VISTAGUI: TOWARDS MORE ROBUST AND INTELLI-
GENT GUI AUTOMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The proliferation of Large Language Models (LLMs) and Vision-Language Mod-
els (VLMs) has driven the development of general-purpose agents for Graphi-
cal User Interface (GUI) automation. Despite this progress, the practical ap-
plication of these agents is hindered by their fragility, which stems from three
primary limitations: low retrieval accuracy in retrieval-augmented generation
(RAG), over-reliance on single-modality perception, and inadequate failure recov-
ery mechanisms. To address these challenges, we introduce VistaGUI, a robust,
multi-modal GUI agent that integrates optimized retrieval, adaptive sensing, and
environment-aware state management into a unified framework. The core con-
tributions of VistaGUI are threefold. First, a parallel instruction-understanding
module enhances retrieval accuracy to better comprehend user intent, enabling
more precise, context-aware decision-making. Second, an adaptive multi-modal
sensing module dynamically selects the optimal perception modality—including
API-based queries, visual perception, and OCR—to achieve a comprehensive un-
derstanding of diverse GUI environments. Third, an environment-aware state
management system records and analyzes interaction trajectories to proactively
detect and efficiently recover from execution failures, thereby reducing replan-
ning overhead. VistaGUI is implemented within a modular architecture compris-
ing a Knowledge Manager, Planner and Action Executor. Extensive experiments
conducted on a diverse set of GUI automation tasks demonstrate that VistaGUI
significantly outperforms strong baselines in task success rate, recovery speed,
and overall robustness.

1 INTRODUCTION

The rapid advancement of large language models (LLMs) and vision-language models (VLMs) (Li
et al., 2023; Deepmind, 2025a;b; OpenAl, 2024a; 2025; Qin et al., 2025b; Xie et al., 2025; Yang
et al., 2025) has catalyzed remarkable progress in automating tasks within graphical user interfaces
(GUls), opening new frontiers in human-computer interaction. GUI agents represent a transforma-
tive paradigm: they enable natural language-driven automation for activities ranging from simple
form filling and system configuration to complex multi-application workflows.

Yet, despite their promise, deploying GUI agents in real-world environments remains deeply chal-
lenging. Unlike structured APIs or static datasets, GUIs are inherently dynamic, diverse, and multi-
modal. Interface designs differ dramatically across platforms, layouts change frequently with soft-
ware updates, and visual elements vary widely in both form and semantics. Moreover, effective au-
tomation requires reasoning over heterogeneous inputs: perceptual signals (e.g., screenshots, OCR
results) must be integrated with symbolic context (e.g., API responses, action histories). These chal-
lenges make GUI automation Xie et al. (2024); Rawles et al. (2025); Bonatti et al. (2024) far more
complex than conventional embodied or web-based tasks.

While recent advances have improved GUI agents, they remain far from practical deployment due to
a central limitation: the inability to dynamically construct rich and actionable context for decision-
making. This shortcoming manifests in three fundamental ways. (1) Inaccurate Knowledge Re-
trieval. To handle diverse tasks, agents (Agashe et al., 2025a) rely on external retrieval engines
to interpret ambiguous instructions. Yet retrievals often misrepresent user intent, returning partial
or misleading context. These flawed inputs misguide planning and lead to premature failures or

completely erroneous execution paths. (2) Brittle Environment Perception. Current perception
pipelines are fragmented. Vision-based models (Qin et al., 2025a; Lu et al., 2024) are fragile to
minor cosmetic changes, while structure-based methods (Song et al., 2025; Gur et al., 2024) (e.g.,
DOM queries (He et al., 2024)) miss layout cues and often cannot access essential elements due
to design or privacy restrictions. Accordingly, agents perceive GUIs in a distorted and incomplete
way, undermining reliable reasoning. (3) Lack of Adaptive Error Recovery. Most agents adopt a
naive “replan-from-failure” strategy (Agashe et al., 2025a;b; Zhang et al., 2025), discarding entire
plans in response to small errors. This is akin to throwing away a recipe over one missing ingredient.
When a required window (e.g., Settings) disappears due to a glitch, the agent cannot compare the
failed state with a prior successful one, nor reuse the simple corrective action. Instead, it is forced
into costly replanning from an unstable state, wasting valid knowledge and compounding errors.

Contribution. We present VistaGUI, a modular multimodal agent that tackles three long-standing
challenges in GUI automation—noisy retrieval, brittle perception, and fragile recovery—through a
proactive loop of planning, acting, and reflecting. VistaGUI introduces novel mechanisms in each
phase to align perception, reasoning, and recovery with the realities of dynamic GUI environments.

To address the critical challenge of inaccurate knowledge retrieval, VistaGUI first introduces strate-
gic planning for robust retrieval. Instead of relying on a single, potentially flawed retrieval, VistaGUI
decomposes user input into parallel intents, transforming ambiguous commands into specific and
verifiable goals. It then retrieves complementary knowledge from offline logs, online sources, and
prior interaction history, grounding retrieval in both context and multiple perspectives. This intent-
aware multi-source retrieval reduces spurious matches and mitigates the “partial or misleading con-
text” problem, yielding coherent multimodal plans with greater flexibility and robustness.

With a robust plan grounded in accurate knowledge, the next challenge is reliable execution in a
dynamic GUI. To this end, VistaGUI integrates structured signals (e.g., APIs) with unstructured
modalities (visual perception and OCR) in a unified pipeline. This design directly addresses the sec-
ond limitation, i.e., brittleness, of prior approaches: stable structural cues protect against superficial
changes (e.g., icon color), while unstructured signals capture layout cues and custom components
missed by APIs. By fusing the strengths of both, VistaGUI overcomes the “distorted and incom-
plete” perception bottleneck, achieving a comprehensive understanding of GUI states.

