Under review as a conference paper at ICLR 2026

ASSETOPSBENCH: BENCHMARKING AI AGENTS FOR
TASK AUTOMATION IN INDUSTRIAL ASSET OPERA-
TIONS AND MAINTENANCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Al for Industrial Asset Lifecycle Management aims to automate complex opera-
tional workflows, including condition monitoring, maintenance planning, and in-
tervention scheduling, thereby reducing human workload and minimizing system
downtime. Traditional AI/ML approaches have primarily tackled these problems
in isolation, solving narrow tasks within the broader operational pipeline. In con-
trast, the emergence of Al agents and large language models (LLMs) introduces
a next-generation opportunity: enabling end-to-end automation across the entire
asset lifecycle. This paper envisions a future where Al agents autonomously man-
age tasks that previously required distinct expertise and manual coordination. To
this end, we introduce AssetOpsBench, a unified framework and environment de-
signed to guide the development, orchestration, and evaluation of domain-specific
agents tailored for Industry 4.0 applications. We outline the key requirements
for such holistic systems and provide actionable insights into building agents that
integrate perception, reasoning, and control for real-world industrial operations.

1 INTRODUCTION

Industrial assets, such as data center chillers (Naug et al.| (2024)) and wind farms (Monroc et al.

(2024)), are complex, multi-component systems that generate vast amounts of multimodal data,
including time-series sensor readings, textual inspection and workorder records, operational logs,
and images, throughout their lifecycle. The ability to monitor and interpret heterogeneous data
from diverse sources, such as IoT SCADA (Supervisory Control and Data Acquisition) sensors,
operational KPIs, failure mode libraries, maintenance work orders, and technical manuals, is key to
effective Asset Lifecycle Management (ALM). However, subject matter experts such as maintenance
engineers, site operators, and plant managers face considerable challenges in synthesizing insights
from these disparate data streams to support timely and condition-aware decisions. As highlighted
in Figure [T2] the scale, semantic diversity of assets, and application-specific contexts often render
traditional monitoring and management systems inadequate.

15+

)l @

jabilty

Strategy
200+ Library
Failure Modes

(20)

v

End-2-End
(42)

VL

TSFM

300+
loT Meters loT
System
50+ e
Operational KPls

4000+
Work Order

Maximo
1000+ page . Kianaos
Manuals

Data Center Chiller Data Diversity and Applications (b) Distribution of open-
Scale Diversity .
sourced scenarios for

. . . . benchmarking agents in
(a) Complex Industrial Asset — Data Centers managing Chiller and Air a simulated environment.

Handling Units (AHUs)

Under review as a conference paper at ICLR 2026

To address these challenges, the research and industrial communities are increasingly turning to Al
agents: autonomous and goal-driven systems capable of integrating data across silos, reasoning over
complex conditions, and triggering acti mkons. Al agents are particularly promising in the context
of Industry 4.0, where the confluence of real-time IoT telemetry (e.g., Oracle IoT |Oracle| (2025),
enterprise asset management (EAM) systems, and IBM Maximo |IBM) and reliability engineering
frameworks necessitates scalable and intelligent automation. These agents promise to support a
wide range of industrial workflows, from anomaly detection to maintenance scheduling, by bridging
the gap between raw sensor data, maintaiance report, work-order and business-level insights.

Despite recent advances in agent-based systems, such as ReAct|Yao et al.|(2023)), HuggingGPT |Shen
et al.|(2023), Chameleon|Lu et al.| (2023)), and Generalist Agents|Fourney et al.|(2024)); Marreed et al.
(2025), a gap remains in adapting these innovations for real-world industrial settings. Most recent
domain and application specific benchmarks (e.g., ITBench/Jha et al.|(2025)), SWE-bench|Chan et al.
(2025), ™bench|Yao et al.|(2024) and its extension [Fu-Hinthorn| (2025)), Customer Support Bench-
marks [Team| (2025)) are tailored toward machine learning, IT or customer-service domains and do
not address the unique challenges of industrial applications, such as data modality diversity(time
series and text), business object complexity(e.g., failure mode, work orders, asset hierarchies), and
task collaboration across multiple operational personas (reliability modeling by expert and time se-
ries modeling based on data scientist).

This paper introduces AssetOpsBench, the first dataset and benchmarking system designed to eval-
uate Al agents for real-world industrial asset management tasks. By leveraging experts in develop-
ment, we have carefully built real multi-source datasets, intent-aware scenarios, and domain-specific
agents to develop, evaluate, and compare multi-agent systems. Our system includes:

* A catalog of domain-specific AI agents, including an IoT agent, a failure mode to sensor
mapping (FMSR) agent, a foundation model-driven time series analyst (TSFM) agent, and
a work order (WO) agent. Each agent has tools and targets different modalities and tasks.

* A curated to be open-source intent-driven 141 scenario of human-authored natural lan-
guage queries, grounded in real industrial data center operations (Figure [Ib), covering
tasks such as sensor-query mapping, anomaly detection, failure diagnosis, and work-order
modeling.

* A simulated industrial environment based on a CouchDB-backed IoT telemetry system
and real multi-source dataset, enabling end-to-end benchmarking of multi-agent workflows
and open source contributions without the constraints associated with production systems

* A comparative analysis of multi-agent architectural paradigms: Agent-As-Tool vs. Plan-
Executor, highlighting tradeoffs between interleaved decomposition or decomposition-first

* A three-pronged evaluation consisting of (i) an LLM-based rubric, (ii) reference-based
scoring of task decomposition and execution, and (iii) manual expert verification for certain
scenarios.

* A systematic procedure for the automated discovery of emerging failure modes in multi-
agent systems, extending beyond fixed taxonomies and its benefits.

A key insight from our study is that domain complexity in industrial settings necessitates a multi-
agent approach, where specialized agents are developed for isolated tasks, then orchestrated to
solve composite problems. For example, sensor data may be handled by an IoT agent, while fault
history is managed by an FMSR agent. These agents must collaborate intelligently to answer user
queries, such as “Why is the chiller efficiency dropping?”, which blend physical reasoning, histori-
cal correlation, and operational semantics. Furthermore, the design of agent workflows must respect
the natural language and intent patterns used by industrial end users. Unlike IT users, operators
and engineers often refer to assets in physical or operational terms (e.g., “chiller performance”,“oil
temperature spike”) rather than referring to database fields or ontologies. Crafting robust bench-
marks requires capturing this domain-specific linguistic variance, ensuring agents not only retrieve
correct answers but also follow reasoning patterns aligned with domain expectations.

Finally, we experimented with an additional closed-source 162 scenarios to demonstrate generality,
spanning 10 asset classes, 53 failure modes, and 20 sensors. These include 42 live-deployment
scenarios (>90% correctness verified by a domain expert), 17 hydraulic system, 15 metro train, and
88 failure-mode scenarios encompassing diverse asset—failure—sensor relationships.

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Generalist Agents. The development of generalist agents capable of orchestrating multiple sub-
agents to accomplish complex tasks has emerged as a prominent research direction. This paradigm
is evident across various domains, including web systems such as Magentic|Fourney et al.|(2024)) and
CUGA Marreed et al.| (2025), multimodal agents like GEA |Szot et al.|(2024), and software engineer-
ing platforms like HyperAgent |Huy et al.| (2025)), ChatDev |Qian et al.|(2024), and MetaGPT |Hong
et al.| (2024). These agents typically employ predefined sets of sub-agents, such as terminals,
browsers, code editors, and file explorers, each assigned specific functional roles to facilitate task
decomposition and planning. While this architecture enables targeted integration and task special-
ization, it often lacks flexibility. Most systems adopt hard-coded reasoning paradigms, such as
plan-executor or ReAct, which limit their capacity to support new agents, adapt to novel task, or
alternative coordination strategies, such as AOP |Li et al.[(2025) and Prospector |Kim et al.[(2024).

Domain-Specific Agents. Solving specialized tasks often requires domain-specific capabilities,
prompting the development of tailored benchmarks such as MLEBench |(Chan et al,| (2025) and
MLAgentBench [Huang et al.| (2024) Arena. These frameworks evaluate agents on a diverse set
of machine learning problems, such as classification and regression, across multiple modalities, in-
cluding tabular and image data. They simulate end-to-end workflows, from resolving GitHub issues
to automating model training and evaluation pipelines. The concept of the Al Research Agent has
gained traction, referring to agents built for scientific discovery and iterative experimentation. For
example, MLGym [Nathani et al.|(2025), a research agent in machine learning workflows. However,
most current benchmarks lack support for temporal and text data modalities together, which are
crucial in domains such as physical asset health monitoring.

Application-Specific Agents. Agent-based automation is also advancing in operational settings,
such as IT operations, customer support, and compliance monitoring. Frameworks developed un-
der initiatives like ITBench [Jha et al.| (2025) and AIOpsLab |Chen et al.| (2025) aim to replicate
real-world scenarios involving site reliability engineering, diagnostics, and system auditing. These
systems reinforce the importance of application-specific benchmarks, tailored to specific personas,
that not only evaluate agents across structured tasks but also expose capability gaps and drive in-
novation in reasoning and orchestration strategies. Current benchmarks in this space tend to be
domain-specific in scope, lacking the generality and composability required to assess agent perfor-
mance across diverse, multi-agent environments, especially those involving cross-modal reasoning
or domain-specific tool usage.

Fine-Tuned and Compact Models. Complementary to architectural advances, recent work has
focused on improving agent performance via fine-tuned language models. So-called Large Ac-
tion Models (LAMs) are designed to execute structured actions within environments, often trained
on large-scale datasets to support planning, sequencing, and low-level execution. Systems such
as TaskBenchShen et al.| (2024), xLAMZhang et al.| (2025b), AgentGen |[Hu et al.| (2025), Agent-
Bank [Song et al.| (2024), AgentRM Xia et al.| (2025), FireAct (Chen et al.| (2024), and ActionStu-
dio [Zhang et al.| (2025a) exemplify this trend. These models are frequently trained in grounded
settings, e.g., Windows-based environments [Wang et al.| (2025) and evaluated across diverse task
categories including arithmetic, programming, and web-based interaction. While effective, these
approaches are limited to textual or web environments and have not yet demonstrated broad appli-
cability to more complex or industrial automation tasks involving hybrid agent compositions.

Open Challenges. Despite these advances, several gaps remain. First, there is a lack of comprehen-
sive benchmark datasets targeting industrial asset domains, particularly those involving condition-
based monitoring, predictive maintenance, automated diagnostics, and work order planning. To
support this claim, we analyzed a catalog of 135 public datasets [jonathanwvd| (2025)) and found
that only one dataset includes any form of work-order or operational context, and even that lacks
sensor history. Moreover, only 53 datasets mention failure modes, most of which contain just one or
two modes, and none of the datasets support agentic applications. Second, time-series data, which
plays a central role in industrial and infrastructure-related applications, remains underrepresented
in existing agentic benchmarks. Finally, few systems support orchestration across heterogeneous
agents, including those based on text, code, or simulations, nor do they offer modular reasoning
strategies adaptable to complex, multi-agent workflows. Addressing these gaps is essential to ad-
vance general-purpose agent intelligence in high-stakes, real-world domains.

Under review as a conference paper at ICLR 2026

3 PROBLEM DEFINITION: INTELLIGENT AGENT-BASED ASSET OPERATIONS

AssetOpsBench aims to establish a generalist agent framework for managing the lifecycle of phys-
ical assets, integrating multiple domain-specific agents and a suite of application-specific tasks for
systematic evaluation. It encompasses a comprehensive set of operational and analytical tasks
that arise across the asset lifecycle. The benchmark focuses on scenarios commonly posed by
domain experts, such as maintenance engineers, reliability specialists, and facility planners, who
translate operational needs into data-driven actions. These scenarios cover key tasks including
anomaly detection, root cause analysis, fault explanation, predictive maintenance planning, work
order bundling, and service request initiation. For example, a user might request: “Help configure
an anomaly detection model to monitor power consumption of CUXP. Trigger alerts when usage is
projected to exceed 8 Watts above the maximum deviation observed over the past 30 days”. Such
task enables timely corrective actions such as “service request creation” to mitigate potential issues.

Output
Query: “Is there any anomaly detected in Chiller 6's
Tonnage in the week of 2020-04-27 at the MAIN site?” ity,
5 @
4 ir
[LY

WO Batching
e) Scheduling &
iMemory . TaskMemory assignment of WOs AssetOps Tasks
{Module - UserMemory i

Assets AssetOpsAgent |
Ec it
joca
Asset
Configuration

Model Selection
and Analysis

1 Task
Q{/ \\ 3 Task Specific Specialized Agents
Plan =

fonitor/
Skyspark/

Workorders ‘ ‘

Historical and WO Agent
planned work

(Maximo)

Retrieve or
Generate FMEA

Plan

Failure Modes
Failures, degradation, Reflection — 7. FMSRAgent

Monitoring and i
(BFHJEI';V‘R/IQFS’;/%"RS) ModiE Execution Identify KPIs
(Mﬁ,’:.‘f//séﬁg! o \ ReAct Maintenance Select Data
la \. N and Response Source

(a) Architecture of the Multi-Agent System: Time Series (TSFM) (b) Exemplar AssetOps Task Hierar-
Agent, Failure Mode Sensor Relations (FMSR) Agent, Work Order chy: Detailed hierarchy is given in
(WO) Agent Appendix [B]

Figure [24 illustrates the foundational components of our proposed framework. At the core is the
AssetOps Agent, which functions as a global coordinator. It interprets high-level user queries ex-
pressed in natural language, decomposes them into structured subtasks, delegates these to special-
ized functional sub-agents (e.g., IoT, TSFM), and integrates their outputs into coherent responses.
The architecture supports on-demand instantiation of agents, dynamic task planning, and reactive
execution, capabilities essential for operating in complex, variable industrial environments. For-
mally, given a query or task 7 € T, the objective is to generate a valid plan 7 € II, leverage memory
M to propagate relevant context, coordinate appropriate agents A; € A for task fulfillment, and
produce an output o € O that aligns with the intended goal and operational constraints. For brevity,
Appendix [A.T| discusses the mathematical formulation of agent-oriented planning, and Section[A.2]
provides details on all four agents.

