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ABSTRACT

AI for Industrial Asset Lifecycle Management aims to automate complex opera-
tional workflows, including condition monitoring, maintenance planning, and in-
tervention scheduling, thereby reducing human workload and minimizing system
downtime. Traditional AI/ML approaches have primarily tackled these problems
in isolation, solving narrow tasks within the broader operational pipeline. In con-
trast, the emergence of AI agents and large language models (LLMs) introduces
a next-generation opportunity: enabling end-to-end automation across the entire
asset lifecycle. This paper envisions a future where AI agents autonomously man-
age tasks that previously required distinct expertise and manual coordination. To
this end, we introduce AssetOpsBench, a unified framework and environment de-
signed to guide the development, orchestration, and evaluation of domain-specific
agents tailored for Industry 4.0 applications. We outline the key requirements
for such holistic systems and provide actionable insights into building agents that
integrate perception, reasoning, and control for real-world industrial operations.

1 INTRODUCTION

Industrial assets, such as data center chillers (Naug et al., 2024) and wind farms (Monroc et al.,
2024), are complex, multi-component systems that generate vast amounts of multimodal data, in-
cluding time-series sensor readings, textual inspection and workorder records, operational logs, and
images, throughout their lifecycle. The ability to monitor and interpret heterogeneous data from di-
verse sources, such as IoT SCADA (WikiSCADA) (Supervisory Control and Data Acquisition) sen-
sors, operational KPIs, failure mode libraries, maintenance work orders, and technical manuals, is
key to effective Asset Lifecycle Management (ALM) (WikiALM). However, subject matter experts
such as maintenance engineers, site operators, and plant managers face considerable challenges in
synthesizing insights from these disparate data streams to support timely and condition-aware deci-
sions. As highlighted in Figure 1(a), the scale, semantic diversity of assets, and application-specific
contexts often render traditional monitoring and management systems inadequate.

((a)) Complex Industrial Asset – Data Centers managing Chiller and Air
Handling Units (AHUs)

((b)) Distribution of
open-sourced scenarios
for benchmarking agents
in a simulated environ-
ment.
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To address these challenges, the research and industrial communities are increasingly turning to AI
agents: autonomous and goal-driven systems capable of integrating data across silos, reasoning over
complex conditions, and triggering appropriate actions. AI agents are particularly promising in the
context of Industry 4.0, where the confluence of real-time IoT telemetry (e.g., Oracle IoT (Ora-
cle, 2025), enterprise asset management (EAM) systems (WikiEAM), and IBM Maximo (IBM))
and reliability engineering frameworks necessitates scalable and intelligent automation. These
agents promise to support a wide range of industrial workflows, from anomaly detection to mainte-
nance scheduling, by bridging the gap between raw sensor data, maintaiance report, work-order and
business-level insights.

Despite recent advances in LLM-based agent frameworks, such as ReAct (Yao et al., 2023), Hug-
gingGPT (Shen et al., 2023), Chameleon (Lu et al., 2023), and recent generalist agent models (Four-
ney et al., 2024; Marreed et al., 2025), a gap remains in adapting these innovations for real-world
industrial settings. Most recent domain and application specific benchmarks (e.g., ITBench (Jha
et al., 2025), SWE-bench (Chan et al., 2025), τ−bench (Yao et al., 2024) and its extension (Fu-
Hinthorn, 2025), Customer Support Benchmarks (Team, 2025), TheAgentCompany (Xu et al.,
2024b), CRMArena-Pro (Huang et al., 2025)) are tailored toward machine learning, IT, customer-
service domains, or purely digital, knowledge-work settings rather than physical, sensor-driven in-
dustrial operations. These benchmarks do not address the unique challenges of industrial applica-
tions, such as data modality diversity (time series and text), business object complexity(e.g., failure
mode, work orders, asset hierarchies), and task collaboration across multiple operational personas
(e.g., reliability engineers and data scientists).

This paper introduces AssetOpsBench, the first dataset and benchmarking system designed to eval-
uate AI agents for real-world industrial asset management tasks. By leveraging experts in develop-
ment, we have carefully built real multi-source datasets, intent-aware scenarios, and domain-specific
agents to develop, evaluate, and compare multi-agent systems. Our system includes:

• A catalog of domain-specific AI agents, including an IoT agent, a failure mode to sensor
mapping (FMSR) agent, a foundation model-driven time series analyst (TSFM) agent, and
a work order (WO) agent. Each agent has tools and targets different modalities and tasks.

• A curated to be open-source intent-driven 141 scenario of human-authored natural lan-
guage queries, grounded in real industrial data center operations (Figure 1(b)), covering
tasks such as sensor-query mapping, anomaly detection, failure diagnosis, and work-order
modeling.

• A simulated industrial environment based on a CouchDB-backed IoT telemetry system
and real multi-source dataset, enabling end-to-end benchmarking of multi-agent workflows
and open source contributions without the constraints associated with production systems.

• A comparative analysis of multi-agent architectural paradigms: Agent-As-Tool vs. Plan-
Execute, highlighting tradeoffs between interleaved decomposition or decomposition-first
execution.

• A three-pronged evaluation consisting of (i) an LLM-based rubric, (ii) reference-based
scoring of task decomposition and execution, and (iii) manual expert verification for certain
scenarios.

• A systematic procedure for the automated discovery of emerging failure modes in multi-
agent systems, extending beyond fixed taxonomies and its benefits.

Our motivation for a multi-agent architecture arises from industrial deployment experience, where
heterogeneous workflows benefit from modular, task-specific agents (Figure 1(a)). We complement
this practical insight with empirical evidence (Section 5.1) showing that multi-agent orchestration
outperforms single-agent baselines on complex, composite tasks. For instance, sensor data may be
handled by an IoT agent, while fault history is managed by an FMSR agent. These agents must
collaborate intelligently to answer user queries, such as “Why is the chiller efficiency dropping?”,
which blend physical reasoning, historical correlation, and operational semantics. Furthermore, the
design of agent workflows must respect the natural language and intent patterns used by industrial
end users. Unlike IT users, operators and engineers often refer to assets in physical or operational
terms (e.g., “chiller performance”,“oil temperature spike”) rather than referring to database fields or
ontologies. Crafting robust benchmarks requires capturing this domain-specific linguistic variance,
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ensuring agents not only retrieve correct answers but also follow reasoning patterns aligned with
domain expectations.

Finally, we experimented with an additional closed-source 162 scenarios to demonstrate generality,
spanning 10 asset classes, 53 failure modes, and 20 sensors. These include 42 live-deployment
scenarios (>90% correctness verified by a domain expert), 17 hydraulic system, 15 metro train, and
88 failure-mode scenarios encompassing diverse asset–failure–sensor relationships.

2 RELATED WORK

Generalist Agents. The development of generalist agents capable of orchestrating multiple sub-
agents to accomplish complex tasks has emerged as a prominent research direction. This paradigm
is evident across various domains, including web systems such as Magentic (Fourney et al., 2024)
and CUGA (Marreed et al., 2025), multimodal agents like GEA (Szot et al., 2024), and soft-
ware engineering platforms like HyperAgent (Huy et al., 2025), ChatDev (Qian et al., 2024), and
MetaGPT (Hong et al., 2024). These agents typically employ predefined sets of sub-agents, such as
terminals, browsers, code editors, and file explorers, each assigned specific functional roles to facil-
itate task decomposition and planning. While this architecture enables targeted integration and task
specialization, it often lacks flexibility. Most systems adopt hard-coded reasoning paradigms, such
as plan-execute or ReAct, which limit their capacity to support new agents, adapt to novel task, or
alternative coordination strategies, such as AOP (Li et al., 2025) and Prospector (Kim et al., 2024).

Domain-Specific Agents. Solving specialized tasks often requires domain-specific capabilities,
prompting the development of tailored benchmarks such as MLEBench (Chan et al., 2025) and
MLAgentBench (Huang et al., 2024) Arena. These frameworks evaluate agents on a diverse set
of machine learning problems, such as classification and regression, across multiple modalities, in-
cluding tabular and image data. They simulate end-to-end workflows, from resolving GitHub issues
to automating model training and evaluation pipelines. The concept of the AI Research Agent has
gained traction, referring to agents built for scientific discovery and iterative experimentation. For
example, MLGym (Nathani et al., 2025), a research agent in machine learning workflows. How-
ever, most current benchmarks lack support for temporal and text data modalities together, which
are crucial in domains such as physical asset health monitoring.

Application-Specific Agents. Agent-based automation is also advancing in operational settings,
such as IT operations, customer support, and compliance monitoring. Frameworks developed un-
der initiatives like ITBench (Jha et al., 2025) and AIOpsLab (Chen et al., 2025) aim to replicate
real-world scenarios involving site reliability engineering, diagnostics, and system auditing. These
systems reinforce the importance of application-specific benchmarks, tailored to specific personas,
that not only evaluate agents across structured tasks but also expose capability gaps and drive in-
novation in reasoning and orchestration strategies. Current benchmarks in this space tend to be
domain-specific in scope, lacking the generality and composability required to assess agent perfor-
mance across diverse, multi-agent environments, especially those involving cross-modal reasoning
or domain-specific tool usage.

Fine-Tuned and Compact Models. Recent work has improved agent performance via fine-tuned
language models, often called Large Action Models (LAMs), designed to execute structured actions
within environments. Systems such as TaskBench(Shen et al., 2024), xLAM(Zhang et al., 2025b),
AgentGen (Hu et al., 2025), AgentBank (Song et al., 2024), AgentRM (Xia et al., 2025), Fire-
Act (Chen et al., 2024), and ActionStudio (Zhang et al., 2025a) exemplify this trend. They are often
trained in grounded environments (e.g., Windows-based (Wang et al., 2025)) and evaluated on tasks
such as arithmetic, programming, and web interaction. While effective, these models remain lim-
ited to textual or web environments and have yet to demonstrate applicability to complex industrial
automation with hybrid agent compositions.

Open Challenges. Despite these advances, several gaps remain. First, there is a lack of comprehen-
sive benchmark datasets targeting industrial asset domains, particularly those involving condition-
based monitoring, predictive maintenance, automated diagnostics, and work order planning. To
support this claim, we analyzed a catalog of 135 public datasets (jonathanwvd, 2025) and found
that only one dataset includes any form of work-order or operational context, and even that lacks
sensor history. Moreover, only 53 datasets mention failure modes, most of which contain just one or
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two modes, and none of the datasets support agentic applications. Second, time-series data, which
plays a central role in industrial and infrastructure-related applications, remains underrepresented
in existing agentic benchmarks. Finally, few systems support orchestration across heterogeneous
agents, including those based on text, code, or simulations, nor do they offer modular reasoning
strategies adaptable to complex, multi-agent workflows. Addressing these gaps is essential to ad-
vance general-purpose agent intelligence in high-stakes, real-world domains.

3 PROBLEM AND APPROACH: INTELLIGENT AGENT-BASED ASSET
OPERATIONS

Industrial asset operations involve complex, heterogeneous workflows where maintenance engi-
neers, reliability specialists, and facility planners must interpret multi-modal sensor data, detect
anomalies, and make timely operational decisions. Interdependent tasks such as root cause analysis,
predictive maintenance planning, work order bundling, and service request initiation often require
reasoning across historical telemetry, asset metadata, and operational constraints. Meeting these de-
mands requires intelligent agents that can decompose high-level requests into structured, executable
subtasks, coordinate across multiple domain-specific modules, and integrate outputs into actionable
recommendations. For example, a user might request: “Help configure an anomaly detection model
to monitor power consumption of CUXP and trigger alerts when usage is projected to exceed 8 Watts
above the maximum deviation observed over the past 30 days,” enabling timely corrective actions
such as service request creation. The diversity and interdependence of these tasks, spanning data
interpretation, anomaly reasoning, and operational decision-making, underscore the need for a co-
ordinated, intelligent agent framework capable of handling complex industrial workflows.

((a)) Architecture of the Multi-Agent System: Time Series (TSFM)
Agent, Failure Mode Sensor Relations (FMSR) Agent, Work Order
(WO) Agent

((b)) Exemplar AssetOps Task Hier-
archy

Figure 2(a) illustrates the core components of our proposed framework. At the center is the Asse-
tOps Agent, which functions as a global coordinator. It interprets high-level user queries in natural
language, decomposes them into structured subtasks, delegates these to specialized functional sub-
agents, and integrates their outputs into coherent responses, such as generating service requests or
work orders. To handle tasks like configuring anomaly detection models or triggering alerts for
assets such as CUXP, this coordination is essential. While typical multi-agent systems for general-
purpose tasks (e.g., Magentic (Fourney et al., 2024)) consist of an orchestrator or supervisor agent
coordinating sub-agents such as coders, file system handlers, terminals, or web-surfing agents, in
industrial settings these sub-agents are replaced by domain-inspired, task-specific agents. Examples
include an IoT agent, a failure mode to sensor mapping (FMSR) agent, a foundation model-driven
time series analyst (TSFM) agent, and a work order (WO) agent. These agents are specifically
tailored to monitor, analyze, and generate work orders or service requests for physical assets.

Building on this multi-agent architecture, defining a systematic benchmark requires determining the
set of tasks that accurately reflect real-world industrial operations. In this paper, we leveraged ISO
standards to construct a structured task taxonomy aligned with the stages of physical asset manage-
ment (ISO-2024, 2024; ISO, 2016). This taxonomy provides a consistent and scalable approach for
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scenario generation, ensuring that each task maps to realistic operational objectives and decision-
making workflows. We refer to this methodology as intent-driven scenario generation, in contrast
to the API-driven scenario generation popularized in (Yao et al., 2024; Shen et al., 2024).

As illustrated in Figure 2(b), the taxonomy begins with Asset Configuration, encompassing activi-
ties such as retrieving Failure Mode and Effects Analysis (FMEA) documentation and selecting per-
formance KPIs, typically carried out by reliability engineers. It progresses to Model Selection and
Analysis, where data scientists apply anomaly detection models and use LLM-powered retrieval to
surface relevant historical failures. In the Monitoring and Execution phase, operations teams man-
age live telemetry, refine detection models, and enforce safety guardrails. Finally, the Maintenance
and Response phase focuses on actionable outputs, including generating work orders, summariz-
ing system health, and prioritizing interventions tasks typically handled by maintenance engineers.
Grounding task definitions and APIs in ISO standards allows the benchmark to generalize across
diverse industrial software platforms (Oracle, 2025; IBM).

4 ASSETOPSBENCH

AssetOpsBench consists of a real multi-asset, multi-source dataset from a data center, 141 manu-
ally constructed task scenarios, and a benchmarking environment with task-specific AI agents and
an evaluation framework. The scenarios were developed over 18 months in collaboration with reli-
ability engineers, controls specialists, and domain experts overseeing assets such as AHUs, chillers,
boilers, and compressors. Experts identified key failure modes, drafted scenario templates capturing
realistic fault signatures and cross-sensor interactions, and iteratively refined them through multi-
ple review cycles to ensure plausibility and alignment with diagnostic reasoning. Each scenario
is grounded in operational and reference data, including sensor telemetry from industrial HVAC
systems (fifteen-minute intervals from BMS(WikiBMS) and SkySpark(SkyFoundry contributors)),
work orders from a product-level Maximo, and FMEA information from the Reliability Strategy
Library for data center operations. This combination ensures that the scenarios are both expert-
validated and data-driven, faithfully reflecting real-world industrial conditions.

4.1 MULTI-SOURCE DATASET

A key distinguishing feature of AssetOpsBench is its integration of richly structured, expert-curated
multi-source data that reflects the complexity of real-world industrial asset operations. Unlike a
simple data-gathering effort, constructing this benchmark required extensive data cleaning, the de-
velopment of a novel failure taxonomy, and careful alignment across heterogeneous sources.

Table 1: Key data modalities with 3 Example Fields used for open source scenario construction

Data Source Field Description

Sensor Data*
# Industrial Assets: 6
Quantity: 2.3M points

Chiller Return Temp. Measures temperature of water returning to chiller
Chiller % Loaded Indicates current load as a fraction of the maximum
Condenser Water Flow Indicates the current flow rate through the condenser

FMEA
# Industrial Assets: 3
Quantity: 53 records

Failure Location / Comp. Subsystem/part where failure occurs (e.g., bearings,)
Degradation Mechanism Physical process driving failure (e.g., wear, erosion)
Degradation Influences Stressors like runtime, fluid quality, or shock loading

Work Orders
# Ind. Assets: 10+
Quantity: 4.2K records

ISO Failure Code Standardized classification of the failure category.
Event Log Timestamp Time-marked entry recording an operational event
Linked Anomaly / Alert References to alerts or anomalies tied to work order

As shown in Table 1, the benchmark includes over 2.3 million sensor data points across 6 assets (4
Chillers and 2 AHUs), capturing time-series signals such as chiller return temperature, load percent-
age, and condenser water flow. The structured failure models, derived from Failure Mode Effects
Analysis (FMEA) records, encompass 53 failure entries across three equipment assets. FMEA pro-
vides provide detailed insights into the physical locations of failures, degradation mechanisms (such
as wear and erosion), and the influencing factors (including runtime, fluid conditions, and shock
loading) that contribute to each failure. Work order histories span 4.2K records across 10+ assets
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and 11 years and incorporate ISO-standard failure codes, event timestamps, and linkages to alerts
and detected anomalies.

Additionally, the operational system generates a temporal sequence of alarm logs and also lever-
ages domain-specific technical rules obtained from experts, enabling contextual grounding of op-
erational anomalies. This diverse data foundation, comprising 9 modalities (Sensor, Work Order,
Alert, Alarm, FMEA, Anomaly, KPI 2 Failure Codes, Events, Rule 2 Failure Code), facilitates a
comprehensive evaluation of decision-making, tool usage, and multi-hop reasoning in industrial en-
vironments.

4.2 SCENARIO DESIGN AND COVERAGE

Each scenario in AssetOpsBench represents a structured operational query grounded in the
lifecycle-aligned task taxonomy (Figure 2(b)) and asset-specific datasets (Table 1). Each scenario is
formalized as:

P = ⟨id , type, text , category , form⟩
where id is a unique identifier; type specifies the task type (e.g., knowledge retrieval, analytical); text
is the natural language query; category denotes the operational domain (e.g., IoT, FMSR, TSFM,
WO or End-2-End (i.e., more than one agent)); and characteristic form defines the expected output
(e.g., explanation, API call, action plan). Scenarios are categorized into two types: (1) single-agent
utterances, which only require probing a single specific agent (e.g., IoT, TSFM, FMSR, WO), and
(2) multi-agent tasks, which span multiple agents and require coordinated reasoning and data ex-
change. As shown in Figure 1(b), the to be open-sourced version comprises a total of 141 scenarios,
consisting of 99 single-agent and 42 multi-agent tasks.

((a)) Scenario example ((b)) Agent tools overview

Figure 3: Left: Scenario illustration. Right: Overview of two representative agent tools.

Figure 3(a) presents Utterance 507, an instructive case where a user requests a prediction of future
energy consumption. To address this query, the agent must first reason about which sensor variable
to use, specifically the power input, and after retrieving the data recognize that most values are zero,
indicating an insufficient data condition. This scenario highlights the importance of subject matter
experts (SMEs) in designing tasks that assess the reasoning capabilities of LLMs, rather than merely
testing tool functionality. In its characteristic form, we further emphasize key lexical markers such
as Chiller 9, MAIN, power input sensor, etc that also enable a semantic-based evaluation.