Recognizing that even perfect perception and planning cannot prevent all errors, our final contribu-
tion introduces a proactive replanning and resilient recovery mechanism. It systematically records
and analyzes past interaction trajectories to support robust replanning and recovery, directly solving
the third limitation. When failures occur—such as a missing window—VistaGUI does not discard
its plan. Instead, it engages in a Rollback—Correct—Resume cycle: it rolls back to the last valid state
using its interaction history, applies a targeted correction by reusing successful past actions, and then
resumes execution without redundant replanning. This history-aware recovery ensures robustness
with minimal overhead, differentiating VistaGUI from methods that fail or restart unnecessarily.

Together, these three phases form a continuous cycle of planning, acting, and reflecting, enabling
VistaGUI to dynamically adapt and execute complex GUI tasks with robustness, efficiency, and com-
positional reasoning. Extensive experimental results demonstrate the superiority of our VistaGUI
over state-of-the-arts. For example, our VistaGUI outperforms the previous SoTA by 11.43% and
8.1% on the WindowsArena (WAA) and OSworld-W datasets, respectively.

2 RELATED WORK

Agent Benchmarks & Architectures. Benchmarks for computer-operation agents have pro-
gressed from offline evaluations with fixed action sequences to online environments that support
realistic functional execution. Recent examples include OSWorld Xie et al. (2024) and Win-
dowsAgentArena Bonatti et al. (2024) for desktop tasks, AndroidWorld Rawles et al. (2025) for
mobile platforms, and ScreenSpot-Pro Li et al. (2025) for visual grounding. Accordingly, research
works have crystallized two main architectural paradigms: monolithic and hierarchical designs.

Monolithic end-to-end agents unify perception, reasoning, and action execution in a single frame-
work, aiming for seamless generalization across interfaces. Systems like UI-TARS Qin et al. (2025a)
and AGUVIS Xu et al. (2024) exemplify this approach. Despite strong integration ability, they face
steep data requirements and must balance specialization with general reasoning, limiting scalability.

Phase 1: Strategic Planning Phase 2: Grounded Action Phase 3: Proactive Replanning and
with Enriched Understanding Through Adaptive Perception Resilient Recovery

K led - -
nowledeq Action Action
> Manager Planer >
) Generator| [Executor

: Action [
i Executor |

__

Figure 1: The proactive execution loop of VistaGUI. The five core modules (Planner, etc.) oper-
ate across three phases: 1) Strategic Planning, where user intent is enriched with knowledge; 2)
Grounded Action, where perception guides execution; and 3) Resilient Recovery, where the Reflec-
tor provides feedback for dynamic replanning.

Hierarchical and modular agents address these challenges by decoupling high-level planning from
low-level execution, often using Planner—Grounder or Manager—Worker configurations. SeeClick
and OS-Atlas Cheng et al. (2024); Wu et al. (2024) exemplify this design, improving flexibility and
interpretability. Enhancements include MLLM-based validation, as in GTA-1 Yang et al. (2025),
which employs multi-candidate sampling with an MLLM judge to improve robustness on visually
complex interfaces. This modular philosophy extends beyond GUI tasks: frameworks such as Au-
toGen and Agent-S/S2 (Wu et al., 2023; Agashe et al., 2025a;b) provide reusable infrastructures
for orchestrating multi-agent collaboration and dynamic tool use. However, modularity can also
introduce communication overhead and coordination bottlenecks.

Beyond GUI-specific paradigms, a complementary direction explores agents that dynamically com-
pose tools and APIs to expand capabilities at runtime. Systems such as UFO-2 (Zhang et al., 2025),
PyVision (Zhao et al., 2025), and ALITA (Qiu et al., 2025) exemplify this principle, highlighting
adaptive tool invocation as a key enabler of flexible and context-aware behaviors.

Our VistaGUI adopts a hierarchical and modular architecture to leverage its flexibility. Unlike prior
modular agents that often suffer from brittle perception and simplistic failure handling, VistaGUI
introduces dedicated mechanisms for adaptive perception and resilient recovery, directly addressing
these critical gaps.

Knowledge Grounding with RAG. To enhance reasoning and handle complex tasks, many agents
integrate external knowledge via Retrieval-Augmented Generation (RAG). This allows them to re-
trieve information from user manuals, past successful interaction trajectories, or task-specific doc-
umentation to inform their planning process (Kim et al., 2024), state-aware guidelines (Fu et al.,
2024), and past experiences (Kagaya et al., 2024). However, the effectiveness of RAG is highly
dependent on the quality of retrieved context. Generic retrieval often fails to capture the causal or
procedural structure of GUI tasks, which can lead to planning errors.

To overcome this limitation, VistaGUI’s strategic planning module moves beyond generic retrieval.
By decomposing user intent and employing multi-source retrieval, it generates rich, actionable con-
text, directly tackling the issue of retrieval quality that plagues conventional RAG-based agents.

3 METHODOLOGY

3.1 OVERVIEW: CORE ARCHITECTURE AND PROACTIVE MODULAR EXECUTION FLOW

VistaGUI is a modular framework designed to overcome key challenges in GUI automation, includ-
ing imprecise knowledge retrieval, limited perception of the environment, and the absence of struc-
tured failure recovery. The overall architecture of VistaGUI is presented in Fig. 1. At its core lies
a proactive execution loop that coordinates five specialized modules—the Planner, Knowledge
Manager, Action Generator, Action Executor, and Reflector—to translate high-
level user instructions into reliable GUI interactions. This entire process unfolds across three tightly
connected phases of reasoning and execution.