In this paper, we leveraged ISO documents to build a structured task taxonomy aligned with the
stages of the physical asset management [SO-2024| (2024); ISO| (2016). Such a taxonomy pro-
vides a consistent and scalable approach to scenario generation for benchmarking. We refer to this
approach as intent-driven scenario generation, rather than API-driven scenario generation, as pop-
ularized in [Yao et al.| (2024); |Shen et al.| (2024). As illustrated in Figure @ the taxonomy begins
with Asset Configuration, encompassing activities such as retrieving Failure Mode and Effects
Analysis (FMEA) documentation and selecting performance KPIs, typically carried out by reliabil-
ity engineers. It progresses to Model Selection and Analysis, where data scientists apply anomaly
detection models (e.g., Time Series Foundation Model, ML Models) and use LLM-powered retrieval
to surface relevant historical failures. In the Monitoring and Execution phase, operations teams
manage live telemetry, refine detection models, and enforce safety guardrails. Finally, the Main-
tenance and Response phase focuses on actionable outputs: generating work orders, summarizing
system health, and prioritizing interventions—tasks typically handled by maintenance engineers.
Defining tasks and APIs based on a standard is key, as it generalizes various different application
software |Oracle| (2025)); [BM.

Under review as a conference paper at ICLR 2026

4 ASSETOPSBENCH

AssetOpsBench comprises a real multi-asset, multi-source dataset (Section from a data cen-
ter, 141 manually constructed task scenarios (Section @]) and a benchmarking environment that
includes novel task-specific Al agents and an evaluation framework (Section[#.3). The scenarios are
developed in collaboration with SMEs and reflect the essential day-to-day capabilities that agents
operating in realistic industrial settings are expected to possess. We also compare scenario counts
with prior benchmarks (see Appendix Table[C.3)), where human-authored scenarios typically contain
about 100 scenarios, while LLM-generated benchmarks display greater variability in scale.

4.1 MULTI-SOURCE DATASET

A key distinguishing feature of AssetOpsBench is its integration of richly structured, expert-curated
multi-source data that reflects the complexity of real-world industrial asset operations. Unlike a sim-
ple data-gathering effort, constructing this benchmark required extensive data cleaning, the devel-
opment of a novel failure taxonomy, and careful alignment across heterogeneous sources. As shown
in Table [T} the benchmark includes over 2.3 million sensor data points across 6 assets (4 Chillers
and 2 AHUs), capturing time-series signals such as chiller return temperature, load percentage, and
condenser water flow. The structured failure models, derived from Failure Mode Effects Analysis
(FMEA) records, encompass 53 failure entries across three equipment assets. FMEA provides pro-
vide detailed insights into the physical locations of failures, degradation mechanisms (such as wear
and erosion), and the influencing factors (including runtime, fluid conditions, and shock loading) that
contribute to each failure. Work order histories span 4.2K records across 10+ assets and incorporate
ISO-standard failure codes, event timestamps, and linkages to alerts and detected anomalies.

Table 1: Key data modalities with 3 Example Fields used for open source scenario construction

Data Source Field Description

Sensor Data* Chiller Return Temp. Measures temperature of water returning to chiller

Industrial Assets: 6 Chiller % Loaded Indicates current load as a fraction of the maximum
Quantity: 2.3M points Condenser Water Flow Indicates the current flow rate through the condenser
FMEA Failure Location / Comp. Subsystem/part where failure occurs (e.g., bearings,)
Industrial Assets: 3 Degradation Mechanism Physical process driving failure (e.g., wear, erosion)
Quantity: 53 records Degradation Influences Stressors like runtime, fluid quality, or shock loading
Work Orders ISO Failure Code Standardized classification of the failure category.

Ind. Assets: 10+ Event Log Timestamp Time-marked entry recording an operational event

Quantity: 4.2K records Linked Anomaly / Alert References to alerts or anomalies tied to work order

Additionally, the operational system generates a temporal sequence of alarm logs and also leverages
domain-specific technical rules obtained from experts, enabling contextual grounding of operational
anomalies. This diverse data foundation, comprising 9 modalities, facilitates a comprehensive eval-
uation of decision-making, tool usage, and multi-hop reasoning in industrial environments. Full
dataset description is provided in Appendix D]

4.2 SCENARIO DESIGN AND COVERAGE

Each scenario in AssetOpsBench represents a structured operational query grounded in the
lifecycle-aligned task taxonomy (Figure [2b) and asset-specific datasets (Table [T). Each scenario
is formalized as:
P = (id, type, text, category, form)

where id is a unique identifier; fype specifies the task type (e.g., knowledge retrieval, analytical); text
is the natural language query; category denotes the operational domain (e.g., [oT, FMSR, TSFM,
WO or End-2-End (i.e., more than one agent)); and characteristic form defines the expected output
(e.g., explanation, API call, action plan). Scenarios are categorized into two types: (1) single-agent
utterances, which only require probing a single specific agent (e.g., [oT, TSFM, FMSR, WO), and (2)
multi-agent tasks, which span multiple agents and require coordinated reasoning and data exchange.
As shown in Figure[Tb] the to be open-sourced version comprises a total of 141 scenarios, consisting
of 99 single-agent and 42 multi-agent tasks.

Under review as a conference paper at ICLR 2026

First, we introduce two representative agents to highlight the complexity at the tool level before
narrowing our focus to a specific scenario. Figure [3(a) depicts the TSFM agent, which leverages a
pretrained time series foundation model from Hugging Face, and the FMSR agent, which employs
an LLM to generate mappings between failure modes and sensors (get_mapping). We have over
15 tools spread across these four agents. Figure [3{b) then presents Utterance 507, an instructive
case where a user requests a prediction of future energy consumption. To address this query, the
agent must first reason about which sensor variable to use, specifically the power input, and after
retrieving the data recognize that most values are zero, indicating an insufficient data condition. This
scenario highlights the importance of subject matter experts (SMEs) in designing tasks that assess
the reasoning capabilities of LLMs, rather than merely testing tool functionality. In its characteristic
form, we further emphasize key lexical markers that also enable a semantic-based analysis.

@ Time Series Foundation Model Agent ..-' Scenario # 507

I | [. i Text : What is the predicted energy consumption for Chiller 9
pre | get_model catalog | ‘__gﬂLf'"elU"edfmﬂdel ‘ in the week of 2020-04-27 based on data from the MAIN site?

‘ Type : End-to-End: TSFM Agent, loT Agent

Tools | get_forcasting. '+ H

Category : Analytical

Characteristic Form : The expected response should confirm the|

- successful execution of all required actions, ensuring that the

@ Failure Mode Sensor Mapping Agent g correct asset Chiller 9, location MAIN, and time range week of

2020-04-27 were used for data retrieval and analysis. It should

- - - specify that the agent identified the sensor name power inpu

X | get_failure_mode ‘ ‘ get_mapping. ‘é_' ‘ sensor and retrieved the historical energy consumption data for|

\ . / Chiller 9 during the specified time period. The response must also

explain that the agent attempted to analyze the data for energy|

‘ consumption prediction, but was unable to do so due to

insufficient data, as the power input for Chiller 9 was consistently|

0.0 from 2020-04-20 to 2020-04-25, indicating that the chiller was
not operating.

Tools | get_asset_sensors ‘ ‘

(a) Domain Guidance @ (b) In context Examples ‘i

Figure 3: (a) Design of Agents with Domain Specific Guidance and Examples for In-context learning
(b) Scenario 507 Example

Our dataset, particularly the work-order records, spans over 11 years and includes rich fields such
as problem codes, finish dates, and labor hours. This helps to design a scenario such as “Examine
whether the year-over-year increase in corrective maintenance for CWC04009 warrants shifting
resources from annual repairs toward multi-year replacement planning”. Existing scenarios (IDs
407-413) support strategic work-order management tasks, including trend analysis, bundling, and
probability forecasting. Overall, our scenario includes analytical reasoning (including coding, fine-
tuning, and other approaches), context-aware decision-making, and language-based generalization.

4.3 SINGLE AND MULTI-AGENT IMPLEMENTATION

ReAct |[Yao et al.|(2023) and CodeReAct [Wang et al.| (2024) are widely adopted baseline reason-
ing strategies for agent development. Three agents (TSFM, IoT, and FMSR) are built on ReAct,
while the WO agent adopts CodeReAct; our framework also supports alternative strategies such
as RAFA [Liu et al.| (2023)) for extended testing. Given a mix of text- and code-based agents, it
becomes necessary to introduce a global coordinator, the AssetOps Agent, which facilitates collab-
oration among these agents and can operate either under an Agent-As-Tool paradigm or within a
Plan-Execute strategy.

In Agent-As-Tool, each individual agent is registered as a tool within a meta or supervisor agent,
and the supervisor itself is instantiated using ReAct. This architecture emulates the layered decision-
making found in real-world hierarchical organizations. On the other hand, Plan-Execute, as the
name suggests, the process consists of two phases: a Planner and a Reviewer, which together gen-
erate a plan represented as a directed acyclic graph (DAG). This plan is then passed to the Orches-
trator/Executor, which maintains a memory module that stores and transfers information between
agents according to the configuration settings. To further enhance performance, we introduce an
output augmentation mechanism that generates semantically enriched, self-descriptive outputs. This
enables agents to trigger follow-up actions, ask clarifying questions, and make informed decisions.
Read the full schema specifications in Appendix [A-6]

Under review as a conference paper at ICLR 2026

5 EXPERIMENTS AND LEADERBOARD

To evaluate orchestration techniques across varying LLM sizes and agent-specific preferences, we
adopt a rubric-based assessment [LangChain| (2025b); Wen et al.| (2024)); [Wang et al.| (2025)); |An-
drews et al.| (2025) complemented by a reference-scoring mechanism Yao et al.| (2024); Wen et al.
(2024); ICemr1 et al.|(2025).

LLM-As-Judge. Each scenario is paired with a characteristic form, a structured specification defin-
ing both the expected final output and the intermediate reasoning or procedural steps required to
achieve it. This form serves as the soft ground truth for evaluating agent behavior and supports
rubric-based scoring with LLMs acting as judges. The evaluation rubric uses three qualitative met-
rics derived from experimental observations and common-sense principles. We define the Eval-
uation Agent as a scoring function that maps the original task query (Q), the agent’s trajectory
output (7, including intermediate reasoning and final output), and the characteristic form (C, the
ground-truth specification) to a set of scores (y1,y2,y3). These scalar scores (y1,y2,y3) € [0,1]?
correspond to Task Completeness (y;: are all required steps completed?), Data Retrieval Accu-
racy (y»: was the correct data retrieved and used?), and Result Verification (ys: is the final result
logically and factually correct?). A detailed system prompt is provided in Appendix 20}

Reference-Based Scoring. For each scenario, we construct a structured ground truth (See Appendix
@) inspired by Yao et al.| (2024)); |Shen et al.| (2024)), where each entry captures the task workflow
through planning_steps (high-level intended actions), execution_steps (concrete actions
with corresponding inputs and outputs), and execution_links (dependencies between steps).
This representation encodes both the logical structure and the expected outcomes. We assess an
agent’s task decomposition ability by comparing the planning_steps with either the thinking
traces in the agent’s trajectory (for Agent-as-Tool) or the DAG produced by Plan-Execute. Since
agents communicate in natural language, a weighted score is employed to align action descriptions
and their inputs, thereby quantifying task execution performance.

Experimental Setting. To quantify agent effectiveness in scenario evaluations, we adopt the Pass®
metric. Unlike the widely used Pass@k—which measures the probability that at least one of k inde-
pendent attempts succeeds—Pass” estimates the probability that an agent succeeds on all k attempts.
This stricter criterion better captures the reliability demands of industrial applications, where retries
may be impractical and consistent behavior is essential for production systems [LangChain| (2025a));
Yao et al.| (2024). In our benchmark, we report Pass' by default (one trial per task), as agents are
executed only once per task instance. The evaluation agent, however, is executed five times to derive
the performance metrics, with a sampling temperature of zero for all agents within AgentOps Agent
and 0.3 for the evaluation agent. All reported results are obtained under this configuration.