Our dataset also enables end users to design new scenarios, such as: “Examine whether the year-
over-year increase in corrective maintenance for CWC04009 warrants shifting resources from an-
nual repairs to multi-year replacement planning.” Existing scenarios (IDs 407–413) support strate-
gic work-order management tasks, including trend analysis, bundling, and probability forecasting.
Overall, the benchmark covers analytical reasoning (e.g., coding, model fine-tuning), context-aware
decision-making, and language-based generalization.
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4.3 DOMAIN SPECIFIC SINGLE AGENT AND MULTI-AGENT IMPLEMENTATION

AssetOpsBench includes four domain-specific AI agents: IoT, TSFM, WO, and FMSR. To illustrate
tool-level complexity, we highlight two representative agents (Figure 3(b)): the TSFM agent, which
uses a pretrained time-series foundation model from Hugging Face, and the FMSR agent, which
leverages an LLM to generate failure-mode-to-sensor mappings via the get mapping function. In
total, the platform comprises over 15 tools across these agents, each with domain-specific guidance,
making them unique in industrial settings. Three agents (TSFM, IoT, FMSR) use ReAct Yao et al.
(2023), while the WO agent uses CodeReAct (Wang et al., 2024); alternative strategies such as
RAFA (Liu et al., 2023) are also supported.

Given this mix of text- and code-based agents, a global coordinator, the AssetOps Agent, facilitates
collaboration, operating under either an Agent-As-Tool paradigm or a Plan-Execute strategy. The
components used to build these paradigm are widely adopted in modern open-source toolkits (Mar-
reed et al., 2025; LangChain, 2025b; NVIDIA, 2025). In Agent-As-Tool, each agent is registered
as a tool within a meta- or supervisor agent instantiated using ReAct, emulating layered decision-
making in hierarchical organizations. In Plan-Execute, a Planner and Reviewer generate a plan
as a directed acyclic graph (DAG), executed by an Orchestrator with a memory module that stores
and transfers information between agents. This strategy adapts ReWoo (Xu et al., 2024a) with an
additional review component inspired by (Li et al., 2025). We packaged the datasets, scenarios,
domain-specific agents, and orchestration strategies into a dockerized environment.

5 EXPERIMENTS AND LEADERBOARD

To evaluate orchestration techniques across varying LLM sizes and agent-specific preferences, we
adopt a rubric-based assessment LangChain (2025b); Wen et al. (2024); Wang et al. (2025); An-
drews et al. (2025) complemented by a reference-scoring mechanism Yao et al. (2024); Wen et al.
(2024); Cemri et al. (2025).

LLM-As-Judge Scoring. Each scenario is paired with a characteristic form, a structured speci-
fication defining both the expected final output and the intermediate reasoning or procedural steps
required to achieve it. This form serves as the soft ground truth for evaluating agent behavior and
supports rubric-based scoring with LLMs acting as judges. The evaluation rubric uses three quali-
tative metrics derived from experimental observations and common-sense principles. We define the
Evaluation Agent as a scoring function that maps the original task query (Q), the agent’s trajectory
output (T , including intermediate reasoning and final output), and the characteristic form (C, the
ground-truth specification) to a set of scores (y1, y2, y3). These scalar scores (y1, y2, y3) ∈ [0, 1]3

correspond to Task Completeness (y1: are all required steps completed?), Data Retrieval Accu-
racy (y2: was the correct data retrieved and used?), and Result Verification (y3: is the final result
logically and factually correct?).

Reference-Based Scoring. For each scenario, we construct a structured ground truth inspired
by Yao et al. (2024); Shen et al. (2024), where each entry captures the task workflow through
planning steps (high-level intended actions), execution steps (concrete actions with cor-
responding inputs and outputs), and execution links (dependencies between execution steps).
This representation encodes both the logical structure and the expected outcomes. We assess an
agent’s task decomposition ability by comparing the planning steps with either the thinking
traces in the agent’s trajectory (for Agent-as-Tool) or the DAG produced by Plan-Execute. Since
agents communicate in natural language, a weighted score is employed to align action descriptions
and their inputs, thereby quantifying task execution performance.

Experimental Setting. To quantify agent effectiveness in scenario evaluations, we adopt the Passk
metric. Unlike the widely used Pass@k, which measures the probability that at least one of k
independent attempts succeeds, Passk estimates the probability that an agent succeeds on all k
attempts—a stricter criterion that better reflects the reliability requirements of industrial environ-
ments, where retries are often impractical and consistent behavior is essential for production de-
ployment (LangChain, 2025a; Yao et al., 2024). In our benchmark, we report Pass1 by default, as
agents are executed once per task instance. The evaluation agent used for LLM-As-Judge scoring
is run five times to derive stable performance estimates. Agents within the AgentOps framework
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operate with a sampling temperature of 0, while the evaluation agent uses a temperature of 0.3, and
all reported results follow this configuration.

5.1 ASSETOPSBENCH LEADERBOARD

Models. We conducted a series of benchmark experiments to evaluate a diverse set of lan-
guage models, including closed-source models (e.g., gpt-4.1), frontier open-source models
(e.g., llama-4-maverick, llama-4-scout, mistral-large, llama-3-405b), and
medium-to-small open-source models (e.g., llama-3-70b, granite-3-8b). We have evalu-
ated two different multi-agent strategies: Agent-As-Tool and Plan-Execute and also compared them
with single agent.

((a)) Agent-As-Tool Approach ((b)) Plan-Execute Approach

Figure 4: Approach-wise Performance Evaluation. The order is based on the task completion rate.

Agent-As-Tool vs Plan-Execute Approach. Figure 4 shows the combined performance of both ap-
proaches using the rubric method. Overall, the Agent-As-Tool approach, as illustrated in Figure 4(a),
demonstrates that gpt-4.1 leads across nearly all metrics. llama-4-maverick also performs
competitively, particularly in result verification (60%) and clarity (78%). Also, Data retrieval ac-
curacy tend to higher than the task completion, yet another indirect validation of Evaluation Judge.
But wait, gpt-4.1 did not maintain its leadership position in Plan-Execute Approach, infact it
see a largest drop in performance across all model. mistral-large and llama-4-maverick
are top pick models for Plan-Execute strategy. Given that llama-4-maverick demonstrates
balanced performance across both strategies, we select it as the default model for all ablation studies.

Plan-Execute Approach Analysis. We conducted a deep-dive analysis of the Plan-Execute ap-
proach to understand its relatively poor performance. First, we examined the length of the planning
steps and observed that larger models tend to generate shorter plans in the Plan-Execute approach
(typically 2–3 steps) compared to the Agent-As-Tool strategy, which generally requires 5–6 steps.
Given that Agent-As-Tool performs better and uses longer plans, this suggests a known limitation of
the Plan-Execute approach: reduced flexibility in handling unexpected failures or incorporating new
information that may require plan revision (Li et al., 2025; NVIDIA, 2025). Next, we obtained the
reference-based score of gpt-4.1, which is a rouge1 of 0.354 and rougeL of 0.289 on the task
decomposition aspect. This score is substantially lower than the top-performing mistral-large
(rouge1 0.420, rougeL 0.343), indicating that, despite strong reasoning capabilities, gpt-4.1
generates outputs that are less lexically aligned with the reference ground truth trajectories. And
such behaviors may confuse down-stream agent in generating solution.

Small Language Models Analysis. Within the Agent-As-Tool evaluation, models such as
granite-3-8b and llama-3-3-70b show weaker overall performance, yet they reveal clear
areas of specialization as shown in Figure 5. Both models perform strongly on structured sens-
ing and diagnostic tasks: for example, granite-3-3-8b-instruct achieves 15/20 on IoT,
18/22 on FMSR, and 19/23 on TSFM, while llama-3-3-70b-instruct reaches 12/20, 18/22,
and 20/23 on the same categories. However, they struggle substantially on Work Order tasks, with
scores of only 2/36 and 7/36, indicating that procedural, multi-step coordination remains difficult
even under the Agent-As-Tool mechanism. This underscores a key insight : industrial deployments
may benefit most from hybrid LLM–SLM agent architectures, where strong specialists handle
sensing and diagnostics while more capable generalist models manage planning, coordination, and
end-to-end reasoning (Belcak et al., 2025).
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Figure 5: Agent Level Task Accomplishment with
respect to Agent-As-Tool Approach

Human Validation. To assess the reliability of
using LLMs as automatic evaluators for bench-
marking tasks, we compare model-generated
judgments against human annotations on a sam-
ple of 40 tasks. Each task is evaluated along
three dimensions by four domain experts, all
operating under the same information con-
straints as the LLMs. Before selecting a de-
fault evaluator, we compared several candidate
judge models, including gpt-4.1. In this
comparison, gpt-4.1 showed only moder-
ate alignment with expert assessments, achiev-
ing 69% accuracy and Cohen’s κ of 0.44. In
contrast, llama-4-maverick provided sub-
stantially stronger agreement with human judg-
ments and was therefore selected as the default
judge model for the main analysis. Across ex-
perts, inter-rater reliability scores indicate sub-
stantial agreement on key evaluation dimen-
sions, with Data Retrieval Accuracy exhibiting
the strongest consistency (Cohen’s κ = 0.79, 90.48% accuracy). Task Completion (κ = 0.62) and
Generalized Result Verification (κ = 0.71) also show high alignment among evaluators.

Ablation Study. We study the effect of adding additional distractor agents to the system and remov-
ing guidance (i.e., in-context examples). The ablation experiments are conducted using the Agent-
As-Tool method with llama-4-maverick as the default LLM. Injecting 10 out-of-domain dis-
tractors (e.g., SREAgent, EchoAgent) into 99 single-agent scenarios unexpectedly improved task
completion accuracy (from 44 to 46), suggesting that distractors may induce more deliberate rea-
soning in LLMs. Similar effects have been reported in prior parallel work (Fu-Hinthorn, 2025).
Extending this experiment across our full model portfolio revealed consistent, though modest, gains
within the Llama family (particularly llama-3-70b and llama-3-405b), while other model
families showed slight performance reductions or no improvement. In contrast, removing all in-
context examples for 65 single-agent tasks (IoT+FMSR+TSFM) caused performance to collapse
(from 80% to 34% for gpt-4.1 and from 60% to 3% for granite-3-8b).

Baseline using Single-Agent. Instead of using four domain-specific sub-agents and an orchestra-
tion agent, we build a tool-calling ReAct agent with a single prompt as a baseline, giving it access
to tools and in-context examples from all agents. In doing so, we increase the complexity of the
problem, as it must handle many tools as well as an expanded context. We run a default LLM,
llama-4-maverick, on all 141 scenarios. As a single-agent baseline, it achieves task comple-
tion of 26.95%, data retrieval accuracy of 34.04%, and generalized result verification of 28.37%.
Under the Agent-As-Tool setup, the same model achieves roughly two-fold improvements (See Fig-
ure 4(a)).

5.2 ERROR ANALYSIS VIA AGENT TRAJECTORIES AND EMERGING FAILURE MODES

Trajectory analysis is critical for detecting agent mistakes, but becomes more challenging in multi-
agent settings. We collected approximately 881 trajectories across different runs of models for
Agent-As-Tool strategy. These trajectories were leveraged for further error analysis on two aspects:
(a) tool-related errors and (b) agent failure modes.

Failure Analysis on Tool Use. Each agent step in a trajectory is logged as a structured JSON
record capturing the action type and execution state. At the sub-agent level, we distinguish be-
tween Tool-oriented actions, which invoke predefined functions with well-defined inputs and out-
puts, and CodeReAct-oriented actions, where agents dynamically generate and execute Python
code. Our analysis shows that Tool-oriented actions achieve higher valid-execution rates, whereas
CodeReAct-oriented actions incur more runtime failures due to the variability of the generated
code. Tool-oriented failures are concentrated in a small number of tools, including jsonreader,
tsfm integrated tsad, and Read Sensors From File, highlighting challenges related
to input validation and hallucinated parameter passing.
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Emerging Failure Modes Discovery. Now we investigate
trajectories from a semantic perspective. Recent work (Cemri
et al., 2025) defines 14 failure modes for agent trajectories.
Table 2 shows the distribution of failure mode on our 881
trajectories across this taxonomy. We found that system de-
sign is the most common source of failures. This taxonomy
provides guidance for improving agent development. For in-
stance, since the “Fail to Ask for Clarification” mode occurs
around 10% of the time, we introduced a feature in the Agent-
As-Tool strategy that allows sub-agents to ask the parent agent
questions at any point during execution. We reran the entire
benchmark on the default LLM, and this change led to signif-
icant performance improvements for llama-4-maverick,
increasing task completion from 59% to 66%, surpassing
gpt-4.1. To capture failure mode behaviors beyond this
taxonomy, we allowed self-discovery of up to two novel fail-
ure modes per trace, revealing emergent and compound fail-
ures not covered by existing classifications. Common emer-
gent failures include Overstatement of Task Completion
(122 cases, 23.8%), Extraneous or Ambiguous Output For-
matting (110 cases, 21.4%), and Ineffective Error Recovery
(160 cases).

Table 2: Distribution of Failure Sub-
categories Across Stages of Execu-
tion

Failure Subcategory Stage & %

System Design (Total 37.38%)
Disobey Task Spec. Pre: 13.87%
Disobey Role Spec. Pre: 0.11%
Step Repetition Exec.: 16.41%
Loss of Conversation Pre: 0.00%
Unaware of Termination Post: 6.99%

Agent Coordination (Total 27.52%)
Conversation Reset Execution: 0.00%
Fail to Ask for Clarifica-
tion

Execution: 10.22%

Task Derailment Execution: 4.34%
Information Withholding Execution: 2.22%
Ignored Agent’s Input Execution: 2.06%
Action Mismatch Execution: 8.68%

Task Verification (Total 35.10%)
Premature Termination Pre: 3.92%
No or Incomplete Veri. Execution: 15.56%
Incorrect Verification Execution: 15.62%

5.3 GENERALIZATION ACROSS INDUSTRIAL DOMAINS

With the help of experts and the product team, we prepared an additional 162 scenarios across four
datasets to evaluate generalization: Metro Train MetroPT-3 (15 scenarios) for compressor faults,
UCI Hydraulic System (17 scenarios) for hydraulic component faults, Asset Health internal dataset
(42 scenarios) based on work orders, and FailureSensorQA (88 scenarios) using ISO-standardized
documentation for sensor-to-failure mapping. Table 3 presents one representative scenario from
each dataset along with the peformance llama-4-maverick. Among all the datasets, scenarios
of MetroPT-3 are difficult as we observed poor performance (task completion rate = 26.7%).

Table 3: Representative scenario from each dataset with LLaMA-4 Maverick performance.

Dataset Representative Scenario with LLaMA-4 Maverick Performance

MetroPT-3 Consider asset mp 1. After maintenance on May 30, 2020, how has the compres-
sor’s condition evolved from May 31 to June 6, and are further repairs or monitoring
needed?
Performance: Task Completion 26.7%, Data Retrieval Accuracy 20.0%, General-
ized Verification 40.0%

Hydraulic System For asset hp 1, can severe internal pump leakage on 2024-01-31 be detected using
sensor data from the preceding 100 days?
Performance: Task Completion 88.2%, Data Retrieval Accuracy 100.0%, Gener-
alized Verification 88.2%

Asset Health Analyze the provided Air Handling Unit 615152AC work orders and asset
details to determine the expected system condition.
Performance: Task Completion 100.0%, Data Retrieval Accuracy 100.0%, Gener-
alized Verification 100.0%

FailureSensorQA For an aero gas turbine, list all failure modes that can be detected or indicated by
abnormal readings from vibration, speed, or fuel flow sensors.
Performance: Task Completion 67.0%, Data Retrieval Accuracy 71.6%, General-
ized Verification 56.8%

6 CONCLUSION

This paper presents a formalized framework for AI agents in industrial assets, encompassing a com-
prehensive and diverse set of scenarios derived from multiple data sources, a taxonomy, and a stan-
dardized evaluation methodology. The Agent-As-Tool paradigm offers a promising approach for
orchestrating multi-agent interactions. In future work, we plan to introduce realistic environment
constraints, such as compute limitations and API usage costs, to innovate novel algorithms.
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APPENDIX OVERVIEW

In the Appendix, we discuss several topics that complement the main paper and provide additional
technical detail to ensure clarity and reproducibility. These sections elaborate on our agentic system
formulation, dataset design choices, hierarchical structuring of AssetOpsBench, and further empiri-
cal analyses.

• Agentic System Definition

• AssetOpsBench: Environment, Hierarchy and Domain Specific Agents

• Datasets Utilized in AssetOpsBench

• AssetOpsBench Scenarios

• Ground Truth Preparation for Reference-based Evaluation

• Additional Benchmark Experiments

• Generality: New Datasets and Scenarios

• Emerging Failure Mode Discovery and Agent Development

A AGENTIC SYSTEM DEFINITION

This section provides a generic detailed exposition of the content introduced in Section 3. In par-
ticular, we focus on the mathematical formulation of the agent architecture, followed by a brief
overview of the proposed framework. The goal is to formalize the agent’s operational components
and offer foundational context for readers interested in the underlying design principles. We also
discussed detailed design of two approaches for multi-agent system development: “Agent-As-Tool”
and “Plan-Execute”.

A.1 AGENT-ORIENTED TASK AUTOMATION PROBLEM - AOP

We formalize the Agent-Oriented Problem (AOP) as a tuple:

AOP = ⟨A, T ,Π,M,O⟩

where each component defines a core capability of a modular, agent-based reasoning and action
system:

• A = {A1, A2, . . . , An} denotes the set of available agents. Each agent Ai is character-
ized by its reasoning capabilities, task specialization, internal memory, and communication
interfaces, enabling autonomous or cooperative execution of assigned subtasks.

• T = {τ1, τ2, . . . , τk} is the set of tasks. Each task τ is described by a triple ⟨g,M, C⟩,
where g denotes the task goal (e.g., fault detection or maintenance planning), M speci-
fies the required input modalities (e.g., time-series telemetry, FMEA documents, structured
metadata), and C captures any domain-specific or operational constraints (e.g., time win-
dows, asset type, or safety requirements).

• Π is the hierarchical plan space. A plan π ∈ Π is an ordered sequence of task-agent
assignments:

π = [⟨τ1, Ai⟩, ⟨τ2, Aj⟩, . . .]
where each subtask is delegated to an appropriate agent for execution, potentially with
dependencies among steps.

• M denotes the memory system, consisting of both agent-local and shared global compo-
nents. It is modeled as a dynamic key-value store M = {(ki, vi)}mi=1, supporting context
persistence, lookup, and updates throughout the planning and execution process.

• O represents the output space. Each output o ∈ O is the structured or unstructured result of
executing a plan. Outputs may include diagnostics, action recommendations, summaries,
or control triggers, depending on the task and domain.
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A.2 BASE AGENT: REACT

AssetOpsBench uses the ReAct framework Yao et al. (2023) in an end-to-end agent design that in-
tegrates a Review Agent to verify the final answer. Figure 6 illustrates the full architecture. The
ReAct agent executes a Think-Act-Observe loop, solving tasks iteratively while detecting and re-
covering from repetitive or ineffective actions. The Review agent verifies whether the ReAct agent
has successfully completed the task, ensuring the quality of the output. Subsequent sections present
the architecture in detail, highlighting the distinction between two architectural paradigms:Agent-
As-Tool (See SectionA.3) and Plan-Execute (See SectionA.4). Note that, we can replace ReAct by
any other agent development methdology such as Reflect, RAFA, etc.

Figure 6: ReAct used to build individual agent

A.3 AGENT-AS-TOOL

For the Agent-As-Tool paradigm as shown in Figure 7, we implemented the following components:

• A standard ReAct (Think–Act–Observe) agent loop using open source framework. In the
initial setup, the number of reflections was set to one—effectively disabling reflection.

• A curated list of tools, the majority of which are stub interfaces that delegate functionality to
specialized sub-agents. The only standalone utility tool in this set was the JSONReader,
which reads a JSON object from a file and returns its contents as the tool’s direct response.

