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Abstract
The classical convergence analysis of SGD is carried out under the assumption that the
norm of the stochastic gradient is uniformly bounded. While this might hold for some loss
functions, it is violated for cases where the objective function is strongly convex. In Bottou
et al. (2018), a new analysis of convergence of SGD is performed under the assumption that
stochastic gradients are bounded with respect to the true gradient norm. We show that
for stochastic problems arising in machine learning such bound always holds; and we also
propose an alternative convergence analysis of SGD with diminishing learning rate regime.
We then move on to the asynchronous parallel setting, and prove convergence of Hogwild!
algorithm in the same regime in the case of diminished learning rate. It is well-known that
SGD converges if a sequence of learning rates {ηt} satisfies

∑∞
t=0 ηt →∞ and

∑∞
t=0 η

2
t <∞.

We show the convergence of SGD for strongly convex objective function without using
bounded gradient assumption when {ηt} is a diminishing sequence and

∑∞
t=0 ηt →∞. In

other words, we extend the current state-of-the-art class of learning rates satisfying the
convergence of SGD.
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1. Introduction

We are interested in solving the following stochastic optimization problem

min
w∈Rd

{F (w) = E[f(w; ξ)]} , (1)

where ξ is a random variable obeying some distribution.
In the case of empirical risk minimization with a training set {(xi, yi)}ni=1, ξi is a random

variable that is defined by a single random sample (x, y) pulled uniformly from the training
set. Then, by defining fi(w) := f(w; ξi), empirical risk minimization reduces to

min
w∈Rd

{
F (w) = 1

n

n∑
i=1

fi(w)
}
. (2)

Problem (2) arises frequently in supervised learning applications (Hastie et al., 2009).
For a wide range of applications, such as linear regression and logistic regression, the
objective function F is strongly convex and each fi, i ∈ [n], is convex and has Lipschitz
continuous gradients (with Lipschitz constant L). Given a training set {(xi, yi)}ni=1 with
xi ∈ Rd, yi ∈ R, the `2-regularized least squares regression model, for example, is written as
(2) with fi(w) def= (〈xi, w〉 − yi)2 + λ

2‖w‖
2. The `2-regularized logistic regression for binary

classification is written with fi(w) def= log(1 + exp(−yi〈xi, w〉)) + λ
2‖w‖

2, yi ∈ {−1, 1}. It is
well established by now that solving this type of problem by gradient descent (GD) (Nesterov,
2004; Nocedal and Wright, 2006) may be prohibitively expensive and stochastic gradient
descent (SGD) is thus preferable. Recently, a class of variance reduction methods (Le Roux
et al., 2012; Defazio et al., 2014; Johnson and Zhang, 2013; Nguyen et al., 2017) has been
proposed in order to reduce the computational cost. All these methods explicitly exploit the
finite sum form of (2) and thus they have some disadvantages for very large scale machine
learning problems and are not applicable to (1).

To apply SGD to the general form (1) one needs to assume existence of unbiased gradient
estimators. This is usually defined as follows:

Eξ[∇f(w; ξ)] = ∇F (w),

for any fixed w. Here we make an important observation: if we view (1) not as a general
stochastic problem but as the expected risk minimization problem, where ξ corresponds to a
random data sample pulled from a distribution, then (1) has an additional key property:
for each realization of the random variable ξ, f(w; ξ) is a convex function with Lipschitz
continuous gradients. Notice that traditional analysis of SGD for general stochastic problem
of the form (1) does not make any assumptions on individual function realizations. In
this paper we derive convergence properties for SGD applied to (1) with these additional
assumptions on f(w; ξ) and also extend to the case when f(w; ξ) are not necessarily convex.

Regardless of the properties of f(w; ξ) we assume that F in (1) is strongly convex. We
define the (unique) optimal solution of F as w∗.

Assumption 1 (µ-strongly convex) The objective function F : Rd → R is a µ-strongly
convex, i.e., there exists a constant µ > 0 such that ∀w,w′ ∈ Rd,

F (w)− F (w′) ≥ 〈∇F (w′), (w − w′)〉+ µ

2 ‖w − w
′‖2. (3)
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It is well-known in literature (Nesterov, 2004; Bottou et al., 2018) that Assumption 1 implies

2µ[F (w)− F (w∗)] ≤ ‖∇F (w)‖2 , ∀w ∈ Rd. (4)

The classical theoretical analysis of SGD assumes that the stochastic gradients are
uniformly bounded, i.e. there exists a finite (fixed) constant σ <∞, such that

E[‖∇f(w; ξ)‖2] ≤ σ2 , ∀w ∈ Rd (5)

(see e.g. Shalev-Shwartz et al. (2011); Nemirovski et al. (2009); Recht et al. (2011); Hazan
and Kale (2014); Rakhlin et al. (2012), etc.). However, this assumption is clearly false if
F is strongly convex. Specifically, under this assumption together with strong convexity,
∀w ∈ Rd, we have

2µ[F (w)− F (w∗)]
(4)
≤ ‖∇F (w)‖2 = ‖E[∇f(w; ξ)]‖2

≤ E[‖∇f(w; ξ)‖2]
(5)
≤ σ2.

Hence,

F (w) ≤ σ2

2µ + F (w∗) , ∀w ∈ Rd.

On the other hand strong convexity and ∇F (w∗) = 0 imply

F (w) ≥ µ‖w − w∗‖2 + F (w∗) , ∀w ∈ Rd.

The last two inequalities are clearly in contradiction with each other for sufficiently large
‖w − w∗‖2.

Let us consider the following example: f1(w) = 1
2w

2 and f2(w) = w with F (w) =
1
2(f1(w) + f2(w)). Note that F is strongly convex, while individual realizations are not
necessarily so. Let w0 = 0, for any number t ≥ 0, with probability 1

2t the steps of SGD
algorithm for all i < t are wi+1 = wi − ηi. This implies that wt = −

∑t
i=1 ηi and since∑∞

i=1 ηi =∞ then |wt| can be arbitrarily large for large enough t with probability 1
2t . Noting

that for this example, E[‖∇f(wt; ξ)‖2] = 1
2w

2
t + 1

2 , we see that E[‖∇f(wt; ξ)‖2] can also be
arbitrarily large.

Recently, in the review paper (Bottou et al., 2018), convergence of SGD for general
stochastic optimization problem was analyzed under the following assumption: there exist
constants M and N such that E[‖∇f(wt; ξt)‖2] ≤M‖∇F (wt)‖2 +N , where wt, t ≥ 0, are
generated by the SGD algorithm. This assumption does not contradict strong convexity,
however, in general, constants M and N are unknown, while M is used to determine the
learning rate ηt (see Bottou et al. (2018)). In addition, the rate of convergence of the SGD
algorithm depends onM andN . In this paper we show that under the smoothness assumption
on individual realizations f(w, ξ) it is possible to derive the bound E[‖∇f(w; ξ)‖2] ≤
M0[F (w)−F (w∗)] +N with specific values of M0, and N for ∀w ∈ Rd, which in turn implies
the bound E[‖∇f(w; ξ)‖2] ≤M‖∇F (w)‖2 +N with specific M , by strong convexity of F .
We also note that, in Moulines and Bach (2011), the convergence of SGD without bounded
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gradient assumption is studied. We then use the new framework for the convergence analysis
of SGD to analyze an asynchronous stochastic gradient method.

In Recht et al. (2011), an asynchronous stochastic optimization method called Hogwild!
was proposed. Hogwild! algorithm is a parallel version of SGD, where each processor applies
SGD steps independently of the other processors to the solution w which is shared by all
processors. Thus, each processor computes a stochastic gradient and updates w without
"locking" the memory containing w, meaning that multiple processors are able to update w
at the same time. This approach leads to much better scaling of parallel SGD algorithm
than a synchoronous version, but the analysis of this method is more complex. In Recht
et al. (2011); Mania et al. (2017); De Sa et al. (2015) various variants of Hogwild! with
a fixed step size are analyzed under the assumption that the gradients are bounded as in
(5). In this paper, we extend our analysis of SGD to provide analysis of Hogwild! with
diminishing step sizes and without the assumption on bounded gradients.

In Leblond et al. (2018) Hogwild! with fixed step size is analyzed without the bounded
gradient assumption. We note that SGD with fixed step size only converges to a neighborhood
of the optimal solution, while by analyzing the diminishing step size variant we are able to
show convergence to the optimal solution with probability one (w.p.1). Both in Leblond
et al. (2018) and in this paper, the version of Hogwild! with inconsistent reads and writes is
considered.

It is well-known that SGD will converge if a sequence of learning rates {ηt} satisfies the
following conditions (1)

∑∞
t=0 ηt →∞ and (2)

∑∞
t=0 η

2
t <∞. As an important contribution

of this paper, we show the convergence of SGD for strongly convex objective function
without using bounded gradient assumption when {ηt} is a diminishing sequence and∑∞
t=0 ηt → ∞. In Moulines and Bach (2011), the authors also proved the convergence of

SGD for {ηt = O(1/tq)}, 0 < q ≤ 1, without using bounded gradient assumption and the
second condition. Compared to Moulines and Bach (2011), we prove the convergence of
SGD for {ηt = O(1/tq)} which is 1/µ times larger and our proposed class of learning rates
satisfying the convergence of SGD is larger. Our proposed class of learning rates satisfying
the convergence of SGD is larger than the current state-of-the art one.

We would like to highlight that this paper is originally from Nguyen et al. (2018)
(Proceedings of the 35th International Conference on Machine Learning, 2018) but it
presents a substantial extension by providing many new results for SGD and Hogwild!.

1.1 Contribution

We provide a new framework for the analysis of stochastic gradient algorithms in the
strongly convex case under the condition of Lipschitz continuity of the individual function
realizations, but without requiring any bounds on the stochastic gradients. Within
this framework we have the following contributions:

• We prove the almost sure (w.p.1) convergence of SGD with diminishing step size. Our
analysis provides a larger bound on the possible initial step size when compared to
any previous analysis of convergence in expectation for SGD.

• We introduce a general recurrence for vector updates which has as its special cases (a)
the Hogwild! algorithm with diminishing step sizes, where each update involves all
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non-zero entries of the computed gradient, and (b) a position-based updating algorithm
where each update corresponds to only one uniformly selected non-zero entry of the
computed gradient.

• We analyze this general recurrence under inconsistent vector reads from and vector
writes to shared memory (where individual vector entry reads and writes are atomic
in that they cannot be interrupted by writes to the same entry) assuming that there
exists a delay τ such that during the (t+ 1)-th iteration a gradient of a read vector w
is computed which includes the aggregate of all the updates up to and including those
made during the (t− τ)-th iteration. In other words, τ controls to what extent past
updates influence the shared memory.

– Our upper bound for the expected convergence rate is O(1/t), and its precise
expression allows comparison of algorithms (a) and (b) described above.

– For SGD we can improve this upper bound by a factor of 2 and also show that
its initial step size can be larger.

– We show that τ can be a function of t as large as
√

(t/lnt)(1− 1/lnt) without
affecting the asymptotic behavior of the upper bound; we also determine a constant
T0 with the property that, for t ≥ T0, higher order terms containing parameter τ
are smaller than the leading O(1/t) term. We give intuition explaining why the
expected convergence rate is not more affected by τ . Our experiments confirm
our analysis.

– We determine a constant T1 with the property that, for t ≥ T1, the higher order
term containing parameter ‖w0 − w∗‖2 is smaller than the leading O(1/t) term.

• All the above contributions generalize to the setting where we do not need to assume
that the component functions f(w; ξ) are convex in w.

Compared to Nguyen et al. (2018), we have following new results:

• We prove the almost sure (w.p.1) convergence of Hogwild! with a diminishing sequence
of learning rates {ηt}.

• We prove the convergence of SGD for diminishing sequences of learning rates {ηt}
with condition

∑∞
t=0 ηt →∞. In other words, we extend the current state-of-the-art

class of learning rates satisfying the convergence of SGD.

• We prove the convergence of SGD for our extended class of learning rates in batch
model.

1.2 Organization

We analyse the convergence rate of SGD in Section 2 and introduce the general recursion
and its analysis in Section 3. Section 4 studies the convergence of SGD for our extended
class of learning rates. Experiments are reported in Section 5.
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Algorithm 1 Stochastic Gradient Descent (SGD) Method
Initialize: w0
Iterate:
for t = 0, 1, 2, . . . do
Choose a step size (i.e., learning rate) ηt > 0.
Generate a random variable ξt.
Compute a stochastic gradient ∇f(wt; ξt).
Update the new iterate wt+1 = wt − ηt∇f(wt; ξt).

end for

2. New Framework for Convergence Analysis of SGD

We introduce SGD algorithm in Algorithm 1.
The sequence of random variables {ξt}t≥0 is assumed to be i.i.d.1 Let us introduce our

key assumption that each realization ∇f(w; ξ) is an L-smooth function.

Assumption 2 (L-smooth) f(w; ξ) is L-smooth for every realization of ξ, i.e., there exists
a constant L > 0 such that, ∀w,w′ ∈ Rd,

‖∇f(w; ξ)−∇f(w′; ξ)‖ ≤ L‖w − w′‖. (6)

Assumption 2 implies that F is also L-smooth. Then, by a property of L-smooth
functions in Nesterov (2004), we have, ∀w,w′ ∈ Rd,

F (w) ≤ F (w′) + 〈∇F (w′), (w − w′)〉+ L

2 ‖w − w
′‖2. (7)

The following additional convexity assumption can be made, as it holds for many problems
arising in machine learning.

Assumption 3 f(w; ξ) is convex for every realization of ξ, i.e., ∀w,w′ ∈ Rd,

f(w; ξ)− f(w′; ξ) ≥ 〈∇f(w′; ξ), (w − w′)〉.

We first derive our analysis under Assumptions 2, and 3 and then we derive weaker
results under only Assumption 2.

2.1 Convergence With Probability One

As discussed in the introduction, under Assumptions 2 and 3 we can now derive a bound on
E‖∇f(w; ξ)‖2.

Lemma 1 Let Assumptions 2 and 3 hold. Then, for ∀w ∈ Rd,

E[‖∇f(w; ξ)‖2] ≤ 4L[F (w)− F (w∗)] +N, (8)

where N = 2E[‖∇f(w∗; ξ)‖2]; ξ is a random variable, and w∗ = arg minw F (w).