5.1 ASSETOPSBENCH LEADERBOARD

Models. We conducted a series of benchmark experiments to evaluate a diverse set of lan-
guage models, including closed-source models (e.g., gpt—4.1), frontier open-source models
(e.g., llama-4-maverick, llama-4-scout, mistral-large, 1lama-3-405b), and
medium-to-small open-source models (e.g., 11ama-3-70b, granite—-3-8b). Currently, we
have evaluated two different agentic strategies: Agent-As-Tool and Plan-Execute.

Models Models
B gpt-4.1-2025-04-14 3 llama-3-405b-instruct =3 llama-3-3-70b-instruct B gpt-4.1-2025-04-14 3 llama-3-405b-instruct 23 llama-3-70b-instruct

3 llama-4-maverick-17b-128e ~E- mistral-large 3 granite-3-3-8b-instruct 3 llama-4-maverick-17b-128e B mistral-large 3 granite-3-3-8b-instruct
3 llama-4-scout-17b-16e-instruct & 3 llama-4-scout-17b-16e-instruct
N

R
o
<

8 8 Q
© © BN
< < ¥

<

Data Retrieval Result

y X Task Data Retrieval Result
Completion T Accuracy 1 Verification T Completion T Accuracy T Verification 1

(a) Agent-As-Tool Approach (b) Plan-Executor Approach

Figure 4: Approach-wise Performance Evaluation. The order is based on the task completion rate.

Under review as a conference paper at ICLR 2026

Agent-As-Tool vs Plan-Execute Approach. Figure @] shows the combined performance of both ap-
proaches using the rubric method. Overall, the Agent-As-Tool approach, as illustrated in Figure a]
demonstrates that gpt -4 . 1 leads across nearly all metrics. 11ama-4-maverick also performs
competitively, particularly in result verification (60%) and clarity (78%). In contrast, smaller models
such as granite—-3-8b and 11lama-3-3-70b underperform across most dimensions. Although
our benchmark did not yield promising results for small language models, as noted in a recent vision
paper [Belcak et al.| (2025), we discuss later an interesting outcome that demonstrates the potential
of combining model agency using both LLMs and SLMs for certain tasks.

A closer examination of the Plan-Execute approach (Figure b) shows that mistral-large
leads overall, achieving the highest scores in task completion (46%) and data retrieval (57%).
llama-4-maverick demonstrates balanced performance, particularly in task completion (46%)
and result verification (44%), with a average data retrieval rate (46%). Interestingly, gpt—4. 1 ex-
hibits consistent mid-range performance across all axes, suggesting potential issues with planning.

Upon deep examination, we observed that
larger models generate shorter plans for the
Plan-Execute approach (typically 2-3 steps)
compared to the Agent-As-Tool strategy, which
generally requires 5-6 steps (Appendix Sec-
tion [E.2). Moreover, the execution time for
smaller models is nearly double, suggesting
that each sub-agent takes longer to complete its
assigned steps. Due to space constraints, a de-
tailed analysis of cost and runtime is provided
in the Appendix [E.2] and [EJ3] where results
are presented by partitioning the 141 scenarios
into single-agent and multi-agent tasks. To fur-
ther emphasize the potential of small language
models (SLMs), we conducted a more in—depth
task—category—level analysis. As shown in Fig-
ure 5] SLMs perform particularly well on tasks
associated with the IoT Agent, while tasks re-
lated to WO and End-to-End agents still require
broader improvements across all model scales.

=e= granite-3-3-8b-instruct =eo=|lama-4-scout-}7b-16e
—e=llama-3-3-70b-instruct =e=llama-3-405binstruct
—e— mistral-large gpt-4.1-2075-04-14

<e— llama-4-maverick-17b-128

End-to-end

Figure 5: Agent Level Task Accomplishment with
respect to Agent-As-Tool Approach

Human Validation. To assess the reliability of

using LLMs as automatic evaluators for benchmarking tasks, we compare model-generated judg-
ments against human annotations on a sample of 40 tasks. Each task is evaluated along three dimen-
sions by four domain experts, all operating under the same information constraints as the LLMs. We
use 1lama—-4-maverick as the default model for conducting this study. These inter-rater relia-
bility scores indicate substantial agreement across key evaluation dimensions, with Data Retrieval
Accuracy showing the strongest consistency (Cohen’s x = 0.79, 90.48% accuracy). Task Comple-
tion (k = 0.62) and Generalized Result Verification (x = 0.71) also reflect a high level of alignment
among evaluators.

Reference-Based Scoring. Focusing on the Plan-Execute paradigm, we observe that
mistral-large achieves the highest performance for task decomposition: rougel =~ 0.42,
rouge?2 = 0.26, and rougeL ~ 0.34. These results complement the LLM-based rubric findings
(Figure [5b)), providing additional evidence supporting LLM based performance checking. A de-
tailed report is provided in Appendix [E.7} [E.9] to cover results on task execution score, etc. Lower
scores can result from outputs that are more verbose than the ground truth.

Ablation Study. We conducted ablation experiments using the Agent-As-Tool method. Injecting
10 out-of-domain distractors (e.g., SREAgent, EchoAgent) into 99 single-agent scenarios unex-
pectedly improved task completion, accuracy, and reasoning, suggesting that distractors may trigger
more deliberate reasoning in LLMs. In contrast, removing all in-context examples for 65 single-
agent tasks (IoT+FMSR+TSFM) caused performance to collapse—from 80% to 34% for gpt-4.1
and from 60% to 3% for granite-3-8b, highlighting the critical role of in-context learning for
ReAct-style coordination (Appendix [E.6).

Under review as a conference paper at ICLR 2026

5.2 EMERGING FAILURE MODES DISCOVERY Table 2: Distribution of Failure Subcat-

Trajectory analysis is critical for detecting agent mis- €gories Across Stages of Execution
takes, but becomes more challenging in multi-agent set-
tings. AssetOpsBench extends the fixed agent failure Failure Subcategory Stage & %
taxonomy |(Cemri et al.| (2025) by enabling continuous System Design (Total 37.38%)

monitoring and proactive detection of failure modes in Disobey Task Spec. Pre: 13.87%

. . . Disobey Role Spec. Pre: 0.11%
LLM-driven agents. We analyzed 881 execution trajec- sp repetition Excc.: 16.41%
tories generated using the Agent-As-Tool approach and Loss of Conversation Pre: 0.00%
used gpt—4.1 to estimate the distribution of 14 prede- Unaware of Termination Post: 6.99%
fined failure modes. As shown in Table [2] system design Agent Coordination (Total 27.52%))

. fail T ¢ behavi Conversation Reset Execution: 0.00%

emerges as a major failure source. 10 capture behaviors g o Ask for Clarification Execution: 10.22%

beyond this taxonomy, we allowed self-discovery of up Task Derailment Execution: 4.34%

to two novel failure modes per trace, revealing emergent nformation Withholding Execution: 2.22%

. e . Ignored Agent’s Input Execution: 2.06%

and compound failures not covered by existing classifi- Acgion Mismatch Execcution: 8.68%

cations. Among al.l trajectories, 185 contained one povel Task Verification (Total 35.10%)

mode and 164 exhibited two. Common emergent failures premature Termination Pre: 3.92%

include Overstatement of Task Completion (122 cases, No or Incomplete Veri. Execution: 15.56%

Incorrect Verification Execution: 15.62%

23.8%), Extraneous or Ambiguous Output Formatting
(110 cases, 21.4%), and Ineffective Error Recovery (160
cases). Appendix [details the discovery procedure and
reports how incorporating Table [2] information improves
performance.

5.3 GENERALITY AND PRODUCTION TESTING: 162 SCENARIOS

To evaluate the generality of our system, we applied it to three additional domains (air compressor,
hydraulic system, etc) and one internal production use case. Our framework is field-tested to mon-
itor 42 distinct assets across five different asset classes (Air Handling Unit, CRAC, Chiller, Pump,
and Boiler), generating asset health insights (“‘asset needs attention”) with varying complexity and
temporal context. Table [3| shows a summary of the results. These results demonstrate consistent,
high-quality agent behavior across core evaluation metrics. Manual review by an expert confirms
that agent outputs align with expected answers in nearly all cases (up to 100%), supporting the ro-
bustness and generalization of our approach under real-world deployment conditions. Except for
the Metro train, the remaining datasets have good performance, including SLM. Appendix
provides a detailed discussion of example scenarios, asset coverage, and token count distribution
for consideration during deployment. Our original 141 Scenarios are complex and tough, whereas
Asset health is purely based on work orders and asset profile.

Table 3: Agent performance across multiple domains and scenarios.

Task Data Retrieval ~ Generalized Expert

Domain / Model Completion Accuracy Verification Verification Source

Asset Health (42 tasks)

granite-3-8b 92.86% 100.00% 88.10% 85.71% Private
llama-4-maverick 100.00% 100.00% 100.00% 100.00% -
mistral-large 95.24% 100.00% 95.24% 95.24% -
FailureSensorIQ (88 tasks) 1SO|(2016)
llama-4-maverick 67.0% 71.6% 56.8% -

Metro Train (15 tasks) Davari & Gamal(2021)
llama-4-maverick 26.7% 20.0% 40.0% -

Hydraulic System (17 tasks) Helwig & Schtze{(2015)
llama-4-maverick 88.2% 100% 88.2% -

6 CONCLUSION

This paper presents a formalized framework for Al agents in industrial assets, encompassing a com-
prehensive and diverse set of scenarios derived from multiple data sources, a taxonomy, and a stan-
dardized evaluation methodology. The Agent-As-Tool paradigm offers a promising approach for
orchestrating multi-agent interactions. In future work, we plan to introduce realistic environment
constraints, such as compute limitations and API usage costs, to innovate novel algorithms.

Under review as a conference paper at ICLR 2026

REFERENCES

Pierre Andrews, Amine Benhalloum, Gerard Moreno-Torres Bertran, Matteo Bettini, Amar Budhi-
raja, Ricardo Silveira Cabral, Virginie Do, Romain Froger, Emilien Garreau, Jean-Baptiste Gaya,
Hugo Laurencon, Maxime Lecanu, Kunal Malkan, Dheeraj Mekala, Pierre Ménard, Grégoire Mi-
alon, Ulyana Piterbarg, Mikhail Plekhanov, Mathieu Rita, Andrey Rusakov, Thomas Scialom,
Vladislav Vorotilov, Mengjue Wang, and Ian Yu. Are: Scaling up agent environments and evalu-
ations, 2025. URL https://arxiv.org/abs/2509.17158.

Peter Belcak, Greg Heinrich, Shizhe Diao, Yonggan Fu, Xin Dong, Saurav Muralidharan,
Yingyan Celine Lin, and Pavlo Molchanov. Small language models are the future of agentic
ai, 2025. URL https://arxiv.org/abs/2506.02153,

Mert Cemri, Melissa Z Pan, Shuyi Yang, Lakshya A Agrawal, Bhavya Chopra, Rishabh Tiwari, Kurt
Keutzer, Aditya Parameswaran, Dan Klein, Kannan Ramchandran, et al. Why do multi-agent llm
systems fail? arXiv preprint arXiv:2503.13657, 2025.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio
Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, Aleksander Madry, and Lilian Weng. MLE-
bench: Evaluating machine learning agents on machine learning engineering. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=6s5uXNWGIh.

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier, Karthik R Narasimhan, and Shunyu
Yao. Fireact: Toward language agent finetuning, 2024. URL https://openreview.net/
forum?id=RqUMWdDg52.

Yinfang Chen, Manish Shetty, Gagan Somashekar, Minghua Ma, Yogesh Simmhan, Jonathan Mace,
Chetan Bansal, Rujia Wang, and Saravan Rajmohan. Aiopslab: A holistic framework to evaluate
ai agents for enabling autonomous clouds, 2025. URL https://arxiv.org/abs/2501.
06706.

Veloso Bruno Ribeiro Rita Davari, Narjes and Joao Gama. MetroPT-3 Dataset. UCI Machine
Learning Repository, 2021. DOI: https://doi.org/10.24432/C5VW3R.

Adam Fourney, Gagan Bansal, Hussein Mozannar, Cheng Tan, Eduardo Salinas, Erkang, Zhu,
Friederike Niedtner, Grace Proebsting, Griffin Bassman, Jack Gerrits, Jacob Alber, Peter Chang,
Ricky Loynd, Robert West, Victor Dibia, Ahmed Awadallah, Ece Kamar, Rafah Hosn, and
Saleema Amershi. Magentic-one: A generalist multi-agent system for solving complex tasks,
2024. URL https://arxiv.org/abs/2411.04468.

Will Fu-Hinthorn. Benchmarking multi-agent architectures. LangChain
Blog, June 2025. URL https://blog.langchain.com/
benchmarking-multi-agent—-architectures/. Accessed: YYYY-MM-DD.