Figure 7: Agent-As-Tool
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The sub-agent stubs were intentionally designed to be minimal. Each stub accepted a single input
parameter: a string called request and returned a structured JSON output. The output JSON
object included the following fields:

• answer – the primary answer returned by the sub-agent, represented as a plain string.
• review – a nested JSON object capturing a review of the response, typically including

fields such as status, reasoning, and suggestions.
• summary – a brief description of the JSON object’s structure and semantics, useful for

interpretability or chaining with downstream tools.

The ReAct agent was initialized with a standard prompt that includes:

• Examples for In-Context Learning – A small number of sample interactions for each sub-
agent were provided to guide behavior. These examples followed the standard ReAct for-
mat of Think–Act–Observe, illustrating how to invoke tools and interpret their responses.
A representative example is shown below:

• Tool Demonstrations – These sample calls were concatenated to form a comprehensive
set of demonstrations for all tools available to the agent, effectively seeding it with usage
patterns.

The sample calls for all the tools are concatenated to form the examples.

• question - the question input to ReAct
• tool names - the list of sub-agent tool names (plus JSONReader)
• tool descriptions - descriptions of the sub-agents

Question: download asset history for CU02004 at SiteX
from 2016-07-14T20:30:00-04:00 to 2016-07-14T23:30:00-04:00
for CHILLED WATER LEAVING TEMP and
CHILLED WATER RETURN TEMP

Action 1: IoTAgent
Action Input 1: request=download asset history for CU02004
at SiteX from 2016-07-14T20:30:00-04:00 to
2016-07-14T23:30:00-04:00 for CHILLED WATER LEAVING TEMP
and CHILLED WATER RETURN TEMP

Observation 1: {
site_name : SiteX ,
assetnum : CU02004 ,
total_observations : 25,
start : 2025-03-26T00:00:00.000000+00:00,
final : 2025-04-02T00:00:00.000000+00:00,
file_path : / var/folders/fz/.../cbmdir/c328516a-643f-40e6-8701-

↪→ e875b1985c38.json ,
message : found 25 observations. file_path contains a JSON array of

↪→ Observation data
}

Listing 1: Example of Trajectory using ReAct Agent for IoTAgent

Execution Framework. The ReAct engine is reinitialized for each question and executed un-
til either (a) successful completion, as determined by the Review component using an LLM-as-
judge or (b) a maximum of ten iterations. The framework iterates through a list of models (e.g.,
mistralai/mistral-large) and a corresponding list of utterances to execute for each model.
The system supports retries for failed executions. After each ReAct run, the complete trajectory and
associated evaluation metrics are stored. We have provided a sample (partial) trajectory trace in
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Listing 1, which show how patent agent call one of the tool (in this case IoTAgent) and receive a
response. The recorded metrics include:

• Question: the input query being processed

• Total execution time: duration of the entire ReAct loop

• Number of ReAct steps: count of action-observation cycles

• Review status: success or failure determined by the LLM-based reviewer

Listing 2 outlines how the FMSR agent packages its reasoning output into a structured message
for downstream agents or evaluators. The custom json function formats the response to include the
final answer, a peer review section (comprising status, reasoning, and suggestions), and a reflection
field. Additionally, a natural language message is synthesized to summarize the execution result,
enhancing transparency and interpretability in multi-agent settings. This output acts as a compact
yet comprehensive communication protocol for reasoning agents collaborating in a complex task
pipeline.

def custom_json(obj):
if isinstance(obj, FMSRResponse):

return {
answer : obj.answer,
review : {

status : obj.review[ status ],
reasoning : obj.review[ reasoning ],
suggestions : obj.review[ suggestions ],

},
reflection : obj.reflection,
message : (

I am FMSR Agent, and I have completed my task.
f The status of my execution is '{obj.review['status']}'.

↪→
f I also received a review from the reflection agent;
f suggestions are included in the review field for

↪→ further insights.
),

}
raise TypeError(f Cannot serialize object of type {type(obj)} )

Listing 2: Formatted response message from FMSRAgent

A.4 PLAN-EXECUTE

Plan-Execute. Plan-Execute is a widely used architectural paradigm for multi-agent systems. Fig-
ure 8 depicts the implementation adopted in our work. It is derived from specialized multi-agent
system Marreed et al. (2025). The process initiates when a user submits a query, which is first pro-
cessed by the Planner. The Planner decomposes the query into discrete, executable tasks. These
tasks are then vetted by a Reviewer component to ensure quality, completeness, and relevance.
Upon approval, the Orchestrator assigns the tasks to the most appropriate agents. Each agent in-
dependently executes its assigned task and returns a structured response. These responses are then
aggregated by the Summarization module, which synthesizes them into a coherent final output that
is returned to the user.

This architecture supports modularity, robustness, and interpretability across the task lifecycle. We
have provided two system prompts where first prompt guides an AI to generate a structured step-by-
step plan using external agents, while the second prompt instructs a reviewer agent to evaluate the
plan’s correctness and completeness in JSON format.
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Figure 8: Plan-Execute Multi-Agent System

System Prompt (Planning Agent)

You are an AI assistant who makes step-by-step plan to solve a
complicated problem under the help of external agents.↪→

For each step, make one task followed by one agent-call.
Each step denoted by #S1, #S2, #S3 ... can be referred to in later

steps as a dependency.↪→

Each step must contain Task, Agent, Dependency and ExpectedOutput.
1. **Task**: A detailed description of what needs to be done in

this step. It should include all necessary details and
requirements.

↪→
↪→
2. **Agent**: The external agent to be used for solving this task.

Agent needs to be selected from the available agents.↪→
3. **Dependency**: A list of previous steps (denoted as `#S1`,

`#S2`, etc.) that this step depends on. If no previous steps are
required, use `None`.

↪→
↪→
4. **ExpectedOutput**: The anticipated result from the agent's

execution.↪→

## Output Format (Replace '<...>') ##

## Step 1
#Task1: <describe your task here>
#Agent1: <agent_name>
#Dependency1: None
#ExpectedOutput1: <describe the expected output of the call>

## Step 2
#Task2: <describe next task>
#Agent2: <agent_name>
#Dependency2: [<you can use #S1 and more to represent previous

outputs as a dependency>]↪→
#ExpectedOutput2: <describe the expected output of the call>

And so on...

Here are the available agents:
{agent_descriptions}

You are going to solve the following complicated problem:
{task.description}

Guidelines:
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- Task should be something that can be solved by the agent.
- A plan usually contains less than 5 steps.
- Only output the generated plan.

Output (your generated plan):

System Prompt (Review Agent)

review_plan_system_prompt_template = """You are a critical reviewer
tasked with evaluating the effectiveness and accuracy of a
plan. Your goal is to determine whether the plan is valid or
not given the context of the input question and agent
expertise. A valid plan should:

↪→
↪→
↪→
↪→

1. **Ensure all necessary actions are addressed:**
The plan must cover all required steps to successfully complete

the task as specified in the question. Ensure that each
action directly contributes to the task goal.

↪→
↪→

2. **Include appropriate dependencies between steps:**
Actions should be logically ordered with clear dependencies.

Each step must rely on the completion of the previous step
to ensure a coherent and efficient workflow.

↪→
↪→

3. **Ensure no crucial steps are missed:**
The plan must not overlook any essential actions required to

solve the task. If any crucial steps are absent, the plan
must be flagged as incomplete.

↪→
↪→

4. **Confirm all actions align with agent capabilities:**
Each step in the plan must fall within the designated expertise

of the agents involved. No action should require expertise
or knowledge outside of the agent's specified capabilities.
Any plan that violate this condition is an invalid plan.

↪→
↪→
↪→

5. **Strictly follow the task's question:**
Carefully compare the provided question with the task. The plan

should only include actions that directly relate to the
question's explicit requirements, without introducing any
unnecessary tasks or assumptions.

↪→
↪→
↪→

6. **Avoid Abstract task/step:**
Ensure steps/tasks are grounded with respect to the data

generated by previous steps or the question.↪→

### Evaluation Criteria:
1. **Completeness:**

- Verify that the system prompt leads to a plan that includes
all necessary steps to accomplish the task.↪→

- Ensure the description of each step contains all the relevant
information needed to execute the step, including any
required parameters or inputs that are mentioned in the
task's question.

↪→
↪→
↪→

2. **Relevance:**
- Confirm that each step in the plan directly contributes to

solving the task.↪→
- Eliminate any steps that do not serve a clear purpose in

achieving the goal.↪→

3. **Correctness:**
- Ensure that all steps are logically consistent and ordered

correctly.↪→
- Ensure that the dependencies between the steps are valid and

follow a correct sequence.↪→

4. **Expertise Alignment:**
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- Confirm that the steps in the plan are within the capabilities
of the agent.↪→

- Validate that the agents used in each steps are among the
available agents mentioned in the agents' expertise.↪→

5. **Efficiency:**
- Make sure the plan doesn't introduce redundant actions.
- Avoid unnecessary complexity in the plan.

6. **Clarity:**
- Ensure that the plan is easy to understand and logically

structured.↪→

---

**Question:**
{question}

**Agents' Expertise:**
{agent_expertise}

**Plan:**
{plan}

---

### Output Format:
Your review must always be in JSON format. Do not include any

additional formatting or Markdown in your response.↪→

```json
{{

"status": "Valid | Invalid | Other",
"reasoning": "A concise explanation for your evaluation. If a

specific step is wrong, point it out directly.",↪→
"suggestions": "Actions or improvements for rectifying the plan

if applicable."↪→
}}
```

Output:
"""

A.5 EXAMPLE DEMO

In the following Figures 9-11, we provide a few images to showcase working of Agent-As-Tool
approach for a single end-to-end utterance.

Figure 9: Execution is Initiated with an input query.
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Figure 10: The Final step of the execution

Figure 11: Anomaly Detection : Final Output

B ASSETOPSBENCH: ENVIRONMENT, HIERARCHY AND DOMAIN SPECIFIC
AGENTS

This section presents the simulated environment for agentic evaluation, structured task taxonomy
used in AssetOpsBench, which organizes benchmark scenarios based on key stages in the industrial
asset lifecycle.

B.1 SIMULATED ENVIRONMENT

Figure 12 provides a simulated docker environment for executing the task. The environment consists
of domain specific agents (FMSR, IoT, TSFM, WO), and model inference APIs (LLM and TSFM),
and access to telemetry data and Industry 4.0 data such as FMEA, Work Order, Alert and etc. The
system also comes with implementation of orchestration such as Agent-As-Tool and Plan-Execute
that are interfacing with user query.

First, we discuss the taxonomy that is used to support the creation of realistic, diverse, and role-
specific evaluation tasks for intelligent agents operating in complex environments, as shown in Fig-
ure 13 for the tasks related to the industrial asset management. To illustrate how the structured task
taxonomy guides agent development and evaluation, we highlight four representative agents: the
IoT Agent, the FMSR Agent (Failure Mode Sensor Relations Agent), TSFM (Time Series Foun-
dation Model) Agent, and the WO Agent (Work Order Agent). Among these, two agents : FMSR
Agent and WO Agent are particularly useful for their domain specialization and integration depth
within AssetOpsBench. Appendix B.3 presents the rationale for FMSR Agent, emphasizing its role
in bridging raw telemetry with diagnostic reasoning through sensor–failure mapping. Appendix B.5
focuses on the WO Agent, which operationalizes maintenance planning and historical analysis by
retrieving, filtering, and correlating work order records with asset conditions. Together, these exam-
ples demonstrate how high-level task categories such as failure mode alignment, anomaly response,
and intervention prioritization are translated into grounded, data-driven agent behaviors. This align-
ment reinforces AssetOpsBench’s emphasis on transparency, domain specialization, and end-to-end
task automation.
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Figure 12: Simulated Environment for Open Source Contribution and Testing

Figure 13: Representative Routine tasks in Asset Lifecycle Management.

B.2 RATIONALE FOR IOT AGENT OVER APPLICATION

The IoT Agent plays a foundational role in supporting Asset Configuration tasks within the Asse-
tOps framework, as illustrated in Figure 13. It enables structured access to real-time and historical
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telemetry data, asset metadata, and site configurations. Specifically, it allows users to query avail-
able IoT-enabled sites, list all assets within a given site (e.g., MAIN facility), and retrieve detailed
metadata for specific assets such as chillers and air handling units (AHUs). Additionally, it provides
access to time-series sensor data such as power input, temperature, flow rate, and system tonnage
across customizable time windows. These data queries form the backbone for monitoring tasks,
model inputs, and analytics performed by downstream agents like TSFM Agent and WO Agent.

Although the IoT Agent does not perform anomaly detection or failure analysis directly, it is a critical
enabler by delivering high-fidelity, time-aligned telemetry required for advanced applications (such
as those using TSFM Agent). For example, users can retrieve the tonnage data for Chiller 6 during
a specific week, download metadata for Chiller 9, or access sensor values recorded during a known
operational event. These capabilities align with the early-phase needs of asset lifecycle manage-
ment specifically selecting data sources and configuring metrics of interest ensuring all downstream
decision-making is grounded in accurate, context-rich operational data. The agent’s flexible query
interface and knowledge and data retrieval support allow it to seamlessly integrate into automated
pipelines for asset monitoring, diagnostics, and performance tracking.

B.3 RATIONALE FOR FMSR AGENT OVER APPLICATION

The sensor–failure alignment generation (See Figure 14) is a critical component of the AssetOps-
Bench benchmark, serving multiple roles in both dataset understanding and intelligent system de-
sign. Its inclusion is motivated by the following key factors:

Figure 14: Mapping Example internally used by FMSR Agent
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1. Bridging Raw Data and Diagnostic Insight: The table explicitly maps sensor variables to
relevant failure modes, establishing a direct link between low-level telemetry and high-level
maintenance reasoning. This supports tasks such as fault detection, root cause analysis, and
feature selection for learning-based systems.

2. Alignment with FMEA Methodology: By structuring failure explanations according to
the principles of Failure Modes and Effects Analysis (FMEA), the table offers a formalized,
interpretable view of asset health. Each sensor’s diagnostic role is contextualized through
failure causes, effects, and detection implications.

3. Supporting Explainability and Safety: In industrial environments, operational decisions
require transparency. The alignment table enhances system explainability by clarifying
why a given signal is relevant, how it relates to equipment health, and what operational
risks it may indicate.

4. Improving Dataset Transparency: The AssetOpsBench dataset includes a wide range
of sensors across multiple devices. This table functions as a documentation layer that
improves usability, reproducibility, and understanding for researchers and practitioners en-
gaging with the benchmark.

5. Guiding Model and Rule Development: Whether designing rule-based systems, hybrid
AI architectures, or physics-informed machine learning models, a well-defined mapping
of sensors to failure mechanisms is foundational. It informs the construction of robust
detection logic and contributes to generalizable reasoning strategies.

In sum, the sensor–failure alignment table plays a central role in transforming raw operational
telemetry into structured, actionable insight. It provides the semantic grounding necessary for de-
veloping interpretable, reliable, and effective AI agents for real-world industrial maintenance tasks.
Table 4 provides an extensive example for sensor-failure mode relation for a chiller system build
using our SME inputs.

Table 4: Sensor Interpretation and Failure Mode Relevance in Chiller Systems - Illustrative

Sensor Explanation Impact on Chiller Health / Failure Mode
Relevance

Condenser Leaving
Temp

Temperature of water
leaving the condenser

Indicates heat rejection efficiency; abnor-
mal readings may signal fouling or reduced
flow — potential heat exchange failure.

VFD Output Voltage Voltage output from
Variable Frequency
Drive

Instability may affect fan/compressor oper-
ation — linked to electrical drive failure or
load imbalance.

CHWSTSP in Free
Mode

Chilled water setpoint
during free cooling mode

Misconfiguration can lead to energy ineffi-
ciency — related to control logic failure.

Cycling Code Indicates compressor cy-
cling state

Frequent cycles may indicate load mis-
match, sensor error, or compressor stress.

Ready Status Indicates if chiller is in a
ready state

Persistent unavailability may reflect con-
trol override, interlock failure, or alarm
lockout.

Manual Start/Stop Overrides for manual op-
eration

May cause unscheduled runtime or safety
override conditions.

Chilled Water Leav-
ing Temp

Temperature leaving
evaporator

Deviation may suggest capacity loss or im-
proper load conditions.

Condenser Flow Water flow through con-
denser loop

Low flow may cause high pressure shut-
down or heat rejection failure.

VFD Input Power Power input to VFD Spikes may indicate motor inefficiency,
overload, or harmonic distortion.

CNW Flow Hi Alarm
SP

High flow setpoint for
condenser loop

May indicate bypass valve issues or over-
pumping.

Watt/Ton Cooling efficiency met-
ric

Rising ratio suggests energy inefficiency or
component degradation.
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Sensor Explanation Impact on Chiller Health / Failure Mode
Relevance

Chilled Water Flow Water flow through
evaporator

May point to pump failure, valve issues, or
airlocks.

Motor Run Status Compressor motor oper-
ational state

Discrepancies could signal false starts,
sensor error, or runtime misreporting.

Vibration Point #1
SP

Vibration sensor setpoint
(location #1)

May indicate bearing failure, imbalance,
or mechanical looseness.

CHW Valve Position Position of chilled water
valve

Out-of-range position may imply valve ac-
tuator fault or control misbehavior.

CHW Differential
Pressure (D/P)

Pressure drop across
chilled water loop

Suggests clogging, filter fouling, or flow re-
sistance.

CHW Flow Hi Alarm
SP

Alarm setpoint for high
CHW flow

Triggered by pump overspeed, valve over-
shoot, or control issues.

Condenser Return
Temp

Water temperature re-
turning to the condenser

Important for thermal load calculation and
monitoring efficiency.

Average Amps Average motor current High current may indicate overload, bear-
ing drag, or electrical faults.

CHW Valve Close
Control

Control signal to close
CHW valve

Improper function may cause flow issues or
unmet loads.

CNW Differential
Pressure (D/P)

Pressure drop in con-
denser loop

Indicates scaling, fouling, or pump degra-
dation.

VFD Internal Ambi-
ent Temp

Internal temperature of
VFD

High temps may trigger thermal trips or
shorten VFD lifespan.

Freon Temp Refrigerant temperature Abnormal values may suggest charge is-
sues, expansion valve faults, or heat ex-
change failure.

Compressor Oil
Sump Temp

Oil sump temperature High temperature may signal bearing wear
or insufficient cooling.

Chilled Water Return
Temp

Return water temp to
evaporator

Used for cooling load and delta-T analysis.

Motor Run Status
RPT

Reported motor run con-
firmation

Mismatch suggests sensor/control error.

VFD Inverter Link
Current

Current through VFD in-
verter link

High current may indicate overload or
VFD stress.

CHWSTSP in Part
Mode

Setpoint in partial load
mode

Improper configuration can cause energy
waste or load mismatch.

VFD Phase A/B/C
Current

Phase currents from
VFD

Used to detect imbalances, shorts, or phase
loss.

VFD Converter Heat
Sink Temp

VFD heat sink tempera-
ture

Elevated temps reduce component life and
can cause failure.

Compressor Oil
Pressure

Oil pressure in compres-
sor

Low pressure risks lubrication failure and
component damage.

Failure (status flag) Direct failure indicator Used as ground truth label for fault evalua-
tion.

VFD Setpoint Speed or torque com-
mand

Affects energy usage, response time, and
cooling capacity.

CHW Flow High
Alarm

High flow warning flag May indicate system control faults or over-
sized flow components.

VFD DC Bus Volt-
age

DC voltage level inside
VFD

Instability can reflect power quality issues.

CNW Flow High
Alarm

High condenser water
flow warning

May reflect valve misposition or energy in-
efficiency.

CNW Flow Low
Alarm SP

Low flow alarm thresh-
old

Indicates risk of overheating or shutdown
due to poor heat rejection.