1. i.i.d. stands for independent and identically distributed.
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Using Lemma 1 and Super Martingale Convergence Theorem from Bertsekas (2011)
(Lemma 5 in Appendix A), we can provide the sufficient condition for almost sure convergence
of Algorithm 1 in the strongly convex case without assuming any bounded gradients.

Theorem 1 (Sufficient conditions for almost sure convergence) Let Assumptions 1,
2 and 3 hold. Consider Algorithm 1 with a stepsize sequence such that

0 < ηt ≤
1

2L ,
∞∑
t=0

ηt =∞ and
∞∑
t=0

η2
t <∞.

Then, the following holds w.p.1 (almost surely)

‖wt − w∗‖2 → 0.

Note that the classical SGD proposed in Robbins and Monro (1951) has learning rate
satisfying conditions

∞∑
t=0

ηt =∞ and
∞∑
t=0

η2
t <∞

However, the original analysis is performed under the bounded gradient assumption, as in
(5). In Theorem 1, on the other hand, we do not use this assumption, but instead assume
Lipschitz smoothness and convexity of the function realizations, which does not contradict
the strong convexity of F (w).

The following result establishes a sublinear convergence rate of SGD.

Theorem 2 Let Assumptions 1, 2 and 3 hold. Let E = 2αL
µ with α = 2. Consider Algorithm

1 with a stepsize sequence such that ηt = α
µ(t+E) ≤ η0 = 1

2L . Then,

E[‖wt − w∗‖2] ≤ 4α2N

µ2
1

(t− T + E)

for
t ≥ T = 4L

µ
max{Lµ

N
‖w0 − w∗‖2, 1} −

4L
µ
,

where N = 2E[‖∇f(w∗; ξ)‖2] and w∗ = arg minw F (w).

2.2 Convergence Analysis without Convexity

In this section, we provide the analysis of Algorithm 1 without using Assumption 3, that is,
f(w; ξ) is not necessarily convex. We still do not need to impose the bounded stochastic
gradient assumption, since we can derive an analogue of Lemma 1, albeit with worse constant
in the bound.

Lemma 2 Let Assumptions 1 and 2 hold. Then, for ∀w ∈ Rd,

E[‖∇f(w; ξ)‖2] ≤ 4Lκ[F (w)− F (w∗)] +N, (9)

where κ = L
µ and N = 2E[‖∇f(w∗; ξ)‖2]; ξ is a random variable, and w∗ = arg minw F (w).
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Based on the proofs of Theorems 1 and 2, we can easily have the following two results
(Theorems 3 and 4).

Theorem 3 (Sufficient conditions for almost sure convergence) Let Assumptions 1
and 2 hold. Then, we can conclude the statement of Theorem 1 with the definition of the
step size replaced by 0 < ηt ≤ 1

2Lκ with κ = L
µ .

Theorem 4 Let Assumptions 1 and 2 hold. Then, we can conclude the statement of
Theorem 2 with the definition of the step size replaced by ηt = α

µ(t+E) ≤ η0 = 1
2Lκ with κ = L

µ
and α = 2, and all other occurrences of L in E and T replaced by Lκ.

Remark 1 By strong convexity of F , Lemma 2 implies E[‖∇f(w; ξ)‖2] ≤ 2κ2‖∇F (w)‖2+N ,
for ∀w ∈ Rd, where κ = L

µ and N = 2E[‖∇f(w∗; ξ)‖2]. We can now substitute the value
M = 2κ2 into Theorem 4.7 in Bottou et al. (2018). We observe that the resulting initial
learning rate in Bottou et al. (2018) has to satisfy η0 ≤ 1

2LF κ2 while our results allows
η0 = 1

2Lκ . We notice that Bottou et al. (2018) only assumes that F has Lipschitz continuous
gradients with Lipschitz constant LF while we need the smoothness assumption on individual
realizations. Therefore, LF and L may be different. Both LF and L values are hard to
compare and LF in Bottou et al. (2018) can potentially be much smaller, however, no general
comparative statements can be made.

By introducing Assumption 2, which holds for many ML problems, we are able to provide
the values of M and N . Recall that under Assumption 3, our initial learning rate is η0 = 1

2L
(in Theorem 2). Thus Assumption 3 provides an improvement of the conditions on the
learning rate.

3. Asynchronous Stochastic Optimization aka Hogwild!

Hogwild! (Recht et al., 2011) is an asynchronous stochastic optimization method where writes
to and reads from vector positions in shared memory can be inconsistent (this corresponds
to (13) as we shall see). However, as mentioned in Mania et al. (2017), for the purpose of
analysis the method in Recht et al. (2011) performs single vector entry updates that are
randomly selected from the non-zero entries of the computed gradient as in (12) (explained
later) and requires the assumption of consistent vector reads together with the bounded
gradient assumption to prove convergence. Both Mania et al. (2017) and De Sa et al. (2015)
prove the same result for fixed step size based on the assumption of bounded stochastic
gradients in the strongly convex case but now without assuming consistent vector reads and
writes. In these works the fixed step size η must depend on σ from the bounded gradient
assumption, however, one does not usually know σ and thus, we cannot compute a suitable
η a-priori.

As claimed by the authors in Mania et al. (2017), they can eliminate the bounded
gradient assumption in their analysis of Hogwild!, which however was only mentioned as a
remark without proof. On the other hand, the authors of Leblond et al. (2018) formulate and
prove, without the bounded gradient assumption, a precise theorem about the convergence
rate of Hogwild! of the form

E[‖wt − w∗‖2] ≤ (1− ρ)t(2‖w0 − w∗‖2) + b,
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where ρ is a function of several parameters but independent of the fixed chosen step size η
and where b is a function of several parameters and has a linear dependency with respect to
the fixed step size, i.e., b = O(η).

In this section, we discuss the convergence of Hogwild! with diminishing stepsize where
writes to and reads from vector positions in shared memory can be inconsistent. This is
a slight modification of the original Hogwild! where the stepsize is fixed. In our analysis
we also do not use the bounded gradient assumption as in Leblond et al. (2018).
Moreover, (a) we focus on solving the more general problem in (1), while Leblond et al.
(2018) considers the specific case of the “finite-sum” problem in (2), and (b) we show that
our analysis generalizes to the non-convex case of the component functions, i.e., we do
not need to assume functions f(w; ξ) are convex (we only require F (w) = E[f(w; ξ)] to be
strongly convex) as opposed to the assumption in Leblond et al. (2018).

3.1 Recursion

We first formulate a general recursion for wt to which our analysis applies, next we will
explain how the different variables in the recursion interact and describe two special cases,
and finally we present pseudo code of the algorithm using the recursion.

The recursion explains which positions in wt should be updated in order to compute
wt+1. Since wt is stored in shared memory and is being updated in a possibly non-consistent
way by multiple cores who each perform recursions, the shared memory will contain a vector
w whose entries represent a mix of updates. That is, before performing the computation of
a recursion, a core will first read w from shared memory, however, while reading w from
shared memory, the entries in w are being updated out of order. The final vector ŵt read by
the core represents an aggregate of a mix of updates in previous iterations.

The general recursion is defined as follows: For t ≥ 0,

wt+1 = wt − ηtdξtSξtut∇f(ŵt; ξt), (10)

where

• ŵt represents the vector used in computing the gradient ∇f(ŵt; ξt) and whose entries
have been read (one by one) from an aggregate of a mix of previous updates that led
to wj , j ≤ t, and

• the Sξtut are diagonal 0/1-matrices with the property that there exist real numbers dξ
satisfying

dξE[Sξu|ξ] = Dξ, (11)

where the expectation is taken over u and Dξ is the diagonal 0/1 matrix whose 1-entries
correspond to the non-zero positions in ∇f(w; ξ) in the following sense: The i-th entry
of Dξ’s diagonal is equal to 1 if and only if there exists a w such that the i-th position
of ∇f(w; ξ) is non-zero.

The role of matrix Sξtut is that it filters which positions of gradient ∇f(ŵt; ξt) play a role
in (10) and need to be computed. Notice that Dξ represents the support of ∇f(w; ξ); by
|Dξ| we denote the number of 1s in Dξ, i.e., |Dξ| equals the size of the support of ∇f(w; ξ).

9
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We will restrict ourselves to choosing (i.e., fixing a-priori) non-empty matrices Sξu that
“partition” Dξ in D approximately “equally sized” Sξu:∑

u

Sξu = Dξ,

where each matrix Sξu has either b|Dξ|/Dc or d|Dξ|/De ones on its diagonal. We uniformly
choose one of the matrices Sξtut in (10), hence, dξ equals the number of matrices Sξu, see (11).

In other to explain recursion (10) we first consider two special cases. For D = ∆̄, where

∆̄ = max
ξ
{|Dξ|}

represents the maximum number of non-zero positions in any gradient computation f(w; ξ),
we have that for all ξ, there are exactly |Dξ| diagonal matrices Sξu with a single 1 representing
each of the elements in Dξ. Since pξ(u) = 1/|Dξ| is the uniform distribution, we have
E[Sξu|ξ] = Dξ/|Dξ|, hence, dξ = |Dξ|. This gives the recursion

wt+1 = wt − ηt|Dξ|[∇f(ŵt; ξt)]ut , (12)

where [∇f(ŵt; ξt)]ut denotes the ut-th position of ∇f(ŵt; ξt) and where ut is a uniformly
selected position that corresponds to a non-zero entry in ∇f(ŵt; ξt).

At the other extreme, for D = 1, we have exactly one matrix Sξ1 = Dξ for each ξ, and
we have dξ = 1. This gives the recursion

wt+1 = wt − ηt∇f(ŵt; ξt). (13)

Recursion (13) represents Hogwild!. In a single-core setting where updates are done in a
consistent way and ŵt = wt yields SGD.

Algorithm 2 gives the pseudo code corresponding to recursion (10) with our choice of
sets Sξu (for parameter D).

Algorithm 2 Hogwild! general recursion
1: Input: w0 ∈ Rd
2: for t = 0, 1, 2, . . . in parallel do
3: read each position of shared memory w denoted by ŵt (each position read is

atomic)
4: draw a random sample ξt and a random “filter” Sξtut
5: for positions h where Sξtut has a 1 on its diagonal do
6: compute gh as the gradient ∇f(ŵt; ξt) at position h
7: add ηtdξtgh to the entry at position h of w in shared memory (each position

update is atomic)
8: end for
9: end for

10
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3.2 Analysis

Besides Assumptions 1, 2, and for now 3, we assume the following assumption regarding
a parameter τ , called the delay, which indicates which updates in previous iterations have
certainly made their way into shared memory w.

Assumption 4 (Consistent with delay τ) We say that shared memory is consistent
with delay τ with respect to recursion (10) if, for all t, vector ŵt includes the aggregate of the
updates up to and including those made during the (t− τ)-th iteration (where (10) defines
the (t+ 1)-st iteration). Each position read from shared memory is atomic and each position
update to shared memory is atomic (in that these cannot be interrupted by another update to
the same position).

In other words in the (t+ 1)-th iteration, ŵt equals wt−τ plus some subset of position
updates made during iterations t − τ, t − τ + 1, . . . , t − 1. We assume that there exists a
constant delay τ satisfying Assumption 4.

3.3 Convergence With Probability One

Appendix D.5 proves the following theorem

Theorem 5 (Sufficient conditions for almost sure convergence for Hogwild!) Let
Assumptions 1, 2, 3 and 4 hold. Consider Hogwild! method described in Algorithm 2 with a
stepsize sequence such that

0 < ηt = 1
LD(2 + β)(k + t) <

1
4LD, β > 0, k ≥ 3τ.

Then, the following holds w.p.1 (almost surely)

‖wt − w∗‖ → 0.

3.4 Convergence in Expectation

Appendix D.2 proves the following theorem where

∆̄D
def= D · E[d|Dξ|/De].

Theorem 6 Suppose Assumptions 1, 2, 3 and 4 and consider Algorithm 2 for sets Sξu with
parameter D. Let ηt = αt

µ(t+E) with 4 ≤ αt ≤ α and E = max{2τ, 4LαD
µ }. Then, the expected

number of single vector entry updates after t iterations is equal to

t′ = t∆̄D/D,

and

E[‖ŵt − w∗‖2] ≤ 4α2DN
µ2

t
(t+E−1)2 +O

(
ln t

(t+E−1)2

)
,

E[‖wt − w∗‖2] ≤ 4α2DN
µ2

t
(t+E−1)2 +O

(
ln t

(t+E−1)2

)
,

where N = 2E[‖∇f(w∗; ξ)‖2] and w∗ = arg minw F (w).

11
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In terms of t′, the expected number single vector entry updates after t iterations,
E[‖ŵt − w∗‖2] and E[‖wt − w∗‖2] are at most

4α2∆̄DN

µ2
1
t′

+O

( ln t′

t′2

)
.

Remark 2 In (12) D = ∆̄, hence, d|Dξ|/De = 1 and ∆̄D = ∆̄ = maxξ{|Dξ|}. In (13)
D = 1, hence, ∆̄D = E[|Dξ|]. This shows that the upper bound in Theorem 6 is better for
(13) with D = 1. If we assume no delay, i.e. τ = 0, in addition to D = 1, then we obtain
SGD. Theorem 2 shows that, measured in t′, we obtain the upper bound

4α2
SGD∆̄DN

µ2
1
t′

with αSGD = 2 as opposed to α ≥ 4.
With respect to parallelism, SGD assumes a single core, while (13) and (12) allow

multiple cores. Notice that recursion (12) allows us to partition the position of the shared
memory among the different processor cores in such a way that each partition can only
be updated by its assigned core and where partitions can be read by all cores. This allows
optimal resource sharing and could make up for the difference between ∆̄D for (12) and (13).
We hypothesize that, for a parallel implementation, D equal to a fraction of ∆̄ will lead to
best performance.

Remark 3 Surprisingly, the leading term of the upper bound on the convergence rate is
independent of delay τ . On one hand, one would expect that a more recent read which
contains more of the updates done during the last τ iterations will lead to better convergence.
When inspecting the second order term in the proof in Appendix D.2, we do see that a smaller
τ (and/or smaller sparsity) makes the convergence rate smaller. That is, asymptotically t
should be large enough as a function of τ (and other parameters) in order for the leading
term to dominate.