Pignanelli Eliseo Helwig, Nikolai and Andreas Schtze. Condition monitoring of hydraulic systems.
UCI Machine Learning Repository, 2015. DOI: https://doi.org/10.24432/C5CW21.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng Xiao,
Chenglin Wu, and Jiirgen Schmidhuber. MetaGPT: Meta programming for a multi-agent collab-
orative framework. In The Twelfth International Conference on Learning Representations, 2024.
URLhttps://openreview.net/forum?id=VtmBAGCN7ol

Mengkang Hu, Pu Zhao, Can Xu, Qingfeng Sun, Jian-Guang Lou, Qingwei Lin, Ping Luo, and
Saravan Rajmohan. Agentgen: Enhancing planning abilities for large language model based agent
via environment and task generation. In Proceedings of the 31st ACM SIGKDD Conference on
Knowledge Discovery and Data Mining V.1, KDD 25, pp. 496-507, New York, NY, USA, 2025.
Association for Computing Machinery. ISBN 9798400712456. doi: 10.1145/3690624.3709321.
URLhttps://doi.org/10.1145/3690624.3709321.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Benchmarking large language models as
Al research agents, 2024. URL https://openreview.net/forum?id=N9wD4RFWYO.

10

https://arxiv.org/abs/2509.17158
https://arxiv.org/abs/2506.02153
https://openreview.net/forum?id=6s5uXNWGIh
https://openreview.net/forum?id=6s5uXNWGIh
https://openreview.net/forum?id=RqUMWdDg52
https://openreview.net/forum?id=RqUMWdDg52
https://arxiv.org/abs/2501.06706
https://arxiv.org/abs/2501.06706
https://arxiv.org/abs/2411.04468
https://blog.langchain.com/benchmarking-multi-agent-architectures/
https://blog.langchain.com/benchmarking-multi-agent-architectures/
https://openreview.net/forum?id=VtmBAGCN7o
https://doi.org/10.1145/3690624.3709321
https://openreview.net/forum?id=N9wD4RFWY0

Under review as a conference paper at ICLR 2026

Phan Nht Huy, Tien N Nguyen, and Nghi D. Q. Bui. Hyperagent: Generalist software engineering
agents to solve coding tasks at scale, 2025. URL|https://openreview.net/forum?id=
PZf4RsPMBG.

IBM. IBM Maximo Application Suite. URL https://www.ibm.com/products/maximo.
Accessed: May 13, 2025.

ISO. Iso 14224:2016 petroleum, petrochemical and natural gas industries — collection and ex-
change of reliability and maintenance data for equipment. ISO, 2016. URL https://www.
iso.org/standard/14224.html, Provides asset taxonomy and data structuring guidance.

ISO-2024. Iso 55000:2024 asset management — vocabulary, overview and principles. 1SO, 2024.
URLhttps://www.iso.org/standard/55000.htmll Defines asset management life-
cycle and taxonomy.

Saurabh Jha, Rohan Arora, Yuji Watanabe, Takumi Yanagawa, Yinfang Chen, Jackson Clark,
Bhavya Bhavya, Mudit Verma, Harshit Kumar, Hirokuni Kitahara, Noah Zheutlin, Saki Takano,
Divya Pathak, Felix George, Xinbo Wu, Bekir O. Turkkan, Gerard Vanloo, Michael Nidd, Ting
Dai, Oishik Chatterjee, Pranjal Gupta, Suranjana Samanta, Pooja Aggarwal, Rong Lee, Pa-
vankumar Murali, Jae wook Ahn, Debanjana Kar, Ameet Rahane, Carlos Fonseca, Amit Parad-
kar, Yu Deng, Pratibha Moogi, Prateeti Mohapatra, Naoki Abe, Chandrasekhar Narayanaswami,
Tianyin Xu, Lav R. Varshney, Ruchi Mahindru, Anca Sailer, Laura Shwartz, Daby Sow, Nicholas
C. M. Fuller, and Ruchir Puri. Itbench: Evaluating ai agents across diverse real-world it automa-
tion tasks, 2025. URL https://arxiv.org/abs/2502.05352.

jonathanwvd. awesome-industrial-datasets: A curated collection of public industrial
datasets. GitHub repository, 2025. URL https://github.com/jonathanwvd/
awesome—industrial-datasetsl Accessed: YYYY-MM-DD.

Byoungjip Kim, Youngsoo Jang, Lajanugen Logeswaran, Geon-Hyeong Kim, Yu Jin Kim, Honglak
Lee, and Moontae Lee. Prospector: Improving LLM agents with self-asking and trajectory rank-
ing, 2024. URL https://openreview.net/forum?1id=YKK1JjXEWja.

LangChain. Agent evaluation metric, March 2025a. URL https://www.philschmid.de/
agents—-pass—at—-k-pass—power—k. Accessed: 2025-05-12.

LangChain. Benchmarking single agent performance, February 2025b. URL https://blog.
langchain.dev/react—agent-benchmarking/. Accessed: 2025-05-12.

Ao Li, Yuexiang Xie, Songze Li, Fugee Tsung, Bolin Ding, and Yaliang Li. Agent-oriented planning
in multi-agent systems. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=EqgcLAU6gyU.

Zhihan Liu, Hao Hu, Shenao Zhang, Hongyi Guo, Shuqi Ke, Boyi Liu, and Zhaoran Wang. Reason
for future, act for now: A principled framework for autonomous llm agents with provable sample
efficiency. arXiv preprint arXiv:2309.17382, 2023.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu,
and Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning with large language mod-
els, 2023. URL https://arxiv.org/abs/2304.09842.

Sami Marreed, Alon Oved, Avi Yaeli, Segev Shlomov, Ido Levy, Aviad Sela, Asaf Adi, and Nir
Mashkif. Towards enterprise-ready computer using generalist agent, 2025. URL https://
arxiv.org/abs/2503.01861.

Claire Bizon Monroc, Ana Busic, Donatien Dubuc, and Jiamin Zhu. WFCRL: A multi-agent
reinforcement learning benchmark for wind farm control. In The Thirty-eight Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2024. URL https:
//openreview.net/forum?id=Z2RMAhpZ3ED.

Deepak Nathani, Lovish Madaan, Nicholas Roberts, Nikolay Bashlykov, Ajay Menon, Vin-
cent Moens, Amar Budhiraja, Despoina Magka, Vladislav Vorotilov, Gaurav Chaurasia,
Dieuwke Hupkes, Ricardo Silveira Cabral, Tatiana Shavrina, Jakob Foerster, Yoram Bachrach,
William Yang Wang, and Roberta Raileanu. Mlgym: A new framework and benchmark for ad-
vancing ai research agents, 2025. URL https://arxiv.org/abs/2502.14499.

11

https://openreview.net/forum?id=PZf4RsPMBG
https://openreview.net/forum?id=PZf4RsPMBG
https://www.ibm.com/products/maximo
https://www.iso.org/standard/14224.html
https://www.iso.org/standard/14224.html
https://www.iso.org/standard/55000.html
https://arxiv.org/abs/2502.05352
https://github.com/jonathanwvd/awesome-industrial-datasets
https://github.com/jonathanwvd/awesome-industrial-datasets
https://openreview.net/forum?id=YKK1jXEWja
https://www.philschmid.de/agents-pass-at-k-pass-power-k
https://www.philschmid.de/agents-pass-at-k-pass-power-k
https://blog.langchain.dev/react-agent-benchmarking/
https://blog.langchain.dev/react-agent-benchmarking/
https://openreview.net/forum?id=EqcLAU6gyU
https://arxiv.org/abs/2304.09842
https://arxiv.org/abs/2503.01861
https://arxiv.org/abs/2503.01861
https://openreview.net/forum?id=ZRMAhpZ3ED
https://openreview.net/forum?id=ZRMAhpZ3ED
https://arxiv.org/abs/2502.14499

Under review as a conference paper at ICLR 2026

Avisek Naug, Antonio Guillen, Ricardo Luna, Vineet Gundecha, Cullen Bash, Sahand Ghorbanpour,
Sajad Mousavi, Ashwin Ramesh Babu, Dejan Markovikj, Lekhapriya D Kashyap, Desik Ren-
garajan, and Soumyendu Sarkar. Sustaindc: Benchmarking for sustainable data center control.
In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.),
Advances in Neural Information Processing Systems, volume 37, pp. 100630-100669. Curran
Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/
paper/2024/f11e/b6676756f8a935e208f394albad7f0bc-—Paper—Datasets_
and_Benchmarks_Track.pdfl

Oracle. Add failure diagnostics information to asset incidents and anomalies.
https://docs.oracle.com/en/cloud/saas/iot—asset—-cloud/iotaa/
add-failure-diagnostics—information—-asset-incidents—and-anomaliels.
html} 2025. Oracle IoT Asset Monitoring Cloud Service.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize
Chen, Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. Chat-
Dev: Communicative agents for software development. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 15174-15186, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.810. URL
https://aclanthology.org/2024.acl-1ong.810/L

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hug-
ginggpt: Solving ai tasks with chatgpt and its friends in hugging face, 2023. URL https:
//arxiv.org/abs/2303.17580.

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang, Kan Ren, Siyu Yuan, Weiming Lu, Dongsheng
Li, and Yueting Zhuang. Taskbench: Benchmarking large language models for task automation.
In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang
(eds.), Advances in Neural Information Processing Systems, volume 37, pp. 4540-4574. Curran
Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/
paper/2024/file/085185ea97db3laeodcac7497616fd3e—Paper-Datasets_
and_Benchmarks_Track.pdfl

Yifan Song, Weimin Xiong, Xiutian Zhao, Dawei Zhu, Wenhao Wu, Ke Wang, Cheng Li, Wei Peng,
and Sujian Li. Agentbank: Towards generalized 1lm agents via fine-tuning on 50000+ interaction
trajectories, 2024. URL https://arxiv.org/abs/2410.07706

Andrew Szot, Bogdan Mazoure, Omar Attia, Aleksei Timofeev, Harsh Agrawal, Devon Hjelm, Zhe
Gan, Zsolt Kira, and Alexander Toshev. From multimodal llms to generalist embodied agents:
Methods and lessons, 2024. URL |https://arxiv.org/abs/2412.08442.

LangChain Team. Benchmarking single agent performance. LangChain Blog, February 2025.
URL https://blog.langchain.com/react—agent—-benchmarking/. Accessed:
YYYY-MM-DD.

Lu Wang, Fangkai Yang, Chaoyun Zhang, Junting Lu, Jiaxu Qian, Shilin He, Pu Zhao, Bo Qiao, Ray
Huang, Si Qin, Qisheng Su, Jiayi Ye, Yudi Zhang, Jian-Guang Lou, Qingwei Lin, Saravan Raj-
mohan, Dongmei Zhang, and Qi Zhang. Large action models: From inception to implementation,
2025. URL https://arxiv.org/abs/2412.10047.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Ji Heng.
Codeact: Your 1lm agent acts better when generating code. In ICML, 2024. URL https:
//arxiv.orqg/abs/2402.01030.

Bosi Wen, Pei Ke, Xiaotao Gu, Lindong Wu, Hao Huang, Jinfeng Zhou, Wenchuang Li, Binxin
Hu, Wendy Gao, Jiaxin Xu, Yiming Liu, Jie Tang, Hongning Wang, and Minlie Huang. Bench-
marking complex instruction-following with multiple constraints composition. In A. Globerson,
L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural
Information Processing Systems, volume 37, pp. 137610-137645. Curran Associates, Inc., 2024.
URL |https://proceedings.neurips.cc/paper_files/paper/2024/file/
£8c24b08b9%96al8ec’/a’a975feeca’’////e—-Paper—-Datasets_and_Benchmarks_
Track.pdf.

12

https://proceedings.neurips.cc/paper_files/paper/2024/file/b6676756f8a935e208f394a1ba47f0bc-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/b6676756f8a935e208f394a1ba47f0bc-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/b6676756f8a935e208f394a1ba47f0bc-Paper-Datasets_and_Benchmarks_Track.pdf
https://docs.oracle.com/en/cloud/saas/iot-asset-cloud/iotaa/add-failure-diagnostics-information-asset-incidents-and-anomalies.html
https://docs.oracle.com/en/cloud/saas/iot-asset-cloud/iotaa/add-failure-diagnostics-information-asset-incidents-and-anomalies.html
https://docs.oracle.com/en/cloud/saas/iot-asset-cloud/iotaa/add-failure-diagnostics-information-asset-incidents-and-anomalies.html
https://aclanthology.org/2024.acl-long.810/
https://arxiv.org/abs/2303.17580
https://arxiv.org/abs/2303.17580
https://proceedings.neurips.cc/paper_files/paper/2024/file/085185ea97db31ae6dcac7497616fd3e-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/085185ea97db31ae6dcac7497616fd3e-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/085185ea97db31ae6dcac7497616fd3e-Paper-Datasets_and_Benchmarks_Track.pdf
https://arxiv.org/abs/2410.07706
https://arxiv.org/abs/2412.08442
https://blog.langchain.com/react-agent-benchmarking/
https://arxiv.org/abs/2412.10047
https://arxiv.org/abs/2402.01030
https://arxiv.org/abs/2402.01030
https://proceedings.neurips.cc/paper_files/paper/2024/file/f8c24b08b96a08ec7a7a975feea7777e-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/f8c24b08b96a08ec7a7a975feea7777e-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/f8c24b08b96a08ec7a7a975feea7777e-Paper-Datasets_and_Benchmarks_Track.pdf

Under review as a conference paper at ICLR 2026

Yu Xia, Jingru Fan, Weize Chen, Siyu Yan, Xin Cong, Zhong Zhang, Yaxi Lu, Yankai Lin, Zhiyuan
Liu, and Maosong Sun. Agentrm: Enhancing agent generalization with reward modeling, 2025.
URL https://arxiv.org/abs/2502.18407.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023. URL https://arxiv.
org/abs/2210.036209.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. 7-bench: A benchmark for
tool-agent-user interaction in real-world domains, 2024. URL https://arxiv.org/abs/
2406.12045.