Warning Code Non-critical warning sta-
tus

Helpful for early diagnostics or trend de-
tection.
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Sensor Explanation Impact on Chiller Health / Failure Mode
Relevance

Vibration Points
#2/#3 SP

Additional vibration set-
points

Detect imbalance, wear, or mechanical
degradation.

B.4 RATIONALE FOR TSFM AGENT OVER APPLICATION

The TSFM Agent is purpose-built to support critical tasks within the AssetOps workflow, as outlined
in Figure 2(a). Within Model Selection and Analysis, TSFM Agent enables forecasting of key per-
formance indicators (KPIs) using lightweight, pre-trained foundation models. Its adaptive anomaly
detection framework, based on post-hoc conformal prediction, supports calibrated and interpretable
anomaly scores, providing high utility for both Monitoring and Execution and Maintenance and
Response.

Specifically, the TSFM Agent can execute and refine models, classify anomalies based on historical
deviations, and support operational guardrails by simulating expected trends under normal condi-
tions. In downstream applications, the agent’s outputs can be used to summarize overall system
health by tracking the frequency of anomalies across selected KPIs. These anomalies serve as a
foundation for maintenance recommendations, enabling preventive and reactive work order genera-
tion. TSFM Agent facilitates real-time, data-driven decision-making throughout the asset lifecycle.

B.5 RATIONALE FOR WO AGENT OVER APPLICATION

The WO Agent, a code based ReAct, in AssetOpsBench is designed to enable intelligent interaction
with structured and unstructured maintenance records through a modular data model. It operates
over a set of Business Objects (BOs) that represent work orders, alerts, anomalies, failure codes, and
asset metadata. These BOs are categorized into five functional groups that collectively support the
WO Agent’s decision-making capabilities.

To reason over these BOs, the WO Agent is equipped with a collection of analytic functions that
allow it to retrieve, interpret, and act upon historical and real-time data. The agent’s capabilities are
structured as follows:

1. Historical Reasoning via Content Objects and Knowledge Extraction: The WO Agent
accesses raw maintenance data such as WorkOrders, Events, including Work orders, alerts,
and anomaly Events. Knowledge extraction functions enable the agent to retrieve and filter
this data by date, asset, and work order type, allowing targeted analysis and retrospective
diagnostics.

2. Standardized Interpretation with Meta/Profile Objects: BOs like ISO Failure Code,
AlertRule, and Equipment provide structured classification schemes. These allow the agent
to categorize failures, apply semantic filters, and maintain compatibility with domain con-
ventions—critical for aligning alerts and anomalies with actionable categories.

3. Temporal and Causal Reasoning via Statistical Functions: Leveraging relationship BOs
such as Alert-Rule Mapping and Anomaly Mapping, the WO Agent applies statistical func-
tions (e.g., Allen’s Interval Algebra) to detect temporal patterns—such as when alerts con-
sistently precede failures. It also detects repeated work order cycles, helping align mainte-
nance with actual degradation patterns instead of fixed schedules.

4. Predictive and Prescriptive Intelligence through Decision Support Functions: Using
the WorkOrderRecommendation BO, the agent forecasts future work orders, recommends
maintenance based on alerts or KPI anomalies, and identifies opportunities for bundling
related tasks. These decision support functions enable proactive scheduling and optimize
resource use across the asset lifecycle.

5. Persona-Aligned Interaction and Query Resolution: The WO Agent interfaces naturally
with domain personas. Maintenance engineers can explore past interventions for a given
failure, while planners can query upcoming work order demands or seek opportunities to
consolidate tasks. These capabilities are backed by modular functions that support flexible
querying and planning logic.
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In summary, the WO Agent is a hybrid reasoning and decision-support agent built atop structured
business objects and analytic functions. It connects historical insight with predictive planning, en-
abling lifecycle-aware maintenance interventions grounded in transparent, data-driven logic.

B.6 TOOLS USED BY AGENTS

In this section, we describe the development of over fifteen LangChain-based tools that form the
backbone of our agent framework. We follow a standardized methodology for tool construction,
and, with the exception of the WO agent, all agents operate through tool-calling APIs. Table 5 lists
thirteen of these tools along with their names, descriptions, and parameters. For brevity, we omit
some of the lower-level parameters associated with the time-series tool suite. In case of WO agent,
which is a coding agent, we needed to build a generic business driven object, as given in Table 6.

Table 5: List of Available Tools and Their Parameters.

Tool Name Description Parameters (Required Fields)

Get Failure Modes Retrieves failure modes linked to a
specific asset.

asset name: name of the asset.

Get Failure Mode
and Sensor Rele-
vancy Mapping

Returns relevancy mapping between
failure modes and sensors for down-
stream tasks.

input str: string with asset name,
failure modes, and sensors.

Read Sensors
From File

Reads available sensors of an asset
from a file and outputs sensor vari-
able names.

input str: sensor file path.

sites Retrieves a list of available sites. v args: optional array (default:
null).

history Returns sensor values for an asset
within a given time range.

site name, assetnum, start,
final.

assets Lists all assets available at a given
site.

site name.

sensors Lists all sensors for an asset at a
given site.

site name, assetnum.

jsonreader Parses a JSON file and returns its
content.

file name.

currentdatetime Returns current date and time as
JSON.

v args: optional array (default:
null).

aitasks Lists available AI tasks and
their methods (task id,
description).

v args: optional array (default:
null).

tsfmmodels Lists supported forecasting models
(ID, checkpoint, description).

v args: optional array (default:
null).

tsfm forecasting Forecasts sensor or KPI variables us-
ing pretrained time-series models.

dataset path,
model checkpoint,
timestamp column,
target columns.

tsfm forecasting
finetune

Finetunes a pretrained forecasting
model on new data.

dataset path,
model checkpoint,
timestamp column,
target columns.

tsfm integrated
tsad

Performs time-series anomaly detec-
tion using model predictions.

dataset path,
timestamp column,
target columns.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 6: WO Agent Summary of Business Objects, Source, Role, and Number of Records

Business Ob-
ject

Source Role Count

Content Objects
WorkOrder Work Order Man-

ager
Tracks scheduled and unscheduled mainte-
nance tasks, categorized as preventive or cor-
rective.

4392

Event Aggregated by
Authors

Consolidates event logs for tracking and
decision-making.

6929

Alert Events IoT Repository Logs real-time alerts triggered by IoT sensors
based on predefined conditions.

1995

Anomaly
Events

ML Generated Detects KPI deviations using machine learning
for predictive maintenance.

542

Meta/Profile Objects
ISO Failure
Code

Developed by
Authors

Standardizes failure classification for struc-
tured maintenance analysis.

137

ISO Primary
Failure Code

Developed by
Authors

Defines primary failure categories and links
related secondary codes.

68

AlertRule SME Provided Specifies conditions for triggering alerts based
on system behaviors.

77

Equipment SME Provided Represents industrial assets, including status
and specifications.

22

Relationship Causality Objects
Alert-Rule
Mapping

Relationship
Causality

Links alert rules to failure codes for automated
diagnostics.

46

Anomaly
Mapping

Relationship
Causality

Associates anomalies with failure codes for
predictive insights.

12

Recommendation Objects
WorkOrder
Recommen-
dation

Recommendation Suggests maintenance actions based on histor-
ical patterns.

N/A

Note: The design and structure of the business objects and corresponding analysis in this section are valid for
other industrial asset types, such as standby generators.

C DATASETS UTILIZED IN ASSETOPSBENCH

In this part, as extension of Section 4.1, we will zoom into the datasets utilized by the various agents
of AssetOpsBench (More details of the roles of the agents in the asset lifetime management can be
found at Appendix B.

C.1 SENSOR TELEMETRY DATASET FOR IOT AGENT AND TSFM AGENT

Both IoT Agent and TSFM Agent (Figure 2(a)) leverage the Sensor Telemetry Dataset, which
comprises sensor telemetry collected from Building Management Systems (BMS) and the SkySpark
analytics platform. This dataset captures fifteen-minute interval operational data from industrial
HVAC systems, specifically a fleet of chillers. Each chiller unit (e.g., Chiller 4, Chiller 14) is in-
strumented with a standardized suite of physical sensors that monitor key operational parameters in
real-time.

A representative subset of these sensors is summarized in Table 7. These sensors record various
kinematic, dynamic, thermodynamic, electrical, and operational metrics essential to assessing the
performance and health of chiller systems. Measurements include water and refrigerant tempera-
tures, power consumption, cooling capacity (tonnage), flow rates, and system setpoints. Addition-
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ally, computed metrics such as chiller efficiency and load percentage serve as valuable real-time
indicators of system performance.

Table 7: Representative Sensors in the AssetOpsBench Dataset

Sensor Name Description
Chiller Return Temperature Temperature of water returning to the chiller
Supply Temperature Temperature of water exiting the chiller
Power Input Electrical power consumption
Tonnage Heat extraction rate (cooling capacity)
Condenser Water Supply to
Chiller Temperature

Temperature of water supplied to the condenser

Chiller Efficiency Instantaneous performance metric
Chiller % Loaded Current load as a percentage of the maximum
Condenser Water Flow Flow rate through the condenser
Liquid Refrigerant Evaporator
Temperature

Temperature of refrigerant in the evaporator

Run Status Binary indicator of whether the chiller is currently oper-
ating

Setpoint Temperature Current setpoint for chiller operation

Each sensor stream is accompanied by rich metadata, including sensor type, measurement units,
physical location, and structured device tags that define device associations. The dataset captures
realistic operational variability, encompassing noise, missing data, and seasonal patterns. As such,
it provides a robust foundation for developing and benchmarking models that require temporal rea-
soning, fault detection, and decision-making under uncertainty.

As illustration, Figure 15 presents layered time series subplots for key chiller sensors over a selected
snapshot period in June 2020 for Chiller 6. Each subplot corresponds to one sensor variable, en-
abling a clear view of temporal dynamics and inter-variable behavior. This figure provides insight
into the operational profile of a single chiller unit during real-world usage.

The IoT Agent interacts with this telemetry data through structured utterances. By leveraging the
standardized data provided by AssetOpsBench, the agent enables detailed, query-driven access to
operational information across HVAC assets such as chillers and air handling units (AHUs) at IoT-
enabled sites like the MAIN facility. Through these utterances, users can request both real-time
and historical data, retrieve metadata, and download sensor readings for specific timeframes. This
functionality supports knowledge and data queries, facilitating asset-level diagnostics, performance
monitoring, and intelligent decision-making, even in noisy or incomplete data.

On the other hand, the TSFM Agent operates on sensor telemetry data that are either retrieved via the
IoT Agent or accessed directly from the sensor repository to perform advanced time series analysis
across HVAC systems. It supports a range of analytical tasks, including multivariate forecasting,
and time series anomaly detection. At its core, the agent utilizes pre-trained time-series foundation
models. For anomaly detection, the TSFM Agent applies a model-agnostic, post-hoc adaptive con-
formal method that requires no additional fine-tuning data, making it highly practical for real-world,
resource-constrained deployments. By learning dynamic weighting strategies from prediction histo-
ries, it can detect distributional shifts and maintain calibrated, interpretable anomaly scores aligned
with user-defined false alarm rates. Through structured utterances, users can invoke forecasting on
specific variables (e.g., “Chiller 9 Condenser Water Flow”), fine-tune models with minimal data,
or detect anomalies in historical trends, all with minimal configuration. This seamless integration
of pre-trained models, adaptive analytics, and user-guided queries enables transparent, robust, and
immediately deployable monitoring solutions tailored for critical industrial systems.

C.2 FAILURE MODE DATASETS FOR FMSR AGENT

The failure mode datasets in AssetOpsBench are modeled using the principles of Failure Modes
and Effects Analysis (FMEA), a structured framework used in reliability engineering to identify
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Figure 15: Snapshot of time series data from Chiller 6 for June 2020. Each subplot shows an
individual sensor’s trend over time.

failure risks, assess root causes and effects, and inform condition-based maintenance strategies.
Each failure is defined by its mode, degradation mechanism, detection opportunity, and operational
impact, enabling structured reasoning for both rule-based diagnostics and machine learning.

Failures in the dataset are annotated at the asset and subsystem levels, with a primary focus on
centrifugal chillers. These failures reflect realistic degradation pathways and operational stressors
derived from field experience. Each record in the failure model includes:

• Failure Location and Component: The subsystem or part where failure occurs, such as
bearings, gearboxes, impellers, or lubrication systems.

• Degradation Mechanism: The underlying physical process driving the failure, including
wear, erosion, oil degradation, vibration-induced fatigue, and misalignment.

• Degradation Influences: External or internal stressors such as run time, two-phase process
fluid, personnel error, or shock loading.

• Functional Failure Mode: The resulting operational defect, such as decreased oil pres-
sure, audible noise, low head pressure, or capacity loss.

• Detection Opportunities: Observable precursors or symptoms, including sensor readings
(e.g., oil sampling, vibration signals), condition-based alarms, or inspection results.

• Repair Time and Criticality: Estimated downtime and classification of failure risk, sup-
porting cost-based prioritization and scheduling.

• Preventive Task Type: Associated maintenance activity, such as oil analysis, vibration
analysis, or visual inspection, tagged with effectiveness ratings and intervention intervals.

For example, bearing wear a recurring failure across chiller subsystems may arise from lubrication
failure, misalignment, or fluid shock loading. This degradation is detectable via a combination of oil
analysis and vibration monitoring, with failure symptoms including increased vibration, reduced oil
pressure, and audible anomalies. Similarly, impeller erosion is linked to aging and two-phase fluid
exposure, typically presenting as reduced capacity and lower head pressure.
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Each maintenance task in the dataset is mapped to its detection mechanism and action type (e.g.,
condition monitoring vs. corrective repair), along with documentation on task content and recom-
mended frequency. These structured records not only support early fault detection and diagnostics
but also facilitate benchmarking of intelligent agents’ reasoning over real-world degradation patterns
and maintenance decisions. Failures are temporally aligned with telemetry, enabling the study of
degradation trajectories and pre-failure conditions. This integrated design makes the dataset suitable
for supervised learning, causal inference, and evaluation of digital twins or predictive maintenance
agents under realistic operating uncertainty.

To utilize the failure modes and their association with the sensors, we design FMSR (Failure Mode
Sensor Relations) to interpret failure mode datasets within the AssetOpsBench framework, leverag-
ing structured FMEA (Failure Modes and Effects Analysis) principles to link sensor telemetry with
degradation mechanisms and operational failures. Using annotated failure records for assets such as
centrifugal chillers, the FMSR Agent builds knowledge graphs and reasoning models that connect
specific failure modes like compressor overheating, evaporator fouling, or refrigerant valve failure to
their underlying causes and detectable symptoms. These failure modes are mapped to available sen-
sor measurements (e.g., supply temperature, power input, vibration, flow rate) to identify observable
precursors. For example, compressor overheating may be monitored through trends in power input,
chiller efficiency, and evaporator temperature, while condenser fouling can manifest in abnormal
return temperatures and flow rate deviations. Through structured utterances, users can query which
failure modes are associated with specific sensors, which are critical for detecting a given failure, or
even construct machine learning recipes for predictive modeling such as anomaly models for chiller
trips or excessive purging. The agent leverages this data to perform rule based diagnostics, support
causal analysis, and assist in condition based maintenance planning. By aligning temporal sensor
patterns with known failure signatures, the FMSR Agent enables explainable fault detection and
root cause inference, ultimately enhancing reliability, maintainability, and transparency in HVAC
operations.

C.3 WORK ORDER DATASETS FOR WO AGENT

Table 6 provide the summary of datasets (as business objects) and the size for each dataset. Those
work order datasets in AssetOpsBench provide a structured view of maintenance activity across in-
dustrial assets, encompassing both preventive and corrective interventions using work orders. Each
work order is associated with rich contextual data including equipment metadata, failure classi-
fication codes (e.g., ISO Failure Code, ISO Primary Failure Code), event logs, sensor-triggered
alerts, and machine-generated anomalies. These records are linked temporally and causally, allow-
ing agents to reason about asset history, detect recurring failure patterns, and recommend actions
based on past interventions.

The group of datasets distinguishes between core content objects (e.g., WorkOrders, Alerts, Events,
Anomalies), metadata profiles, and relational structures that map alerts and anomalies to failure
codes.

The individual event tables: work orders (Table 8), alert events (Table 9), and anomaly events (Ta-
ble 10) captures different but complementary signals related to equipment condition and behavior.
To enable integrated analysis and causal reasoning, these events are unified into a common event ta-
ble schema (Table 12), allowing temporal alignment and cross-type relationship discovery between
maintenance actions, system warnings, and performance anomalies.

In addition, to support the linkage of failure code over the events, we provide two mapping tables:
one that connects alert rules to likely failure codes, and another that maps KPI-based anomalies to
structured failure categories (Tables of 13 and 11). These mappings enable agents to infer probable
root causes from real-time signals and integrate data-driven insights with expert failure taxonomies.

This help us to develop WO agent to support grounded evaluation of diagnostic reasoning, task
generation, and repair recommendation. More particularly, the WO agent analyze historical work
orders to identify repeated maintenance issues and improve task scheduling. It processed historical
work order, alerts (from IoT Agent) and anomalies (from TSFM agent) event, linking them to failure
codes to support predictive maintenance recommendations. In the potential industrial applications,
WO agent can complete to tasks of automating the interpretation of maintenance data, predicting
future work orders, and bundling related tasks to reduce operational downtime.
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Table 8: Work Order Event Schema Definition

Field Name Type Description
wo id String Unique identifier for the work order. Exam-

ple: "L247402"
wo description String Description of the work being done.

Example: "CHILLER COMP OIL
ANALYSIS"

collection String Broad group or system the work relates to.
Example: "compressor"

components String Specific part or component being serviced.
Example: "compressor"

primary code String Code representing the main type of work.
Example: "MT010"

primary code desc. String Description of the primary work code. Ex-
ample: "Oil Analysis"

secondary code String Sub-code under the primary category. Ex-
ample: "MT010b"

secondary code desc.String Description of the secondary code. Exam-
ple: "Routine Oil Analysis"

equipment id String Unique ID of the equipment. Example:
"CU02013"

equipment name String Human-readable name of the equipment.
Example: "Chiller 13"

preventive Boolean Indicates if this is preventive maintenance.
Example: TRUE

work priority Integer Priority level of the work (e.g., 1–5). Exam-
ple: 5

actual finish DateTime Date and time when the work was com-
pleted. Example: "4/6/16 14:00"

duration Duration Total job time. Format: HH:MM. Example:
"0:00"

actual labor hours Duration Actual labor time spent. Format: HH:MM.
Example: "0:00"

Table 9: Alert Event Schema Definition

Field Name Type Description
equipment id String Unique identifier for the equipment that trig-

gered the alert. Example: "CWC04701"
equipment name String Human-readable name of the equipment.

Example: "Chiller 1"
rule id String Identifier for the rule or condition that trig-

gered the alert. Example: "RUL0021"
start time DateTime Timestamp when the alert or event started.

Example: "11/24/20 19:00"
end time DateTime Timestamp when the alert or event ended.

Example: "11/24/20 23:59"
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Table 10: Anomaly Event Schema Definition

Field Name Type Description
timestamp DateTime The date and time when the anomaly event

was recorded. Example: "4/26/20
14:14"

KPI String The key performance indicator being moni-
tored (e.g., "Cooling Load").

asset name String The name of the asset or equipment being
measured. Example: "chiller 9"

value Numeric The actual measured value of the KPI at the
given timestamp. Example: 25978710

upper bound Numeric The upper threshold for the KPI. Exceeding
this may indicate an anomaly.

lower bound Numeric The lower threshold for the KPI. Falling be-
low this may indicate an anomaly.

anomaly score Float A score indicating how likely the data point
is an anomaly (typically 0 to 1).

