household manipulation.

Modality Ablation Analysis. Performance is further enhanced when replacing the LLM backbone
with the more efficient Qwen2.5-0.5B (Belkhale & Sadigh, 2024). Despite being smaller than the
original OpenVLA model, the Qwen-based model achieves superior results. The model with multi-
view and depth inputs reaches 0.60 average success rate, nearly doubling the performance of the
enhanced OpenVLA variant. The systematic ablation study on the Qwen-based model reveals the
individual contributions of each modality enhancement. Multi-view inputs alone provide substantial
gains over single-view baselines, achieving 0.52 average success rate. Adding depth information
further improves performance to 0.60, representing a 15% relative improvement and highlighting
the value of explicit geometric information for manipulation tasks. However, incorporating temporal
history (past 4 actions) degrades performance to 0.49. This counter-intuitive result may indicate that
the model struggles to effectively integrate temporal information, or that the evaluated tasks are
sufficiently reactive that historical context provides limited additional information.

6.3 AUXILIARY TASKS AND PROGRESSIVE TRAINING

Table 2 provides strong empirical evidence for the necessity of our progressive training approach
when incorporating auxiliary decoders. All the models in this table are trained on SetTable subset
for 10 epochs, with 3 epochs for stage 1 and 7 epochs for stage 2. The contrast between naive
co-training (top section) and progressive training (bottom section) demonstrates the importance of

7
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Progressive Pick Place Open Close

training Method All Obj. All Obj. Fridge Drawer Fridge Drawer Avg. S.R.

No AuxVLA 0.16 0.56 0.67 0.36 0.83 1.00 0.60
+ all 0.03 0.50 0.60 0.23 0.67 1.00 0.51

Yes + is grasped 0.30 0.53 0.83 0.57 0.80 0.93 0.66
+ qpos 0.23 0.67 0.87 0.70 0.90 0.90 0.71

+ global pos 0.07 0.27 0.90 0.70 0.97 1.00 0.65
+ all 0.13 0.70 0.87 0.77 0.90 1.00 0.73

Table 2: Ablation study on co-training with each auxiliary task. All the models are train on SetTable
subset. “+all” here includes “is grasped + qpos + global pos.” The best results are bolded and the
second-best results are underlined.

SetTable PrepareGrocery TidyHouse

Method Pick Place Pick Place Pick Place Avg.

AuxVLA 0.20 0.50 0.10 0.33 0.07 0.40 0.27
+ seg + obj pos 0.26 0.78 0.13 0.60 0.33 0.73 0.47

Table 3: Performance comparison between models trained with and without Segmentation and Ob-
ject Position reconstruction task. The best results are bolded.

proper training methodology for multi-task learning in VLA models. Table 3 demonstrates the
significant impact of incorporating segmentation masks and object position prediction as auxiliary
tasks. Models in this table are trained on all Pick and Place data from SetTable, PrepareGroceries
and TidyHouse tasks for 6 epochs, with 2 for stage 1 and 4 for stage 2.

Failure of Naive Co-training. When all auxiliary decoders are trained simultaneously with the
VLM backbone from initialization (“AuxVLA + all” without progressive training in Table 2), per-
formance degrades significantly across most tasks, dropping from 0.60 to 0.51 average success rate.
This 15% performance degradation confirms our hypothesis that randomly initialized auxiliary de-
coders generate disruptive gradients that interfere with the pre-trained VLM representations.

Progressive Training. The progressive training approach not only recovers the baseline perfor-
mance but substantially improves it. Training all auxiliary tasks with progressive methodology (“+
all” with progressive training in Table 2) achieves 0.73 average success rate, representing a 22%
improvement over the best input modality configuration alone. This validates our two-stage training
strategy where decoders first adapt to VLM representations before jointly refining the backbone.

Individual Auxiliary Task Analysis. The ablation study results in Table 2 and 3 reveals varying
contributions from different auxiliary tasks.