Nevertheless, in asymptotic terms (for larger t) the dependence on τ is not noticeable.
In fact, Appendix D.4 shows that we may allow τ to be a monotonic increasing function of t
with

2LαD
µ

≤ τ(t) ≤
√
t · L(t),

where L(t) = 1
ln t −

1
(ln t)2 (this will make E = max{2τ(t), 4LαD

µ } also a function of t). The
leading term of the convergence rate does not change while the second order terms increase
to O( 1

t ln t). We show that, for

t ≥ T0 = exp[2
√

∆(1 + (L+ µ)α
µ

)],

where ∆ = maxi P (i ∈ Dξ) measures sparsity, the higher order terms that contain τ(t) (as
defined above) are at most the leading term.

Our intuition behind this phenomenon is that for large τ , all the last τ iterations before
the t-th iteration use vectors ŵj with entries that are dominated by the aggregate of updates

12
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that happened till iteration t − τ . Since the average sum of the updates during the last τ
iterations is equal to

−1
τ

t−1∑
j=t−τ

ηjdξjS
ξj
uj∇f(ŵj ; ξt) (14)

and all ŵj look alike in that they mainly represent learned information before the (t− τ)-th
iteration, (14) becomes an estimate of the expectation of (14), i.e.,

t−1∑
j=t−τ

−ηj
τ

E[dξjS
ξj
uj∇f(ŵj ; ξt)] =

t−1∑
j=t−τ

−ηj
τ
∇F (ŵj). (15)

This looks like GD which in the strong convex case has convergence rate ≤ c−t for some
constant c > 1. This already shows that larger τ could help convergence as well. However,
estimate (14) has estimation noise with respect to (15) which explains why in this thought
experiment we cannot attain c−t but can only reach a much smaller convergence rate of e.g.
O(1/t) as in Theorem 6.

Experiments in Section 5 confirm our analysis.

Remark 4 The higher order terms in the proof in Appendix D.2 show that, as in Theorem
2, the expected convergence rate in Theorem 6 depends on ‖w0−w∗‖2. The proof shows that,
for

t ≥ T1 = µ2

α2ND
‖w0 − w∗‖2,

the higher order term that contains ‖w0−w∗‖2 is at most the leading term. This is comparable
to T in Theorem 2 for SGD.

Remark 5 Step size ηt = αt
µ(t+E) with 4 ≤ αt ≤ α can be chosen to be fixed during periods

whose ranges exponentially increase. For t+E ∈ [2h, 2h+1) we define αt = 4(t+E)
2h . Notice

that 4 ≤ αt < 8 which satisfies the conditions of Theorem 6 for α = 8. This means that we
can choose

ηt = αt
µ(t+ E) = 4

µ2h

as step size for t + E ∈ [2h, 2h+1). This choice for ηt allows changes in ηt to be easily
synchronized between cores since these changes only happen when t+E = 2h for some integer
h. That is, if each core is processing iterations at the same speed, then each core on its own
may reliably assume that after having processed (2h −E)/P iterations the aggregate of all P
cores has approximately processed 2h − E iterations. So, after (2h − E)/P iterations a core
will increment its version of h to h+ 1. This will introduce some noise as the different cores
will not increment their h versions at exactly the same time, but this only happens during a
small interval around every t+ E = 2h. This will occur rarely for larger h.

3.5 Convergence Analysis without Convexity

In Appendix D.3, we also show that the proof of Theorem 6 can easily be modified such that
Theorem 6 with E ≥ 4LκαD

µ also holds in the non-convex case of the component functions,
i.e., we do not need Assumption 3. Note that this case is not analyzed in Leblond et al.
(2018).

13
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Theorem 7 Let Assumptions 1 and 2 hold. Then, we can conclude the statement of
Theorem 6 with E ≥ 4LκαD

µ for κ = L
µ .

Theorem 8 (Sufficient conditions for almost sure convergence) Let Assumptions 1
and 2 hold. Then, we can conclude the statement of Theorem 5 with the definition of the
step size replaced by 0 < ηt = 1

LDκ(2+β)(k+t) with κ = L
µ .

4. Convergence of Large Stepsizes

In Robbins and Monro (1951), the authors proved the convergence of SGD for step size
sequences {ηt} satisfying conditions

∞∑
t=0

ηt =∞ and
∞∑
t=0

η2
t <∞.

In Moulines and Bach (2011), the authors studied the expected convergence rates for
another class of step sizes of O(1/tp) where 0 < p ≤ 1. This class has many large step sizes in
comparison with Robbins and Monro (1951). For example ηt = O(1/tp) does not satisfy the
second condition (i.e.,

∑∞
t=0 η

2
t →∞) where 0 < p < 1/2. In this section, we prove that SGD

will converge without using bounded gradient assumption if {ηt} is a diminishing sequence
and

∑∞
t=0 ηt →∞. Compared to Moulines and Bach (2011), we prove the convergence of

SGD for step sizes ηt = O(1/tq) which is 1/µ times larger. Our proposed class is much larger
than the classes in Robbins and Monro (1951) and Moulines and Bach (2011).

4.1 Convergence of Large Stepsizes

The proofs of all theorems and lemmas in this subsection are provided in Appendix D.6.

Theorem 9 Let Assumptions 1, 2, and 3 hold. Consider Algorithm 1 with a step size
sequence such that: ηt ≤ 1

2L , ηt → 0, d
dtηt ≤ 0 and

∑∞
t=0 ηt →∞. Then,

E[‖wt+1 − w∗‖2]→ 0.

Theorem 9 only discusses about the convergence of SGD for the given step size sequence
{ηt} above. The expected convergence rate of SGD with the setup in Theorem 9 is analysed
in Theorem 10.

Theorem 10 Let Assumptions 1, 2, and 3 hold. Consider Algorithm 1 with a step size
sequence such that ηt ≤ 1

2L , ηt → 0, d
dtηt ≤ 0, and

∑∞
t=0 ηt →∞. Then,

E[‖wt+1 − w∗‖2] ≤ N exp(n(0))2n(M−1(ln[n(t+ 1)
n(0) ] +M(t+ 1)))

+ exp(−M(t+ 1))[exp(M(1))n2(0)N + E[‖w0 − w∗‖2]],

where n(t) = µηt and M(t) =
∫ t
x=0 n(x)dx.

14
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The upper bound in Theorem 10 can be interpreted as being approximately equivalent to
E[‖wt−w∗‖2] ≤ Un(t−∆)+V exp(−M(t)) where U = N exp(n(0)), V = exp(M(1))n2(0)N+
E[‖w0 − w∗‖2] and ∆ is a delay computed from ln[n(t+1)

n(0) ]. Since n(t) decreases and M(t)
increases when t approaches to infinity, E[‖wt − w∗‖2]] decreases in the same way as n(t) to
0, except for some delay ∆.

As shown in (53) (see also Appendix D.6), we have

E[‖wt − w∗‖2] ≤ AC(t) +B exp(−M(t)),

where A and B are constants and C(t) is defined in (16) below. We show that an alternative
proof for the convergence of SGD with the setup above based on the study of C(t) can be
developed.

Lemma 3 Let
C(t) = exp(−M(t))

∫ t

x=0
exp(M(x))n(x)2dx, (16)

where d
dxM(x) = n(x) with function n(x) satisfying the following conditions:

1. d
dxn(x) < 0,

2. d
dxn(x) is continuous.

Then, there is a moment T such that for all t > T , C(t) > n(t).

Proof We take the derivative of C(t), i.e.,

d

dt
C(t) = − exp(−M(t))n(t)

∫ t

x=0
exp(M(x))n(x)2dx+ exp(−M(t)) exp(M(t))n(t)2

= n(t)[n(t)− C(t)]

This shows that
C(t) is decreasing if and only if C(t) > n(t).

Initially C(0) = 0 and n(0) > 0, hence, C(t) starts increasing from t ≥ 0. Since n(t)
decreases for all t ≥ 0, we know that there must exist a first cross over point x:

• There exists a value x such that C(t) increases for 0 ≤ t < x, and

• C(x) = n(x) with derivative dC(t)/dt|t=x = 0.

Since n(x) has a derivative < 0, we know that C(t) > n(t) immediately after x. Suppose
that C(y) = n(y) for some y > x with C(t) > n(t) for x < t < y. This implies that
dC(t)/dt|t=y = 0 and since dC(t)/dt is continuous

C(y − ε) = C(y) +O(ε2).

Also,
n(y − ε) = n(y)− εdn(t)/dt|t=y +O(ε2).
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Since dn(t)/dt|t=y < 0, we know that there exists an ε small enough (close to 0) such that

C(y − ε) < n(y − ε).

This contradicts C(t) > n(t) for x < t < y. We conclude that there does not exist a y > x
such that C(y) = n(y):

• For t > x, C(t) > n(t) and C(t) is strictly decreasing.

We conclude that for any given n(t), there exists a time T such that C(t) < n(t) for all
t ∈ [0, T ), C(T ) = n(T ) after which C(t) > n(t) when t ∈ (T,∞]. Note that C(t) is always
bigger then zero.

As proved above, C(t) decreases for t > T . In addition to this we note that C(t) converges
to zero when t goes to infinity (see the proof of Theorem 9 in Appendix D.6). In addition
to C(t) → 0 when t → ∞, also exp(−M(t)) → 0 when t → ∞ because

∑∞
t=0 n(t) → ∞.

Based on these two results we conclude that E[‖wt − w∗‖2] → 0 when t → ∞. This is an
alternative proof for the convergence of SGD as shown in Theorem 9.

Theorem 11 Among all stepsizes ηq,t = 1/(K + t)q where q > 0, K is a constant such that
ηq,t ≤ 1

2L , SGD algorithm enjoys the fastest convergence with stepsize η1,t = 1/(2L+ t).

4.2 Convergence of Large Stepsizes in Batch Mode

We define
Ft = σ(w0, ξ

′
0, u0, . . . , ξ

′
t−1, ut−1),

where
ξ′i = (ξi,1, . . . , ξi,ki).

We consider the following general algorithm with the following gradient updating rule:

wt+1 = wt − ηtdξ′tS
ξ′t
ut∇f(wt; ξ′t), (17)

where f(wt; ξ′t) = 1
kt

∑kt
i=1 f(wt; ξt,i).

Theorem 12 Let Assumptions 1, 2 and 3 hold, {ηt} is a diminishing sequence with condi-
tions

∑∞
t=0 ηt →∞ and 0 < ηt ≤ 1

2LD for all t ≥ 0. Then, the sequence {wt} converges to
w∗ where

wt+1 = wt − ηtdξ′tS
ξ′t
ut∇f(wt; ξ′t).

The proof of Theorem 12 is provided in Appendix D.7.
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Figure 1: ijcnn1 data set for different fraction of non-zero set

Figure 2: ijcnn1 data set for different τ with the whole non-zero set

5. Numerical Experiments

For our numerical experiments, we consider the finite sum minimization problem in (2). We
consider `2-regularized logistic regression problems with

fi(w) = log(1 + exp(−yi〈xi, w〉)) + λ

2 ‖w‖
2,

where the penalty parameter λ is set to 1/n, a widely-used value in literature (Le Roux
et al., 2012).

We conducted experiments on a single core for Algorithm 2 on two popular data sets
ijcnn1 (n = 91, 701 training data) and covtype (n = 406, 709 training data) from LIBSVM
(Chang and Lin, 2011) data sets. Since we are interested in the expected convergence rate
with respect to the number of iterations, respectively number of single position vector updates,
we do not need a parallelized multi-core simulation to confirm our analysis. The impact
of efficient resource scheduling over multiple cores leads to a performance improvement
complementary to our analysis of (10) (which, as discussed, lends itself for an efficient
parallelized implementation). We experimented with 10 runs and reported the average
results. We choose the step size based on Theorem 6, i.e, ηt = 4

µ(t+E) and E = max{2τ, 16LD
µ }.

For each fraction v ∈ {1, 3/4, 2/3, 1/2, 1/3, 1/4} we performed the following experiment: In
Algorithm 2 we choose each “filter” matrix Sξtut to correspond with a random subset of size
v|Dξt | of the non-zero positions of Dξt (i.e., the support of the gradient corresponding to ξt).
In addition we use τ = 10. For the two data sets,

Figures 1 and 3 plot the training loss for each fraction with τ = 10. The top plots have
t′, the number of coordinate updates, for the horizontal axis. The bottom plots have the
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Figure 3: covtype data set for different fraction of non-zero set

Figure 4: covtype data set for different τ with the whole non-zero set

number of epochs, each epoch counting n iterations, for the horizontal axis. The results
show that each fraction shows a sublinear expected convergence rate of O(1/t′); the smaller
fractions exhibit larger deviations but do seem to converge faster to the minimum solution.

In Figures 2 and 4, we show experiments with different values of τ ∈ {1, 10, 100} where
we use the whole non-zero set of gradient positions (i.e., v = 1) for the update. Our
analysis states that, for t = 50 epochs times n iterations per epoch, τ can be as large
as
√
t · L(t) = 524 for ijcnn1 and 1058 for covtype. The experiments indeed show that

τ ≤ 100 has little effect on the expected convergence rate.

6. Conclusion

We have provided the analysis of stochastic gradient algorithms with diminishing step size in
the strongly convex case under the condition of Lipschitz continuity of the individual function
realizations, but without requiring any bounds on the stochastic gradients. We showed
almost sure convergence of SGD and provided sublinear upper bounds for the expected
convergence rate of a general recursion which includes Hogwild! for inconsistent reads and
writes as a special case. We also provided new intuition which will help understanding
convergence as observed in practice.
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Appendix A. Review of Useful Theorems

Lemma 4 (Generalization of the result in Johnson and Zhang (2013)) Let Assump-
tions 2 and 3 hold. Then, ∀w ∈ Rd,

E[‖∇f(w; ξ)−∇f(w∗; ξ)‖2] ≤ 2L[F (w)− F (w∗)], (18)

where ξ is a random variable, and w∗ = arg minw F (w).