Table 11: Mapping Table: KPI Anomalies to Failure Codes

Field Name Type Example Description
kpi name String Cooling Load Name of the key perfor-

mance indicator exhibiting
anomaly.

anomaly type String High Indicates the direction or na-
ture of the anomaly (e.g.,
High, Low, Spike).

category String Operational Failures Broad class of the failure
(e.g., Control System, Struc-
tural, External, Human).

primary code String OP004 Primary failure code associ-
ated with the anomaly.

pri. code des.String Incorrect Cooling
Zone Operation

Explanation of the primary
failure code.

seco. code String OP004c More specific sub-code re-
fining the root cause.

seco. code des.String Improperly Con-
trolled or Shut Off
Zones

Description of the secondary
failure code.
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Table 12: Unified Event Table Schema Definition

Field Name Type Description
event id String Unique identifier for the event (can be work

order ID, alert ID, anomaly ID, etc.). Exam-
ple: "WO-16170"

event group String High-level classification of the event
source (e.g., "WORK ORDER", "ALERT",
"ANOMALY").

event category String Sub-classification such as preventive main-
tenance ("PM"), corrective maintenance
("CM"), etc.

event type String Specific code/type of the event (e.g.,
"MT001", "RUL0021").

description String Human-readable description of the event.
Example: "Vibration Analysis" or
"Refrigerant Leak".

equipment id String Unique ID of the equipment involved in the
event. Example: "CWC04701"

equipment name String Name of the equipment. Example:
"Chiller 1"

event time DateTime Timestamp when the event occurred or
was logged. Format: YYYY-MM-DD
HH:MM:SS

note String Additional description for this event if nec-
essary

Table 13: Mapping Table: Alert Rule to Failure Code

Field Name Type Example Description
rule id String RUL0012 Identifier for the alert rule

triggered by a monitoring
system.

rule name String Chiller - Low Supply
Temperature

Descriptive name of the alert
rule logic or threshold con-
dition.

primary code String CS005 ISO failure code associated
with the likely root cause.

primary code String Control System Mal-
function

Human-readable explana-
tion of the failure code.
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D ASSETOPSBENCH SCENARIOS

D.1 SCENARIOS CREATION PRINCIPLES

The scenarios in AssetOpsBench are designed to evaluate the capabilities required for autonomous
agents operating in real industrial environments. Although grounded in real operational data and
engineering practices, each scenario is intentionally framed to test a specific dimension of agent
reasoning, tool interaction, and decision-making relevant to asset management. The scenarios are
built around four core principles:

• Reasoning and Tool Use: Scenarios require agents to perform domain-specific reasoning
such as time-based logic, schema interpretation, and multi-step tool invocation. Common
failure cases include premature termination, incorrect parameter selection, or misuse of
diagnostic tools.

• Data Handling and Forecasting: Agents must interpret telemetry, detect anomalies, and
configure appropriate models for forecasting or anomaly detection. Tasks emphasize the
translation of real-world engineering intuition into ML configuration steps (e.g., model
selection, training windows, thresholds).

• Agent Communication and Coordination: Many scenarios simulate multi-agent work-
flows where the agent must ask clarifying questions, summarize findings, or coordinate
subtasks. This reflects how real engineering teams collaborate during diagnostics or plan-
ning.

• Workflow Orchestration and Decision-Making: Scenarios measure the agent’s ability
to plan complex workflows, handle dependencies, reason under uncertainty, and determine
when to stop or escalate due to missing or conflicting information.

These principles ensure that scenarios remain faithful to real asset-management workflows while
systematically probing the capabilities of autonomous agents.

D.2 SCENARIO GENERATION

The scenarios in AssetOpsBench were generated from real industrial operations and shaped through
an 18-month collaboration with reliability engineers, controls specialists, and domain experts re-
sponsible for large portfolios of mechanical assets (e.g., AHUs, chillers, boilers, compressors). Un-
like synthetic rule-based benchmarks, the scenarios are grounded in operational conditions, OEM
specifications, maintenance records, and engineering workflows used in practice.

The development process was iterative and domain-driven. Subject-matter experts first identified
high-impact failure modes and diagnostic tasks central to asset health, safety, and performance. For
each asset type, expert engineers drafted scenario templates that captured realistic fault signatures,
cross-sensor interactions, physical constraints, and contextual operating conditions. These templates
underwent multi-round reviews involving 3–7 experts to ensure that each scenario reflects plausible
field behavior and aligns with real diagnostic reasoning patterns.

Across the 18-month timeline, the scenario library evolved through 12 major iterations. Each it-
eration added new scenario types, refined diagnostic narratives, and updated failure descriptions
based on expert insights and validation against real data patterns. While generating a single sce-
nario is relatively quick, ensuring its realism, consistency, and clarity required significant expert
effort including documentation, cross-checking with historical data, and verification of operational
plausibility.

Overall, the AssetOpsBench scenarios form a rigorously curated, expert-validated collection of op-
erational situations that reflect how reliability engineers analyze equipment behavior in real-world
industrial settings.

D.3 SCENARIO STATISTICS

As shown in Table 14, AssetOpsBench includes a total of 141 scenarios with 99 single-agent sce-
narios and 42 multi-agent scenarios. These scenarios are to be open source research community.
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Table 14: Examples of Scenario with their Subtypes (Aligned with Task Taxonomy - Figure 2(b))

Agent Group Subtype Task Descriptions

TSFM Agent
# Scenarios: 23

Forecasting Predict future KPI trends over time windows
Model Tuning Select or refine time series models for accuracy
Anomaly Detection Identify deviations in operational behavior
Hybrid Tasks Combine prediction with anomaly evaluation
Model Capabilities Query TSFM model limits and configurations

Work Order
Agent
# Scenarios: 36

Retrieval & Filter Filter work orders by asset, location, or time
Event Summary Summarize logs or alerts over time windows
Scheduling Recommend or optimize work order sequences
RCA & Alert Review Perform root cause or alert logic review
KPI-based Reco. Link alerts or KPI trends to work orders

Multi-Agent
(End-to-End)
Tasks
# Scenarios: 42

Knowledge Query Tasks involving anomaly detection or forecasting
Failure Reasoning Uses degradation models and causal logic
Sensor Mapping Maps failure modes to sensors
Sensor Inventory Retrieves installed sensors on an asset
Other Multi-step inference or decision-making

The goal is to test an agent’s ability across four capability dimensions: r Tool-Centric (e.g., tool
and API interaction), Skill-Centric (e.g., analytical reasoning), � Domain-Centric (e.g., context-
aware decision-making), and � LLM-Centric (e.g., language-based generalization across tasks).
Each scenario is associated with an utterance to complete a task. Table 14 summarizes the distribu-
tion of scenario subtypes and their alignment with the task taxonomy. Utterance-507 represents an
� LLM-Centric scenario, where the agent must recognize that forecasting task is redundant in the
presence of a zero-valued sensor reading—indicating that the machine may not be operating. The
agent is expected to bypass unnecessary computation and recommend halting diagnostics to address
the root issue directly. In contrast, Utterance-511 exemplifies a Skill-Centric task, requiring the
agent to correlate energy consumption with a power input variable and construct a corresponding
model. This scenario tests the agent’s analytical reasoning over telemetry data to uncover functional
relationships.

D.4 SCENARIO EXAMPLES

We include two examples (Table 15 and Table 16) that showcase distinct behaviors of agent outputs.
Readers can observe that the characteristic form varies even for problems that appear similar on the
surface.

Table 15: Example Knowledge Query: Energy Prediction for Chiller 9

Field Description
ID 507
Type Knowledge Query
Text What is the predicted energy consumption for Chiller 9 in the week of

2020-04-27 based on data from the MAIN site?
Characteristic
Form

The expected response should confirm the successful execution of all
required actions, ensuring that the correct asset (Chiller 9), location
(MAIN), and time range (week of 2020-04-27) were used for data re-
trieval and analysis. It should specify that the agent identified the sensor
name (power input sensor) and retrieved the historical energy consump-
tion data for Chiller 9 during the specified time period.
The response must also explain that the agent attempted to analyze the
data for energy consumption prediction, but was unable to do so due
to insufficient data, as the power input for Chiller 9 was consistently
0.0 from 2020-04-20 to 2020-04-25, indicating that the chiller was not
operating.
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Table 16: Example Knowledge Query: Predicting Energy Usage for Chiller 9

Field Description
ID 511
Type Knowledge Query
Text Can you predict Chiller 9’s energy usage for next week based on data

from the week of 2020-04-27 at MAIN?
Characteristic
Form

The expected response should confirm the successful execution of all
required actions, ensuring that the correct asset (Chiller 9) and location
(MAIN site) were used for data retrieval and analysis. It should specify
that the agent first identified the sensors for Chiller 9, then selected
the Chiller 9 Power Input sensor, and successfully retrieved the energy
usage data for the specified time period.
The response should confirm that the agent provided the file path where
the data is stored. Additionally, it should mention that although the
agent initially encountered errors while analyzing the data and making
predictions, it successfully corrected its mistakes and finetuned a Time
Series Forecasting model using the provided data. The agent should
have used the finetuned model to generate predictions for the next week,
with the results being stored in the specified file.

D.5 SCENARIO COMPARISON WITH OTHER BENCH

We prepare a table to compare with the literature in Table 17. AssetOpsBench extends prior bench-
marks by incorporating temporal/dynamic queries, name disambiguation, and tool-output–driven
operations. These capabilities not present in TaskBench or ITBench. Additionally, while earlier
benchmarks rely on either complex tool graphs or simpler single-step tools, AssetOpsBench empha-
sizes multi-step tool reuse, aligning better with real industrial agent workflows.

Table 17: Comparative overview of general-purpose and domain-specific benchmarks.

Benchmark TaskBench
(NeurIPS 2024)

ITBench
(ICML 2025)

AssetOpsBench
(Ours)

Data Generation Tool Graph + Back-
Instruct

Manual Manual

Tool Dependency ✓ ✓ ✓
Quality Control LLM Self-critique +

Rule-based
Human Verification Human Verification

Evaluation Task Decomposition +
Tool Selection + Pa-
rameter Prediction

ReActive Planning
+ Tool Selection

ReActive Planning
+ Tool Selection +
Parameter Predic-
tion

Tool Complexity Single tool to complex
tool graph

– Multiple tools;
same tools can
be called multiple
times

Dataset Scale 17,331 samples 141 scenarios 141 scenarios
Temporal / Dynamic
Query

× × ✓

Name Disambiguation × × ✓
Tools Output Opera-
tion

× × ✓
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D.6 USER STUDY RELIABILITY ANALYSIS

To quantitatively assess the realism of AssetOpsBench scenarios, we conducted a human evaluation
study. We randomly selected 25 representative scenarios covering four categories: IoT queries, time-
series forecasting (TSFM), work orders/events, and failure mode reasoning (FMSR). Participants
were domain experts, including reliability engineers, maintenance engineers, and data scientists
familiar with condition-based monitoring and predictive maintenance. Each participant evaluated
scenarios using a 3-point scale (1 = Not Realistic, 2 = Realistic, 3 = High Realistic) and could
optionally provide qualitative comments. Background questions captured participants’ role, years
of experience, and familiarity with predictive maintenance. Responses were collected via a Google
Form as shown in Figure 16.

Figure 16: Representative example of Scenario for Collecting user feedback

The following metrics were computed to assess internal consistency, inter-rater agreement, and the
reliability of aggregated scores.

D.7 RELIABILITY METRICS

Table 18: Summary of Reliability Metrics for User Study Ratings

Metric Value

Cronbach’s Alpha 0.8871
ICC(1) 0.2334
ICC(2) 0.8817
Fleiss’ Kappa 0.2093

D.8 INTERPRETATION

The internal consistency of the 25 scenario ratings is excellent, as indicated by a Cronbach’s alpha
of 0.887. The ICC(1) value of 0.233 reflects moderate agreement at the individual-participant level,
whereas ICC(2) of 0.882 demonstrates that the aggregated ratings across participants are highly reli-
able. Fleiss’ kappa of 0.209 indicates slight-to-fair categorical agreement among participants, which
is consistent with the subjective nature of realism judgments. Overall, while individual participants
may vary in their ratings, the averaged scores per scenario provide a stable and trustworthy measure
of perceived realism.
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E GROUND TRUTH PREPARATION FOR REFERENCE-BASED EVALUATION

To ensure that each scenario can be objectively evaluated, we first construct a ground-truth specifi-
cation that precisely defines the expected reasoning steps and final answer. The example in Listing
3 illustrates FMSR agent’s task where the system must retrieve sensor names associated with a wind
turbine. The ground truth includes the task description, the required planning step, and the exact
sequence of execution actions that a correct agent should follow. By explicitly defining the oper-
ations—such as calling get available sensor information with the asset name “Wind Turbine”, the
ground truth provides a verifiable reference trace. This structure allows us to compare an agent’s
generated actions and outputs against a deterministic set of expected behaviors, ensuring consistent
and reproducible evaluation across models.

Listing 3: Example FMSR task specification.
1 {
2 "id": 105,
3 "type": "FMSR",
4 "deterministic": false,
5 "characteristic_form": "the answer should contain a list of sensor

names for asset wind turbine.",
6 "text": "Provide some sensors of asset Wind Turbine.",
7 "planning_steps": [
8 "Provide some sensors of asset Wind Turbine."
9 ],

10 "execution_steps": [
11 {
12 "name": "get_available_sensor_information",
13 "action": "Get Available Sensor Information",
14 "arguments": "Wind Turbine",
15 "outputs": "[a list of sensor names]"
16 },
17 {
18 "name": "finish",
19 "action": "Finish",
20 "arguments": "",
21 "outputs": ""
22 }
23 ],
24 "execution_links": [
25 {
26 "source": "get_available_sensor_information",
27 "target": "finish"
28 }
29 ]
30 }

E.1 PLAN-EXECUTE REFERENCE-BASED SCORING

To assess the fidelity of generated outputs, we perform reference-based scoring using ROUGE met-
rics. This evaluation is limited to the Plan-Execute paradigm to maintain consistency and preserve
the experimental flow. ROUGE metrics used include:

• rouge1: unigram (1-gram) overlap between generated and reference outputs.
• rouge2: bigram (2-gram) overlap.
• rougeL: longest common subsequence between generated and reference sequences.
• rougeLsum: line-wise longest common subsequence for multi-line outputs.

E.2 EXECUTION CHAIN EVALUATION

To systematically evaluate agent task execution, we design a chain-based execution scoring
method. In many scenarios, an agent performs a sequence of steps corresponding to Think-Act-
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Observe cycles. Ground truth data provides the expected sequence of steps for each task. Each
executed step contains a name (representing the action) and an arguments field.

Our scoring approach compares an agent’s executed sequence with the ground truth sequence using
three criteria:

1. Step Matching: The name of each executed step is matched to the corresponding ground
truth step. Unlike exact matching, we allow fuzzy matching based on string similarity using
a threshold to account for minor variations in step names.

2. Argument Similarity: Step arguments are treated as strings and compared using a
ROUGE-like similarity metric (via difflib.SequenceMatcher). This captures
cases where the agent produces slightly different or paraphrased arguments.

3. Sequence Coverage and Order:
• Coverage penalizes missing ground truth steps.
• Extra steps are penalized proportionally.
• Order preservation is evaluated: steps executed out-of-order incur a penalty.

The final Execution Chain Score for a single trajectory is computed as:
Score = (Average argument similarity over matched steps)×(1−extra step penalty)×(1−order penalty)

This produces a single scalar in [0, 1] summarizing how closely an agent’s execution matches the
ground truth. Algorithm 1 outline the entire process.

Algorithm 1: Compute Chain Execution Score
Input : Ground truth steps GT , agent steps AG, name threshold θ, name weight wn,

argument weight wa

Output: Final chain execution score S ∈ [0, 1]
matched← ∅;
step scores← [];
foreach gt ∈ GT do

best score← 0;
best idx← None;
foreach ag ∈ AG do

if ag ∈ matched then
continue;

name sim← similarity(gt.name, ag.name);
if name sim < θ then

continue;
arg sim← similarity(gt.arguments, ag.arguments);
score← wn · name sim+ wa · arg sim;
if score > best score then

best score← score;
best idx← index of ag;

if best idx ̸= None then
add best idx to matched;

append best score to step scores;
step coverage← average(step scores);
extra penalty ← |AG|−|matched|

|GT |+|AG|−|matched| ;
order penalty ← fraction of inversions in matched indices;
S ← step coverage · (1− extra penalty) · (1− order penalty);
return S;

F ADDITIONAL BENCHMARK EXPERIMENTS

This appendix section contain outcome of an extensive benchmark we conducted in this paper.
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F.1 LLM-AS-A-JUDGE EVALUATION AGENT AND HUMAN VALIDATION

In Listing 19, we provided the system prompt that we used for generating a rubric metric for the
evaluation agent. Given LLM is used for generating the rubric metric, we also conducted human
validation of these generated metric. The results shown in Section 5.1, llama-4-maverick
is selected to be the LLM of evaluation agent. Table 19 is the prompt instruction to the evalua-
tion agent, which outlines the specific evaluation dimensions, constraints, and response formatting
guidelines that the model follows when scoring task outputs. The evaluation criteria is also provided
to human judges which ensures consistency across evaluations.

You are a critical reviewer tasked with evaluating the effectiveness and accuracy of an AI agent’s re-
sponse to a given task. Your goal is to determine whether the agent has successfully accomplished the
task correctly based on the expected or characteristic behavior.
Evaluation Criteria:
1. Task Completion:
- Verify whether the agent executed all required actions (e.g., using the correct tools, retrieving data,
performing the necessary analysis).
- Ensure the response aligns with the predefined expected behavior for task completion.
2. Data Retrieval & Accuracy:
- Confirm that the correct asset, location, time period, and sensor (if applicable) were used.
- Check that the retrieved data and results (forecasting, anomaly detection, etc.) are correct and consis-
tent with the task requirements.
3. Generalized Result Verification:
- Task Type Verification: Assess if the agent returned the expected results for the task type (forecasting,
anomaly detection, classification, etc.).
- Forecasting: Ensure forecasts cover the specified future period.
- Anomaly Detection: Verify that anomalies were correctly detected when expected.
- Other Tasks (e.g., classification): Check that results match expected format and values.
- Comparison with Expected Output: Validate that results match the characteristic answer.
- Data Integrity: Ensure correct data (sensor, time period) was used and output format is consistent.
Inputs:
Question: {question}
Characteristic Answer (Expected Behavior): {characteristic answer}
Agent’s Thinking: {agent think}
Agent’s Final Response: {agent response}
Output Format:
Provide your review strictly in JSON format without any additional text or Markdown.
{
”task completion”: true/false,
”data retrieval accuracy”: true/false,
”generalized result verification”: true/false,
”suggestions”: ”Optional. Recommended actions to improve the agent’s response if needed.”
}
(END OF RESPONSE)
Evaluate the agent’s performance according to the above criteria.

Table 19: Prompt instruction for LLM-as-a-judge evaluation agent

Human validation was performed using Google Forms. As illustrated in Figure 17, domain experts
were presented with the original task description, the agent’s reasoning and final answer, and a
checklist covering six evaluation dimensions. Each dimension was evaluated using binary judgments
(True/False), enabling structured comparison between human and model evaluations. Four forms,
each containing 10 samples, were distributed, yielding a total of 240 data points. The aggregated
results are reported in Section 5.1.