Phase 1: Strategic Planning with Enriched Understanding. Given the user’s input instruction,
the process begins as the Knowledge Manager enriches the Planner with relevant contexts
from offline historical logs or online sources, enabling it to decompose the user’s input instruction

User’s Search é query Reference
I: 1nstruction ' Engine " rewriter K| Knowledges

(a) Standard RAG (b) Parallel instruction-understanding module (PIM)
— Parallel
LD . & User / o
I &'ﬂi K I @ : " Intents\ Multlp le K
G — Queries

. . . / (a) Standard RAG :could lead partial answer or nothing.
: Potential Multiple Goal .
I otential Viutple £0als -\ (b) PIM: comprehensively understand and get all answers.

?
@ Answers from search engines are indeed more geared toward a single objective.

Figure 2: Comparison between Standard RAG and our proposed PIM. (a) Standard RAG’s linear
process can miss nuances in multi-goal instructions. (b) Our PIM deconstructs the instruction, pro-
cesses intents in parallel, and fuses knowledge for a more comprehensive understanding.

into a sequence of coherent high-level goals. This integration ensures that planning is not only
goal-driven but also grounded in relevant prior knowledge.

Phase 2: Grounded Action through Adaptive Perception. Each high-level goal is then refined
by the Action Generator into executable commands. The Action Executor, assisted by
adaptive perception, anchors these commands to the current GUI state, ensuring accurate and robust
interaction with interface elements.

Phase 3: Proactive Replanning and Resilient Recovery. Following execution, the Reflector
evaluates the outcome and passes feedback to the Planner. This closes the loop by enabling
proactive adjustments: if progress is on track, the plan is refined and continued; if failure occurs, the
system leverages prior context to recover without restarting the entire task.

Together, these phases form a continuous cycle of planning, acting, and reflecting, allowing
VistaGUI to adapt dynamically and execute complex GUI tasks with robustness and compositional
reasoning. The next sections detail the core innovations within each phase.

3.2 PHASE 1: STRATEGIC PLANNING WITH ENRICHED UNDERSTANDING

The execution loop begins with the user’s instruction I, which sets the stage for high-level rea-
soning. At this stage, the P1anner—the system’s central strategist—decomposes the instruction
into a sequence of subgoals, Plan = {¢1,¢2,...,9n}, that guide the agent toward task comple-
tion. However, producing an effective plan requires more than syntactic parsing: it demands a deep
context-rich understanding of both the instruction and the surrounding environment.

To meet this challenge, VistaGUI introduces the Knowledge Manager. Standard Retrieval-
Augmented Generation (RAG) often falters on complex instructions with multiple intents, leading to
noisy or incomplete knowledge retrieval. To overcome this limitation, our Knowledge Manager
incorporates a Parallel Instruction-understanding Module (PIM) as shown in Fig. 2. The PIM
operates in a multi-step process. First, it leverages a large language model prompted to identify and
separate distinct user intents. Then, rather than performing a single broad search, it queries external
knowledge sources (e.g., web search) for each intent in parallel. Finally, the retrieved information
for each intent is concatenated and passed to another LLM call for summarization and fusion into a
coherent context. This method not only increases retrieval precision but also ensures that no critical
sub-intent is overlooked.

Specifically, this process, represented as K (I) — { Hrelevant, Whrelevant }» gathers two critical types of
information. 1) Internal Experiences (Hyeevant): The module accesses a repository of the agent’s
own past interaction trajectories. It retrieves historical logs that are semantically similar to the
current task, allowing the P1lanner to leverage proven strategies and avoid repeating past mistakes.
2) External Knowledge (Wyelevant): The module is integrated with a web search engine to query
for real-time information. This provides up-to-date, real-world facts necessary to understand the
query’s context, such as finding a specific address or looking up product details.

=5 O rein rE
AP| oA == !
I i :_,i [ocR] |
API-based Visual-based [i 1 OCR
Perception Perception) iArea Zooty ! Perception!

GUI Screen Adaptive Multi-modal sensing Framework (AMF)
Figure 3: Adaptive Multi-Modal Sensing Module (AMF) first leverages API-based Perception for
a quick structural overview, then applies Visual-based Perception for local refinement. For areas
unparsable by the API, it performs an ’Area Zoom’ and invokes OCR to recognize key text.

Armed with this enriched context, the P1anner generates a well-informed and dynamic sequence
of subgoals. By analyzing the key entities and intents from the instruction alongside the data from
the Knowledge Manager, it formulates each foundational step toward the solution. Crucially,
this plan is multi-modal, composed of subgoals that extend beyond direct GUI manipulation. The
Planner can generate commands for on-screen interactions or delegate tasks to auxiliary tools,
such as web and document extraction for information gathering or Python/shell execution for com-
putation and system-level commands. This hybrid approach enables VistaGUI to tackle complex
tasks that require a fluid combination of on-screen actions and external data processing.

Furthermore, this plan is not static. The Planner operates within a continuous feedback loop,
guided by the Reflector in Phase 2 (see Fig. 1). After each subgoal is executed, the outcome is
evaluated, and the plan is refined in real time. This proactive replanning ensures that agent adapts to
unexpected changes, recovers from errors, and incrementally converges toward success.

Accordingly, Phase 1 establishes a novel planning paradigm where PIM’s parallel intent decompo-
sition and dual knowledge integration transform raw instructions into adaptive multi-modal plans,
advancing beyond traditional RAG by equipping agents with the contextual depth and flexibility.

3.3 PHASE 2: GROUNDED ACTION THROUGH ADAPTIVE PERCEPTION

With Plan = {g1, g2, . .., gn } in Phase 1, VistaGUI transitions from strategic planning to concrete
execution. The Action Generator translates each high-level subgoal in {¢1, g2, ..., gn} into
an executable low-level action, typically a code snippet targeting a specific UI element.