Lemma 5 (Bertsekas (2011)) Let Yk, Zk, and Wk, k = 0, 1, . . . , be three sequences of
random variables and let {Fk}k≥0 be a filtration, that is, σ-algebras such that Fk ⊂ Fk+1
for all k. Suppose that:

• The random variables Yk, Zk, and Wk are nonnegative, and Fk-measurable.

• For each k, we have E[Yk+1|Fk] ≤ Yk − Zk +Wk.

• There holds, w.p.1,
∞∑
k=0

Wk <∞.

Then, we have, w.p.1,
∞∑
k=0

Zk <∞ and Yk → Y ≥ 0.

Appendix B. Proofs of Lemmas 1 and 2

The proofs of Lemmas 1 and 2 can be done in the following sub-sections.

B.1 Proof of Lemma 1

Lemma 1. Let Assumptions 2 and 3 hold. Then, for ∀w ∈ Rd,

E[‖∇f(w; ξ)‖2] ≤ 4L[F (w)− F (w∗)] +N,

where N = 2E[‖∇f(w∗; ξ)‖2]; ξ is a random variable, and w∗ = arg minw F (w).

Proof Note that

‖a‖2 = ‖a− b+ b‖2 ≤ 2‖a− b‖2 + 2‖b‖2, (19)

⇒ 1
2‖a‖

2 − ‖b‖2 ≤ ‖a− b‖2. (20)

Hence,
1
2E[‖∇f(w; ξ)‖2]− E[‖∇f(w∗; ξ)‖2] = E

[1
2‖∇f(w; ξ)‖2 − ‖∇f(w∗; ξ)‖2

]
(20)
≤ E[‖∇f(w; ξ)−∇f(w∗; ξ)‖2]

(18)
≤ 2L[F (w)− F (w∗)] (21)
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Therefore,

E[‖∇f(w; ξ)‖2]
(19)(21)
≤ 4L[F (w)− F (w∗)] + 2E[‖∇f(w∗; ξ)‖2].

B.2 Proof of Lemma 2

Lemma 2. Let Assumptions 1 and 2 hold. Then, for ∀w ∈ Rd,

E‖∇f(w; ξ)‖2 ≤ 4Lκ[F (w)− F (w∗)] +N,

where κ = L
µ and N = 2E[‖∇f(w∗; ξ)‖2]; ξ is a random variable, and w∗ = arg minw F (w).

Proof Analogous to the proof of Lemma 1, we have
Hence,

1
2E[‖∇f(w; ξ)‖2]− E[‖∇f(w∗; ξ)‖2] = E

[1
2‖∇f(w; ξ)‖2 − ‖∇f(w∗; ξ)‖2

]
(20)
≤ E[‖∇f(w; ξ)−∇f(w∗; ξ)‖2]

(6)
≤ L2‖w − w∗‖2

(3)
≤ 2L2

µ
[F (w)− F (w∗)] = 2Lκ[F (w)− F (w∗)]. (22)

Therefore,

E[‖∇f(w; ξ)‖2]
(19)(22)
≤ 4Lκ[F (w)− F (w∗)] + 2E[‖∇f(w∗; ξ)‖2].

Appendix C. Analysis for Algorithm 1

In this Section, we provide the analysis of Algorithm 1 under Assumptions 1, 2, and 3.
We note that if {ξi}i≥0 are i.i.d. random variables, then E[‖∇f(w∗; ξ0)‖2] = · · · =

E[‖∇f(w∗; ξt)‖2]. We have the following results for Algorithm 1.

Theorem 1 (Sufficient condition for almost sure convergence). Let Assumptions 1,
2 and 3 hold. Consider Algorithm 1 with a stepsize sequence such that

0 < ηt ≤
1

2L ,
∞∑
t=0

ηt =∞ and
∞∑
t=0

η2
t <∞.

Then, the following holds w.p.1 (almost surely)

‖wt − w∗‖2 → 0.

22



New Convergence Aspects of Stochastic Gradient Algorithms

Proof Let Ft = σ(w0, ξ0, . . . , ξt−1) be the σ-algebra generated by w0, ξ0, . . . , ξt−1, i.e., Ft
contains all the information of w0, . . . , wt. Note that E[∇f(wt; ξt)|Ft] = ∇F (wt). By Lemma
1, we have

E[‖∇f(wt; ξt)‖2|Ft] ≤ 4L[F (wt)− F (w∗)] +N, (23)

where N = 2E[‖∇f(w∗; ξ0)‖2] = · · · = 2E[‖∇f(w∗; ξt)‖2] since {ξi}i≥0 are i.i.d. random
variables. Note that wt+1 = wt − ηt∇f(wt; ξt). Hence,

E[‖wt+1 − w∗‖2|Ft] = E[‖wt − ηt∇f(wt; ξt)− w∗‖2|Ft]
= ‖wt − w∗‖2 − 2ηt〈∇F (wt), (wt − w∗)〉+ η2

tE[‖∇f(wt; ξt)‖2|Ft]
(3)(23)
≤ ‖wt − w∗‖2 − µηt‖wt − w∗‖2 − 2ηt[F (wt)− F (w∗)]

+ 4Lη2
t [F (wt)− F (w∗)] + η2

tN

= ‖wt − w∗‖2 − µηt‖wt − w∗‖2 − 2ηt(1− 2Lηt)[F (wt)− F (w∗)] + η2
tN

≤ ‖wt − w∗‖2 − µηt‖wt − w∗‖2 + η2
tN.

The last inequality follows since 0 < ηt ≤ 1
2L . Therefore,

E[‖wt+1 − w∗‖2|Ft] ≤ ‖wt − w∗‖2 − µηt‖wt − w∗‖2 + η2
tN. (24)

Since
∑∞
t=0 η

2
tN <∞, we could apply Lemma 5. Then, we have w.p.1,

‖wt − w∗‖2 →W ≥ 0,

and
∞∑
t=0

µηt‖wt − w∗‖2 <∞.

We want to show that ‖wt −w∗‖2 → 0, w.p.1. Proving by contradiction, we assume that
there exist ε > 0 and t0, s.t. ‖wt − w∗‖2 ≥ ε for ∀t ≥ t0. Hence,

∞∑
t=t0

µηt‖wt − w∗‖2 ≥ µε
∞∑
t=t0

ηt =∞.

This is a contradiction. Therefore, ‖wt − w∗‖2 → 0 w.p.1.

Theorem 2. Let Assumptions 1, 2 and 3 hold. Let E = 2αL
µ with α = 2. Consider Algorithm

1 with a stepsize sequence such that ηt = α
µ(t+E) ≤ η0 = 1

2L . Then,

E[‖wt − w∗‖2] ≤ 4α2N

µ2
1

(t− T + E)

for t ≥ T = 4L
µ max{LµN ‖w0 − w∗‖2, 1} − 4L

µ , where N = 2E[‖∇f(w∗; ξ)‖2] and w∗ =
arg minw F (w).
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Proof Using the beginning of the proof of Theorem 1, taking the expectation to (24), with
0 < ηt ≤ 1

2L , we have

E[‖wt+1 − w∗‖2] ≤ (1− µηt)E[‖wt − w∗‖2] + η2
tN.

We first show that
E[‖wt − w∗‖2] ≤ N

µ2G
1

(t+ E) , (25)

where G = max{I, J}, and

I = Eµ2

N
E[‖w0 − w∗‖2] > 0,

J = α2

α− 1 > 0.

We use mathematical induction to prove (25) (this trick is based on the idea from Bottou
et al. (2018)). Let t = 0, we have

E[‖w0 − w∗‖2] ≤ NG

µ2E
,

which is obviously true since G ≥ Eµ2

N ‖w0 − w∗‖2.
Suppose it is true for t, we need to show that it is also true for t+ 1. We have

E[‖wt+1 − w∗‖2] ≤
(

1− α

t+ E

)
NG

µ2(t+ E) + α2N

µ2(t+ E)2

=
(
t+ E − α
µ2(t+ E)2

)
NG+ α2N

µ2(t+ E)2

=
(
t+ E − 1
µ2(t+ E)2

)
NG−

(
α− 1

µ2(t+ E)2

)
NG+ α2N

µ2(t+ E)2 .

Since G ≥ α2

α−1 ,

−
(

α− 1
µ2(t+ E)2

)
NG+ α2N

µ2(t+ E)2 ≤ 0.

This implies

E[‖wt+1 − w∗‖2] ≤
(
t+ E − 1
µ2(t+ E)2

)
NG

=
(

(t+ E)2 − 1
(t+ E)2

)
NG

µ2(t+ E + 1)

≤ NG

µ2(t+ E + 1) .

This proves (25) by induction in t.
Notice that the induction proof of (25) holds more generally for E ≥ 2αL

µ with α > 1
(this is sufficient for showing ηt ≤ 1

2L . In this more general interpretation we can see that
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the convergence rate is minimized for I minimal, i.e., E = 2αL
µ and for this reason we have

fixed E as such in the theorem statement.
Notice that

G = max{I, J} = max{2αLµ
N

E[‖w0 − w∗‖2], α2

α− 1}.

We choose α = 2 such that ηt only depends on known parameters µ and L. For this α we
obtain

G = 4 max{Lµ
N

E[‖w0 − w∗‖2], 1}.

For T = 4L
µ max{LµN E[‖w0 − w∗‖2], 1} − 4L

µ , we have that according to (25)

Lµ

N
E[‖wT − w∗‖2] ≤ Lµ

N

N

µ2
G

(T + E)

= L

µ

4 max{LµN E[‖w0 − w∗‖2], 1}
4L
µ max{LµN E[‖w0 − w∗‖2], 1}

= 1. (26)

Applying (25)with wT as starting point rather than w0 gives, for t ≥ max{T, 0},

E[‖wt − w∗‖2] ≤ N

µ2G
1

(t− T + E) ,

where G is now equal to
4 max{Lµ

N
E[‖wT − w∗‖2], 1},

which equals 4, see (26). For any given w0, we prove the theorem.

Appendix D. Analysis for Algorithm 2

The analysis for Algorithm 2 can be done in below.

D.1 Recurrence and Notation

We introduce the following notation: For each ξ, we define Dξ ⊆ {1, . . . , d} as the set of
possible non-zero positions in a vector of the form ∇f(w; ξ) for some w. We consider a fixed
mapping from u ∈ U to subsets Sξu ⊆ Dξ for each possible ξ. In our notation we also let Dξ

represent the diagonal d× d matrix with ones exactly at the positions corresponding to Dξ

and with zeroes elsewhere. Similarly, Sξu also denotes a diagonal matrix with ones at the
positions corresponding to Dξ.

We will use a probability distribution pξ(u) to indicate how to randomly select a matrix
Sξu. We choose the matrices Sξu and distribution pξ(u) so that there exist dξ such that

dξE[Sξu|ξ] = Dξ, (27)

where the expectation is over pξ(u).
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We will restrict ourselves to choosing non-empty sets Sξu that partition Dξ in D approxi-
mately equally sized sets together with uniform distributions pξ(u) for some fixed D. So, if
D ≤ |Dξ|, then sets have sizes b|Dξ|/Dc and d|Dξ|/De. For the special case D > |Dξ| we
have exactly |Dξ| singleton sets of size 1 (in our definition we only use non-empty sets).

For example, for D = ∆̄, where

∆̄ = max
ξ
{|Dξ|}

represents the maximum number of non-zero positions in any gradient computation f(w; ξ),
we have that for all ξ, there are exactly |Dξ| singleton sets Sξu representing each of the
elements in Dξ. Since pξ(u) = 1/|Dξ| is the uniform distribution, we have E[Sξu|ξ] = Dξ/|Dξ|,
hence, dξ = |Dξ|. As another example at the other extreme, for D = 1, we have exactly one
set Sξ1 = Dξ for each ξ. Now pξ(1) = 1 and we have dξ = 1.

We define the parameter
∆̄D

def= D · E[d|Dξ|/De],
where the expectation is over ξ. We use ∆̄D in the leading asymptotic term for the
convergence rate in our main theorem. We observe that

∆̄D ≤ E[|Dξ|] +D − 1

and ∆̄D ≤ ∆̄ with equality for D = ∆̄.
For completeness we define

∆ def= max
i

P (i ∈ Dξ) .

Let us remark, that ∆ ∈ (0, 1] measures the probability of collision. Small ∆ means that
there is a small chance that the support of two random realizations of ∇f(w; ξ) will have
an intersection. On the other hand, ∆ = 1 means that almost surely, the support of two
stochastic gradients will have non-empty intersection.

With this definition of ∆ it is an easy exercise to show that for iid ξ1 and ξ2 in a finite-sum
setting (i.e., ξi and ξ2 can only take on a finite set of possible values) we have

E[|〈∇f(w1; ξ1),∇f(w2; ξ2)〉|]

≤
√

∆
2
(
E[‖∇f(w1; ξ1)‖2] + E[‖∇f(w2; ξ2)‖2]

)
(28)

(see Proposition 10 in Leblond et al. (2018)). We notice that in the non-finite sum setting
we can use the property that for any two vectors a and b, 〈a, b〉 ≤ (‖a‖2 + ‖b‖2)/2 and this
proves (28) with ∆ set to ∆ = 1. In our asymptotic analysis of the convergence rate, we will
show how ∆ plays a role in non-leading terms — this, with respect to the leading term, it
will not matter whether we use ∆ = 1 or ∆ equal the probability of collision (in the finite
sum case).

We have
wt+1 = wt − ηtdξtSξtut∇f(ŵt; ξt), (29)

where ŵt represents the vector used in computing the gradient ∇f(ŵt; ξt) and whose entries
have been read (one by one) from an aggregate of a mix of previous updates that led to wj ,
j ≤ t. Here, we assume that
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• updating/writing to vector positions is atomic, reading vector positions is atomic, and

• there exists a “delay” τ such that, for all t, vector ŵt includes all the updates up
to and including those made during the (t− τ)-th iteration (where (29) defines the
(t+ 1)-st iteration).

Notice that we do not assume consistent reads and writes of vector positions. We
only assume that up to a “delay” τ all writes/updates are included in the values of positions
that are being read.