F.2 DEEP INVESTIGATION OF AGENT-AS-TOOL PERFORMANCE

To evaluate the capabilities of various large language models (LLMs) across a range of industrial-
relevant task categories, we present a radar chart (See Figure 18) comparison covering five key
dimensions: IoT-focused reasoning, Failure Mode and Sensor Reasoning (FMSR), Time Series
and Fault Modeling (TSFM), Work Order (WO) understanding, and End-to-End task integra-
tion. The chart illustrates normalized performance scores for each model based on task-specific
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Figure 17: Google Forms: questionnaire to domain experts for human validation

benchmarks, with higher values indicating stronger task alignment. Among the models com-
pared, gpt-4.1-2025-04-14 demonstrates the most consistent and well-rounded performance,
achieving near-saturation in FMSR (100%) and strong results in End-to-End integration. In contrast,
granite-3-3-8b-instruct and llama-3-3-70b-instruct perform well in TSFM and
FMSR but underperform in WO-related tasks, which are particularly challenging due to their de-
pendence on structured document comprehension and task planning. The llama-4-maverick
model shows promising results in WO and End-to-End integration, indicating a potential optimiza-
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tion for cross-domain contextual reasoning. This visualization provides a holistic view of model
strengths and trade-offs, offering insights for selecting and fine-tuning LLMs in complex, multi-
modal industrial applications.

Figure 18: Task wise distribution of the Accomplished Tasks.

Insight I

The radar chart highlights that while gpt-4.1-2025-04-14 delivers the most balanced
performance across all industrial task categories, other models exhibit strong specialization.
For example, granite-3-3-8b-instruct and llama-3-3-70b-instruct excel
in FMSR and TSFM but struggle with WO-related tasks. This reveals a clear trade-off
between broad generalization and domain-specific strengths, suggesting that hybrid or task-
specialized agent architectures may be most effective in practice.

F.3 FAILURE ANALYSIS ON TOOL USE

As part of the AssetOpsBench trajectory analysis, we examine how agents interact with the available
toolset and execution environment. We start this effort from the analyze (1) the complete list of all
tools in Table 5 (containing the details of their name, usage, and parameters), and (2) those JSON
snippets illustrating how agent actions are logged. Across 834 trajectories, collected from multiple
LLM models and multiple agent configurations, we store every agent step as a structured JSON
record containing both the action type and its execution state. This representation allows us to
distinguish between Tool-oriented actions (invocations of predefined data retrieval, analysis, and
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analytic functions) and CodeReAct-oriented actions (Python code generated and executed on the
fly).

Across 834 trajectories collected from multiple LLM models and agent configurations, every agent
step is logged as a structured JSON record containing both the action type (e.g., Tool-oriented or
CodeReAct-oriented) and its associated execution state. This enables a unified analysis of failure
cases across heterogeneous agent architectures.

We distinguish between Tool-oriented actions, which invoke predefined data retrieval, analysis,
or analytic functions, and CodeReAct-oriented actions, where the agent emits executable Python
code. Each action record includes fields such as action, action input, observation, and
state. A failure is captured when the framework sets state = "Invalid Action" and
records the underlying error in the observation field. These signals form the basis of our failure-
mode statistics.

Example 1: Tool-Oriented Invalid Action (trimmed).

{
"step": 1,
"thought": "Use 'Read Sensors From File' to list sensors for Chiller 6.",
"action": "Read Sensors From File",
"action_input": "/path/to/chiller_6_sensors.txt",
"observation": "Error: 'NoneType' object has no attribute 'replace'",
"state": "Invalid Action"

}

This failure arises from malformed input to the Read Sensors From File tool. The associ-
ated error message is used directly in computing tool-level failure frequencies (see Figure 19).

Example 2: CodeReAct (Dynamic Python) Invalid Action (trimmed).

{
"step": 2,
"thought": "Write preventive work orders to JSON.",
"action": "import json

with open('pwo.json','w') as f:
json.dump(pwo_list, f)",

"observation": "Invalid action: Object of type Timestamp is not JSON serializable",
"state": "Invalid Action"

}

This CodeReAct step is syntactically correct but fails during execution because the object being
serialized contains a non-JSON-serializable Timestamp. These runtime failures contribute to the
action-state distribution analysis.

Figure 19 summarizes the distribution of valid and invalid executions for both action classes. Tool-
oriented actions benefit from well-defined schemas, while CodeReAct-oriented actions incur more
failures due to the variability of generated Python code.

Figure 20 highlights the concentration of Tool-oriented failures within a handful of tools such as
jsonreader, tsfm integrated tsad, and Read Sensors From File. These patterns
reflect the structural complexity of their inputs and outputs. The JSON fragments above illustrate
the types of failures contributing to these distributions.

Execution-State Insight

Analysis of 834 agent trajectories reveals that Tool-oriented actions achieve higher valid-
execution rates due to well-defined input/output schemas, whereas CodeReAct-oriented
actions suffer more runtime failures from dynamic Python generation. Failures in Tool-
oriented actions are concentrated in a few complex tools, highlighting that structural com-
plexity and input validation are critical factors in agent reliability.
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Figure 19: Distribution of execution states across action types. Tool-oriented actions exhibit higher
valid-execution rates, whereas dynamically generated Python produces more execution failures.

Figure 20: Invalid-only failures for Tool-oriented actions. Errors are concentrated in a small number
of frequently used tools with complex parsing or I/O behavior.

F.4 EXECUTION EFFICIENCY

In this section, we analyze AssetOpsBench execution efficiency of 7 LLMs, complementing the
Leaderboard results in Section 5.1. Tables 20 and 21 present results from two multi-agent imple-
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mentations. Metrics include the average number of steps taken per task and the average runtime (in
seconds) per task.

In the Agent-As-Tool execution mode, most models demonstrate relatively stable planning behav-
ior across both single-agent and multi-agent tasks. Compared to the Plan-Execute setting, models
here generally take more steps but operate with greater runtime efficiency. gpt-4.1 again exhibits
strong performance, balancing a higher number of steps with moderate runtime, indicating precise
control over tool invocation. Interestingly, llama-3-70b-instruct shows competitive effi-
ciency, achieving the lowest runtime in both task categories despite slightly fewer steps, suggesting
quicker tool usage or lower overhead per step. On the other hand, mistral-large exhibits ex-
treme runtime variability, skewed by a pathological case involving prolonged JSONReader calls
over large datasets. These results suggest that while tool-based execution benefits from more direct
action control, its efficiency is highly sensitive to the invoked tools and data volume.

Table 20: Execution Statistics for Agent-As-Tool: Average Steps and Runtime Per Task

Model Single-Agent Tasks Multi-Agent Tasks

Steps Runtime (sec) Steps Runtime (sec)

gpt-4.1 6.0 ± 2.4 104 ± 178 6.4 ± 2.5 218 ± 371
mistral-large 4.9 ± 2.6 347 ± 19871 5.2 ± 2.2 289 ± 443
llama-3-405b-instruct 4.8 ± 2.5 250 ± 773 5.6 ± 2.2 255 ± 248
llama-3-70b-instruct 3.9 ± 1.6 101 ± 107 4.3 ± 2.1 151 ± 220
llama-4-maverick-17b-128e 4.3 ± 1.5 120 ± 258 4.5 ± 1.7 137 ± 175
llama-4-scout-17b-16e-instruct 4.4 ± 2.0 101 ± 87 5.8 ± 2.9 178 ± 157
granite-3-3-8b 5.3 ± 3.1 197 ± 240 6.6 ± 3.6 228 ± 256

High standard deviation is due to one outlier task requiring nearly 5 hours. It repeatedly invoked the
JSONReader tool to process two years of historical data.

In the Plan-Execute setting, the number of steps required for single-agent tasks closely mirrors
those of multi-agent tasks, indicating a tendency among LLMs to over-plan even for relatively
simple objectives. This pattern reflects limited sensitivity to task complexity during the planning
phase. Among all evaluated models, gpt-4.1 consistently outperforms others, demonstrating
both minimal average steps and lowest runtime, particularly in multi-agent tasks. This suggests that
gpt-4.1 leverages more effective internal representations and decision strategies, enabling ef-
ficient decomposition and execution of plans. In contrast, models like granite-3-3-8b and
llama-3-70b-instruct show pronounced inefficiency, often executing significantly more
steps and incurring higher computational costs. These results highlight a critical trade-off in Plan-
Execute agents: while the architecture enforces task structure, its effectiveness heavily depends on
the model’s reasoning efficiency. Models lacking strong planning priors or execution alignment
tend to generate unnecessarily long or suboptimal action sequences, especially in low-complexity
settings.

Table 21: Execution Statistics of Plan-Execute Agents: Average Steps and Runtime per Task

Model Single-Agent Tasks Multi-Agent Tasks

Steps Runtime (sec) Steps Runtime (sec)

gpt-4.1 2.6± 1.0 93.3± 105.6 2.9± 1.5 180.2± 122.6
mistral-large 2.7± 1.3 186.9± 206.9 3.0± 1.4 209.7± 139.1
llama-3-405b-instruct 3.1± 1.9 208.3± 176.5 4.0± 1.5 224.4± 99.7
llama-3-70b-instruct 6.7± 1.5 381.8± 240.2 6.5± 0.9 369.6± 151.9
llama-4-maverick-17b-128e 4.0± 1.9 384.6± 611.6 3.9± 1.2 376.8± 281.0
llama-4-scout-17b-16e 3.9± 2.0 172.1± 114.7 4.4± 1.5 218.1± 105.4
granite-3-3-8b 5.2± 1.4 413.3± 418.2 5.1± 1.3 432.9± 294.7

Conclusion. While the Plan-Execute architecture demonstrates greater efficiency—requiring
fewer steps and exhibiting lower runtime variability across tasks—our evaluation shows
that Agent-As-Tool significantly outperform in task performance metrics. For example,
gpt-4.1 achieves 65% task completion, 77% data retrieval accuracy in the Agent-As-
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Tool setting, compared to only 38–44% on most metrics in Plan-Execute. Similarly,
llama-4-maverick-17b-128e-instruct excels in both setups but scores notably higher
in Agent-As-Tool, achieving 59–78% on core performance metrics versus 45–57% in Plan-Execute.

This pattern is consistent across most models: Agent-As-Tool incur higher execution costs but
deliver better reasoning fidelity. Conversely, Plan-Execute agents—while faster and more struc-
tured—often struggle with complex retrieval, verification, and consistency tasks. These findings
suggest a fundamental trade-off: Plan-Execute offers process efficiency, while Agent-As-Tool yield
higher end-task quality—a crucial insight for selecting agent architectures based on application goals
such as throughput vs. correctness.

Insight II

Across both execution modes, our results reveal a fundamental trade-off: Plan-Execute
agents are faster and more step-efficient, yet consistently underperform in reasoning-
intensive tasks, whereas Agent-As-Tool agents incur higher execution costs but deliver sub-
stantially stronger task accuracy and reliability. This shows that efficiency-oriented archi-
tectures do not automatically yield better end-task quality : an important consideration for
industrial LLM systems where correctness often outweighs runtime.

Insight III

Our analysis reveals a subtle behavioral difference across execution modes: although Single-
Agent tasks are intended to be completed by one agent in a single round, Plan-Execute agents
tend to over-plan, potentially reusing the same agent multiple times or invoking additional
agents. Conversely, Agent-As-Tool agents, despite being reactive and theoretically able to
finish in one round, often continue executing, indicating the presence of tasks that exceed
an individual agent’s capability and lead to repeated attempts. This underscores hidden
task difficulty and model limitations, which are critical for interpreting execution efficiency
alongside task performance. A common observation arising from this behavior is the impor-
tance of enabling parent agents to ask questions to other agents within the system to resolve
tasks more efficiently.

F.5 TASK COMPLETION COMPARISON: AGENT-AS-TOOL VS PLAN-EXECUTE

We evaluate the performance of multiple LLM models on the Task Completion metric under two
execution paradigms: Agent-As-Tool and Plan-Execute. Agent-As-Tool agents execute tasks in-
crementally by invoking tools as needed, whereas Plan-Execute agents first plan a full sequence of
steps before execution. Figure 21 visualizes the leaderboard across seven representative models.

Observations.

• gpt-4.1-2025-04-14 and llama-4-maverick-17b-128e-instruct-fp8
achieve the highest task completion under the Agent-As-Tool paradigm, reaching 65% and
59% respectively.

• Plan-Execute results show mixed trends: some models, such as mistral-large, im-
prove slightly (40% → 46.5%), while others, notably gpt-4.1, experience a drop (65%
→ 38.38%).

• Smaller or older models (granite-3-3-8b-instruct,
llama-3-3-70b-instruct) exhibit lower task completion across both paradigms,
highlighting limitations in multi-step reasoning and tool integration.

• Differences between the paradigms suggest that pre-planning can sometimes limit adapt-
ability, whereas reactive Agent-As-Tool strategies better leverage incremental reasoning
and tool invocations for complex tasks.

Insights. The comparison highlights several key points:
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Figure 21: Task Completion scores (%) for Agent-As-Tool and Plan-Execute paradigms. Values
above bars indicate the actual completion percentage for each model.

1. Model capabilities and adaptability: High-performing models demonstrate both accu-
rate reasoning and effective tool utilization. GPT-4.1 and LLaMA-4-Maverick excel when
allowed to execute incrementally in the Agent-As-Tool paradigm.

2. Impact of execution paradigm: Agent-As-Tool allows flexible, context-aware reasoning,
particularly for models capable of dynamically selecting the next best action. Plan-Execute
may underperform if initial plans are suboptimal or if unexpected states arise during exe-
cution.

3. Guidance for benchmark design: Reporting Task Completion under both reactive
(Agent-As-Tool) and planned (Plan-Execute) paradigms is crucial to capture model
strengths and weaknesses in real-world agentic tool-use.

4. Future directions: Incorporating dynamic feedback loops in Plan-Execute or hybridizing
with Agent-As-Tool strategies may further improve task completion, especially for larger
multi-step tasks.

Insight III

The Task Completion comparison highlights that execution paradigm significantly in-
teracts with model capability. High-performing models such as GPT-4.1 and
LLaMA-4-Maverick achieve their best results under the Agent-As-Tool paradigm, lever-
aging incremental reasoning and dynamic tool selection. In contrast, Plan-Execute some-
times constrains adaptability, leading to lower performance for models with strong reasoning
potential. This suggests that reactive, step-wise strategies can better exploit advanced model
reasoning, whereas pre-planned sequences may underutilize model strengths, particularly on
multi-step or complex tasks.

F.6 RUNTIME AND COST ANALYSIS

Table 22 provides a representative comparison of total runtime and estimated cost for executing the
full 140+ utterance task suite using the Agent-As-Tool paradigm. Average tokens per task and total
cost are shown for different LLMs.
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Table 22: Runtime and estimated cost for executing 140+ utterance tasks using the Agents-as-Tools
paradigm.

LLM Provider Avg Tokens per Task Total Cost (USD)
gpt-4.1 OpenAI ≈3,664 $300.00
llama-4-maverick Watsonx ≈3,730 $130.00

F.7 UNCERTAINTY ANALYSIS

As discussed in Section 5, the evaluation agent was run five times to produce reliable performance
metrics. Table 23 shows the inter-rater agreement across these five evaluation runs, along with the
derived uncertainty (computed as 1− agreement). The average agreement and uncertainty across all
metrics are also reported.

Table 23: Inter-rater agreement and derived uncertainty across five evaluation runs.

Metric Agreement Uncertainty
Task Completion 0.9731 2.69%
Data Retrieval Accuracy 0.9697 3.03%
Generalized Result Verification 0.9681 3.19%

F.8 ABLATION EXPERIMENTS

In this section, we present the detailed report of the ablation study. We fixed the Agent-As-Tool
paradigm and conducted both sets of experiments.

F.8.1 DISTRACTOR AGENTS

We have introduced 10 distractor agents to intentionally increase the complexity and ambiguity for
global agents. Table 24 categorizes these agents based on their respective domains and functional
roles. The set includes both general-purpose agents, such as those for echoing inputs or handling
off-topic queries, and domain-specific agents focused on tasks like predictive maintenance, sensor
data summarization, and edge ML deployment. This taxonomy enhances the realism of multi-agent
environments by supporting modular integration and introducing controlled confusion.

Across 99 scenarios, we compare language models with and without distractor agents to evalu-
ate their robustness in agentic tool-use settings. Table 25 shows the result. GPT-4.1 remains
the strongest model overall, achieving the highest scores in task completion, data accuracy, and
result verification across both settings. Llama-4-Maverick emerges as the best-performing
open-weights model, showing not only high accuracy but also improved performance when dis-
tractors are introduced. In contrast, models such as Mistral-Large and Llama-4-Scout
experience moderate degradation under distractors, indicating sensitivity to noisy action spaces.
Granite-3-3-8B remains stable across conditions but at a lower overall accuracy level, showing
reliability but limited reasoning depth.

The introduction of distractor agents reveals interesting behavioral differences. While most models
suffer performance drops, Llama-3-405B and Llama-4-Maverick improve across all three
evaluation dimensions, suggesting strong corrective reasoning and robustness to tool-selection noise.
These results highlight a tiered landscape of model reliability: GPT-4.1 at the top, followed by
mid-tier models with varying sensitivities, and smaller models offering stability at reduced capabil-
ity. Overall, the findings underscore the importance of evaluating both accuracy and robustness, as
real-world agentic systems often face ambiguous or misleading tool/agent choices.
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Table 24: Agent Types and Their Roles

Agent Name Domain Description
Echo
Agent General Repeats the input verbatim; useful for de-

bugging and testing input-output coher-
ence.

OffTopic
Agent General Provides unrelated facts or trivia when a

query is off-topic or not recognized.
Customer

SupportAgent Support Operations Handles customer-related issues like pass-
word resets, login errors, and service avail-
ability.

SRE
Agent Site Reliability Diagnoses performance degradation, sys-

tem downtime, and infrastructure issues.
Frontend
DevAgent Software Engineering Assists with frontend UI/UX concerns, Re-

act, JavaScript frameworks, and rendering
bugs.

HRPolicy
Agent Human Resources Answers HR-related queries like leave pol-

icy, benefits, and compliance rules.
SensorData
Summarizer Industrial IoT Summarizes time-series data from sensors,

highlighting trends and anomalies.
Historical
TrendsAgent Analytics Extracts and interprets historical asset data

to identify failure patterns or optimization
opportunities.

EdgeML
Agent Edge Computing Recommends tools and strategies for de-

ploying ML models on edge hardware with
limited resources.

RULPredictor
Agent Predictive Maintenance Estimates the remaining useful life (RUL)

of assets using sensor data and degradation
models.

Insight 4: Robustness to Distractor Agents

Across 99 scenarios, GPT-4.1 consistently demonstrates top performance, while
Llama-4-Maverick shows strong open-weight results with robustness to distractor
agents. Mid-tier models exhibit varying sensitivity to noisy action spaces, and smaller mod-
els like Granite-3-3-8B maintain stability but with lower overall accuracy. These find-
ings reveal a tiered landscape of model reliability, emphasizing that both task accuracy and
resilience to distractors are critical for practical agentic tool-use systems.

F.8.2 IMPACT OF IN-CONTEXT EXAMPLES

Table 26 provides a detailed comparison of gpt-4.1 and granite-3-3-8b with and without in-context
examples on a subset of single-agent benchmark tasks. Consistent with our main findings, in-context
examples were critical for enabling effective reasoning and coordination.

Key Results: Removing in-context examples led to a dramatic drop in performance for both mod-
els. gpt-4.1 dropped from an average of 80% (with context) to 33% (without), while granite-3-3-8b
fell from 60% to just 3% (Section F.8). These results reinforce the conclusion that in-context exam-

51



2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

Table 25: Comparison of Model Performance With and Without Distractor Agents (99 Scenarios).