Successful execution of this action hinges on the agent’s ability to accurately perceive the current
screen state, S;. This critical task is handled by the Action Executor, which relies on our
Adaptive Multi-Modal Sensing Module (AMF), illustrated in Fig. 3. The core challenge in GUI
perception is the heterogeneity of Ul elements: some are well-structured entities exposed via acces-
sibility APIs, while others are custom images, non-standard controls, or embedded content.

To address this, our AMF employs an efficient two-stage strategy to build a comprehensive under-
standing of the active window (Wyeive), Which is the primary focus of user interaction. The final
set of all perceived elements, E, is formed by the union of outputs from a primary and a fallback
perception stage:

E= H(Waclive) = HAPI(Wactive) U Hfallback(Wcontext)- (1)

Here, Woneext 1S the region within the active window that remains unparsed by our primary method.
We detail the two stages below.

1) Primary Perception Stage (IIapr): This stage prioritizes reliability and semantic richness by
leveraging the accessibility tree, which provides structured details like element roles (e.g., button,
text field), names, and values. We first deploy an API-based expert (P apr) across the entire active
window. This expert is the most efficient and accurate method for gathering structured element data.

IIapt(Wactive) = @apt(Wactive))

2) Fallback Perception Stage (Ilgpack): Many Ul elements, such as custom-rendered controls,
video players, or proprietary interfaces, are not exposed through the accessibility tree, creating
“blind spots.” To achieve complete perception, our fallback stage intelligently fills these gaps.

This stage operates exclusively on the contextual region (Weonext), defined as the area within the
active window that the API-based expert could not analyze. To perceive elements in this region, we

=
S
S
3]
)
=
7
=4

~——

replan Qr_npar_T__%J_ - BRSNS

Figure 4: Our checkpoint-based recovery mechanism. A standard agent (left) must restart an entire
subgoal upon failure. Our EAM (right) rolls back to the last successful checkpoint for efficient and
resilient replanning. In the fig, A; denotes the i-th action.

employ a Visual Perception expert (®yp) and an OCR expert (Pocgr) in tandem:
Hfallback(Wcontext) = (I)VP(chntext) U (I)OCR(Wcontext)~ (3)

This dual-stage approach enables adaptive perception that unifies structured and unstructured UI
understanding, capturing elements missed by the API—whether graphical components or rendered
text—and addressing a key bottleneck in GUI automation. Moreover, by applying these more
resource-intensive methods only to unparsed regions, the system remains efficient while maintain-
ing comprehensive coverage, ensuring reliable operation across diverse real-world interfaces where
traditional API-only methods would fail. Finally, the Action Executor uses the complete and
precise set of elements E' to ground the generated action code, enabling robust interactions like but-
ton clicks or text entry in a specific field. As for the details of all experts, we show them in the
appendix A.3.

3.4 PHASE 3: PROACTIVE REPLANNING AND RESILIENT RECOVERY

After executing each action, VistaGUI enters a critical assessment and adaptation phase, driven by
the Reflector. This phase embodies the framework’s proactive and resilient nature, enabling
dynamic adjustment to successes and failures with specialized strategies.

For successful actions, the resulting state-action pair is stored as a validated checkpoint in the EAM.
Rather than blindly proceeding to the next step in a static plan, the P1anner re-evaluates the new
GUI screen state, the full interaction history, and the remaining subgoals. This proactive replanning
allows the agent to adapt to dynamic or unexpected changes in the GUI, ensuring that all subsequent
steps remain optimal.

Conversely, if an action fails, VistaGUI avoids the costly inefficiency of restarting the entire task
from scratch. It instead initiates a robust recovery process managed by our Environment-Aware
State Management (EAM) module. As shown in Fig. 4, a standard agent (left) is forced to discard
all progress within a sub-goal upon failure, triggering a full replan of the entire action sequence.
In contrast, our EAM-driven agent (right) leverages its recorded state history to roll back only to
the last successful checkpoint, thereby salvaging prior work and enabling a more efficient, localized
recovery. This checkpoint-based approach follows a three-stage protocol:

1) Trajectory Logging and Checkpointing: Each executed action a; and its resulting state S
are recorded as part of a trajectory. After each action a;, the Reflector provides an outcome
ry € {success, failure}. If r; = success, the state transition (Sy_1,a, St) is stored as a validated
checkpoint, C;. The agent’s history, H, is an ordered sequence of these checkpoints:

H:{017027"'50k}7 (4)
where £ is the index of the last successfully executed step.

2) Failure Detection and Trajectory Invalidation: When the Reflector detects a failure at
timestep t (r; = failure), the EAM immediately identifies the last validated checkpoint, C},, from
history H, and marks the intervening actions taken from state .S, to the point of failure as the invalid
trajectory segment, 7;malid:

T = ((Sks art1), (Ska1s ahsa)s - -, (Seo1, ar)). (5)
This records the failed path from the state S, and prevents the agent from repeating known errors.

3) Automated Rollback and Constrained Replanning: Upon identifying an invalid trajectory
T,;"jf‘l‘d, the EAM’s recovery protocol begins by rolling back to the last known-good state, Si. This
action-based restoration involves matching the failed state against historical states. If a match is
successful, the EAM retrieves and re-executes the corresponding action sequence (a, . . ., ax) from
history, deterministically returning the agent to .S, (where a; is the action of the matched state).
Subsequently, the ‘Planner’ is instructed to generate a new path constrained to avoid the failed action
sequence in 7;™4¢, This prevents the agent from retrying a known failed strategy and encourages

the exploration of new solutions. For the detailed algorithm, please refer to Appendix A.5.