According to our definition of τ , in (29) vector ŵt represents an inconsistent read with
entries that contain all of the updates made during the 1st to (t−τ)-th iteration. Furthermore
each entry in ŵt includes some of the updates made during the (t− τ + 1)-th iteration up to
t-th iteration. Each entry includes its own subset of updates because writes are inconsistent.
We model this by “masks” Σt,j for t− τ ≤ j ≤ t− 1. A mask Σt,j is a diagonal 0/1-matrix
with the 1s expressing which of the entry updates made in the (j + 1)-th iteration are
included in ŵt. That is,

ŵt = wt−τ −
t−1∑
j=t−τ

ηjdξjΣt,jS
ξj
uj∇f(ŵj ; ξj). (30)

Notice that the recursion (29) implies

wt = wt−τ −
t−1∑
j=t−τ

ηjdξjS
ξj
uj∇f(ŵj ; ξj). (31)

By combining (31) and (30) we obtain

wt − ŵt = −
t−1∑
j=t−τ

ηjdξj (I − Σt,j)S
ξj
uj∇f(ŵj ; ξj), (32)

where I represents the identity matrix.

D.2 Main Analysis

We first derive a couple lemmas which will help us deriving our main bounds. In what
follows let Assumptions 1, 2, 3 and 4 hold for all lemmas. We define

Ft = σ(w0, ξ0, u0, σ0, . . . , ξt−1, ut−1, σt−1),

where
σt−1 = (Σt,t−τ , . . . ,Σt,t−1).

When we subtract τ from, for example, t and write t−τ , we will actually mean max{t−τ, 0}.

Lemma 6 We have

E[‖dξtSξtut∇f(ŵt; ξt)‖2|Ft, ξt] ≤ D‖∇f(ŵt; ξt)‖2

and
E[dξtSξtut∇f(ŵt; ξt)|Ft] = ∇F (ŵt).
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Proof For the first bound, if we take the expectation of ‖dξtSξtut∇f(ŵt; ξt)‖2 with respect
to ut, then we have (for vectors x we denote the value if its i-th position by [x]i)

E[‖dξtSξtut∇f(ŵt; ξt)‖2|Ft, ξt] = d2
ξt

∑
u

pξt(u)‖Sξtu ∇f(ŵt; ξt)‖2 =

= d2
ξt

∑
u

pξt(u)
∑
i∈Sξtu

[∇f(ŵt; ξt)]2i dξt
∑
i∈Dξt

[∇f(ŵt; ξt)]2i = dξt‖f(ŵt; ξt)‖2 ≤ D‖∇f(ŵt; ξt)‖2,

where the transition to the second line follows from (27).
For the second bound, if we take the expectation of dξtSξtut∇f(ŵt; ξt) wrt ut, then we

have:

E[dξtSξtut∇f(ŵt; ξt)|Ft, ξt] = dξt
∑
u

pξt(u)Sξtu ∇f(ŵt; ξt) = Dξt∇f(ŵt; ξt) = ∇f(ŵt; ξt),

and this can be used to derive

E[dξtSξtutf(ŵt; ξt)|Ft] = E[E[dξtSξtutf(ŵt; ξt)|Ft, ξt]|Ft] = ∇F (ŵt).

As a consequence of this lemma we derive a bound on the expectation of ‖wt − ŵt‖2.

Lemma 7 The expectation of ‖wt − ŵt‖2 is at most

E[‖wt − ŵt‖2] ≤ (1 +
√

∆τ)D
t−1∑
j=t−τ

η2
j (2L2E[‖ŵj − w∗‖2] +N).

Proof As shown in (32),

wt − ŵt = −
t−1∑
j=t−τ

ηjdξj (I − Σt,j)S
ξj
uj∇f(ŵj ; ξj).

This can be used to derive an expression for the square of its norm: ‖wt − ŵt‖2

= ‖
t−1∑
j=t−τ

ηjdξj (I − Σt,j)S
ξj
uj∇f(ŵj ; ξj)‖2

=
t−1∑
j=t−τ

‖ηjdξj (I − Σt,j)S
ξj
uj∇f(ŵj ; ξj)‖2

+
∑

i 6=j∈{t−τ,...,t−1}
〈ηjdξj (I − Σt,j)S

ξj
uj∇f(ŵj ; ξj), ηidξi(I − Σt,j)Sξiui∇f(ŵi; ξi)〉.
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Applying (28) to the inner products implies

‖wt − ŵt‖2 ≤
t−1∑
j=t−τ

‖ηjdξj (I − Σt,j)S
ξj
uj∇f(ŵj ; ξj)‖2

+
∑

i 6=j∈{t−τ,...,t−1}
[‖ηjdξj (I − Σt,j)S

ξj
uj∇f(ŵj ; ξj)‖2

+‖ηidξi(I − Σt,j)Sξiui∇f(ŵi; ξi)‖2]
√

∆/2

= (1 +
√

∆τ)
t−1∑
j=t−τ

‖ηjdξj (I − Σt,j)S
ξj
uj∇f(ŵj ; ξj)‖2

≤ (1 +
√

∆τ)
t−1∑
j=t−τ

η2
j ‖dξjS

ξj
uj∇f(ŵj ; ξj)‖2.

Taking expectations shows

E[‖wt − ŵt‖2] ≤ (1 +
√

∆τ)
t−1∑
j=t−τ

η2
jE[‖dξjS

ξj
uj∇f(ŵj ; ξj)‖2].

Now, we can apply Lemma 15: We first take the expectation over uj and this shows

E[‖wt − ŵt‖2] ≤ (1 +
√

∆τ)
t−1∑
j=t−τ

η2
jDE[‖∇f(ŵj ; ξj)‖2].

From Lemma 1 we infer

E[‖∇f(ŵj ; ξj)‖2] ≤ 4LE[F (ŵj)− F (w∗)] +N (33)

and by L-smoothness, see Equation 7 with ∇F (w∗) = 0,

F (ŵj)− F (w∗) ≤
L

2 ‖ŵj − w∗‖
2.

Combining the above inequalities proves the lemma.

Together with the next lemma we will be able to start deriving a recursive inequality
from which we will be able to derive a bound on the convergence rate.

Lemma 8 Let 0 < ηt ≤ 1
4LD for all t ≥ 0. Then,

E[‖wt+1 − w∗‖2|Ft] ≤
(

1− µηt
2

)
‖wt − w∗‖2 + [(L+ µ)ηt + 2L2η2

tD]‖ŵt − wt‖2 + 2η2
tDN.

Proof Since wt+1 = wt − ηtdξtSξtut∇f(ŵt; ξt), we have

‖wt+1 − w∗‖2 = ‖wt − w∗‖2 − 2ηt〈dξtSξtut∇f(ŵt; ξt), (wt − w∗)〉+ η2
t ‖dξtSξtut∇f(ŵt; ξt)‖2.
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We now take expectations over ut and ξt and use Lemma 15:

E[‖wt+1 − w∗‖2|Ft]
≤ ‖wt − w∗‖2 − 2ηt〈∇F (ŵt), (wt − w∗)〉+ η2

tDE[‖∇f(ŵt; ξt)‖2|Ft]
= ‖wt − w∗‖2 − 2ηt〈∇F (ŵt), (wt − ŵt)〉 − 2ηt〈∇F (ŵt), (ŵt − w∗)〉

+η2
tDE[‖∇f(ŵt; ξt)‖2|Ft].

By (3) and (7), we have

−〈∇F (ŵt), (ŵt − w∗)〉 ≤ −[F (ŵt)− F (w∗)]−
µ

2 ‖ŵt − w∗‖
2, and (34)

−〈∇F (ŵt), (wt − ŵt)〉 ≤ F (ŵt)− F (wt) + L

2 ‖ŵt − wt‖
2 (35)

Thus, E[‖wt+1 − w∗‖2|Ft] is at most

(34)(35)
≤ ‖wt − w∗‖2 + 2ηt[F (ŵt)− F (wt)] + Lηt‖ŵt − wt‖2 − 2ηt[F (ŵt)− F (w∗)]
− µηt‖ŵt − w∗‖2 + η2

tDE[‖∇f(ŵt; ξt)‖2|Ft]
= ‖wt − w∗‖2 − 2ηt[F (wt)− F (w∗)] + Lηt‖ŵt − wt‖2 − µηt‖ŵt − w∗‖2

+ η2
tDE[‖∇f(ŵt; ξt)‖2|Ft].

Since

−‖ŵt − w∗‖2 = −‖(wt − w∗)− (wt − ŵt)‖2
(20)
≤ −1

2‖wt − w∗‖
2 + ‖wt − ŵt‖2,

E[‖wt+1 − w∗‖2|Ft, σt] is at most

(1− µηt2 )‖wt−w∗‖2− 2ηt[F (wt)−F (w∗)] + (L+µ)ηt‖ŵt−wt‖2 + η2
tDE[‖∇f(ŵt; ξt)‖2|Ft].

We now use ‖a‖2 = ‖a− b+ b‖2 ≤ 2‖a− b‖2 + 2‖b‖2 for E[‖∇f(ŵt; ξt)‖2|Ft] to obtain

E[‖∇f(ŵt; ξt)‖2|Ft] ≤ 2E[‖∇f(ŵt; ξt)−∇f(wt; ξt)‖2|Ft] + 2E[‖∇f(wt; ξt)‖2|Ft]. (36)

By Lemma 1, we have

E[‖∇f(wt; ξt)‖2|Ft] ≤ 4L[F (wt)− F (w∗)] +N. (37)

Applying (6) twice gives

E[‖∇f(ŵt; ξt)−∇f(wt; ξt)‖2|Ft, σt] ≤ L2‖ŵt − wt‖2

and together with (36) and (37) we obtain

E[‖∇f(ŵt; ξt)‖2|Ft] ≤ 2L2‖ŵt − wt‖2 + 4L[F (wt)− F (w∗)] +N.
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Plugging this into the previous derivation yields

E[‖wt+1 − w∗‖2|Ft] ≤ (1− µηt
2 )‖wt − w∗‖2 − 2ηt[F (wt)− F (w∗)] + (L+ µ)ηt‖ŵt − wt‖2

+ 2L2η2
tD‖ŵt − wt‖2 + 8Lη2

tD[F (wt)− F (w∗)] + 2η2
tDN

= (1− µηt
2 )‖wt − w∗‖2 + [(L+ µ)ηt + 2L2η2

tD]‖ŵt − wt‖2

− 2ηt(1− 4LηtD)[F (wt)− F (w∗)] + 2η2
tDN.

Since ηt ≤ 1
4LD , −2ηt(1− 4LηtD)[F (wt)− F (w∗)] ≤ 0 (we can get a negative upper bound

by applying strong convexity but this will not improve the asymptotic behavior of the
convergence rate in our main result although it would improve the constant of the leading
term making the final bound applied to SGD closer to the bound of Theorem 2 for SGD),

E[‖wt+1 − w∗‖2|Ft] ≤
(

1− µηt
2

)
‖wt − w∗‖2 + [(L+ µ)ηt + 2L2η2

tD]‖ŵt − wt‖2 + 2η2
tDN

and this concludes the proof.

Assume 0 < ηt ≤ 1
4LD for all t ≥ 0. Then, after taking the full expectation of the

inequality in Lemma 8, we can plug Lemma 7 into it which yields the recurrence

E[‖wt+1 − w∗‖2] ≤
(

1− µηt
2

)
E[‖wt − w∗‖2] +

[(L+ µ)ηt + 2L2η2
tD](1 +

√
∆τ)D

t−1∑
j=t−τ

η2
j (2L2E[‖ŵj − w∗‖2] +N)

+2η2
tDN. (38)

This can be solved by using the next lemma. For completeness, we follow the convention
that an empty product is equal to 1 and an empty sum is equal to 0, i.e.,

k∏
i=h

gi = 1 and
k∑
i=h

gi = 0 if k < h. (39)

Lemma 9 Let Yt, βt and γt be sequences such that Yt+1 ≤ βtYt + γt, for all t ≥ 0. Then,

Yt+1 ≤ (
t∑
i=0

[
t∏

j=i+1
βj ]γi) + (

t∏
j=0

βj)Y0. (40)

Proof We prove the lemma by using induction. It is obvious that (40) is true for t = 0
because Y1 ≤ β1Y0 + γ1. Assume as induction hypothesis that (40) is true for t− 1. Since
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Yt+1 ≤ βtYt + γt,

Yt+1 ≤ βtYt + γt

≤ βt[(
t−1∑
i=0

[
t−1∏
j=i+1

βj ]γi) + (
t−1∏
j=0

βj)Y0] + γt

(39)= (
t−1∑
i=0

βt[
t−1∏
j=i+1

βj ]γi) + βt(
t−1∏
j=0

βj)Y0 + (
t∏

j=t+1
βj)γt

= [(
t−1∑
i=0

[
t∏

j=i+1
βj ]γi) + (

t∏
j=t+1

βj)γt] + (
t∏

j=0
βj)Y0

= (
t∑
i=0

[
t∏

j=i+1
βj ]γi) + (

t∏
j=0

βj)Y0.

Applying the above lemma to (38) will yield the following bound.

Lemma 10 Let ηt = αt
µ(t+E) with 4 ≤ αt ≤ α and E = max{2τ, 4LαD

µ }. Then,

E[‖wt+1 − w∗‖2] ≤ α2D

µ2
1

(t+ E − 1)2 ·

·

 t∑
i=1

4ai(1 +
√

∆τ)[Nτ + 2L2
i−1∑
j=i−τ

E[‖ŵj − w∗‖2] + 2N


+ (E + 1)2

(t+ E − 1)2E[‖w0 − w∗‖2],

where ai = (L+ µ)ηi + 2L2η2
iD.

Proof Notice that we may use (38) because ηt ≤ 1
4LD follows from ηt = αt

µ(t+E) ≤
α

µ(t+E)
combined with E ≥ 4LαD

µ . From (38) with at = (L+µ)ηt + 2L2η2
tD and ηt being decreasing

in t we infer E[‖wt+1 − w∗‖2]

≤
(
1− µηt

2
)
E[‖wt − w∗‖2] + at(1 +

√
∆τ)Dη2

t−τ
∑t−1
j=t−τ (2L2E[‖ŵj − w∗‖2] +N)

+2η2
tDN

=
(
1− µηt

2
)
E[‖wt − w∗‖2] + at(1 +

√
∆τ)Dη2

t−τ [Nτ + 2L2∑t−1
j=t−τ E[‖ŵj − w∗‖2]

+2η2
tDN.