Model Setting Task
Completion

Data
Accuracy

Result
Verification

gpt-4.1-2025-04-14 Without Distractors 52 57 55
With Distractors 48 56 54

granite-3-3-8b-instruct Without Distractors 40 44 41
With Distractors 40 44 41

mistral-large Without Distractors 42 46 43
With Distractors 40 44 41

llama-3-405b-instruct Without Distractors 41 41 38
With Distractors 44 44 44

llama-3-3-70b-instruct Without Distractors 38 43 34
With Distractors 41 43 36

llama-4-maverick Without Distractors 46 49 46
With Distractors 48 49 49

llama-4-scout Without Distractors 45 44 46
With Distractors 40 40 40

Table 26: Comparison of gpt-4.1 and granite-3-3-8b With/Without In-Context Examples
(# of Tasks = 65)

Model In-Context
Examples

Task
Completion

Data Retrieval
Accuracy

Generalized Result
Verification

gpt-4.1 Yes 52 57 55
granite-3-3-8b Yes 40 44 41

gpt-4.1 No 22 21 24
granite-3-3-8b No 2 3 3

ples are essential for ReAct-style reasoning in LLM-based agents. We did not select tasks from WO
and E2E since their performance is already poor.

Insight: Impact of In-Context Examples

The presence of in-context examples dramatically improves performance: gpt-4.1
achieves 80% average accuracy with examples versus 33% without, while
granite-3-3-8b drops from 60% to 3%. This highlights that effective ReAct-style
reasoning critically depends on relevant contextual guidance.

F.9 PLAN-EXECUTE REFERENCE-BASED SCORING

Evaluation Setup. To assess the fidelity of generated outputs, we perform reference-based scor-
ing using ROUGE metrics. This evaluation is limited to the Plan-Execute paradigm to maintain
consistency and preserve the experimental flow.

ROUGE metrics used include:

• rouge1: unigram (1-gram) overlap between generated and reference outputs.
• rouge2: bigram (2-gram) overlap.
• rougeL: longest common subsequence between generated and reference sequences.
• rougeLsum: line-wise longest common subsequence for multi-line outputs.

Results Summary. ROUGE scores highlight model differences in n-gram and sequence-level fi-
delity. Table 27 presents sample scores for representative models across Plan-Execute outputs.
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Table 27: ROUGE-based reference scoring for Plan-Execute outputs (selected models).

Model rouge1 rouge2 rougeL rougeLsum

llama-3-405b-instruct 0.406 0.243 0.337 0.381
mixtral-8x7b-instruct-v01 0.424 0.259 0.343 0.401
llama-3-3-70b-instruct 0.297 0.172 0.242 0.280
gpt-4.1-2025-04-14 0.354 0.182 0.289 0.335
granite-3-3-8b-instruct 0.373 0.214 0.291 0.353
mistral-large 0.420 0.251 0.343 0.404
llama-4-maverick 0.403 0.240 0.325 0.383

We conduct a more in-depth analysis:

• Top-performing models such as llama-3-405b-instruct and
mixtral-8x7b-instruct-v01 achieve rouge1 ≈ 0.42, rouge2 ≈ 0.26,
and rougeL ≈ 0.34, indicating strong n-gram and sequence-level fidelity.

• Smaller or older models exhibit lower ROUGE scores, reflecting weaker lexical alignment
with reference trajectories.

• Overall, Plan-Execute outputs maintain higher alignment with reference trajectories,
demonstrating that this paradigm supports more faithful generation for skilled reasoning
tasks.

• The distribution of ROUGE metrics also reflects diversity in output complexity, as longer
or multi-step reasoning tasks tend to lower ROUGE scores despite semantic correctness.

Reference-based scoring provides a quantitative measure of textual fidelity across different models
under the Plan-Execute paradigm. These results support model comparison, highlight the impact of
LLM size and capabilities, and offer a reproducible benchmark for future studies.

Insight

Although gpt-4.1 excels in task reasoning and completion, its lower ROUGE scores com-
pared to open-weight models indicate that strong reasoning does not always correspond to
higher lexical alignment with reference outputs.

F.10 AGENT-AS-TOOLREFERENCE-BASED SCORING

In the Agent-As-Tool setting, the agent follows a think–act–observe cycle without a pre-planning
phase. To evaluate reasoning quality, we extract the internal thinking segments and compute ROUGE
scores against concise reference trajectories. Because ROUGE measures lexical overlap, differences
in verbosity strongly affect the outcome.

Results. Table 28 reports ROUGE-1/2/L scores along with generation lengths. mistral-large
achieves the highest performance with ROUGE-1 ≈0.37, ROUGE-2 ≈0.19, and ROUGE-L ≈0.30,
followed closely by llama-3-3-70b-instruct and llama-3-405b-instruct. These
models generate reasoning traces of moderate length (48–83 words on average), which aligns well
with the reference answers (30 words) and preserves lexical fidelity.

In contrast, models such as gpt-4.1 and granite-3-3-8b-instruct produce significantly
longer outputs (up to 277 words on average), resulting in the lowest ROUGE scores despite poten-
tially valid reasoning steps.

Summary. Models with output lengths closer to the reference (e.g., mistral-large,
llama-3-70B) achieve higher lexical alignment. However, low-scoring models like gpt-4.1
may still exhibit rich and correct reasoning, suggesting that token length and prompting strat-
egy—rather than reasoning quality alone— drive ROUGE differences in the Agent-As-Tool
paradigm.
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Table 28: ROUGE-based comparison for the Agent-As-Tool setting. Scores are computed on the
extracted thinking segments of each trajectory. Longer generations reduce lexical overlap with con-
cise references, lowering ROUGE despite potentially richer content.

Model ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum #Samples Pred. Avg. Words GT Avg. Words
mistral-large 0.3691 0.1933 0.2971 0.3124 40 83.0 29.85
llama-3-3-70b-instruct 0.3661 0.1963 0.2971 0.3177 40 47.8 29.85
llama-3-405b-instruct 0.3394 0.1673 0.2740 0.2787 40 82.42 29.85
llama-4-scout-17b-16e-instruct 0.3126 0.1522 0.2398 0.2621 38 100.32 29.84
llama-4-maverick-17b-128e-instruct-fp8 0.2560 0.1252 0.2067 0.2273 29 112.66 26.34
granite-3-3-8b-instruct 0.2473 0.1001 0.1867 0.2079 36 164.36 29.19
gpt-4.1-2025-04-14 0.1628 0.0816 0.1332 0.1389 40 277.12 29.85

Insight

In the Agent-As-Tool setting, models generating reasoning traces closer in length to ref-
erence answers (e.g., mistral-large, llama-3-3-70b-instruct) achieve higher
ROUGE scores, whereas longer outputs from models like gpt-4.1 reduce lexical overlap
despite potentially valid and rich reasoning, highlighting that ROUGE penalizes verbosity
rather than reasoning quality.

Next, Table 29 reports the average execution scores per model:

Model Average Execution Score
meta-llama/llama-3-405b-instruct 0.118
meta-llama/llama-4-maverick-17b-128e-instruct-fp8 0.077
meta-llama/llama-4-scout-17b-16e-instruct 0.092
ibm/granite-3-3-8b-instruct 0.040
meta-llama/llama-3-3-70b-instruct 0.031
mistralai/mistral-large 0.113
openai-azure/gpt-4.1-2025-04-14 0.117

Table 29: Average Execution Chain Scores for different LLM models. Scores reflect alignment with
ground truth sequences in terms of step name, argument similarity, and sequence coverage.

The results indicate that:

• meta-llama/llama-3-405b-instruct, mistral-large, and
gpt-4.1-2025-04-14 achieve the highest alignment with ground truth steps,
demonstrating better handling of multi-step task execution in the Agent-As-Tool setting.

• Larger models such as llama-4-maverick and llama-4-scout have moderate
scores, suggesting that complexity alone does not guarantee faithful execution.

• Smaller or older models, including granite-3-3-8b and llama-3-3-70b, exhibit
lower scores, primarily due to missing steps, extra steps, or argument discrepancies.

Overall, this evaluation provides a quantitative, interpretable measure of how closely an agent’s
executed actions match the intended ground truth, complementing other performance metrics such
as reference-based scoring (ROUGE) or semantic verification.

Execution Insight

Top-performing models (llama-3-405b-instruct, mistral-large, gpt-4.1)
achieve the highest average execution scores, indicating superior alignment with ground-
truth multi-step sequences. In contrast, larger models like llama-4-maverick show
moderate alignment, highlighting that model size alone does not guarantee faithful task ex-
ecution.
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G GENERALITY: NEW DATASETS AND SCENARIOS

This section complements the generality discussion presented in Section 5.3. In total 166 scenarios
are generated using 4 different datasets to support the generality study:

• We use two public datasets for condition monitoring of industrial assets, hosted on UCI,
which provide programmatic access to descriptions and metadata:

– Metro Train MetroPT-3 (15 scenarios): Created scenarios based on dataset descrip-
tion and failure locations to test failure detection and reasoning.

– Hydraulic System (17 scenarios): Generated scenarios for hydraulic pumps focusing
on early fault identification and operational anomalies.

• We also used internal datasets useful for condition monitoring of an industrial assets and
ISO documents for testing an agent that is deployed in production system.

– FailureSensorIQ (88 scenarios): Identify responsible sensor for early detection of
failures.

– Asset Health (42 scenarios): Assess the condition of an industrial asset based on its
recent history.

G.1 SCENARIO USING METROPT-3 DATASET

The MetroPT dataset1 is a real-world multivariate time-series dataset collected from the Air Produc-
tion Unit (APU) of metro trains in Porto, Portugal. It contains readings from pressure, temperature,
motor current, and air intake valves were collected from a compressor’s Air Production Unit (APU).
The dataset includes documented failure events such as air and oil leaks, providing ground truth
for predictive maintenance and anomaly detection tasks. MetroPT enables evaluation of IoT agent,
FMSR agent and TSFM agent as this dataset is particularly suitable for temporal modeling, early
fault detection, and remaining useful life estimation. Its high-resolution, real-world nature makes
it a challenging benchmark for testing model robustness, interpretability, and real-time prediction
capabilities. With the help of our internal SME, we created 15 complex scenarios and two examples
are given in Table 30. We can see the reachness in type of analysis an end user is interested.

Table 30: Sample predictive maintenance scenarios for MetroPT-3 Dataset.

ID Scenario Description
1 Consider asset mp 1. After the maintenance performed on May 30, 2020, how has the

compressor’s condition evolved during May 31 to June 6? Are there any indications that
further repair or monitoring is needed?

2 Consider asset mp 1. From the compressor sensor data collected between May 29 and
June 4, 2020, can we assess the likelihood of an air leak failure occurring within the
subsequent week starting June 5? Is preventive maintenance advisable?

G.2 SCENARIO USING HYDROLIC SYSTEM DATASET

The UCI Hydraulic Systems dataset was collected from a lab-scale hydraulic test rig equipped with
multiple sensors reporting pressures, volume flows, temperatures, motor power, vibration, and cool-
ing metrics. The rig cycles through constant 60-second loads, while four component fault types
(cooler, valve, pump leakage, and accumulator) are varied across severity levels. With 2,205 in-
stances and 43,680 features, the dataset is multivariate and structured for both classification and
regression tasks. The condition of each component is annotated per cycle, enabling fault diagnosis
and predictive maintenance modeling. With the help of our internal SME, we created 17 complex
scenarios and two examples are given in Table 35.

1https://archive.ics.uci.edu/dataset/791/metropt+3+dataset
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Table 31: Sample predictive maintenance scenarios for Hydrolic System Dataset.

ID Scenario Description
1 For asset hp 1, can severe internal pump leakage on 2024-01-31 be detected using sensor

data from the preceding 100 days? Which sensor trends provide key clues within this
timeframe?

2 Consider asset hp 1. At 2024-01-22, can the hydraulic accumulator close to total failure
be detected by analyzing sensor data spanning previous days? What sensor signatures
confirm this state?”,

G.3 ASSET HEALTH SCENARIO USING INTERNAL DATASET

Based on business unit requirements and in collaboration with domain experts, we created 42 sce-
narios for detecting asset health to conduct the benchmark study, primarily using work order data.
Each scenario follows the prescribed format described in the main paper. A representative example
is shown below:

{
"id": 1000,
"file": "Air Handling Unit_615152AC_insights_prompt.txt",
"text": "You are an expert in Air Handling Unit maintenance and

reliability analysis. Your task is to analyze provided
asset_details_facts and workorder_facts...",

"type": "System Health",
"category": "Asset Analysis",
"deterministic": true,
"characteristic_form": "The expected condition of the asset is
'Not enough data' because only 4 work orders are available."

}

One of the task types is System Health, aimed at evaluating the condition of an asset based on recent
system records (typically work orders, alerts, etc.) and raising flags such as good or needs attention.
Table 32 summarizes the coverage of the 42 scenarios across asset classes.

Table 32: Distribution of scenarios across asset types/classes.

Asset Type/Class Number of Unique Instances
Air Handling Unit 9
CRAC 10
Chiller 10
Pump 8
Boiler 5

This diversity spans both horizontal coverage (different asset classes) and vertical variation (multiple
instances within each class), providing a robust testbed for evaluating agent generalization and per-
formance across operational conditions. All 42 scenarios fall under the Asset Health category and
primarily rely on work order information. Each scenario captures distinct aspects of asset behavior,
reflecting operational variability. Token count analysis provides insight into scenario complexity.

Over 60% of scenarios (26/42) fall in the 767–2,841 token range, reflecting mostly concise formats.
A long-tailed distribution exists to ensure LLMs handle both compact and extended input contexts.

G.4 FAILURESENSORQA DATASET USING ISO DOCUMENT

The FailureSensorQA dataset is designed to support predictive maintenance reasoning using struc-
tured knowledge from ISO standards and industrial asset documentation. Each scenario in the
dataset presents a realistic diagnostic question, prompting the agent to identify relevant failure modes
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Table 33: Token count statistics for 42 Asset Health scenarios.

Statistic Value
Total scenarios 42
Median 2,277 tokens
Mean 3,695 tokens
Standard Deviation 3,125 tokens
Minimum–Maximum 777–11,098 tokens
Mode 1,316 tokens

Table 34: Token count distribution across scenarios.

Token Range # Scenarios
(767 – 2,841] 26
(2,841 – 4,905] 6
(4,905 – 6,970] 1
(6,970 – 9,034] 3
(9,034 – 11,098] 6

and determine the most informative sensors for early detection. Table 35 shows representative ex-
amples, including scenarios for aero gas turbines and compressors, where the task requires mapping
sensor readings such as vibration, temperature, or fuel flow to potential failure events. By leverag-
ing ISO-standardized descriptions, this dataset ensures that reasoning aligns with industry practices,
enabling evaluation of agent capabilities in sensor-failure attribution and condition monitoring. The
dataset emphasizes multi-step reasoning, sensor selection, and domain-specific knowledge integra-
tion, providing a challenging benchmark for testing predictive maintenance agents. We generated
total 88 scenarios with the help of our reliability enginners.

Table 35: Representative scenarios from the FailureSensorQA dataset.

ID Scenario Description
1 For aero gas turbine, list all the failure modes that can be detected or indicated by abnormal

readings from vibration, speed, or fuel pressure/fuel flow.?
2 Which sensors are most effective for detecting failure modes related to vibration and tem-

perature anomalies in a compressor?

SCENARIO EXECUTION AND EVALUATION

The 42 scenarios were executed across three models, resulting in 126 executions. Each execution
generates an output trajectory, which is subsequently analyzed by the Evaluation Agent across five
runs, yielding 630 evaluation instances. The Evaluation Agent compares outputs against the char-
acteristic form described in the scenario examples to calculate automated metrics. Manual review
was used to validate the final column of results, identifying only one case (Granite) where the model
overconfidently claimed task completion.

PERFORMANCE INSIGHTS

The scenarios primarily assess LLMs’ analytical skill—the ability to interpret provided information
and generate appropriate conclusions. Agents such as FMSR, which excel in skill-based reasoning
tasks, demonstrate strong performance, particularly in single-agent communication settings.
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H EMERGING FAILURE MODE DISCOVERY AND AGENT DEVELOPMENT

To support adaptive evaluation of multi-agent LLM systems, this appendix outlines the implemen-
tation details behind the failure discovery process. While the main text presents the empirical dis-
tribution of failure types—including emergent patterns—this appendix focuses on the structured
methodology used to extract and cluster novel failure behaviors beyond the MAST (Multi-Agent
System Failure Taxonomy) Cemri et al. (2025). The evaluation spanned 881 multi-agent trajec-
tories, drawn from diverse language model configurations. Trajectory distribution by model is as
follows:

• mistral-large: 145 trajectories
• llama-3-405b-instruct: 145 trajectories
• llama-3-3-70b-instruct: 145 trajectories
• llama-4-maverick-17b-128e-instruct-fp8: 125 trajectories
• llama-4-scout-17b-16e-instruct: 111 trajectories
• gpt-4.1-2025-04-14: 105 trajectories
• granite-3-3-8b-instruct: 105 trajectories

Among the 881 utterance execution trajectories analyzed using an LLM-as-a-judge framework (se-
lected LLM judge model - openai-azure/gpt-4.1-2025-04-14 as the LLM judge) to identify the
causes of multi-agent AI failures, we found that—beyond the existing MAST categories—185 tra-
jectories exhibited one additional failure reason, while 164 trajectories contained two distinct ad-
ditional failure reasons. This highlights the empirical necessity of taxonomy expansion to capture
compound and emergent failure patterns in real-world deployments. To extend the original MAST
taxonomy, we conducted a structured analysis of novel multi-agent system failures observed in re-
cent interaction traces. This subsection details our identification methodology and explains how the
resulting failure modes align with the MAST framework.

H.0.1 ALGORITHM FOR EMERGING FAILURE MODES CLUSTERING

To systematically identify and normalize emerging failure modes observed in multi-agent LLM sys-
tem interactions, we introduce a structured algorithmic framework based on semantic embedding
and unsupervised clustering. This process abstracts unanticipated failure patterns into representa-
tive categories that either align with or extend the predefined MAST taxonomy.

Definitions and Notation. Let:

• T = {t1, . . . , tn}: Set of multi-agent execution trajectories.
• M: The predefined MAST taxonomy of failure types.
• F = {f1, f2, . . . , fm}: Set of emerging failure mode descriptions not covered by M,

extracted from LLM-as-a-judge evaluations.
• ϕ : S → Rd: Sentence embedding function (e.g., Sentence-BERT).
• E = [ϕ(f1), . . . , ϕ(fm)]⊤ ∈ Rm×d: Matrix of embedded failure descriptions.
• C = {C1, . . . , Ck}: Partition of F into k clusters, each with centroid µj .

Step 1: Emerging Failure Mode Extraction. Each trajectory ti ∈ T is evaluated by an LLM-as-
a-judge to identify:

• Labeled failure types from the MAST taxonomyM.
• Up to two emerging failure descriptions fi1, fi2 /∈M.

The full set of novel descriptions is aggregated as:

F =

n⋃
i=1

{fi1, fi2} \ NULL
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Step 2: Semantic Embedding. Each emerging failure mode fi ∈ F is transformed into a d-
dimensional vector:

ei = ϕ(fi), ∀fi ∈ F

E =


ϕ(f1)

⊤

ϕ(f2)
⊤

...
ϕ(fm)⊤

 ∈ Rm×d

Step 3: Optimal Clustering via K-Means. To discover latent groups of semantically similar
failure descriptions, we apply K-Means clustering over the embeddings E. The silhouette score for
a given point i is:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
Where:

• a(i): Mean distance from ei to other points in the same cluster.

• b(i): Minimum mean distance from ei to points in a different cluster.

The optimal number of clusters is selected as:

k∗ = argmax
k

SilhouetteScore(k)

Figure 22: Silhouette analysis showing optimal number of clusters k∗ = 6.

Step 4: Cluster Center Selection. For interpretability, we select a representative f∗
j from each

cluster Cj as the most centrally located failure mode:

f∗
j = arg min

fi∈Cj

∥ϕ(fi)− µj∥2

Step 5: Taxonomy Alignment. Each representative failure mode f∗
j is reviewed and mapped to

one or more MAST categories:

• Specification Failures
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• Inter-Agent Failures
• Task Verification Failures

Failures that exhibit characteristics of multiple categories are marked as compound or intersectional,
suggesting the need for extensions to the base taxonomy.