Jianguo Zhang, Thai Hoang, Ming Zhu, Zuxin Liu, Shiyu Wang, Tulika Awalgaonkar, Akshara Prab-
hakar, Haolin Chen, Weiran Yao, Zhiwei Liu, Juntao Tan, Juan Carlos Niebles, Shelby Heinecke,
Huan Wang, Silvio Savarese, and Caiming Xiong. Actionstudio: A lightweight framework for
data and training of large action models, 2025a. URL https://arxiv.org/abs/2503.
22673

Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai Quoc Hoang, Shirley Kokane, Weiran Yao,
Juntao Tan, Akshara Prabhakar, Haolin Chen, Zhiwei Liu, Yihao Feng, Tulika Manoj Awal-
gaonkar, Rithesh R N, Zeyuan Chen, Ran Xu, Juan Carlos Niebles, Shelby Heinecke, Huan
Wang, Silvio Savarese, and Caiming Xiong. xXLAM: A family of large action models to empower
Al agent systems. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), Proceedings of the 2025
Conference of the Nations of the Americas Chapter of the Association for Computational Linguis-
tics: Human Language Technologies (Volume 1: Long Papers), pp. 11583-11597, Albuquerque,
New Mexico, April 2025b. Association for Computational Linguistics. ISBN 979-8-89176-189-6.
URLhttps://aclanthology.org/2025.naacl-long.578/.

13

https://arxiv.org/abs/2502.18407
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2503.22673
https://arxiv.org/abs/2503.22673
https://aclanthology.org/2025.naacl-long.578/

Under review as a conference paper at ICLR 2026

In the Appendix, we discuss four broad topics that both support the main paper and provide addi-
tional details to ensure reproducibility.

A AGENTS DEFINITION

This appendix provides a detailed exposition of the content introduced in Section [3] In particular,
we focus on the mathematical formulation of the agent architecture, followed by a brief overview
of the proposed framework. The goal is to formalize the agent’s operational components and offer
foundational context for readers interested in the underlying design principles.

A.1 AGENT-ORIENTED TASK AUTOMATION PROBLEM - AOP

We formalize the Agent-Oriented Problem (AOP) as a tuple:
AOP = (A, T,1I1, M, O)

where each component defines a core capability of a modular, agent-based reasoning and action
system:

* A = {41, As,..., A,} denotes the set of available agents. Each agent A; is character-
ized by its reasoning capabilities, task specialization, internal memory, and communication
interfaces, enabling autonomous or cooperative execution of assigned subtasks.

o T = {r,72,...,7;} is the set of tasks. Each task 7 is described by a triple (g, M, C),
where g denotes the task goal (e.g., fault detection or maintenance planning), M speci-
fies the required input modalities (e.g., time-series telemetry, FMEA documents, structured
metadata), and C' captures any domain-specific or operational constraints (e.g., time win-
dows, asset type, or safety requirements).

 II is the hierarchical plan space. A plan m € II is an ordered sequence of task-agent
assignments:
™ = [<T1,Ai>, <T2,Aj>, ..]
where each subtask is delegated to an appropriate agent for execution, potentially with
dependencies among steps.

* M denotes the memory system, consisting of both agent-local and shared global compo-
nents. It is modeled as a dynamic key-value store M = {(k;,v;)}I™,, supporting context
persistence, lookup, and updates throughout the planning and execution process.

* O represents the output space. Each output o € O is the structured or unstructured result of
executing a plan. Outputs may include diagnostics, action recommendations, summaries,
or control triggers, depending on the task and domain.

A.2 FRAMEWORK INTRODUCTION

AssetOpsBench uses the ReAct framework |Yao et al.| (2023) in an end-to-end agent design that
integrates a Review Agent to verify the final answer. Figure [0|illustrates the full architecture.

The ReAct agent executes a Think-Act-Observe loop, solving tasks iteratively while detecting and
recovering from repetitive or ineffective actions. The Review agent verifies whether the ReAct agent
has successfully completed the task, ensuring the quality of the output. Subsequent sections present
the architecture in detail, highlighting the distinction between two architectural paradigms—Agent-
As-Tool (See SectionfA.3) and Plan-Execute (See SectionA.4).

A.3 AGENT-As-TooL
For the Agent-As-Tool paradigm as shown in Figure[7, we implemented the following components:
* A standard ReAct (Think—Act—Observe) agent loop using open source framework. In the
initial setup, the number of reflections was set to one—effectively disabling reflection. We

have extended version of ReActXen, and in future, we will conduct experiments to enable
multi-step reflection within ReActXen.

14

Under review as a conference paper at ICLR 2026

1)
,Q' ReAct Agent / Generate

Q‘ Review Agent

Query

Reflect

(LLM-as-a-judge,
Execution error,)

Figure 6: ReAct used to build individual agent

Agent as Tool

N

All agents are registered as tools

Figure 7: Agent-As-Tool

* A curated list of tools, the majority of which are stub interfaces that delegate functionality to
specialized sub-agents. The only standalone utility tool in this set was the JSONReader,
which reads a JSON object from a file and returns its contents as the tool’s direct response.

The sub-agent stubs were intentionally designed to be minimal. Each stub accepted a single input
parameter—a string called " reque st "—and returned a structured JSON output. The output JSON
object included the following fields:

* answer — the primary answer returned by the sub-agent, represented as a plain string.

* review — a nested JSON object capturing a review of the response, typically including
fields such as status, reasoning, and suggestions.

* summary — a brief description of the JSON object’s structure and semantics, useful for
interpretability or chaining with downstream tools.

The ReAct agent was initialized with a standard prompt that includes:

» Examples for In-Context Learning — A small number of sample interactions for each sub-
agent were provided to guide behavior. These examples followed the standard ReAct for-
mat of Think—Act—Observe, illustrating how to invoke tools and interpret their responses.
A representative example is shown below:

15

Under review as a conference paper at ICLR 2026

Question: download asset history for CU02004 at SiteX

from 2016-07-14T20:30:00-04:00 to 2016-07-14T23:30:00-04:00
for "CHILLED WATER LEAVING TEMP" and

"CHILLED WATER RETURN TEMP"

Action 1: IoTAgent

Action Input 1: request=download asset history for CU02004
at SiteX from 2016-07-14T20:30:00-04:00 to
2016-07-14T23:30:00-04:00 for "CHILLED WATER LEAVING TEMP"
and "CHILLED WATER RETURN TEMP"

Observation 1: {

"site_name": "SiteX",
"assetnum": "CU02004",
"total_observations": 25,
"start": "2025-03-26T00:00:00.000000+00:00",
"final": "2025-04-02T00:00:00.000000+00:00",
"file_path": "/var/folders/fz/.../cbmdir/c328516a-643f-40e6-8701~
— e875b1985c38.json",
"message": "found 25 observations. file_path contains a JSON array of

— Observation data"

Listing 1: Example ReAct Prompt for [oTAgent

* Tool Demonstrations — These sample calls were concatenated to form a comprehensive
set of demonstrations for all tools available to the agent, effectively seeding it with usage
patterns.

The sample calls for all the tools are concatenated to form the examples.

* question - the question input to ReAct
* tool names - the list of sub-agent tool names (plus JSONReader)
* tool descriptions - descriptions of the sub-agents

Execution Framework. The ReAct engine is reinitialized for each question and executed un-
til either (a) successful completion—as determined by the Review component using an LLM-as-
judge—or (b) a maximum of ten iterations. The framework iterates through a list of models (e.g.,
mistralai/mistral-large)and acorresponding list of utterances to execute for each model.
The system supports retries for failed executions. After each ReAct run, the complete trajectory and
associated evaluation metrics are stored. The recorded metrics include:

* Question: the input query being processed
* Total execution time: duration of the entire ReAct loop
* Number of ReAct steps: count of action-observation cycles

» Review status: success or failure determined by the LLM-based reviewer

A.4 PLAN-EXECUTE

Plan-Execute. Plan-Execute is a widely used architectural paradigm for multi-agent systems. Fig-
ure [8] depicts the implementation adopted in our work. The process initiates when a user submits
a query, which is first processed by the Planner. The Planner decomposes the query into discrete,
executable tasks. These tasks are then vetted by a Reviewer component to ensure quality, com-
pleteness, and relevance. Upon approval, the Orchestrator assigns the tasks to the most appropriate
agents. Each agent independently executes its assigned task and returns a structured response. These
responses are then aggregated by the Summarization module, which synthesizes them into a coher-
ent final output that is returned to the user. This architecture supports modularity, robustness, and
interpretability across the task lifecycle.

16

Under review as a conference paper at ICLR 2026

User Query Task Complete!

Orchestrator ‘

Planner

1

I Task Response
Reviewer Task Response 4@

Task Response
Task Response
Task Response
Task Task T Task Task

l

-
t loT Agent } [[FMSR AgentJ uTSFM AgentJ u WO Agent }
" .

Figure 8: Plan-Execute Multi-Agent System

A.5 EXAMPLE DEMO

In the following Figures [OT1} we provide a few images to showcase working of Agent-As-Tool
approach for a single end-to-end utterance.

Agent is Enabled with Reflexion
Task Execution Status (Finished): False

Scratch Pad Content - At the Start of Running Agent

I am ReActXen Agent with ReAct

Input Question: find anomalies in the chiller 6 return Temperature (POKMAIN) in the first week of 2016

Debug Info (Step 1):

{
"thought": "I need to request the chiller 6 return temperature data for the first week of 2016 from IoTAgent",
"1llm output": " I need to request the chiller 6 return temperature data for the first week of 2016 from IoTAgen

t\nAction"

}

Thought 1: I need to request the chiller 6 return temperature data for the first week of 2016 from IoTAgent

Debug Info (Step 1):

Figure 9: Execution is Initiated with an input query.

Action 3: Finish
Action Input 3: The anomaly detection results of 'Chiller 6 Return Temperature' using data in /var/folders/fz/llh7g
pv96rv51lg6m d6bk0gc0000gn/T/cbmdir/2e2eea99-946c-4a30-a688-8ddfad79ab62.json are stored in file ../output/tsad_outp
ut//tsad_conformal.csv Final Answer: The anomaly detection results of 'Chiller 6 Return Temperature' using data in
/var/folders/£z/11h7gpv96rv51g6ém_d6bk0gc0000gn/T/cbmdir/2e2eea99-946c-4a30-a688-8ddfas79ab62.json are stored in fil
e ../output/tsad_output//tsad_conformal.csv Question
Process is completed now

Task Execution Status (Finished): True

Review Agent Feedback: {'status': 'Accomplished’', 'reasoning': "The agent successfully executed the task by perfo
rming time series anomaly detection on 'Chiller 6 Return Temperature' using the data from the specified file. The a
gent used the tsfm integrated tsad tool with the correct dataset path, timestamp column, and target columns. The ag
ent then stored the results in the specified output file. The response provides a clear and accurate description of
the task completion, including the location of the output file.", 'suggestions': 'Nomne.'}
run minutes = 2.1432575666666667

Figure 10: The Final step of the execution

A.6 ASSETOPS AGENT DESIGN - COMMUNICATION

Appendix[A-2]already discussed how we implemented the two approaches for orchestra role: Agent-
As-Tool and Plan-Execute. In this appendix, we provide additional detail on how we enable com-
munication.

Listing [2] outlines how the FMSR agent packages its reasoning output into a structured message
for downstream agents or evaluators. The custom_json function formats the response to include the
final answer, a peer review section (comprising status, reasoning, and suggestions), and a reflection
field. Additionally, a natural language message is synthesized to summarize the execution result,

17

Under review as a conference paper at ICLR 2026

Real Values with Detected Anomalies

—— Real Value
X Anomaly

g g NS & & N N4

1N 1N 1N 1N S

\b \b \b \b ,\,b

S s S N $
Timestamp

Figure 11: Anomaly Detection : Final Output

enhancing transparency and interpretability in multi-agent settings. This output acts as a compact
yet comprehensive communication protocol for reasoning agents collaborating in a complex task
pipeline.

def custom_json (obj) :
if isinstance (obj, FMSRResponse):

return {

"answer": obj.answer,

"review": {
"status": obj.review["status"],
"reasoning": obj.review["reasoning"],
"suggestions": obj.review["suggestions"],

by

"reflection": obj.reflection,

"message": (

"I_am_FMSR_Agent, and_I_have completed my task. "

f"The_status_of_my, execution_is /' {obj.review[’status’]1}’.
<_> u"

f"I _also_received_a, review from_the_reflection_agent;_"

f"suggestions_are included_in the_review_field for,
— further_insights."

),
}
raise TypeError (f"Cannot _serialize_object_of type_{type(obj)}")

Listing 2: Formatted response message from FMSRAgent

B ASSETOPSBENCH HIERARCHY AND DOMAIN SPECIFIC AGENTS

This appendix presents the structured task taxonomy used in AssetOpsBench, which organizes
benchmark scenarios based on key stages in the industrial asset lifecycle. The taxonomy is designed
to support the creation of realistic, diverse, and role-specific evaluation tasks for intelligent agents
operating in complex environments, as shown in Figure[I3]for the tasks related to the industrial asset
management.