Since E ≥ 2τ , 1
t−τ+E ≤

2
t+E . Hence, together with ηt−τ = αt−τ

µ(t−τ+E) ≤
α

µ(t−τ+E) we have

η2
t−τ ≤

4α2

µ2
1

(t+ E)2 . (41)
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This translates the above bound into

E[‖wt+1 − w∗‖2] ≤ βtE[‖wt − w∗‖2] + γt,

for

βt = 1− µηt
2 ,

γt = 4at(1 +
√

∆τ)Dα
2

µ2
1

(t+ E)2 [Nτ + 2L2
t−1∑
j=t−τ

E[‖ŵj − w∗‖2] + 2η2
tDN,where

at = (L+ µ)ηt + 2L2η2
tD.

Application of Lemma 9 for Yt+1 = E[‖wt+1 − w∗‖2] and Yt = E[‖wt − w∗‖2] gives

E[‖wt+1 − w∗‖2] ≤

 t∑
i=0

 t∏
j=i+1

(
1− µηj

2

) γi
+

 t∏
j=0

(
1− µηj

2

)E[‖w0 − w∗‖2].

In order to analyze this formula, since ηj = αj
µ(j+E) with αj ≥ 4, we have

1− µηj
2 = 1− αj

2(j + E) ≤ 1− 2
j + E

,

Hence (we can also use 1− x ≤ e−x which leads to similar results and can be used to
show that our choice for ηt leads to the tightest convergence rates in our framework),

t∏
j=i

(
1− µηj

2

)
≤

t∏
j=i

(
1− 2

j + E

)
=

t∏
j=i

j + E − 2
j + E

= i+ E − 2
i+ E

i+ E − 1
i+ E + 1

i+ E

i+ E + 2
i+ E + 1
i+ E + 3 . . .

t+ E − 3
t+ E − 1

t+ E − 2
t+ E

= (i+ E − 2)(i+ E − 1)
(t+ E − 1)(t+ E) ≤ (i+ E − 1)2

(t+ E − 1)(t+ E) ≤
(i+ E)2

(t+ E − 1)2 .

From this calculation we infer that

E[‖wt+1 − w∗‖2] ≤
(

t∑
i=0

[
(i+ E)2

(t+ E − 1)2

]
γi

)
+ (E + 1)2

(t+ E − 1)2E[‖w0 − w∗‖2]. (42)

Now, we substitute ηi ≤ α
µ(i+E) in γi and compute

(i+ E)2

(t+ E − 1)2γi

= (i+ E)2

(t+ E − 1)2 4ai(1 +
√

∆τ)Dα
2

µ2
1

(i+ E)2 [Nτ + 2L2
i−1∑
j=i−τ

E[‖ŵj − w∗‖2]

+ (i+ E)2

(t+ E − 1)2 2ND α2

µ2(i+ E)2

= α2D

µ2
1

(t+ E − 1)2

4ai(1 +
√

∆τ)[Nτ + 2L2
i−1∑
j=i−τ

E[‖ŵj − w∗‖2] + 2N

 .
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Substituting this in (42) proves the lemma.

As an immediate corollary we can apply the inequality ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2 to
E[‖ŵt+1 − w∗‖2] to obtain

E[‖ŵt+1 − w∗‖2] ≤ 2E[‖ŵt+1 − wt+1‖2] + 2E[‖wt+1 − w∗‖2], (43)

which in turn can be bounded by the previous lemma together with Lemma 7: E[‖ŵt+1−w∗‖2]

≤ 2(1 +
√

∆τ)D
t∑

j=t+1−τ
η2
j (2L2E[‖ŵj − w∗‖2] +N) +

2α
2D

µ2
1

(t+ E − 1)2

 t∑
i=1

4ai(1 +
√

∆τ)[Nτ + 2L2
i−1∑
j=i−τ

E[‖ŵj − w∗‖2] + 2N

+

(E + 1)2

(t+ E − 1)2E[‖w0 − w∗‖2].

Now assume a decreasing sequence Zt for which we want to prove that E[‖ŵt−w∗‖2] ≤ Zt
by induction in t. Then, the above bound can be used together with the property that Zt
and ηt are decreasing in t to show

t∑
j=t+1−τ

η2
j (2L2E[‖ŵj − w∗‖2] +N) ≤ τη2

t−τ (2L2Zt+1−τ +N)

≤ 4τ α
2

µ2
1

(t+ E − 1)2 (2L2Zt+1−τ +N)

where the last inequality follows from (41), and

i−1∑
j=i−τ

E[‖ŵj − w∗‖2] ≤ τZi−τ .

From these inequalities we infer

E[‖ŵt+1 − w∗‖2] ≤ 8(1 +
√

∆τ)τDα
2

µ2
1

(t+ E − 1)2 (2L2Zt+1−τ +N) +

2α
2D

µ2
1

(t+ E − 1)2

(
t∑
i=1

[
4ai(1 +

√
∆τ)[Nτ + 2L2τZi−τ ] + 2N

])
+

(E + 1)2

(t+ E − 1)2E[‖w0 − w∗‖2]. (44)
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Even if we assume a constant Z ≥ Z0 ≥ Z1 ≥ Z2 ≥ . . ., we can get a first bound on the
convergence rate of vectors ŵt: Substituting Z gives

E[‖ŵt+1 − w∗‖2] ≤ 8(1 +
√

∆τ)τDα
2

µ2
1

(t+ E − 1)2 (2L2Z +N) +

2α
2D

µ2
1

(t+ E − 1)2

(
t∑
i=1

[
4ai(1 +

√
∆τ)[Nτ + 2L2τZ] + 2N

])
+

(E + 1)2

(t+ E − 1)2E[‖w0 − w∗‖2]. (45)

Since ai = (L+ µ)ηi + 2L2η2
iD and ηi ≤ α

µ(i+E) , we have

t∑
i=1

ai = (L+ µ)
t∑
i=1

ηi + 2L2D
t∑
i=1

η2
i

≤ (L+ µ)
t∑
i=1

α

µ(i+ E) + 2L2D
t∑
i=1

α2

µ2(i+ E)2

≤ (L+ µ)α
µ

t∑
i=1

1
i

+ 2L2α2D

µ2

t∑
i=1

1
i2

≤ (L+ µ)α
µ

(1 + ln t) + L2α2Dπ2

3µ2 , (46)

where the last inequality is a property of the harmonic sequence
∑t
i=1

1
i ≤ 1 + ln t and∑t

i=1
1
i2 ≤

∑∞
i=1

1
i2 = π2

6 .
Substituting (46) in (45) and collecting terms yields

E[‖ŵt+1 − w∗‖2] ≤

2α
2D

µ2
1

(t+ E − 1)2

(
2Nt+ 4(1 +

√
∆τ)τ [N + 2L2Z]

{
(L+ µ)α

µ
(1 + ln t) + L2α2Dπ2

3µ2 + 1

})

+ (E + 1)2

(t+ E − 1)2E[‖w0 − w∗‖2]. (47)

Notice that the asymptotic behavior in t is dominated by the term

4α2DN

µ2
t

(t+ E − 1)2 .

If we define Zt+1 to be the right hand side of (47) and observe that this Zt+1 is decreasing
and a constant Z exists (since the terms with Z decrease much faster in t compared to
the dominating term), then this Zt+1 satisfies the derivations done above and a proof by
induction can be completed.

Our derivations prove our main result: The expected convergence rate of read vectors is

E[‖ŵt+1 − w∗‖2] ≤ 4α2DN

µ2
t

(t+ E − 1)2 +O

( ln t
(t+ E − 1)2

)
.
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We can use this result in Lemma 10 in order to show that the expected convergence rate
E[‖wt+1 − w∗‖2] satisfies the same bound.

We remind the reader, that in the (t + 1)-th iteration at most ≤ d|Dξt |/De vector
positions are updated. Therefore the expected number of single vector entry updates is at
most ∆̄D/D.

Theorem 6. Suppose Assumptions 1, 2, 3 and 4 and consider Algorithm 2. Let ηt = αt
µ(t+E)

with 4 ≤ αt ≤ α and E = max{2τ, 4LαD
µ }. Then, t′ = t∆̄D/D is the expected number of

single vector entry updates after t iterations and

E[‖ŵt − w∗‖2] ≤ 4α2DN
µ2

t
(t+E−1)2 +O

(
ln t

(t+E−1)2

)
,

E[‖wt − w∗‖2] ≤ 4α2DN
µ2

t
(t+E−1)2 +O

(
ln t

(t+E−1)2

)
,

where N = 2E[‖∇f(w∗; ξ)‖2] and w∗ = arg minw F (w).

D.3 Convergence without Convexity of Component Functions

For the non-convex case of the component functions, L in (33) must be replaced by Lκ and
as a result L2 in Lemma 7 must be replaced by L2κ. Also L in (37) must be replaced by
Lκ. We now require that ηt ≤ 1

4LκD so that −2ηt(1− 4LκηtD)[F (wt)− F (w∗)] ≤ 0. This
leads to Lemma 8 where no changes are needed except requiring ηt ≤ 1

4LκD . The changes in
Lemmas 7 and 8 lead to a Lemma 10 where we require E ≥ 4LκαD

µ and where in the bound
of the expectation L2 must be replaced by L2κ. This perculates through to inequality (47)
with a similar change finally leading to Theorem 7, i.e., Theorem 6 where we only need to
strengthen the condition on E to E ≥ 4LκαD

µ in order to remove Assumption 3.

D.4 Sensitivity to τ

What about the upper bound’s sensitivity with respect to τ? Suppose τ is not a constant
but an increasing function of t, which also makes E a function of t:

2LαD
µ

≤ τ(t) ≤ t and E(t) = 2τ(t).

In order to obtain a similar theorem we increase the lower bound on αt to

12 ≤ αt ≤ α.

This allows us to modify the proof of Lemma 10 where we analyse the product

t∏
j=i

(
1− µηj

2

)
.

Since αj ≥ 12 and E(j) = 2τ(j) ≤ 2j,

1− µηj
2 = 1− αj

2(j + E(j)) ≤ 1− 12
2(j + 2j) = 1− 2

j
≤ 1− 2

j + 1 .
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The remaining part of the proof of Lemma 10 continues as before where constant E in the
proof is replaced by 1. This yields instead of (42)

E[‖wt+1 − w∗‖2] ≤
(

t∑
i=1

[
(i+ 1)2

t2

]
γi

)
+ 4
t2
E[‖w0 − w∗‖2].

We again substitute ηi ≤ α
µ(i+E(i)) in γi, realize that (i+1)

(i+E(i)) ≤ 1, and compute

(i+ 1)2

t2
γi

= (i+ 1)2

t2
4ai(1 +

√
∆τ(i))Dα

2

µ2
1

(i+ E(i))2 [Nτ(i) + 2L2
i−1∑

j=i−τ(i)
E[‖ŵj − w∗‖2]

+ (i+ 1)2

t2
2ND α2

µ2(i+ E(i))2

≤ α2D

µ2
1
t2

4ai(1 +
√

∆τ(i))[Nτ(i) + 2L2
i−1∑

j=i−τ(i)
E[‖ŵj − w∗‖2] + 2N

 .
This gives a new Lemma 10:

Lemma 11 Assume 2LαD
µ ≤ τ(t) ≤ t with τ(t) monotonic increasing. Let ηt = αt

µ(t+E(t))
with 12 ≤ αt ≤ α and E(t) = 2τ(t). Then,

E[‖wt+1 − w∗‖2] ≤ α2D

µ2
1
t2
·

·

 t∑
i=1

4ai(1 +
√

∆τ(i))[Nτ(i) + 2L2
i−1∑

j=i−τ(i)
E[‖ŵj − w∗‖2] + 2N


+ 4
t2
E[‖w0 − w∗‖2],

where ai = (L+ µ)ηi + 2L2η2
iD.

Now we can continue the same analysis that led to Theorem 6 and conclude that there
exists a constant Z such that, see (45),

E[‖ŵt+1 − w∗‖2] ≤ 8(1 +
√

∆τ(t))τ(t)Dα
2

µ2
1
t2

(2L2Z +N) +

2α
2D

µ2
1
t2

(
t∑
i=1

[
4ai(1 +

√
∆τ(i))[Nτ(i) + 2L2τ(i)Z] + 2N

])
+

4
t2
E[‖w0 − w∗‖2]. (48)

Let us assume
τ(t) ≤

√
t · L(t), (49)
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where
L(t) = 1

ln t −
1

(ln t)2

which has the property that the derivative of t/(ln t) is equal to L(t). Now we observe

t∑
i=1

aiτ(i)2 =
t∑
i=1

[(L+ µ)ηi + 2L2η2
iD]τ(i)2 ≤

t∑
i=1

[(L+ µ) α
µi

+ 2L2 α2

µ2i2
D] · iL(i)

= (L+ µ)α
µ

t∑
i=1

L(i) +O(ln t) = (L+ µ)α
µ

t

ln t +O(ln t)

and
t∑
i=1

aiτ(i) =
t∑
i=1

[(L+ µ)ηi + 2L2η2
iD]τ(i) ≤

t∑
i=1

[(L+ µ) α
µi

+ 2L2 α2

µ2i2
D] ·
√
i

= O(
t∑
i=1

1√
i
) = O(

√
t).

Substituting both inequalities in (48) gives E[‖ŵt+1 − w∗‖2]

≤ 8(1 +
√

∆τ(t))τ(t)Dα
2

µ2
1
t2

(2L2Z +N) +

2α
2D

µ2
1
t2

(
2Nt+ 4

√
∆[(L+ µ)α

µ

t

ln t +O(ln t)][N + 2L2Z] +O(
√
t)
)

+

4
t2
E[‖w0 − w∗‖2]

≤ 2α
2D

µ2
1
t2

(
2Nt+ 4

√
∆[(1 + (L+ µ)α

µ
) t

ln t +O(ln t)][N + 2L2Z] +O(
√
t)
)

+ 4
t2
E[‖w0 − w∗‖2] (50)

Again we define Zt+1 as the right hand side of this inequality. Notice that Zt = O(1/t),
since the above derivation proves

E[‖ŵt+1 − w∗‖2] ≤ 4α2DN

µ2
1
t

+O( 1
t ln t).