4 EXPERIMENTS

Benchmarks. We evaluate our agent’s performance on two rigorous benchmarks designed for
Windows-based automation. Our primary testbed is the Windows Agent Arena (WAA) (Bonatti
et al., 2024), which features 154 real-world tasks spanning 15 common Windows applications, in-
cluding office suites and web browsers. To further test our agent’s capabilities on core productivity
operations, we also evaluate on OSWorld-W (Xie et al., 2024), a Windows-specific subset of the
OSWorld benchmark. This benchmark consists of 49 tasks focused on office applications, browser
interaction, and file system management. A key advantage of both benchmarks is their reliance on
automated verification scripts to programmatically check for task completion, ensuring an objective
and reproducible evaluation.

Baselines. We compare VistaGUI with five representative state-of-the-art Computer User Agents
(CUAs), each leveraging a powerful foundation model like GPT-40 as its core inference engine.
The detailed descriptions for the compared methods are given in the appendix. These baselines were
selected to represent a diverse range of architectural paradigms in GUI automation (e.g., single-agent
vs. multi-agent, hybrid-input vs. vision-only). To ensure a fair and practical comparison, each agent
is restricted to a maximum of 50 execution steps per task, preventing excessively long or inefficient
attempts. More details of baseline methods are given in the appendix A.6.

Implementation Details. For our Adaptive Multi-Modal Sensing Framework (AMF),
VistaGUI integrates an icon-text detector OmniParser for visual perception, Paddle OCR for
textual data extraction, and queries to accessibility APIs (e.g., DOM trees for web, Ul Automation
for desktop) for structural information. The backbone large language models evaluated for planning
and reasoning using GPT-4o for fair comparison.

Evaluation Metrics. We utilize the primary metric standard in GUI automation benchmarks for
performance evaluation: Success Rate (SR): Defined as the percentage of tasks successfully com-
pleted. Task completion is validated automatically by the official verification scripts provided by the
WAA and OSWorld-W benchmarks, ensuring an consistent measurement of performance.

4.1 QUANTITATIVE COMPARISON

As shown in Table 1, VISTAGUI achieves Table 1: Comparison of SR (%) across agents on
state-of-the-art (SOTA) results on both the WAA and OSWorld-W benchmarks.
WAA and OSWorld-W benchmarks, sig-

nificantly outperforming all prior methods.. ~Agent Model WAA | OSWorld-W
Specifically, it achieves a success rate of

32.2% on WAA and 22.4% on OSWorld-W. UFo GPT-d0 19:5 12.2
This performance far exceeds all comparative NAVI GPT-4o 13.3 10.2
methods, representing a significant absolute ~OmniAgent | GPT-4o 19.5 8.2
improvement of 11.43% and 8.1% over the AgentS GPT-40 18.2 12.2
best-performing baseline, Operator (20.8% on Qperator | computer-use | 20.8 14.3
WAA, 14.3% on OSWorld-W), respectively. VISTAGUI | GPT-40 23 24

In the breakdown of application types on the
WAA benchmark (Table 2), VISTAGUI’s ad-
vantage is even more pronounced. It demonstrates absolute dominance in technically demanding
tasks such as ‘Coding’ (63.70%) and ‘Windows System’ management (60.6%). More importantly,
VISTAGUI successfully overcomes the bottleneck that existing methods face with ‘Office’ soft-
ware, achieving a 7.8% success rate where all other GPT-40-based agents scored 0.0%, showcasing

Table 2: SR (%) breakdown by application type on WAA and OSWorld-W.

WAA OSWorld-W
Agent Model Web |[Windows Media & |Windows
Office Browser| System Coding Video Utils Office|Cross-App
UFO GPT-40 0.0 23.3 333 29.2 333 8.3 18.5 4.5
NAVI GPT-40 0.0 20.0 29.2 9.1 25.3 0.0 18.5 0.0
OmniAgent| GPT-40 0.0 27.3 333 27.3 30.3 8.3 14.8 0.0
Agent S GPT-40 0.0 13.3 45.8 29.2 19.1 222 | 222 0.0
Operator |computer-use| 7.0 26.7 29.2 29.2 28.6 8.3 22.2 4.5
VISTAGUI |GPT-40 7.8 40.5 60.6 63.7 40.2 444 | 333 9.1
Table 3: Ablation study on PIM (%). Table 4: Ablation study on EAM (%).
Method SR Ret. Acc Method SR Fail. Rec.
Baseline 15.6 - VISTAGUI 224 79.4
VISTAGUI 224 90.3 w/o Recovery 19.6 65.3
VISTAGUI w/o WS 16.3 71.5 w/o Replanning 18.4 10.4

its unique capability in handling complex GUI interactions. Similarly, on the OSWorld-W bench-
mark, VISTAGUI continues its leading performance, especially in ‘Office’ (33.3%) and ‘Cross-
App’ (9.1%) tasks, where its success rates far surpass those of its competitors. This indicates that
VISTAGUI can not only efficiently complete tasks within a single application but also possesses the
powerful ability to understand and execute complex cross-application workflows.