• Joint position (qpos): Reconstructing qpos of current state provides the most substan-
tial and consistent improvements across all task categories (0.71 average), particularly ex-
celling in manipulation tasks like place (0.67) and drawer operations (0.70 and 0.90). This
suggests that explicit joint awareness significantly enhances the model’s understanding of
manipulation dynamics.

• Grasp label (is grasped): Grasp label prediction offers moderate but reliable improve-
ments (0.66 average), with notable gains in pick tasks (0.30). This indicates that predicting
grasp label help model gain better manipulation state awareness.

• Global position (global pos): Global position reconstruction shows more task-specific
benefits, dramatically improving drawer and fridge opening tasks (0.90 and 1.00) while
struggling with pick-and-place operations. This indicates its particular value for navigation-
heavy scenarios.

• Segmentation+object position (seg+obj pos): Unlike previous auxiliary tasks that
showed selective improvements, segmentation and object position reconstruction provide
consistent benefits across all manipulation scenarios. Place tasks show the most substan-
tial gains, with improvements ranging from 55-81% across different environments. This

8
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Pick Place Open Close

Method All Obj. All Obj. Fridge Drawer Fridge Drawer Avg.

AuxVLA 0.13 0.70 0.87 0.77 0.90 1.00 0.73
AuxVLA + action head 0.27 0.80 0.76 0.60 0.76 0.97 0.69

Table 4: Performance comparison between AuxVLA trained with and without flow matching action
head. The best results are bolded.

pattern aligns with the intuitive importance of precise object localization and scene under-
standing for successful placement operations. Pick tasks demonstrate more modest but
consistent and notable improvements. The relatively smaller improvements in pick tasks
may reflect the continued challenge of grasp planning, which requires additional skills be-
yond object detection and localization.

Synergistic Effects. The combined auxiliary training (“+ all”) achieves performance that generally
matches or exceeds the best individual auxiliary task across most categories, with the overall av-
erage (0.73) representing near-optimal performance. This suggests that the auxiliary tasks provide
complementary rather than redundant information, with each contributing unique aspects of spatial
and manipulation understanding to the overall model capability.

6.4 ACTION HEAD

The action head is trained to predict action chunk of size 8, among which the first 2 actions are
executed. Number of denoising step set to 10. Table 4 reveals the mixed effects of incorporating
the flow matching action head with the overall average performance decreases from 0.73 to 0.69,
indicating that the action head’s benefits are selective and come with trade-offs.

Task-Specific Performance Patterns. The flow matching action head shows a clear dichotomy in
its effectiveness across different manipulation primitives. Pick tasks benefit substantially from con-
tinuous action generation, with success rates more than doubling from 0.13 to 0.27. This improve-
ment suggests that the fine-grained control afforded by continuous actions is particularly valuable
for precise grasping motions, where small variations in approach angle, grip force, or contact points
can significantly impact success. Place tasks also show moderate improvements (0.70 to 0.80), in-
dicating that continuous control helps with the precise positioning required for object placement.
Conversely, the action head causes notable performance drops in Open tasks across both fridge and
drawer categories. Fridge opening decreases from 0.87 to 0.76, while drawer opening drops from
0.77 to 0.60. These results suggest that the flow matching action head excels at generating fine-
grained manipulation actions but struggles with mobility-oriented control, where discrete action
tokens may be more suitable for coordinated base movement and navigation.

Implications for Task-Adaptive Control. The mixed results strongly support our design choice
to implement task-adaptive action generation, where the model can flexibly choose between dis-
crete tokens and continuous actions based on task requirements. This flexibility allows AuxVLA
to leverage the precision of continuous control for manipulation-heavy tasks while maintaining the
decisiveness of discrete actions for mechanism operation tasks.