To illustrate how the structured task taxonomy guides agent development and evaluation, we high-
light four representative agents: the IoT Agent, the FMSR Agent (Failure Mode Sensor Relations
Agent), TSFM (Time Series Foundation Model) Agent, and the WO Agent (Work Order Agent).
Among these, two agents—FMSR Agent and WO Agent—are particularly useful for their domain
specialization and integration depth within AssetOpsBench. Appendix[B.2]presents the rationale for
FMSR Agent, emphasizing its role in bridging raw telemetry with diagnostic reasoning through sen-
sor—failure mapping. Appendix focuses on the WO Agent, which operationalizes maintenance

18

Under review as a conference paper at ICLR 2026

Industry 4.0 Data
(Offline Environment)

Asset Monitoring
(Live Environment)

(=) CouchDB & [seions pgem
[Task
Sensors Queny/Tas O K‘;‘\
= [FMSR Agent] [TSFM Agent] - ') k,)
— Response Process
— [I0T Agent][WO Agent]
Hp @
(Live Environment)
Time Series
LLM EM

Figure 12: Simulated Environment for Open Source Contribution and Testing

Retrieve FMEA documenta tion]

Asset Configuration

Identify KPIs for failure modes]

Select data sources (meters, logs, images]]

)

AssetOps Tasks

Execute and refine mode 5)

A Monitoring and Execution Apply operational guardra 5]

Classify anomalies

Generate work orders or service requests

{Mamtenanco and Response Summarize findings with supporting data)

Assign priority and responsible usorsj

Figure 13: Representative Routine tasks in Asset Lifecycle Management.

planning and historical analysis by retrieving, filtering, and correlating work order records with asset
conditions. Together, these examples demonstrate how high-level task categories—such as failure
mode alignment, anomaly response, and intervention prioritization—are translated into grounded,
data-driven agent behaviors. This alignment reinforces AssetOpsBench’s emphasis on transparency,
domain specialization, and end-to-end task automation.

19

Under review as a conference paper at ICLR 2026

Available sensors

Required sensors

&KPIs & KPIs Failure Modes
Chiller compressor
Chiller Efficiency Current sensor "
motor failure

Flow rate sensor of chiller compressor
Condenser Water Flow | —————————*
Condenser refrigerant leaks
—_—
Condenser Water Retumn oy Chiller compressor
Flow sensor "

to Tower Temperature

Liquid Refrigerant
Evaporator Temperature

Power Input
Return Temperature
Setpoint Temperature
Supply Temperature

Tonnage

b

Flow sensor at the
Evaporator inlet

Pressure Sensor

Pressure sesnsor at the
Evaporator inlet

Pressure sensor of
condenser inlet

Temperature sensor

S —

Temperature sensor of

overheating

Chiller condenser
fouling

Chiller condenser
corrosion

Chiller condenser
blockage

Chiller evaporator
refrigerant leak

Chiller evaporator
fouling or scaling

Chiller evaporator freeze:
up or ice formation

condenser outlet

Temperature sensor of
evaporator outlet

R
|
‘ Vibration sensor

Figure 14: Mapping Example internally used by FMSR Agent

B.1 RATIONALE FOR IOT AGENT OVER APPLICATION

The IoT Agent plays a foundational role in supporting Asset Configuration tasks within the Asse-
tOps framework, as illustrated in Figure [I3] It enables structured access to real-time and historical
telemetry data, asset metadata, and site configurations. Specifically, it allows users to query avail-
able IoT-enabled sites, list all assets within a given site (e.g., MAIN facility), and retrieve detailed
metadata for specific assets such as chillers and air handling units (AHUs). Additionally, it pro-
vides access to time-series sensor data—such as power input, temperature, flow rate, and system
tonnage—across customizable time windows. These data queries form the backbone for monitor-
ing tasks, model inputs, and analytics performed by downstream agents like TSFM Agent and WO
Agent.

Although the IoT Agent does not perform anomaly detection or failure analysis directly, it is a
critical enabler by delivering high-fidelity, time-aligned telemetry required for advanced applications
(such as those using TSFM Agent). For example, users can retrieve the tonnage data for Chiller 6
during a specific week, download metadata for Chiller 9, or access sensor values recorded during
a known operational event. These capabilities align with the early-phase needs of asset lifecycle
management—specifically selecting data sources and configuring metrics of interest—ensuring all
downstream decision-making is grounded in accurate, context-rich operational data. The agent’s
flexible query interface and knowledge and data retrieval support allow it to seamlessly integrate
into automated pipelines for asset monitoring, diagnostics, and performance tracking.

B.2 RATIONALE FOR FMSR AGENT OVER APPLICATION
The sensor—failure alignment generation (See Figure [I4) is a critical component of the AssetOps-

Bench benchmark, serving multiple roles in both dataset understanding and intelligent system de-
sign. Its inclusion is motivated by the following key factors:

20

Under review as a conference paper at ICLR 2026

1. Bridging Raw Data and Diagnostic Insight: The table explicitly maps sensor variables to
relevant failure modes, establishing a direct link between low-level telemetry and high-level
maintenance reasoning. This supports tasks such as fault detection, root cause analysis, and
feature selection for learning-based systems.

2. Alignment with FMEA Methodology: By structuring failure explanations according to
the principles of Failure Modes and Effects Analysis (FMEA), the table offers a formalized,
interpretable view of asset health. Each sensor’s diagnostic role is contextualized through
failure causes, effects, and detection implications.

3. Supporting Explainability and Safety: In industrial environments, operational decisions
require transparency. The alignment table enhances system explainability by clarifying
why a given signal is relevant, how it relates to equipment health, and what operational
risks it may indicate.

4. Improving Dataset Transparency: The AssetOpsBench dataset includes a wide range
of sensors across multiple devices. This table functions as a documentation layer that
improves usability, reproducibility, and understanding for researchers and practitioners en-
gaging with the benchmark.

5. Guiding Model and Rule Development: Whether designing rule-based systems, hybrid
Al architectures, or physics-informed machine learning models, a well-defined mapping
of sensors to failure mechanisms is foundational. It informs the construction of robust
detection logic and contributes to generalizable reasoning strategies.

In sum, the sensor—failure alignment table plays a central role in transforming raw operational
telemetry into structured, actionable insight. It provides the semantic grounding necessary for de-
veloping interpretable, reliable, and effective Al agents for real-world industrial maintenance tasks.
Table] provides an extensive example for sensor-failure mode relation for a chiller system.

Table 4: Sensor Interpretation and Failure Mode Relevance in Chiller Systems - Illustrative

Sensor Explanation Impact on Chiller Health / Failure Mode
Relevance
Condenser Leaving Temperature of water Indicates heat rejection efficiency; abnor-
Temp leaving the condenser mal readings may signal fouling or reduced
flow — potential heat exchange failure.
VED Output Voltage Voltage output from Instability may affect fan/compressor oper-
Variable Frequency ation — linked to electrical drive failure or
Drive load imbalance.

CHWSTSP in Free
Mode

Chilled water setpoint
during free cooling mode

Misconfiguration can lead to energy ineffi-
ciency — related to control logic failure.

Cycling Code

Indicates compressor cy-
cling state

Frequent cycles may indicate load mis-
match, sensor error, or COmpressor stress.

Ready Status

Indicates if chiller is in a
ready state

Persistent unavailability may reflect con-
trol override, interlock failure, or alarm
lockout.

Manual Start/Stop

Overrides for manual op-
eration

May cause unscheduled runtime or safety
override conditions.

Chilled Water Leav-
ing Temp

Temperature
evaporator

leaving

Deviation may suggest capacity loss or im-
proper load conditions.

Condenser Flow

Water flow through con-
denser loop

Low flow may cause high pressure shut-
down or heat rejection failure.

VED Input Power Power input to VFD Spikes may indicate motor inefficiency,
overload, or harmonic distortion.

CNW Flow Hi Alarm High flow setpoint for May indicate bypass valve issues or over-

SP condenser loop pumping.

Watt/Ton Rising ratio suggests energy inefficiency or

Cooling efficiency met-
ric

component degradation.

21

Under review as a conference paper at ICLR 2026

Sensor Explanation Impact on Chiller Health / Failure Mode
Relevance
Chilled Water Flow Water flow through May point to pump failure, valve issues, or
evaporator airlocks.

Motor Run Status

Compressor motor oper-
ational state

Discrepancies could signal false starts,
Sensor error, Or runtime misreporting.

Vibration Point #1
SP

Vibration sensor setpoint
(location #1)

May indicate bearing failure, imbalance,
or mechanical looseness.

CHW Valve Position

Position of chilled water
valve

Out-of-range position may imply valve ac-
tuator fault or control misbehavior.

CHW Differential

Pressure drop across

Suggests clogging, filter fouling, or flow re-

Pressure (D/P) chilled water loop sistance.

CHW Flow Hi Alarm Alarm setpoint for high Triggered by pump overspeed, valve over-
SP CHW flow shoot, or control issues.

Condenser Return Water temperature re- Important for thermal load calculation and
Temp turning to the condenser monitoring efficiency.

Average Amps Average motor current High current may indicate overload, bear-

ing drag, or electrical faults.

CHW Valve Close
Control

Control signal to close
CHW valve

Improper function may cause flow issues or
unmet loads.

CNW Differential

Pressure drop in con-

Indicates scaling, fouling, or pump degra-

Pressure (D/P) denser loop dation.
VED Internal Ambi- Internal temperature of High temps may trigger thermal trips or
ent Temp VFD shorten VFD lifespan.

Freon Temp

Refrigerant temperature

Abnormal values may suggest charge is-
sues, expansion valve faults, or heat ex-
change failure.

Compressor Oil Oil sump temperature High temperature may signal bearing wear
Sump Temp or insufficient cooling.

Chilled Water Return Return water temp to Used for cooling load and delta-T analysis.
Temp evaporator

Motor Run Status
RPT

Reported motor run con-
firmation

Mismatch suggests sensor/control error.

VED Inverter Link
Current

Current through VFD in-
verter link

High current may indicate overload or
VFD stress.

CHWSTSP in Part
Mode

Setpoint in partial load
mode

Improper configuration can cause energy
waste or load mismatch.

VFD Phase A/B/C
Current

Phase
VFD

currents from

Used to detect imbalances, shorts, or phase
loss.

VFED Converter Heat

VFD heat sink tempera-

Elevated temps reduce component life and

Sink Temp ture can cause failure.
Compressor Oil Oil pressure in compres- Low pressure risks lubrication failure and
Pressure sor component damage.

Failure (status flag)

Direct failure indicator

Used as ground truth label for fault evalua-
tion.

VED Setpoint Speed or torque com- Affects energy usage, response time, and
mand cooling capacity.

CHW Flow High High flow warning flag May indicate system control faults or over-

Alarm sized flow components.

VFED DC Bus Volt- DC voltage level inside Instability can reflect power quality issues.

age VFD

CNW Flow High High condenser water May reflect valve misposition or energy in-

Alarm flow warning efficiency.

CNW Flow Low Low flow alarm thresh- Indicates risk of overheating or shutdown

Alarm SP

old

due to poor heat rejection.

Warning Code

Non-critical warning sta-
tus

Helpful for early diagnostics or trend de-
tection.

22

Under review as a conference paper at ICLR 2026

Sensor Explanation Impact on Chiller Health / Failure Mode
Relevance

Vibration Points Additional vibration set- Detect imbalance, wear, or mechanical

#2/#3 SP points degradation.

B.3 RATIONALE FOR TSFM AGENT OVER APPLICATION

The TSFM Agent is purpose-built to support critical tasks within the AssetOps workflow, as outlined
in Figure Within Model Selection and Analysis, TSFM Agent enables forecasting of key per-
formance indicators (KPIs) using lightweight, pre-trained foundation models. Its adaptive anomaly
detection framework, based on post-hoc conformal prediction, supports calibrated and interpretable
anomaly scores, providing high utility for both Monitoring and Execution and Maintenance and
Response.

Specifically, the TSFM Agent can execute and refine models, classify anomalies based on historical
deviations, and support operational guardrails by simulating expected trends under normal condi-
tions. In downstream applications, the agent’s outputs can be used to summarize overall system
health by tracking the frequency of anomalies across selected KPIs. These anomalies serve as a
foundation for maintenance recommendations, enabling preventive and reactive work order genera-
tion. TSFM Agent facilitates real-time, data-driven decision-making throughout the asset lifecycle.

B.4 RATIONALE FOR WO AGENT OVER APPLICATION

The WO Agent, a code based ReAct, in AssetOpsBench is designed to enable intelligent interaction
with structured and unstructured maintenance records through a modular data model. It operates
over a set of Business Objects (BOs) that represent work orders, alerts, anomalies, failure codes, and
asset metadata. These BOs are categorized into five functional groups that collectively support the
WO Agent’s decision-making capabilities.