4.2 ABLATION STUDY

Impact of Instruction Understanding (PIM). To validate our Parallel Instruction-understanding
Module (PIM), we conducted an ablation study comparing three retrieval methods in Table 3: 1)
Baseline with no web retrieval, 2) WS is the variant with direct retrieval on raw instructions, and 3)
our VISTAGUI model using PIM for intent-based parallel retrieval. Retrieval Accuracy (Ret. Acc)
is also introduced in the experiments. This metric is the percentage of instances where the retrieved
knowledge is judged to be successful by an automated evaluator, GPT-40, based on its relevance,
accuracy, and sufficiency in addressing the user’s query. A retrieval is deemed successful if and only
if the returned information is comprehensive enough to cover all of the user’s intents as expressed
in their original instruction. This metric clearly reveals the limitations of simpler approaches. The
WS-based model, constrained by ambiguous raw instructions, often retrieved irrelevant information
and thus achieved a low Ret. Acc. In stark contrast, our model achieved the highest accuracy by
employing PIM’s ‘understand-first, retrieve-second’ strategy. By decomposing ambiguous instruc-
tions into clear, parallel intents before performing a contextualized retrieval, it consistently fetched
relevant knowledge. This demonstrates that a sophisticated retrieval module capable of deep instruc-
tion understanding is essential for high performance and, ultimately, high success rates for the GUI
agent.

Impact of Adaptive Sensing (AMF). In Fig. 5,
we conducted an ablation study comparing our 322% APIL-based

full model against two variants: (1) an ‘API- -30- 283% Visual-based
based’ version that relies purely on API per- < 257% Our o
ception data, and (2) a ‘Visual-based’ ver- ¥ 20 20.4% '
sion that uses only visual perception data. As é 16.3%
shown in the performance comparison figure, 3

our integrated approach significantly outper- 3 10-

forms both ablated variants across both bench-

marks. On the WAA benchmark, our model 0 WAA OSWorld-W

achieves a 32.2% success rate, outperform-

ing the ‘API-based’ (28.3%) and ‘Visual-based” Figure 5: Ablation study on Adaptive Multi-
(25.7%) versions by 3.9% and 6.5%, respec- Modal Sensing Framework (AMF).

tively. Similarly, on the OSWorld-W bench-

mark, our model leads with a 22.4% success rate, compared to 20.4% and 16.3% for the ‘API-based’

GitHub - 17000cyh/IMDiffusion X Q. Imdiffusion repository - Search X GitHub - 17000cyh/IMDi
D

Q Imdiffusion repository - Search X |
LSIN &R B v Wlihttps://github.com/17000cyh/IMDiffusion} <& C A nhitpsy//github.com/17000cyh/IMDiffusion

= © https://www.bing.com/search?q=Imdiffu
RECENT SEARCHES

O google scholar - Searc

a 17 ¥ Binc & 17000cyl
81700 & geoffrey hinton homepage &% Bir Imdiffusion repository & 17000cyh / IMDiffusion ubi

© code O Code @ lssies 7 I} Pulrequests @ Actions [Projects @

eryour search: (O History ¢ Favorites (3) Tabs AL

1
Open a new tab. '
. 1
Type " GitHub - 17000cyh/IMDiffusion " into the address bar. Reuse actions and Rollback '
' |

Figure 6: An example of VistaGUI’s recovery protocol. The agent recovers from a browser error

where a URL was misinterpreted as a search query by rolling back and re-issuing the correct navi-
gation command.

and ‘Visual-based’ versions. These results provide strong evidence that adaptively switching differ-
ent perceptions is crucial for robust GUI navigation and interaction, validating the necessity of each
component in our multi-modal design.

Impact of Failure Recovery (EAM). We further investigate the contributions of our key compo-
nents: the recovery mechanism and constrained replanning. To do this, we first define the Failure
Recovery Rate (FRR) as the success rate of the recovery mechanism itself, measured as the per-
centage of failures after which a successful rollback to a prior state was achieved. We compare
our full model against two ablated variants: 1) w/o Recovery Mechanism, which attempts to replan
from the failure state without rolling back, and 2) w/o Constrained Replanning, which rolls back but
then enters an execution loop by bypassing the action generator. The results in Table. 4 reveal their
critical roles. Disabling the recovery mechanism entirely (w/o Recovery Mechanism) causes the SR
to drop from 22.4% to 19.6% and, more dramatically, reduces the FRR from a robust 79.4% to a
65.3%. Similarly, removing constrained replanning (w/o Constrained Replanning) decreases the SR
to 18.4% and causes the FRR to plummet to 10.4%. These findings underscore that both the ability
to roll back to a safe state and the intelligence to replan from it are indispensable for agent resilience.

4.3 VISUALIZATION

Fig. 6 provides a concrete example of our agent’s resilient recovery capability in a scenario that
commonly derails less robust agents. In this web-based task, the agent’s initial navigation attempt
is erroneously redirected to a search engine—a frequent and unpredictable challenge in real-world
web environments. While many agents would either fail completely or get stuck in a costly re-
planning loop from the unexpected search results page, VistaGUI demonstrates its robustness. Its
Environment-Aware State Management (EAM) module correctly identifies the deviation from the
expected outcome, programmatically rolls back the single failed step, and re-issues a more precise
navigation command to reach the correct destination. This case study was specifically conducted
on the web to prove that VistaGUI’s recovery protocol is not limited to stable desktop applications
but is effective even in the most dynamic and unpredictable conditions. For additional case studies,
please refer to the appendix A.7.

5 CONCLUSION

In this work, we presented VistaGUI, a robust and compositional agent that tackles three core chal-
lenges in GUI automation: inaccurate knowledge retrieval, fragile single-modality perception, and
weak failure recovery. VistaGUI advances the state of the art through three key innovations—the
Parallel Instruction-understanding Module (PIM), the Adaptive Multi-modal Sensing Framework
(AMF), and the Environment-aware State Management (EAM)—which together deliver higher task
success rates, faster recovery, and stronger robustness compared to competitive baselines. This
establishes VistaGUI as a significant step toward general-purpose, reliable agents for real-world
computer interaction, moving beyond the limitations of prior reactive systems.