Outputs. The algorithm yields:

• A clustered taxonomy C = {C1, . . . , Ck∗} of emerging failure modes.
• Canonical representatives {f∗

1 , . . . , f
∗
k∗} for each cluster.

• Category mappings for taxonomy refinement or extension.
• Frequency statistics per failure type for prioritization.

H.0.2 METHODOLOGY: SEMANTIC CLUSTERING OF EMERGENT FAILURES

Building on the formal clustering algorithm outlined above, we implemented a practical instantiation
of the pipeline to organize the large volume of emerging failure mode descriptions identified by
the LLM-as-a-judge. We found lots of new and different behaviors when we first looked. But a
closer look showed that many of them were either just repeating the same idea or were only slightly
different versions of the same core problems. To distill these into interpretable categories, we applied
a semantic clustering methodology grounded in high-dimensional language representations.

Each emerging failure description was manually or programmatically summarized into a concise
label and explanatory text. These summaries were then embedded into a semantic vector space
using the all-MiniLM-L6-v2 model from the SentenceTransformer library, yielding a set of
dense, comparable embeddings suitable for clustering.

We applied the KMeans algorithm to group these embeddings into semantically coherent clusters.
To determine the optimal number of clusters, we computed silhouette scores for values of k ranging
from 2 to 7 and selected the value that maximized mean silhouette score (see Figure 22). This
analysis yielded an optimal configuration of k∗ = 6 clusters.

For interpretability, each cluster was assigned a canonical label derived from the failure mode de-
scription closest to the cluster centroid. This process produced six representative categories of
emerging failure modes, summarized below:

• Cluster 0: Lack of Error Handling for Tool Failure (53 cases, 10.3%)
Agents fail to detect or appropriately respond to tool invocation errors.

• Cluster 1: Failure to Incorporate Feedback (41 cases, 8.0%)
Agents ignore or inadequately adjust to feedback from other agents or tools.

• Cluster 2: Invalid Action Formatting (27 cases, 5.3%)
Output includes syntactic or structural errors that prevent execution.

• Cluster 3: Overstatement of Task Completion (122 cases, 23.8%)
Agents claim completion without satisfying task criteria or producing valid outcomes.

• Cluster 4: Extraneous or Confusing Output Formatting (110 cases, 21.4%)
Responses contain unnecessary verbosity, ambiguous structure, or misleading formatting.

• Cluster 5: Ineffective Error Recovery (160 cases, 31.2%)
Agents fail to resolve prior mistakes or restart workflows effectively after failure.

These cluster-derived failure modes serve as canonical extensions to the base MAST taxonomy,
revealing previously unclassified behaviors that frequently arise in multi-agent LLM interactions.
Their emergence underscores the value of inductive, embedding-based clustering for scalable failure
mode discovery and taxonomy refinement.

H.0.3 TAXONOMIC ALIGNMENT WITH MAST OF EMERGENT FAILURES

These emergent failure modes reveal both alignment and tension with the original MAST taxonomy.
Each cluster can be mapped to one or more of MAST’s three core failure categories, but many
straddle boundaries or reveal overlapping failure dynamics:
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• Specification Failures:
– Overstatement of Task Completion and Extraneous Output Formatting reflect unclear

success criteria, misunderstood task scopes, or ambiguous output specifications.

• Inter-Agent Failures:
– Failure to Incorporate Feedback and Lack of Error Handling for Tool Failure indicate

coordination breakdowns or limited adaptivity in dynamic environments.

• Task Verification Failures:
– Invalid Action Formatting and Ineffective Error Recovery highlight failures in runtime

execution monitoring, verification, and correction procedures.

Several emergent failure types cut across multiple categories, underscoring the complexity and inter-
dependence of failure dynamics in real-world multi-agent systems. These findings motivate future
refinement of MAST to support cross-category failure representation and compound behavior track-
ing.

This failure mode analysis contributes both methodologically and substantively to multi-agent sys-
tem evaluation. Methodologically, it introduces a scalable pipeline for inductively discovering and
structuring new failure behaviors using LLM-judged outputs and semantic clustering. Substantively,
it extends the empirical coverage of the MAST taxonomy by surfacing nuanced, real-world failure
patterns that reflect the increasing complexity of autonomous agent collaboration.

These insights not only validate the need for flexible taxonomic frameworks but also point to the
importance of diagnostics that evolve with model behavior. As LLM-based agents continue to scale
in capability and deployment scope, the ability to detect emergent, intersectional failures becomes a
foundational requirement for reliable multi-agent orchestration.

H.1 IMPACT OF AGENT COMMUNICATION ON BENCHMARK PERFORMANCE

In our benchmark, the parameter enable agent ask controls whether the agent can ask clar-
ifying questions during task execution. In the Agent-As-Tool architecture, planning is performed
incrementally, and agent communication can influence task performance, unlike the Plan-Execute
paradigm where planning is done upfront.

For a fair comparison, our initial experiments used the default setting
(enable agent ask=False), preventing agents from asking questions beyond the given
task. Table 2 highlights that certain failures, such as not asking clarifying questions, con-
tribute to approximately 10% of errors. To evaluate the impact of agent communication, we
set enable agent ask=True and re-ran the experiments across multiple models. Table 36
summarizes the results.

Table 36: Benchmark performance with and without agent communication enabled.

Model enable agent ask=True enable agent ask=False
gpt-4.1-2025-04-14 63% 65%
lama-4-maverick 66% 59%
llama-3-405b-instruct 61% 44%
mistral-large 58% 40%
llama-3-3-70b-instruct 35% 40%
granite-3-3-8b-instruct 32% 35%

These results indicate that enabling agent communication improves performance substantially for
certain models (e.g., LLaMA-4 Maverick and LLaMA-3 405b), likely due to better multi-turn han-
dling and the ability to clarify ambiguous information. For other models, performance is less sensi-
tive to this parameter.

This experiment offers a compelling insight, highlighting the impact of hidden architectural fea-
tures on benchmark results. Furthermore, it demonstrates that our benchmark can capture subtle
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differences in agent behavior and encourages transparent reporting of configuration parameters for
reproducibility.

Agent Communication Insight

Enabling enable agent ask significantly boosts performance for models capable
of multi-turn reasoning (e.g., llama-4-maverick, llama-3-405b-instruct),
demonstrating that agent communication can resolve ambiguities and improve task execu-
tion. Other models show minimal sensitivity, highlighting differences in internal reasoning
and multi-step handling capabilities.
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I WORKFLOW ILLUSTRATION

This subsection will later be merged into Appendix Section A. We are keeping it here temporarily so
that references to figure numbers in the rebuttal do not need revision. The complexity of real-world
problem-solving often exceeds the capabilities of a single, monolithic single LLM based AI Agent.
To address multi-faceted challenges, especially those requiring interaction with external systems,
specific knowledge retrieval, or sequential decision-making, advanced agentic architectures have
been developed. This section formalizes two leading paradigms: the Agent-As-Tool approach,
which focuses on dynamic, iterative reasoning and acting by calling specialized components; and
the Plan-Execute framework, which emphasizes structured planning, dependency management, and
context-aware execution to ensure traceable and reliable task completion.

Figure 23: Typical Workflow: Agent-As-Tool using Agent-Ask

I.1 AGENT-AS-TOOL WORKFLOW

The Agent-As-Tool paradigm, coupled with the Agent-Ask mechanism, offers a robust framework
for complex task execution by decomposing a problem and routing sub-tasks to specialized AI
agents. As illustrated in the workflow Figure 23, the primary Agent-As-Tool receive a user query.
The Agent-As-Tool has to fulfill three core responsibilities: (1) determining the appropriate special-
ized agent (e.g., the TSFM Agent or IoT Agent) for a given sub-task, (2) correctly assigning the task,
and (3) facilitating clarification from the specialized agent if needed. Once the Agent-As-Tool re-
ceives an input query, it enters a standard Think-Act-Observe loop, and it decides on the appropriate
specialized agent in think step. The specialized agent executes its designated task and provides an
Answer. Answer is embedded inside to the orchestration agent’s observation for next set of action.
In this case, an artifact like a data-file.json, back to the main orchestrator, allowing the overall system
to complete complex, multi-faceted operations that exceed the capability of any single agent. This
architecture highlights the benefits of modularity and specialized expertise in large-scale language
model systems.

Algorithm 2 details an iterative, multi-turn execution framework akin to the ReAct (Reasoning and
Acting) paradigm. This framework enables a central agent to solve a complex User Task (Q) by
strategically engaging specialized agents (Aspec) within a bounded number of steps Tmax. The
process begins with the initialization of the agent’s internal state M and an empty execution his-
tory H. The agent then enters an iterative loop where a thinking policy Πthink(M) determines
the next action (either THINK-ACT or FINISH) and the continuation signal. When the action is
THINK-ACT, the agent selects the best agent id via Πselect and formulates a precise sub task via
Πformulate for execution. Conversely, if the action is FINISH, the agent summarizes the full Π, up-
dates the memory, and terminates the loop. Following any action, the resulting output is compressed
into a concise observation (Πcompress) to manage context length. This observation is logged to H,
and critically, the agent’s internal memory M is updated with this new context, driving the decision-
making in the subsequent round. Finally, once the loop terminates, a policy Πfinal generates the
complete Final Output (O) by synthesizing the entire execution historyH.
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Algorithm 2: Agent-As-Tool (Simplified as ReAct)
Input : User Query Q ∈ Q, Maximum Steps Tmax, Set of Agents Aspec ⊆ A
Output: Final Output O ∈ O, Execution Plan Π

M ← InitializeMemory(Q) //Initialize the global Memory System M
Π← ∅;
H ← ∅;
for t = 1 to Tmax do

(continue, action)← Πthink(M) //Agent decides next step using
current Memory M

if action = THINK-ACT then
agent id← Πselect(action,M,Aspec) //Select best Agent Ai ∈ Aspec

τ ← Πformulate(action,M) //Formulate sub-task τ ∈ T based on
current Memory M

output← ExecuteAgent(agent id, τ) //Agent executes task and returns
structured output o ∈ O

Π← Π ∪ {⟨τ, agent id⟩} //Update the execution plan Π with
task-agent assignment

else if action = FINISH then
final output← Summarize(Π);
M ← UpdateMemory(M, final output);
break;

observation← Πcompress(output) //Generate concise observation
summary (optional

H ← H∪ {(t, action, observation)} //Log step to history
M ← UpdateMemory(M, observation) //Update Memory M with new

context from observation
if continue = False then

break //Stop if agent decides termination

O ← Πfinal(H) //Produce final answer from the complete history
return (O,Π,H)

I.2 PLAN-EXECUTE

A diagram in Figure 9 illustrates a Plan-Execute approach to addressing a complex industrial query,
such as “discover the most relevant sensor for Chiller 6 at POKMAIN site for detecting Compressor
Overheating failure?”. The process begins with the main agent receiving the Query and formulating
a detailed Plan. This plan is meticulously broken down into sequential steps. For instance, Step
1 involves a Task to “Identify the sensors available for Chiller 6 at POKMAIN site” and specifies
Agent 1 (e.g., an IoT Data Download Agent) to execute this task, with an Expected Output of “A
list of sensors available for Chiller 6 at POKMAIN site.” Following this, Step 2 takes this output as
a Dependency (#S1) to execute the Task: “Determine which of these sensors can detect Compressor
Overheating failure,” assigning it to a specialized Agent 2 (e.g., a FMSR Agent).

After the Plan is reviewed, it is translated into a dynamic, dependency-aware Workflow represented
as a directed graph. This graph outlines the logical flow and potential parallel execution paths (e.g.,
tasks 3, 4, and 5 running concurrently) based on the sequential nature of the task dependencies. The
Context-aware Execution phase then involves a specialized execution engine that manages these
tasks, tracking their state, inputs (like the JSON objects and strings containing the intermediate re-
sults), and dependencies between agents. For example, the output of the first stage (ID 1) becomes
a structured input for subsequent tasks (ID 2), ensuring that information is seamlessly and accu-
rately passed between the specialized agents. The entire process culminates in a Result Summary
that provides the final, actionable answer to the initial complex query. This methodology ensures
traceability, modularity, and the effective integration of multiple specialized AI agents for industrial
problem-solving.
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Figure 24: Typical Workflow: Plan-Execute Approach using Review

Algorithm 3: Plan-Execute with Context-Aware Workflow (Sequencial Workflow)
Input : User Query Q, Specialized Agents Aspec

Output: Final Output O ∈ O
Phase 1: Planning and Decomposition;
Plan← Πplan(Q) //Generate a list of sequential steps with
dependencies

Plan← DecomposeToSteps(Plan);
Workflow← BuildDAG(Plan) //Translate steps into a Directed Acyclic

Graph (DAG)
Context← InitializeContext(Q);
TaskSequence← TopologicalSort(Workflow) //Generate a sequence ensuring

dependencies are met

Phase 2: Context-Aware Execution;
foreach task ∈ TaskSequence do

dependencies← GetDependencies(task);
InputContextData← ∅;
foreach dep id ∈ dependencies do

data← Context[dep id] //Retrieve output of dependent task from
Context

InputContextData← InputContextData ∪ {data}
FullQuery← task.description + FormatContext(InputContextData) //Combine task

description with necessary context data
;
agent← AssignAgent(task,Aspec) //Assign the specialized agent (e.g.,

Failure Mode Expert)

Execute:;
RawOutput← agent.Execute(FullQuery);

Context Management:;
StructuredOutput← FormatToJSON(RawOutput) //Standardize output for

downstream use
Context← UpdateContext(Context,StructuredOutput) //Store result as a

labeled output (e.g., #S1)

Update Workflow:;
Workflow← MarkCompleted(Workflow, task) //Mark task as completed in

the DAG

Phase 3: Summarization;
O ← Πsummary(Q,Context) //Generate final, high-level summary using

all collected context
return O
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Figure 25: Plan-Execution Workflow Concrete Example.

Algorithm 3 describes a structured, three-phase approach for complex queries, prioritizing explicit
planning and efficient data flow management. This approach ensures a systematic resolution of
the User Query (Q). The first phase, Planning and Decomposition, transforms Q into an execu-
tion structure. A planning policy Πplan generates a sequential Plan, which is then compiled into a
Directed Acyclic Graph (Workflow) defining task dependencies. The Context is initialized, and a
TaskSequence is generated by topologically sorting the Workflow, which guarantees that tasks are
processed only after their dependencies have been met. The second phase, Context-Aware Execu-
tion, manages the task flow based on the TaskSequence. For each task in the sequence, the algorithm
retrieves *only* the necessary context. This process involves iterating through all task dependencies
to collect the required data from the global Context. This collected data is then formatted and com-
bined with the task.description to form the FullQuery, which is executed by the assigned agent.
The resulting RawOutput is immediately standardized via FormatToJSON and stored back into the
global Context (e.g., as #S1), making it available for subsequent tasks. The final phase, Summariza-
tion, occurs upon completion of all tasks. A final summarization policy (Πsummary) synthesizes the
definitive Final Output (O) from the original Q and the comprehensive Context.

I.3 DETAILED WORKFLOW EXAMPLES

Figure 25 presents a concrete example of the Plan-Execute workflow for the user query: “List all
failure modes of Chiller 6 at the MAIN site that can be detected by temperature sensors and power-
input sensors.” The planning stage produces four steps, illustrated in the middle row, each outlining
a specific sub-task derived from the original query. The execution stage then follows these steps in
sequence, generating intermediate outputs and ultimately producing the final answer. This example
highlights how the Plan-Execute approach breaks down a complex request into structured actions
and systematically retrieves the required information.

J MODEL PERFORMANCE AND PLANNING ANALYSIS

We extended our evaluation to include models that were not part of the original benchmark,
specifically Anthropic Claude variants (claude-3-7-sonnet, claude-4-sonnet) and GCP
Gemini (gemini-2.5-pro). Model performance was evaluated using planning accuracy met-
rics (BERTScore, ROUGE, and alignment with ground-truth plans), consistent with our original
execution-accuracy leaderboard. We also analyzed planned step statistics to understand model be-
havior in generating task plans.
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J.1 COMBINED SCORE (BERTSCORE + ROUGE-L)

For each model, we compute a combined planning score Scombined that integrates BERTScore (B)
and ROUGE-L (R):

Scombined =
B +R

2
,

where B ∈ [0, 1] is the average BERTScore between the model-generated plan and the ground-truth
plan, and R ∈ [0, 1] is the average ROUGE-L F1 score. This provides a balanced measure of both
semantic similarity (via BERTScore) and sequence-level overlap (via ROUGE-L).

J.2 PLANNING ACCURACY

Model Name Avg ± Std Questions
mistral-medium-2505 0.620 ± 0.063 141
gemini-2.5-pro 0.615 ± 0.068 141
gpt-oss-120b 0.606 ± 0.077 141
mistral-small-3-1-24b 0.604 ± 0.062 141
claude-4-sonnet 0.595 ± 0.068 141
llama-3-405b-instruct 0.588 ± 0.074 141
claude-3-7-sonnet 0.571 ± 0.071 141
llama-4-maverick-17b 0.558 ± 0.071 141
gpt-5-2025-08-07 0.544 ± 0.092 141
granite-3-3-8b-instruct 0.529 ± 0.067 141
llama-3-3-70b-instruct 0.522 ± 0.068 141

Table 37: Planning accuracy (Avg ± Std) for all evaluated models.

J.3 PLANNED STEP STATISTICS

Model Name Avg Steps ± Std Min Max Zero Steps
llama-3-405b-instruct 3.14 ± 1.84 1 9 0
llama-3-3-70b-instruct 6.55 ± 1.55 3 12 0
llama-4-maverick-17b 4.34 ± 1.80 1 9 0
granite-3-3-8b-instruct 5.56 ± 2.44 2 30 0
gpt-oss-120b 1.91 ± 1.21 1 10 0
mistral-medium-2505 2.38 ± 1.04 1 5 0
mistral-small-3-1-24b 2.77 ± 1.33 1 6 0
claude-3-7-sonnet 3.10 ± 1.15 1 5 0
gpt-5-2025-08-07 2.33 ± 1.16 0 5 1
gemini-2.5-pro 1.87 ± 1.01 1 5 0
claude-4-sonnet 2.45 ± 1.34 1 5 0

Table 38: Planned step statistics for all evaluated models.

J.4 KEY INSIGHTS

• Top-performing models: mistral-medium-2505 achieves the highest planning ac-
curacy (0.620 ± 0.063) and produces concise, low-variance plans (2.38 ± 1.04 steps), com-
bining high performance with efficiency. gemini-2.5-pro is also highly competitive
(0.615 ± 0.068).

• Anthropic Claude models: Both claude-3-7-sonnet and claude-4-sonnet
show solid planning accuracy with moderate plan lengths ( 2.5–3 steps) and low variance,
indicating reliable reasoning and execution alignment.

• Instruction tuning matters: Medium-sized instruction-tuned models
(mistral-medium, mistral-small) consistently produce efficient plans
with low variance, outperforming larger models with longer, more variable plans
(llama-3-3-70b, granite-3-3-8b).
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• Step length vs. performance: Shorter plans with low variance generally correlate with
higher planning accuracy, while overly long plans may introduce redundancy without im-
proving alignment with ground-truth executions.

• Consistency vs. variability: High-variance models (gpt-5-2025-08-07,
granite-3-3-8b) occasionally generate very long or empty plans, which may reduce
reliability despite moderate average scores.

Conclusion: The unified analysis demonstrates that medium-sized, instruction-tuned models offer
the best balance of planning accuracy and step efficiency, while the inclusion of Claude and Gemini
models extends benchmark coverage and validates performance trends. These results are consistent
with our original execution-accuracy leaderboard, confirming the robustness of the benchmark for
evaluating reasoning-capable language models.
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