To reason over these BOs, the WO Agent is equipped with a collection of analytic functions that
allow it to retrieve, interpret, and act upon historical and real-time data. The agent’s capabilities are
structured as follows:

1. Historical Reasoning via Content Objects and Knowledge Extraction: The WO Agent
accesses raw maintenance data such as WorkOrders, Events, including Work orders, alerts,
and anomaly Events. Knowledge extraction functions enable the agent to retrieve and filter
this data by date, asset, and work order type, allowing targeted analysis and retrospective
diagnostics.

2. Standardized Interpretation with Meta/Profile Objects: BOs like ISO Failure Code,
AlertRule, and Equipment provide structured classification schemes. These allow the agent
to categorize failures, apply semantic filters, and maintain compatibility with domain con-
ventions—critical for aligning alerts and anomalies with actionable categories.

3. Temporal and Causal Reasoning via Statistical Functions: Leveraging relationship BOs
such as Alert-Rule Mapping and Anomaly Mapping, the WO Agent applies statistical func-
tions (e.g., Allen’s Interval Algebra) to detect temporal patterns—such as when alerts con-
sistently precede failures. It also detects repeated work order cycles, helping align mainte-
nance with actual degradation patterns instead of fixed schedules.

4. Predictive and Prescriptive Intelligence through Decision Support Functions: Using
the WorkOrderRecommendation BO, the agent forecasts future work orders, recommends
maintenance based on alerts or KPI anomalies, and identifies opportunities for bundling
related tasks. These decision support functions enable proactive scheduling and optimize
resource use across the asset lifecycle.

5. Persona-Aligned Interaction and Query Resolution: The WO Agent interfaces naturally
with domain personas. Maintenance engineers can explore past interventions for a given
failure, while planners can query upcoming work order demands or seek opportunities to
consolidate tasks. These capabilities are backed by modular functions that support flexible
querying and planning logic.

23

Under review as a conference paper at ICLR 2026

In summary, the WO Agent is a hybrid reasoning and decision-support agent built atop structured
business objects and analytic functions. It connects historical insight with predictive planning, en-
abling lifecycle-aware maintenance interventions grounded in transparent, data-driven logic.

Table 5: WO Agent Summary of Business Objects, Source, Role, and Number of Records

Business Ob- Source Role Count

ject

Content Objects

WorkOrder Work Order Man- Tracks scheduled and unscheduled mainte- 4392

ager nance tasks, categorized as preventive or cor-

rective.

Event Aggregated by Consolidates event logs for tracking and 6929

Authors decision-making.

Alert Events IoT Repository Logs real-time alerts triggered by IoT sensors 1995
based on predefined conditions.

Anomaly ML Generated Detects KPI deviations using machine learning 542

Events for predictive maintenance.

Meta/Profile Objects

ISO Failure Developed by Standardizes failure classification for struc- 137

Code Authors tured maintenance analysis.

ISO Primary Developed by Defines primary failure categories and links 68

Failure_Code Authors related secondary codes.

AlertRule SME Provided Specifies conditions for triggering alerts based 77
on system behaviors.

Equipment SME Provided Represents industrial assets, including status 22
and specifications.

Relationship Causality Objects

Alert-Rule Relationship Links alert rules to failure codes for automated 46

Mapping Causality diagnostics.

Anomaly Relationship Associates anomalies with failure codes for 12

Mapping Causality predictive insights.

Recommendation Objects

WorkOrder Recommendation Suggests maintenance actions based on histor- ~ N/A

Recommen- ical patterns.

dation

Note: The design and structure of the business objects and corresponding analysis in this section are valid for
other industrial asset types, such as standby generators.

C SCENARIO CREATION PRINCIPLES

The scenarios in AssetOpsBench are crafted to evaluate a broad spectrum of capabilities expected
from autonomous agents in industrial settings. Each scenario is designed to challenge specific di-
mensions of reasoning, tool use, data interpretation, communication, and decision-making, as out-

lined below:

* Reasoning and Tool Use: Assesses domain-specific reasoning such as time and schema
operations, appropriate tool invocation, and structured command generation. Common
failure modes include premature halts or misuse of tools.

« Data Handling and Forecasting: Evaluates the agent’s ability to interpret telemetry, detect
anomalies, and configure appropriate forecasting or anomaly detection models. Tasks often
require translating domain knowledge into ML configuration steps (e.g., model selection,
fine-tuning).

24

Under review as a conference paper at ICLR 2026

Table 6: Examples of Scenario with their Subtypes (Aligned with Task Taxonomy - Figure

Agent Group Subtype Task Descriptions
Forecasting Predict future KPI trends over time windows
TSFM Agent Model Tuning Select or refine time series models for accuracy

Scenarios: 23

Anomaly Detection
Hybrid Tasks
Model Capabilities

Identify deviations in operational behavior
Combine prediction with anomaly evaluation
Query TSFM model limits and configurations

Work Order
Agent
Scenarios: 36

Retrieval & Filter
Event Summary
Scheduling

RCA & Alert Review
KPI-based Reco.

Filter work orders by asset, location, or time
Summarize logs or alerts over time windows
Recommend or optimize work order sequences
Perform root cause or alert logic review

Link alerts or KPI trends to work orders

Multi-Agent
(End-to-End)
Tasks

Scenarios: 42

Knowledge Query
Failure Reasoning
Sensor Mapping
Sensor Inventory
Other

Tasks involving anomaly detection or forecasting
Uses degradation models and causal logic

Maps failure modes to sensors

Retrieves installed sensors on an asset
Multi-step inference or decision-making

* Agent Communication and Coordination: Tests multi-agent workflows involving tar-
geted question-asking, summarization, and collaborative decision-making. Scenarios
mimic how agents may delegate or escalate tasks in real settings.

* Workflow Orchestration and Decision-Making: Measures the agent’s ability to plan and
manage dependent subtasks, reason under uncertainty, and terminate appropriately when
faced with ambiguity or missing data.

C.1 SCENARIOS

As shown in Table [6| AssetOpsBench includes a total of 141 scenarios with 99 single-agent sce-
narios| and 42 multi-agent scenarios. The goal is to test an agent’s ability across four capability
dimensions: Tool-Centric (e.g., tool and API interaction), Skill-Centric (e.g., analytical reason-
ing), Domain-Centric (e.g., context-aware decision-making), and LLM-Centric (e.g., language-
based generalization across tasks). Each scenario is associated with an utterance to complete a
task. Table [6] summarizes the distribution of scenario subtypes and their alignment with the task
taxonomy. Utterance-507 represents an LLM-Centric scenario, where the agent must recognize
that forecasting task is redundant in the presence of a zero-valued sensor reading—indicating that
the machine may not be operating. The agent is expected to bypass unnecessary computation and
recommend halting diagnostics to address the root issue directly. In contrast, Utterance-511 exem-
plifies a Skill-Centric task, requiring the agent to correlate energy consumption with a power input
variable and construct a corresponding model. This scenario tests the agent’s analytical reasoning
over telemetry data to uncover functional relationships. Detail for other scenario is in Appendix [C|

C.2 EXAMPLES

We include two examples (Table 7| and Table [8) that showcase distinct behaviors of agent outputs.
Readers can observe that the characteristic form varies even for problems that appear similar on the
surface.

C.3 SCENARIO COMPARISON WITH OTHER BENCH

We prepare a table to compare with the literature in Table D]

25

https://github.com/IBM/AssetOpsBench/tree/main/scenarios
https://github.com/IBM/AssetOpsBench/tree/main/scenarios
https://github.com/IBM/AssetOpsBench/tree/main/scenarios

Under review as a conference paper at ICLR 2026

Table 7: Example Knowledge Query: Energy Prediction for Chiller 9

Field Description

ID 507

Type Knowledge Query

Text What is the predicted energy consumption for Chiller 9 in the week of
2020-04-27 based on data from the MAIN site?

Characteristic The expected response should confirm the successful execution of all

Form required actions, ensuring that the correct asset (Chiller 9), location

(MAIN), and time range (week of 2020-04-27) were used for data re-
trieval and analysis. It should specify that the agent identified the sensor
name (power input sensor) and retrieved the historical energy consump-
tion data for Chiller 9 during the specified time period.

The response must also explain that the agent attempted to analyze the
data for energy consumption prediction, but was unable to do so due
to insufficient data, as the power input for Chiller 9 was consistently
0. 0 from 2020-04-20 to 2020-04-25, indicating that the chiller was not
operating.

Table 8: Example Knowledge Query: Predicting Energy Usage for Chiller 9

Field Description

ID 511

Type Knowledge Query

Text Can you predict Chiller 9’s energy usage for next week based on data
from the week of 2020-04-27 at MAIN?

Characteristic The expected response should confirm the successful execution of all

Form required actions, ensuring that the correct asset (Chiller 9) and location

(MALIN site) were used for data retrieval and analysis. It should specify
that the agent first identified the sensors for Chiller 9, then selected
the Chiller 9 Power Input sensor, and successfully retrieved the energy
usage data for the specified time period.

The response should confirm that the agent provided the file path where
the data is stored. Additionally, it should mention that although the
agent initially encountered errors while analyzing the data and making
predictions, it successfully corrected its mistakes and finetuned a Time
Series Forecasting model using the provided data. The agent should
have used the finetuned model to generate predictions for the next week,
with the results being stored in the specified file.

D REAL DATASETS FOR ASSETOPSBENCH AND UTILIZATION BY AGENTS

In this part, as extension of Section[4.T] we will zoom into the datasets utilized by the various agents
of AssetOpsBench (More details of the roles of the agents in the asset lifetime management can be
found at Appendix [B).

D.1 SENSOR TELEMETRY DATASET FOR IOT AGENT AND TSFM AGENT

Both IoT Agent and TSFM Agent (Figure [2a) leverage the Sensor Telemetry Dataset, which com-
prises sensor telemetry collected from Building Management Systems (BMS) and the SkySpark
analytics platform. This dataset captures fifteen-minute interval operational data from industrial
HVAC systems, specifically a fleet of chillers. Each chiller unit (e.g., Chiller 4, Chiller 14) is in-
strumented with a standardized suite of physical sensors that monitor key operational parameters in
real-time.

A representative subset of these sensors is summarized in Table [I0] These sensors record various
kinematic, dynamic, thermodynamic, electrical, and operational metrics essential to assessing the
performance and health of chiller systems. Measurements include water and refrigerant tempera-

26

Under review as a conference paper at ICLR 2026

Table 9: Comparative overview of general-purpose and domain-specific benchmarks.

Benchmark TaskBench ITBench AssetOpsBench
(NeurIPS 2024) (ICML 2025) (Ours)

Data Generation Tool Graph + Back- | Manual Manual
Instruct

Tool Dependency v v v

Quality Control

LLM Self-critique +
Rule-based

Human Verification

Human Verification

Evaluation Task Decomposition + | ReActive Planning | ReActive Planning
Tool Selection + Pa- | + Tool Selection + Tool Selection +
rameter Prediction Parameter Predic-

tion

Tool Complexity Single tool to complex | — Multiple tools;
tool graph same tools can

be called multiple
times

Dataset Scale 17,331 samples 141 scenarios 141 scenarios

Temporal / Dynamic | x X v
Query

Name Disambiguation | x X v
Tools Output Opera- | X X v
tion

tures, power consumption, cooling capacity (tonnage), flow rates, and system setpoints. Addition-
ally, computed metrics such as chiller efficiency and load percentage serve as valuable real-time
indicators of system performance.

Table 10: Representative Sensors in the AssetOpsBench Dataset

Sensor Name Description

Chiller Return Temperature Temperature of water returning to the chiller

Supply Temperature Temperature of water exiting the chiller
Power Input Electrical power consumption
Tonnage Heat extraction rate (cooling capacity)

Condenser Water Supply to
Chiller Temperature

Chiller Efficiency

Chiller % Loaded

Condenser Water Flow

Liquid Refrigerant Evaporator
Temperature

Run Status

Temperature of water supplied to the condenser

Instantaneous performance metric

Current load as a percentage of the maximum
Flow rate through the condenser

Temperature of refrigerant in the evaporator

Binary indicator of whether the chiller is currently oper-
ating
Current setpoint for chiller operation

Setpoint Temperature

Each sensor stream is accompanied by rich metadata, including sensor type, measurement units,
physical location, and structured device tags that define device associations. The dataset captures
realistic operational variability, encompassing noise, missing data, and seasonal patterns. As such,
it provides a robust foundation for developing and benchmarking models that require temporal rea-
soning, fault detection, and decision-making under uncertainty.

As illustration, Figure[I5]presents layered time series subplots for key chiller sensors over a selected
snapshot period in June 2020 for Chiller 6. Each subplot corresponds to one sensor variable, en-

27

Under review as a conference paper at ICLR 2026

abling a clear view of temporal dynamics and inter-variable behavior. This figure provides insight
into the operational profile of a single chiller unit during real-world usage.

—— Condenser Water Retum To Tower Temperature

100
0.0+ T T T T T T T T T
0+ T T —r T T T T T T
0- T T — T T T T T T
2000
' ‘ II ‘ l“ “ M" * — Power Input
0+ T T — T T T T T T
\
0+ T T T T T T T T T
100 1 Fim Liquid Refrigerant Evaporater Temperature
0 T T T T T T T T T

—— Setpoint Temperature
50
o4

2020-06-01 2020-06-05 2020-06-09 2020-06-13 2020-06-17 2020-06-21 2020-06-25 2020-06-29 2020-07-01
Timestamp

Figure 15: Snapshot of time series data from Chiller 6 for June 2020. Each subplot shows an
individual sensor’s trend over time.