Future Work, Broader impacts & Reproducibility. Future directions include extending long-
horizon strategic planning, enabling proactive user queries to resolve ambiguity, and improving
computational efficiency for lightweight deployment in resource-constrained environments. See the
discussion of broader impacts and reproducibility details in subsection A.1 and A.2.

REFERENCES

Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent S: an
open agentic framework that uses computers like a human. In The Thirteenth International Con-
ference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net,
2025a. URL https://openreview.net/forum?id=1IVRgt4nLv.

Saaket Agashe, Kyle Wong, Vincent Tu, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent S2: A
compositional generalist-specialist framework for computer use agents. CoRR, abs/2504.00906,
2025b. doi: 10.48550/ARXIV.2504.00906. URL https://doi.org/10.48550/arXiv.
2504.00906.

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong
Lu, Justin Wagle, Kazuhito Koishida, Arthur Bucker, Lawrence Jang, and Zack Hui. Windows
agent arena: Evaluating multi-modal os agents at scale, 2024. URL https://arxiv.org/
abs/2409.08264.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiy-
ong Wu. Seeclick: Harnessing gui grounding for advanced visual gui agents. arXiv preprint
arXiv:2401.10935, 2024.

Deepmind. Introducing gemini 2.0: our new ai model for the agentic era. Technical report,
Deepmind, 2025a. URL https://blog.google/technology/google-deepmind/
google—gemini-ai-update-december-2024/#project—astra.

Deepmind. Gemini 2.5: Our most intelligent ai model. Technical report, Deep-
mind, 2025b. URL https://blog.google/technology/google-deepmind/
gemini-model-thinking-updates-march-2025/.

Yao Fu, Dong-Ki Kim, Jaekyeom Kim, Sungryull Sohn, Lajanugen Logeswaran, Kyunghoon Bae,
and Honglak Lee. Autoguide: Automated generation and selection of state-aware guidelines for
large language model agents. CoRR, abs/2403.08978, 2024. doi: 10.48550/ARXIV.2403.08978.
URL https://doi.org/10.48550/arXiv.2403.08978.

Izzeddin Gur, Hiroki Furuta, Austin V. Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck,
and Aleksandra Faust. A real-world webagent with planning, long context understanding,
and program synthesis. In The Twelfth International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=9JQt rumvgs.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models.
In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024,
Bangkok, Thailand, August 11-16, 2024, pp. 6864—6890. Association for Computational Linguis-
tics, 2024. doi: 10.18653/V1/2024.ACL-LONG.371. URL https://doi.org/10.18653/
v1/2024.acl-1long.371.

Tomoyuki Kagaya, Thong Jing Yuan, Yuxuan Lou, Jayashree Karlekar, Sugiri Pranata, Akira Ki-
nose, Koki Oguri, Felix Wick, and Yang You. RAP: retrieval-augmented planning with contextual
memory for multimodal LLM agents. CoRR, abs/2402.03610, 2024. doi: 10.48550/ARXIV.2402.
03610. URL https://doi.org/10.48550/arXiv.2402.03610.

Minsoo Kim, Victor S. Bursztyn, Eunyee Koh, Shunan Guo, and Seung-won Hwang. Rada:
Retrieval-augmented web agent planning with 1lms. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (eds.), Findings of the Association for Computational Linguistics, ACL 2024, Bangkok,
Thailand and virtual meeting, August 11-16, 2024, pp. 13511-13525. Association for Com-
putational Linguistics, 2024. doi: 10.18653/V1/2024. FINDINGS-ACL.802. URL https:
//doi.org/10.18653/v1/2024.findings-acl.802.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: bootstrapping language-image pre-
training with frozen image encoders and large language models. In International Conference on
Machine Learning, ICML’23. JMLR.org, 2023.

10

https://openreview.net/forum?id=lIVRgt4nLv
https://doi.org/10.48550/arXiv.2504.00906
https://doi.org/10.48550/arXiv.2504.00906
https://arxiv.org/abs/2409.08264
https://arxiv.org/abs/2409.08264
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/#project-astra
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/#project-astra
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://doi.org/10.48550/arXiv.2403.08978
https://openreview.net/forum?id=9JQtrumvg8
https://openreview.net/forum?id=9JQtrumvg8
https://doi.org/10.18653/v1/2024.acl-long.371
https://doi.org/10.18653/v1/2024.acl-long.371
https://doi.org/10.48550/arXiv.2402.03610
https://doi.org/10.18653/v1/2024.findings-acl.802
https://doi.org/10.18653/v1/2024.findings-acl.802

Kaixin Li, Ziyang Meng, Hongzhan Lin, Ziyang Luo, Yuchen Tian, Jing Ma, Zhiyong Huang, and
Tat-Seng Chua. Screenspot-pro: GUI grounding for professional high-resolution computer use.
CoRR, abs/2504.07981, 2025. doi: 10.48550/ARX1V.2504.07981. URL https://doi.org/
10.48550/arXiv.2504.07981.

Yadong Lu, Jianwei Yang, Yelong Shen, and Ahmed Awadallah. Omniparser for pure vision based
GUI agent. CoRR, abs/2408.00203, 2024. doi: 10.48550/ARXIV.2408.00203. URL https:
//doi.org/10.48550/arXiv.2408.00203.

OpenAl. Gpt-4o system card, 2024a.

OpenAl. Computer-using agent: Introducing a universal interface for ai to interact with
the digital world. OpenAl Blog, 2024b. URL https://openai.com/index/
computer—-using—agent/.