Summarizing we have the following main lemma:

Lemma 12 Let Assumptions 1, 2, 3 and 4 hold and consider Algorithm 2. Assume 2LαD
µ ≤

τ(t) ≤
√
t · L(t) with τ(t) monotonic increasing. Let ηt = αt

µ(t+2τ(t)) with 12 ≤ αt ≤ α. Then,
the expected convergence rate of read vectors is

E[‖ŵt+1 − w∗‖2] ≤ 4α2DN

µ2
1
t

+O( 1
t ln t),

where L(t) = 1
ln t −

1
(ln t)2 . The expected convergence rate E[‖wt+1 − w∗‖2] satisfies the same

bound.
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Notice that we can plug Zt = O(1/t) back into an equivalent of (44) where we may bound
Zi−τ(i) = O(1/(i− τ(i)) which replaces Z in the second line of (45). On careful examination
this leads to a new upper bound (50) where the 2L2Z terms gets absorped in a higher order
term. This can be used to show that, for

t ≥ T0 = exp[2
√

∆(1 + (L+ µ)α
µ

)],

the higher order terms that contain τ(t) (as defined above) are at most the leading term as
given in Lemma 12.

Upper bound (50) also shows that, for

t ≥ T1 = µ2

α2ND
‖w0 − w∗‖2,

the higher order term that contains ‖w0 − w∗‖2 is at most the leading term.

D.5 Convergence of Hogwild! with probability 1

Lemma 13 Let us consider the sequence w0, w1, w2, . . . , wt, . . . , wn generated by (29):

wt+1 = wt − ηtdξtSξtut∇f(ŵt; ξt),

and define
mt = max

0≤i≤n,0≤t′≤t
‖∇f(wt′ ; ξi)‖.

Then,

mt ≤ m0 exp(LD
t−1∑
i=0

ηi), (51)

where dξt ≤ D for all ξt.

Proof From the L-smoothness assumption (i.e., ‖∇f(w; ξ)−∇f(w′; ξ)‖ ≤ L‖w−w′‖, ∀w,w′ ∈
Rd), for any given ξi:

‖∇f(wt+1; ξi)−∇f(wt; ξi)‖ ≤ L‖wt+1 − wt‖ = L‖ηtdξtSξtut∇f(ŵt; ξt)‖
≤ LDηt‖∇f(ŵt; ξt)‖.

Since
mt = max

0≤i≤n,0≤t′≤t
‖∇f(wt′ ; ξi)‖,

we have
‖∇f(wt+1; ξi)−∇f(wt; ξi)‖ ≤ LDηtmt

for any i ∈ [n] and t. Using the triangular inequality, we obtain

‖∇f(wt+1; ξi)‖ ≤ ‖∇f(wt; ξi)‖+ ‖∇f(wt+1; ξi)−∇f(wt; ξi)‖
∀i,‖∇f(wt;ξi)‖≤mt

≤ mt + LDηt‖∇f(ŵt; ξt)‖
∀i,‖∇fi(ŵt;ξi)‖≤mt

≤ (1 + LDηt)mt.
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Moreover, the result above implies mt+1 ≤ (1 + LDηt)mt and unrolling mt yields

mt+1 ≤ m0

t∏
i=0

(1 + LDηi).

For all x ≥ 0, it is always true that 1 + x ≤ exp(x). Hence, we have

mt+1 ≤ m0

t∏
i=0

(1 + LDηi) ≤ m0

t∏
i=0

exp(LDηi) ≤ m0 exp(LD[
t∑
i=0

ηi]).

Theorem 5 (Sufficient conditions for almost sure convergence for Hogwild!) Let
Assumptions 1, 2, 3 and 4 hold. Consider Hogwild! method described in Algorithm 2 with a
stepsize sequence such that

0 < ηt = 1
LD(2 + β)(k + t) <

1
4LD, β > 0, k ≥ 3τ.

Then, the following holds w.p.1 (almost surely)

‖wt − w∗‖ → 0.

Proof As shown in Lemma 8, for 0 < ηt ≤ 1
4LD , we have

E[‖wt+1 − w∗‖2|Ft] ≤
(

1− µηt
2

)
‖wt − w∗‖2 + [(L+ µ)ηt + 2L2η2

tD]‖ŵt − wt‖2 + 2η2
tDN

= ‖wt − w∗‖2 −
µηt
2 ‖wt − w∗‖

2 + [(L+ µ)ηt + 2L2η2
tD]‖ŵt − wt‖2

+ 2η2
tDN.

If we can show that
∑∞
t=0[(L + µ)ηt + 2L2η2

tD]‖ŵt − wt‖2 is finite, then it is straight
forward to apply the proof technique from Theorem 1 to show that ‖wt − w∗‖2 → 0 w.p.1.
From the proof of Lemma 7, we know ‖wt − ŵt‖2 is at most

(1 +
√

∆τ)
t−1∑
j=t−τ

η2
j ‖dξjS

ξj
uj∇f(ŵj ; ξj)‖2 ≤ (1 +

√
∆τ)D2

t−1∑
j=t−τ

η2
j ‖∇f(ŵj ; ξj)‖2

≤ (1 +
√

∆τ)D2τm2
t η

2
t−τ .

Since ηt−τ = (1 − τ
k+t−τ )ηt < 1

2ηt when k ≥ 3τ for all t ≥ 0, it yields ‖wt − ŵt‖2 <
(1 +

√
∆τ)D2τ 1

4η
2
tm

2
t . Hence

∑∞
t=0[(L+ µ)ηt + 2L2η2

tD]‖ŵt − wt‖2 is at most

[(L+ µ)η0 + 2L2η2
0D](1 +

√
∆τ)D2τ

∞∑
t=0

η2
tm

2
t .
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Combining mt ≤ m0 exp(LD
∑t
i=0 ηi) (see (51)) and ηi = 1

LD(2+β)(k+i) yields

mt ≤ m0 exp( 1
2 + β

t∑
i=1

1
i
) ≤ m0 exp( 1

2 + β
(1 + ln t)) ≤ m0 exp( 1

2 + β
)t

1
2+β .

The second inequality is a property of harmonic number Ht =
∑t
i=1

1
i ≤ 1 + ln t. Hence,

ηtmt ≤
1

L(2 + β)tm0 exp( 1
2 + β

)t
1

2+β ≤
m0 exp( 1

2+β )
L(2 + β) t

−(1+β)
2+β .

Hence, we obtain

(ηtmt)2 ≤ [
m0 exp( 1

2+β )
L(2 + β) ]2t

−(2+2β)
2+β ≤ [

m0 exp( 1
2+β )

L(2 + β) ]2t−(1+ρ),

where ρ = β
2+β . Due to the property of over-harmonic series,

∑∞
t=1

1
t1+ρ converges for any

ρ > 0. In other words,
∑∞
t=0(ηtmt)2 is finite or

∑∞
t=0[(L+µ)ηt+2L2η2

tD]‖ŵt−wt‖2 is finite.

D.6 Convergence of Large Stepsizes

Theorem 9 Let Assumptions 1, 2, and 3 hold. Consider Algorithm 1 with a stepsize sequence
such that ηt ≤ 1

2L , ηt → 0, d
dtηt ≤ 0 and

∑∞
t=0 ηt →∞. Then,

E[‖wt+1 − w∗‖2]→ 0.

Proof As shown in (24)

E[‖wt+1 − w∗‖2] ≤ (1− µηt)E[‖wt − w∗‖2] + η2
tN,

when ηt ≤ 1
2L .

Let Yt+1 = E[‖wt+1 −w∗‖2], Yt = E[‖wt −w∗‖2], βt = 1− µηt and γt = η2
tN . As proved

in Lemma 9, if Yt+1 ≤ βtYt + γt, then

Yt+1 ≤
t∑
i=0

[
t∏

j=i+1
βj ]γi + (

t∏
i=0

βi)Y1

=
t∑
i=0

[
t∏

j=i+1
(1− µηj)]γi + [

t∏
i=0

(1− µηi)]E[‖w1 − w∗‖2]

Let us define
n(j) = µηj . (52)

Since 1− x ≤ exp(−x) for all x ≥ 0,

t∏
j=i+1

(1− µηj) ≤ exp(−
t∑

j=i+1
(µηj)) = exp(−

t∑
j=i+1

n(j)).
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Furthermore, since n(j) is decreasing in j, we have

t∑
j=i+1

n(j) ≥
∫ t+1

x=i+1
n(x)dx.

These two inequalities can be used to derive

Yt+1 ≤
t∑
i=0

exp(−
t∑

j=i+1
n(j))n(i)2N + exp(−

t∑
j=0

n(j))Y0

≤
t∑
i=0

exp(−
∫ t+1

x=i+1
n(x)dx)n(i)2N + exp(−

∫ t+1

x=0
n(x)dx)Y0

=
t∑
i=0

exp(−[M(t+ 1)−M(i+ 1)])n(i)2N + exp(−M(t+ 1))Y0,

where
M(y) =

∫ y

x=0
n(x)dx and d

dy
M(y) = n(y).

We focus on

F =
t∑
i=0

exp(−[M(t+ 1)−M(i+ 1)])n(i)2.

We notice that

F = exp(−M(t+ 1))
t∑
i=0

exp(M(i+ 1))n(i)2.

We know that exp(M(x + 1)) increases and n(x)2 decreases, hence, in the most general
case either their product first decreases and then starts to increase or their product keeps
on increasing. We first discuss the decreasing and increasing case. Let a(x) = exp(M(x+
1))n(x)2 denote this product and let integer j ≥ 0 be such that a(0) ≥ a(1) ≥ . . . ≥ a(j) and
a(j) ≤ a(j + 1) ≤ a(j + 2) ≤ . . . (notice that j = 0 expresses the situation where a(i) only
increases). Function a(x) for x ≥ 0 is minimized for some value h in [j, j + 1). For 1 ≤ i ≤ j,
a(i) ≤

∫ i
x=i−1 a(x)dx, and for j + 1 ≤ i, a(i) ≤

∫ i+1
x=i a(x)dx. This yields the upper bound

t∑
i=0

a(i) = a(0) +
j∑
i=1

a(i) +
t∑

i=j+1
a(i)

≤ a(0) +
∫ j

x=0
a(x)dx+

∫ t+1

x=j+1
a(x)dx,

≤ a(0) +
∫ t+1

x=0
a(x)dx.

The same upper bound holds for the other case as well, i.e., if a(i) is only decreasing. We
conclude

F ≤ exp(−M(t+ 1))[exp(M(2))n(0)2 +
∫ j+1

x=0
exp(M(x+ 1))n(x)2dx].

42



New Convergence Aspects of Stochastic Gradient Algorithms

Combined with

M(x+ 1) =
∫ x+1

y=0
n(y)dy ≤

∫ x

y=0
n(y)dy + n(x) = M(x) + n(x)

we obtain

F ≤ exp(−M(t+ 1))[exp(M(2))n(0)2 +
∫ t+1

x=0
exp(M(x))n(x)2 exp(n(x))dx]

≤ exp(−M(t+ 1))[exp(M(2))n(0)2 + exp(n(0))
∫ t+1

x=0
exp(M(x))n(x)2dx].

This gives

Yt+1 ≤ exp(−M(t+ 1))[exp(M(1))n(0)2 + exp(n(0))
∫ t+1

x=0
exp(M(x))n(x)2dx]N

+ exp(−M(t+ 1))Y0

= N exp(n(0))C(t+ 1) + exp(−M(t+ 1))[exp(M(1))n(0)2N + Y0], (53)

where
C(t) = exp(−M(t))

∫ t

x=0
exp(M(x))n(x)2dx.

For y ≤ t, we derive (notice that n(x) is decreasing)

C(t) = exp(−M(t))
∫ t

x=0
exp(M(x))n(x)2dx

= exp(−M(t))
∫ y

x=0
exp(M(x))n(x)2dx+ exp(−M(t))

∫ t

x=y
exp(M(x))n(x)2dx

≤ exp(−M(t))
∫ y

x=0
exp(M(x))n(x)2dx+ exp(−M(t))

∫ t

x=y
exp(M(x))n(x)n(y)dx

= exp(−M(t))
∫ y

x=0
exp(M(x))n(x)2dx+ exp(−M(t))n(y)

∫ t

x=y
exp(M(x))n(x)dx

= exp(−M(t))
∫ y

x=0
exp(M(x))n(x)2dx+ n(y)[1− exp(−M(t)) exp(M(y))]

≤ exp(−M(t))
∫ y

x=0
exp(M(x))n(x)2dx+ n(y).

Let ε > 0. Since n(y) → 0 as y → ∞, there exists a y such that n(y) ≤ ε/2. Since
M(t) → ∞ as t → ∞, exp(−M(t)) → 0 as t → ∞. Hence, there exists a T such that for
t ≥ T , exp(−M(t))

∫ y
x=0 exp(M(x))n(x)2dx ≤ ε/2. This implies C(t) ≤ ε for t ≥ T . This

proves C(t)→ 0 as t→∞, and we conclude Yt → 0 as t→∞.

Theorem 10 Let Assumptions 1, 2, and 3 hold. Consider Algorithm 1 with a stepsize
sequence such that ηt ≤ 1

2L , ηt → 0, d
dtηt ≤ 0, and

∑∞
t=0 ηt →∞. Then,

E[‖wt+1 − w∗‖2] ≤ N exp(n(0))2n(M−1(ln[n(t+ 1)
n(0) ] +M(t+ 1)))

+ exp(−M(t+ 1))[exp(M(1))n(0)2N + E[‖w0 − w∗‖2]],

43



Nguyen, Nguyen, Richtárik, Scheinberg, Takáč, and van Dijk

where n(t) = µηt and M(t) =
∫ t
x=0 n(x)dx.

Proof We are ready to compute the convergence rate of Yt = E[‖wt − w∗‖2] for a given
M(t). We have shown that C(t) ≤ exp(−M(t))

∫ y
x=0 exp(M(x))n(x)2dx + n(y). We are

interested in the following problem: finding the largest y ≤ t such as

exp(−M(t))[
∫ y

x=0
exp(M(x))n(x)2dx] ≤ n(y).