7 CONCLUSION AND FUTURE DIRECTIONS

This work demonstrates that VLA models can be effectively adapted for mobile manipulation
through auxiliary task co-training and enhanced input modalities. AuxVLA achieves substantial
improvements by incorporating multi-view depth inputs and auxiliary decoders, with progressive
training proving essential for multi-task learning. These results establish that scaling VLA models
beyond tabletop scenarios requires fundamental architectural and training enhancements. However,
the primary limitation is the simulation-to-real gap, as experiments are conducted entirely in sim-
ulation. Future work should focus on real-world validation, extending to long-horizon household
tasks, and exploring broader auxiliary tasks to guide strategic data collection for deployment. Addi-
tionally, exploring broader auxiliary tasks such as physics understanding and affordance prediction
could improve performance while guiding strategic data collection for real-world deployment.

9
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ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our research contributes to society and human
well-being by advancing household robotics capabilities that can assist with domestic tasks. The
simulation-based experiments avoid immediate harm to humans or the environment while devel-
oping technology intended for beneficial applications. We maintain scientific excellence through
transparent reporting of methods, honest presentation of results including limitations, and acknowl-
edgment of all contributions. Our work respects privacy by using only publicly available datasets
without personal information. We have considered potential negative consequences and designed
our system for constructive household assistance rather than harmful applications. Future real-
world deployment should include appropriate safety measures and consideration of broader societal
impacts.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide comprehensive implementation details throughout the paper.
Our experiments are conducted on the publicly available ManiSkill-HAB benchmark, with specific
data splits and preprocessing steps detailed in Section 3. The model architecture, including all aux-
iliary decoder specifications, is fully described in Section 4 and Appendix A.2. Our progressive
training methodology is explicitly outlined in Section 5, including the specific epoch divisions and
gradient flow configurations. All experimental hyperparameters, loss weights, and training config-
urations are provided in Section 6. The base VLM backbone (Qwen2.5-0.5B) and vision encoders
(DINOv2, SigLIP) are publicly available pre-trained models. Code for reproducing our results,
including data loading, model training, and evaluation scripts, will be made available upon publica-
tion.

THE USE OF LARGE LANGUAGE MODELS

Large language models were used as a general-purpose assist tool to aid in writing and polishing
portions of this paper. Specifically, LLMs were employed to help refine sentence structure, improve
clarity of technical explanations, and enhance the overall readability of the manuscript. All technical
content, experimental design, results, and scientific conclusions remain the original work of the
authors. The authors take full responsibility for all content in this paper, including any sections that
were refined with LLM assistance.
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A APPENDIX

A.1 VISUALIZATION OF ROBOT EXECUTION IN MANISKILL-HAB

Figure 4: Sample execution trajectories for six household manipulation tasks in ManiSkill-
HAB evaluation. Each row shows a temporal sequence of frames for a different task performed
by AuxVLA. For each timestep, the large image shows the third-person view of the robot and en-
vironment, while the four smaller inset images display the multi-modal sensory inputs used by the
model: head depth, head RGB, hand depth, and hand RGB observations (arranged vertically from
top to bottom).
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A.2 DECODER SPECIFICATIONS

Decoder Architecture Input Output Key Components
Global Pose MLP [B, 8, 896] [B, 2] Feature proj (896→512)
Decoder + 3-layer MLP (512→256→128→2)

+ Global avg pooling
Grasp Success MLP [B, 8, 896] [B, 1] Feature proj (896→512)
Decoder + 3-layer MLP (512→256→128→1)

+ Global avg pooling
QPos Transformer [B, 8, 896] [B, 12] Feature proj (896→512)
Decoder + 12 learnable mask tokens

+ 2-layer Transformer (8 heads)
+ Sine-cosine pos encoding

Object Pose MLP [B, 8, 896] [B, 7] Feature proj (896→512)
Decoder + 3-layer MLP (512→256→128→7)

+ Quaternion normalization
+ Global avg pooling

Mask CNN [B, 8, 896] [B, 1, 128, 128] Feature proj (896→512→256)
Decoder + Spatial proj to 8×8×64

+ 4-stage transpose conv upsampling
+ BatchNorm + GELU activation

Table 5: Decoder specifications
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