OpenAl. Computer-using agent: Introducing a universal interface for ai to interact with the digital
world. 2025. URL https://openai.com/index/computer—-using—agent.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
Li, Yunxin Li, Shijue Huang, Wanjun Zhong, Kuanye Li, Jiale Yang, Yu Miao, Woyu Lin, Longx-
iang Liu, Xu Jiang, Qianli Ma, Jingyu Li, Xiaojun Xiao, Kai Cai, Chuang Li, Yaowei Zheng,
Chaolin Jin, Chen Li, Xiao Zhou, Minchao Wang, Haoli Chen, Zhaojian Li, Haihua Yang, Haifeng
Liu, Feng Lin, Tao Peng, Xin Liu, and Guang Shi. UI-TARS: pioneering automated GUI interac-
tion with native agents. CoRR, abs/2501.12326, 2025a. doi: 10.48550/ARXIV.2501.12326. URL
https://doi.org/10.48550/arXiv.2501.12326.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native
agents. arXiv preprint arXiv:2501.12326, 2025b.

Jiahao Qiu, Xuan Qi, Tongcheng Zhang, Xinzhe Juan, Jiacheng Guo, Yifu Lu, Yimin Wang,
Zixin Yao, Qihan Ren, Xun Jiang, Xing Zhou, Dongrui Liu, Ling Yang, Yue Wu, Kaixuan
Huang, Shilong Liu, Hongru Wang, and Mengdi Wang. Alita: Generalist agent enabling scal-
able agentic reasoning with minimal predefinition and maximal self-evolution, 2025. URL
https://arxiv.org/abs/2505.20286.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth
Fair, Alice Li, William E. Bishop, Wei Li, Folawiyo Campbell-Ajala, Daniel Kenji Toyama,
Robert James Berry, Divya Tyamagundlu, Timothy P. Lillicrap, and Oriana Riva. Androidworld:
A dynamic benchmarking environment for autonomous agents. In The Thirteenth International
Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenRe-
view.net, 2025. URL https://openreview.net/forum?id=115yUQsrjC.

Yueqi Song, Frank F. Xu, Shuyan Zhou, and Graham Neubig. Beyond browsing: Api-based web
agents. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
(eds.), Findings of the Association for Computational Linguistics, ACL 2025, Vienna, Austria,
July 27 - August 1, 2025, pp. 11066—11085. Association for Computational Linguistics, 2025.
URL https://aclanthology.org/2025.findings—acl.577/.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and
Chi Wang. Autogen: Enabling next-gen Ilm applications via multi-agent conversation, 2023.
URL https://arxiv.org/abs/2308.08155.

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng,
Zichen Ding, Liheng Chen, Paul Pu Liang, et al. Os-atlas: A foundation action model for gener-
alist gui agents. arXiv preprint arXiv:2410.23218, 2024.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Sil-
vio Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal
agents for open-ended tasks in real computer environments, 2024. URL https://arxiv.
org/abs/2404.07972.

11

https://doi.org/10.48550/arXiv.2504.07981
https://doi.org/10.48550/arXiv.2504.07981
https://doi.org/10.48550/arXiv.2408.00203
https://doi.org/10.48550/arXiv.2408.00203
https://openai.com/index/computer-using-agent/
https://openai.com/index/computer-using-agent/
https://openai.com/index/computer-using-agent
https://doi.org/10.48550/arXiv.2501.12326
https://arxiv.org/abs/2505.20286
https://openreview.net/forum?id=il5yUQsrjC
https://aclanthology.org/2025.findings-acl.577/
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2404.07972

Tianbao Xie, Jiaqi Deng, Xiaochuan Li, Junlin Yang, Haoyuan Wu, Jixuan Chen, Wenjing Hu,
Xinyuan Wang, Yuhui Xu, Zekun Wang, Yiheng Xu, Junli Wang, Doyen Sahoo, Tao Yu, and
Caiming Xiong. Scaling computer-use grounding via user interface decomposition and synthesis,
2025. URL https://arxiv.org/abs/2505.13227.

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao
Yu, and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous GUI interaction.
CoRR, abs/2412.04454, 2024. doi: 10.48550/ARXIV.2412.04454. URL https://doi.org/
10.48550/arXiv.2412.04454.

Yan Yang, Dongxu Li, Yutong Dai, Yuhao Yang, Ziyang Luo, Zirui Zhao, Zhiyuan Hu, Junzhe
Huang, Amrita Saha, Zeyuan Chen, Ran Xu, Liyuan Pan, Caiming Xiong, and Junnan Li. Gtal:
Gui test-time scaling agent, 2025. URL https://arxiv.org/abs/2507.05791.

Chaoyun Zhang, He Huang, Chiming Ni, Jian Mu, Si Qin, Shilin He, Lu Wang, Fangkai Yang,
Pu Zhao, Chao Du, Liqun Li, Yu Kang, Zhao Jiang, Suzhen Zheng, Rujia Wang, Jiaxu Qian,
Minghua Ma, Jian-Guang Lou, Qingwei Lin, Saravan Rajmohan, and Dongmei Zhang. Ufo2:
The desktop agentos, 2025. URL https://arxiv.org/abs/2504.14603.

Shitian Zhao, Haoquan Zhang, Shaoheng Lin, Ming Li, Qilong Wu, Kaipeng Zhang, and Chen Wei.
Pyvision: Agentic vision with dynamic tooling, 2025. URL https://arxiv.org/abs/
2507.07998.

12

https://arxiv.org/abs/2505.13227
https://doi.org/10.48550/arXiv.2412.04454
https://doi.org/10.48550/arXiv.2412.04454
https://arxiv.org/abs/2507.05791
https://arxiv.org/abs/2504.14603
https://arxiv.org/abs/2507.07998
https://arxiv.org/abs/2507.07998