The solution is equal to

y = sup{y ≤ t : exp(−M(t))[
∫ y

x=0
exp(M(x))n(x)2dx] ≤ n(y)}.

Since M(x) always decreases,

y ≥ sup{y ≤ t : exp(−M(t))[
∫ y

x=0
exp(M(x))n(x)n(0)dx] ≤ n(y)}

= sup{y ≤ t : exp(−M(t))n(0)[exp(M(y))− exp(M(0))] ≤ n(y)}

= sup{y ≤ t : exp(M(y)) ≤ exp(M(0)) + n(y)
n(0) exp(M(t))}

≥ sup{y ≤ t : exp(M(y)) ≤ exp(M(0)) + n(t)
n(0) exp(M(t))}

≥ sup{y ≤ t : exp(M(y)) ≤ n(t)
n(0) exp(M(t))}

= sup{y ≤ t : M(y) ≤ ln[ n(t)
n(0) ] +M(t)}

= M−1(ln[ n(t)
n(0) ] +M(t)),

where M−1(t) exists for t ∈ (0, n(0)] (since M(y) strictly increases and maps into (0, n(0)]
for y ≥ 0).

Therefore,
C(t) ≤ 2n(M−1(ln[ n(t)

n(0) ] +M(t)))

and

Yt+1 ≤ N exp(n(0))2n(M−1(ln[n(t+ 1)
n(0) ]+M(t+1)))+exp(−M(t+1))[exp(M(1))n(0)2N+Y0].

Theorem 11 Among all stepsizes ηq,t = 1/(K + t)q where q > 0, K is a constant such that
ηq,t ≤ 1

2L , SGD algorithm enjoys the fastest convergence with stepsize η1,t = 1/(2L+ t).

Proof In (53) we have

E[‖wt − w∗‖2] ≤ AC(t) +B exp(−M(t)),
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where A = N exp(n(0)) and B = exp(M(1))n(0)2N + E[‖w0 − w∗‖2]. Let us denote
Cq(t) = C(t), nq(t) = µ/(K + t)q where ηq,t = 1/(K + t)q. It is obvious that nq(t) > n1(t)
for all t and q < 1. It implies for any nq(t) with q < 1,

exp(−M(t)) < exp(−
∫ t

x=0
µ1/(K + x)dx) < exp(−

∫ t

x=0
µ1/xdx) < 1/t.

Therefore, we always have exp(−M(t)) < 1/t = n1(t) < nq(t) < Cq(t). Now, we consider
the following case. We find n(t) such that n(t) = C(t)/2. We rewrite this as

C(t) = exp(−M(t))
∫ t

x=0
exp(M(x))n(x)2dx = 2n(t).

Taking derivatives of both sides, we have:

−n2 = n(n− 2n) = n(n− C) = d

dt
C = 2 d

dt
n.

This is solved for 1/(at) : −1/(a2t2) = −2/(at2) Hence, a = 1/2 and n(t) = 2/t. It means,
Cq(t) > C1(t) and thus, the stepsize η1,t = 1/(K + t) enjoys the fastest convergence.

D.7 Convergence of Large Stepsizes in Batch Mode

We first derive a couple lemmas which will help us deriving our main bounds. In what
follows let Assumptions 1, 2 and 3 hold for all lemmas.

Lemma 14 Let us define f(w; (ξ1, . . . , ξk)) = 1
k

∑k
i=1 f(w; ξi), then we have the following

properties:
E[f(w; (ξ1, . . . , ξk))] = F (w),

E[‖∇f(w∗; (ξ1, . . . , ξk))‖2] = E[‖∇f(w∗; ξ)‖2]
k

,

and
E[‖∇f(w; (ξ1, . . . , ξk))‖2] ≤ 4L[F (w)− F (w∗)] + N

k

Proof The expectation of f(w; (ξ1, . . . , ξk)) is equal to

E[f(w; (ξ1, . . . , ξk))] = 1
k

k∑
i=1

E[f(w; ξi)] = F (w). (54)

Now we write E[‖∇f(w∗; (ξ1, . . . , ξk))‖2] as E[
∑d
j=1( 1

k

∑k
i=1[∇f(w∗; ξi)]j)2]. This is equal

to

E[
d∑
j=1
{ 1
k2

k∑
i=1

[∇f(w∗; ξi)]2j + 1
k

∑
i0 6=i1

[∇f(w∗; ξi0)]j [∇f(w∗; ξi1)]j}]

=E[
d∑
j=1

1
k2

k∑
i=1

[∇f(w∗; ξi)]2j ] + E[
d∑
j=1

1
k

∑
i0 6=i1

[∇f(w∗; ξi0)]j [∇f(w∗; ξi1)]j ].
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The first term E[
∑d
j=1

1
k2
∑k
i=1[∇f(w∗; ξi)]2j ] is equal to

d∑
j=1

1
k2

k∑
i=1

E[[∇f(w∗; ξi)]2j ] = 1
k2

k∑
i=1

E[
d∑
j=1

[∇f(w∗; ξi)]2j ] = 1
k2

k∑
i=1

E[‖∇f(w∗; ξi)‖2]

= 1
k
E[‖∇f(w∗; ξ)‖2].

The second term E[
∑d
j=1

1
k

∑
i0 6=i1 [∇f(w∗; ξi0)]j [∇f(w∗; ξi1)]j ] is equal to

d∑
j=1

1
k

∑
i0 6=i1

E[[∇f(w∗; ξi0)]j ] · E[[∇f(w∗; ξi1)]j ]

=
d∑
j=1

1
k

∑
i0 6=i1

[E[∇f(w∗; ξi0)]]j · [E[∇f(w∗; ξi1)]]j .

Note that E[∇f(w∗; ξi0)] = ∇E[f(w∗; ξi)] = ∇F (w∗) = 0. This means that the second term
is equal to 0 and we conclude

E[‖∇f(w∗; (ξ1, . . . , ξk))‖2] = E[‖∇f(w∗; ξ)‖2]
k

. (55)

We have the following fact:

‖∇f(w; (ξ1, . . . , ξk))−∇f(w∗; (ξ1, . . . , ξk))‖2 = 1
k2 [‖

k∑
i=1

(∇f(w; ξi)−∇f(w∗; ξi))‖2]

≤ 1
k

k∑
i=1
‖∇f(w; ξi)−∇f(w∗; ξi)‖2

= ‖∇f(w; ξi)−∇f(w∗; ξi)‖2.

Since E[‖∇f(w; ξ)−∇f(w∗; ξ)‖2] ≤ 2L[F (w)− F (w∗)] (see (18)), we obtain

E[‖∇f(w; (ξ1, . . . , ξk))−∇f(w∗; (ξ1, . . . , ξk))‖2] ≤ 2L[F (w)− F (w∗)].

By using a similar argument as in Lemma 1 we can derive

E[‖∇f(w; (ξ1, . . . , ξk))‖2] ≤ 4L[F (w)− F (w∗)] + 2E[‖∇f(w∗; (ξ1, . . . , ξk))‖2]
(55)
≤ 4L[F (w)− F (w∗)] + 2E[‖∇f(w∗; ξ)‖2]

k

= 4L[F (w)− F (w∗)] + N

k
, (56)

where N = 2E[‖∇f(w∗; ξ)‖2].

We define
Ft = σ(w0, ξ

′
0, u0, . . . , ξ

′
t−1, ut−1),
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where
ξ′i = (ξi,1, . . . , ξi,ki).

We consider the following general algorithm with the following gradient updating rule:

wt+1 = wt − ηtdξ′tS
ξ′t
ut∇f(wt; ξ′t),

where f(wt; ξ′t) = 1
kt

∑kt
i=1 f(wt; ξt,i).

Lemma 15 We have

E[‖dξ′tS
ξ′t
ut∇f(wt; ξ′t)‖2|Ft, ξ′t] ≤ D‖∇f(wt; ξ′t)‖2

and
E[dξ′tS

ξ′t
ut∇f(wt; ξ′t)|Ft] = ∇F (wt).

Proof For the first bound, if we take the expectation of ‖dξ′tS
ξ′t
ut∇f(wt; ξ′t)‖2 with respect

to ut, then we have (for vectors x we denote the value of its i-th position by [x]i)

E[‖dξ′tS
ξ′t
ut∇f(wt; ξ′t)‖2|Ft, ξ′t] = d2

ξ′t

∑
u

pξ′t(u)‖Sξ
′
t
u ∇f(wt; ξ′t)‖2

= d2
ξ′t

∑
u

pξ′t(u)
∑
i∈S

ξ′
t
u

[∇f(wt; ξ′t)]2i

= dξ′t

∑
i∈Dξ′

t

[∇f(wt; ξ′t)]2i = dξ′t‖f(wt; ξ′t)‖2 ≤ D‖∇f(wt; ξ′t)‖2,

where the transition to the second line follows from (27).
For the second bound, if we take the expectation of dξ′tS

ξ′t
ut∇f(wt; ξ′t) wrt ut, then we

have:

E[dξ′tS
ξ′t
ut∇f(wt; ξ′t)|Ft, ξ′t] = dξ′t

∑
u

pξ′t(u)Sξ
′
t
u ∇f(wt; ξ′t) = ∇f(wt; ξ′t),

and this can be used to derive

E[dξ′tS
ξ′t
utf(wt; ξ′t)|Ft] = E[E[dξ′tS

ξ′t
utf(wt; ξ′t)|Ft, ξ′t]|Ft] = E[∇f(wt; ξ′t)] = ∇F (wt).

The last equality comes from (54).

Lemma 16 Let Assumptions 1, 2 and 3 hold, 0 < ηt ≤ 1
2LD for all t ≥ 0. Then,

E[‖wt+1 − w∗‖2] ≤ (1− µηt)‖wt − w∗‖2 + η2
t

ND

kt
.
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Proof Since wt+1 = wt − ηtdξ′tS
ξ′t
ut∇f(wt; ξ′t), we have

‖wt+1 − w∗‖2 = ‖wt − w∗‖2 − 2ηt〈dξ′tS
ξ′t
ut∇f(wt; ξ′t), (wt − w∗)〉+ η2

t ‖dξ′tS
ξ′t
ut∇f(wt; ξ′t)‖2.

We now take expectations over ut and ξt and use Lemmas 15 and 14:

E[‖wt+1 − w∗‖2|Ft]
≤ ‖wt − w∗‖2 − 2ηt〈∇F (w), wt − w∗〉+ η2

tDE[‖∇f(wt; ξ′t)‖2|Ft]

By (1), we have

−〈∇F (w), wt − w∗〉 ≤ −[F (w)− F (w∗)]− µ/2‖wt − w∗‖2 (57)

Thus, E[‖wt+1 − w∗‖2|Ft] is at most

(57)
≤ ‖wt − w∗‖2 − µηt‖wt − w∗‖2 − 2ηt[F (w)− F (w∗)] + η2

tDE[‖∇f(wt; ξ′t)‖2|Ft].

Since E[‖∇f(wt; ξ′t)‖2|Ft] ≤ 4L[F (w)− F (w∗)] + N
kt

(see (56)), E[‖wt+1 − w∗‖2|Ft] is at
most

(56)
≤ (1− µηt)‖wt − w∗‖2 − 2ηt(1− 2ηtLD)[F (w)− F (w∗)] + η2

t

ND

kt
.

Using the condition ηt ≤ 1
2LD yields the lemma.

As shown above,

E[‖wt+1 − w∗‖2] ≤ (1− µηt)E[‖wt − w∗‖2] + η2
tND

kt
,

when ηt ≤ 1
2LD .

Let Yt+1 = E[‖wt+1−w∗‖2], Yt = E[‖wt−w∗‖2], βt = 1−µηt and γt = η2
tND
kt

. As proved
in Lemma 9, if Yt+1 ≤ βtYt + γt, then

Yt+1 ≤
t∑
i=0

[
t∏

j=i+1
βj ]γi + (

t∏
i=0

βi)Y0

=
t∑
i=0

[
t∏

j=i+1
(1− µηj)]γi + [

t∏
i=0

(1− µηi)]E[‖w0 − w∗‖2]

Let us define n(j) = µnj and M(y) =
∫ y
x=0 n(x)dx as in Section 4.

Theorem 12 Let Assumptions 1, 2 and 3 hold, {ηt} is a diminishing sequence with conditions∑∞
t=0 ηt → ∞ and 0 < ηt ≤ 1

2LD for all t ≥ 0. Then, the sequence {wt} converges to w∗
where

wt+1 = wt − ηtdξ′tS
ξ′t
ut∇f(wt; ξ′t).
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Proof To prove the convergence of wt, we only need to prove the convergence of

C(t) = exp(−M(t))
∫ t

x=0
exp(M(x))n(x)2

k(x) dx.

Let T denote the total number of gradient computations and define K(t) =
∫ t
x=1 k(x)dx =

T ; we have t = K−1(T ) and dK(x)
dx = k(x). We define y = K(x) or x = K−1(y) with

dy = k(x)dx. We write

C(t) = exp(−M(t))
∫ t

x=0
exp(M(x))n(x)2

k(x) dx

= exp(−M(K−1(T )))
∫ K−1(T )

K(0)
exp(M(K−1(y)))n(x)2

k(x)2 k(x)dx

≤ exp(−M(K−1(T )))
∫ K−1(T )

1
exp(M(K−1(y)))n(x)2

k(x)2 k(x)dx.

The last inequality is based on the fact that K(0) ≥ 1.
Let us define n′(x) = n(x)

k(x) and using the fact that dy = k(x)dx, we obtain

C(t) = C(K−1(T ))

≤ exp(−M(K−1(T )))
∫ K−1(T )

1
exp(M(K−1(y)))[n′(K−1(y))]2dy.

Since K−1(y) = x, we have dK−1(y)
dy = 1

k(x) where y = K(x). This implies dM(K−1(y))
dy =

n(K−1(y))
k(K−1(y)) = n′(K−1(y)). Hence, by denoting

C ′(t) = C(K−1(t)),

n′(x) = n(x)
k(x) ,

M ′(x) = M(K−1(x)),

we can convert the general problem into the problem of Section D.6. This implies that the
analysis of C(t) in Section D.6 can directly apply to analyze C(K−1(T )). Since we already
proved the convergence of C(t) in Section D.6, we obtain the theorem.
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