The IoT Agent interacts with this telemetry data through structured utterances. By leveraging the
standardized data provided by AssetOpsBench, the agent enables detailed, query-driven access to
operational information across HVAC assets such as chillers and air handling units (AHUs) at IoT-
enabled sites like the MAIN facility. Through these utterances, users can request both real-time
and historical data, retrieve metadata, and download sensor readings for specific timeframes. This
functionality supports knowledge and data queries, facilitating asset-level diagnostics, performance
monitoring, and intelligent decision-making, even in noisy or incomplete data.

On the other hand, the TSFM Agent operates on sensor telemetry data—either retrieved via the IoT
Agent or accessed directly from the sensor repository—to perform advanced time series analysis
across HVAC systems. It supports a range of analytical tasks, including multivariate forecasting,
and time series anomaly detection. At its core, the agent utilizes pre-trained time-series foundation
models. For anomaly detection, the TSFM Agent applies a model-agnostic, post-hoc adaptive con-
formal method that requires no additional fine-tuning data, making it highly practical for real-world,
resource-constrained deployments. By learning dynamic weighting strategies from prediction histo-
ries, it can detect distributional shifts and maintain calibrated, interpretable anomaly scores aligned
with user-defined false alarm rates. Through structured utterances, users can invoke forecasting on
specific variables (e.g., “Chiller 9 Condenser Water Flow”), fine-tune models with minimal data,
or detect anomalies in historical trends—all with minimal configuration. This seamless integration
of pre-trained models, adaptive analytics, and user-guided queries enables transparent, robust, and
immediately deployable monitoring solutions tailored for critical industrial systems.

D.2 FAILURE MODE DATASETS FOR FMSR AGENT

The failure mode datasets in AssetOpsBench are modeled using the principles of Failure Modes
and Effects Analysis (FMEA), a structured framework used in reliability engineering to identify
failure risks, assess root causes and effects, and inform condition-based maintenance strategies.
Each failure is defined by its mode, degradation mechanism, detection opportunity, and operational
impact, enabling structured reasoning for both rule-based diagnostics and machine learning.

28

Under review as a conference paper at ICLR 2026

Failures in the dataset are annotated at the asset and subsystem levels, with a primary focus on
centrifugal chillers. These failures reflect realistic degradation pathways and operational stressors
derived from field experience. Each record in the failure model includes:

* Failure Location and Component: The subsystem or part where failure occurs, such as
bearings, gearboxes, impellers, or lubrication systems.

* Degradation Mechanism: The underlying physical process driving the failure, including
wear, erosion, oil degradation, vibration-induced fatigue, and misalignment.

* Degradation Influences: External or internal stressors such as run time, two-phase process
fluid, personnel error, or shock loading.

* Functional Failure Mode: The resulting operational defect, such as decreased oil pres-
sure, audible noise, low head pressure, or capacity loss.

* Detection Opportunities: Observable precursors or symptoms, including sensor readings
(e.g., oil sampling, vibration signals), condition-based alarms, or inspection results.

* Repair Time and Criticality: Estimated downtime and classification of failure risk, sup-
porting cost-based prioritization and scheduling.

* Preventive Task Type: Associated maintenance activity, such as oil analysis, vibration
analysis, or visual inspection, tagged with effectiveness ratings and intervention intervals.

For example, bearing wear—a recurring failure across chiller subsystems—may arise from lubri-
cation failure, misalignment, or fluid shock loading. This degradation is detectable via a combina-
tion of oil analysis and vibration monitoring, with failure symptoms including increased vibration,
reduced oil pressure, and audible anomalies. Similarly, impeller erosion is linked to aging and two-
phase fluid exposure, typically presenting as reduced capacity and lower head pressure.

Each maintenance task in the dataset is mapped to its detection mechanism and action type (e.g.,
condition monitoring vs. corrective repair), along with documentation on task content and recom-
mended frequency. These structured records not only support early fault detection and diagnostics
but also facilitate benchmarking of intelligent agents’ reasoning over real-world degradation patterns
and maintenance decisions.

Failures are temporally aligned with telemetry, enabling the study of degradation trajectories and
pre-failure conditions. This integrated design makes the dataset suitable for supervised learning,
causal inference, and evaluation of digital twins or predictive maintenance agents under realistic
operating uncertainty.

To utilize the failure modes and their association with the sensors, we design FMSR (Failure Mode
Sensor Relations) to interpret failure mode datasets within the AssetOpsBench framework, leverag-
ing structured FMEA (Failure Modes and Effects Analysis) principles to link sensor telemetry with
degradation mechanisms and operational failures. Using annotated failure records for assets such
as centrifugal chillers, the FMSR Agent builds knowledge graphs and reasoning models that con-
nect specific failure modes—Ilike compressor overheating, evaporator fouling, or refrigerant valve
failure—to their underlying causes and detectable symptoms. These failure modes are mapped to
available sensor measurements (e.g., supply temperature, power input, vibration, flow rate) to iden-
tify observable precursors. For example, compressor overheating may be monitored through trends
in power input, chiller efficiency, and evaporator temperature, while condenser fouling can manifest
in abnormal return temperatures and flow rate deviations. Through structured utterances, users can
query which failure modes are associated with specific sensors, which are critical for detecting a
given failure, or even construct machine learning recipes for predictive modeling—such as anomaly
models for chiller trips or excessive purging. The agent leverages this data to perform rule-based
diagnostics, support causal analysis, and assist in condition-based maintenance planning. By align-
ing temporal sensor patterns with known failure signatures, the FMSR Agent enables explainable
fault detection and root cause inference, ultimately enhancing reliability, maintainability, and trans-
parency in HVAC operations.

D.3 WORK ORDER DATASETS FOR WO AGENT

Table [5] provide the summary of datasets (as business objects) and the size for each dataset. Those
work order datasets in AssetOpsBench provide a structured view of maintenance activity across in-

29

Under review as a conference paper at ICLR 2026

Table 11: Work Order Event Schema Definition

Field Name Type Description

wo_id String Unique identifier for the work order. Exam-
ple: "L247402"

wo_description String Description of the work being done.
Example: "CHILLER COMP OIL
ANALYSIS"

collection String Broad group or system the work relates to.
Example: "compressor"

components String Specific part or component being serviced.
Example: "compressor"

primary._code String Code representing the main type of work.
Example: "MT010"

primary_code_desc. String Description of the primary work code. Ex-
ample: "Oil Analysis"

secondary._code String Sub-code under the primary category. Ex-
ample: "MT010b"

secondary_code_desc String Description of the secondary code. Exam-
ple: "Routine 0Oil Analysis"

equipment_id String Unique ID of the equipment. Example:
"CUu02013"

equipment_name String Human-readable name of the equipment.
Example: "Chiller 13"

preventive Boolean Indicates if this is preventive maintenance.
Example: TRUE

work priority Integer Priority level of the work (e.g., 1-5). Exam-
ple: 5

actual_finish DateTime Date and time when the work was com-
pleted. Example: "4/6/16 14:00"

duration Duration Total job time. Format: HH:MM. Example:
n O . O O n

actual_labor_hours Duration Actual labor time spent. Format: HH:MM.

Example: "0: 00"

Table 12: Alert Event Schema Definition

Field Name Type Description

equipment_id String Unique identifier for the equipment that trig-
gered the alert. Example: "CWC04701"

equipment_name String Human-readable name of the equipment.
Example: "Chiller 1"

rule_id String Identifier for the rule or condition that trig-
gered the alert. Example: "RULO021"

start_time DateTime Timestamp when the alert or event started.
Example: "11/24/20 19:00"

end_time DateTime Timestamp when the alert or event ended.

Example: "11/24/20 23:59"

dustrial assets, encompassing both preventive and corrective interventions using work orders. Each
work order is associated with rich contextual data including equipment metadata, failure classi-
fication codes (e.g., ISO Failure Code, ISO Primary Failure Code), event logs, sensor-triggered
alerts, and machine-generated anomalies. These records are linked temporally and causally, allow-
ing agents to reason about asset history, detect recurring failure patterns, and recommend actions
based on past interventions.

30

Under review as a conference paper at ICLR 2026

Table 13: Anomaly Event Schema Definition

Field Name Type Description

timestamp DateTime The date and time when the anomaly event
was recorded. Example: "4/26/20
14:14"

KPI String The key performance indicator being moni-
tored (e.g., "Cooling Load").

asset_name String The name of the asset or equipment being
measured. Example: "chiller 9"

value Numeric The actual measured value of the KPI at the
given timestamp. Example: 25978710

upper_bound Numeric The upper threshold for the KPI. Exceeding
this may indicate an anomaly.

lower_bound Numeric The lower threshold for the KPI. Falling be-
low this may indicate an anomaly.

anomaly_score Float A score indicating how likely the data point

is an anomaly (typically O to 1).

Table 14: Mapping Table: KPI Anomalies to Failure Codes

Field Name Type Example Description

kpi_name String Cooling Load Name of the key perfor-
mance indicator exhibiting
anomaly.

anomaly_type String High Indicates the direction or na-

category String

primary_code String
pri._code_des String
seco._code

String

seco.._code_deString

Operational Failures

OP004

Incorrect Cooling
Zone Operation
OP004c

Improperly Con-
trolled or Shut Off
Zones

ture of the anomaly (e.g.,
High, Low, Spike).

Broad class of the failure
(e.g., Control System, Struc-
tural, External, Human).
Primary failure code associ-
ated with the anomaly.
Explanation of the primary
failure code.

More specific sub-code re-
fining the root cause.
Description of the secondary
failure code.

The group of datasets distinguishes between core content objects (e.g., WorkOrders, Alerts, Events,
Anomalies), metadata profiles, and relational structures that map alerts and anomalies to failure

codes.

The individual event tables — work orders (Table @ alert events (Table @]), and anomaly events
(Table [I3)) — capture different but complementary signals related to equipment condition and be-
havior. To enable integrated analysis and causal reasoning, these events are unified into a common
event table schema (Table [I5), allowing temporal alignment and cross-type relationship discovery

between maintenance actions, system warnings, and performance anomalies.

In addition, to support the linkage of failure code over the events, we provide two mapping tables:
one that connects alert rules to likely failure codes, and another that maps KPI-based anomalies to
structured failure categories (Tables of [[6]and [T4). These mappings enable agents to infer probable
root causes from real-time signals and integrate data-driven insights with expert failure taxonomies.

31

Under review as a conference paper at ICLR 2026

Table 15: Unified Event Table Schema Definition

Field Name

Type

Description

event_id

event_group

event_category

event_type

description

equipment_id
equipment_name

event_time

note

String

String

String

String

String

String
String

DateTime

String

Unique identifier for the event (can be work
order ID, alert ID, anomaly ID, etc.). Exam-
ple: "WO-16170"

High-level classification of the event
source (e.g., "WORK_ORDER", "ALERT",
"ANOMALY").

Sub-classification such as preventive main-
tenance ("PM"), corrective maintenance
("cM"), etc.

Specific code/type of the event (e.g.,
"MTO0O01", "RUL0O21").

Human-readable description of the event.
Example: "Vibration Analysis" or
"Refrigerant Leak".

Unique ID of the equipment involved in the
event. Example: "CWC04701"

Name of the equipment. Example:
"Chiller 1"

Timestamp when the event occurred or
was logged. Format: YYYY-MM-DD
HH:MM:SS

Additional description for this event if nec-
essary

Table 16: Mapping Table: Alert Rule to Failure Code

Field Name Type Example Description

rule_id String RUL0012 Identifier for the alert rule
triggered by a monitoring
system.

rule_name String Chiller - Low Supply Descriptive name of the alert

Temperature rule logic or threshold con-

dition.

primary_code String CS005 ISO failure code associated

primary_code String

with the likely root cause.
Control System Mal- Human-readable explana-
function tion of the failure code.

This help us to develop WO agent to support grounded evaluation of diagnostic reasoning, task
generation, and repair recommendation. More particularly, the WO agent analyze historical work
orders to identify repeated maintenance issues and improve task scheduling. It processed historical
work order, alerts (from IoT Agent) and anomalies (from TSFM agent) event, linking them to failure
codes to support predictive maintenance recommendations. In the potential industrial applications,
WO agent can complete to tasks of automating the interpretation of maintenance data, predicting

future work orders, and bundling related tasks to reduce operational downtime.

E ADDITIONAL EXPERIMENTS

E.1 EXAMPLE OF SAMPLE SCENARIO WITH GROUND TRUTH

We first prepared the ground truth that is verifiable.

Listing 3: Example FMSR task specification.

32

W

16
17
18

20

Under review as a conference paper at ICLR 2026

"id": 105
"type": "FMSR"
"deterministic": false
"characteristic_form": "the answer should contain a list of sensor
names for asset wind turbine.”
"text": "Provide some sensors of asset Wind Turbine.
"planning_steps": [
"Provide some sensors of asset Wind Turbine."”

"

]

"execution_steps": [

{

"name": "get_available_sensor_information"
"action": "Get Available Sensor Information"
"arguments": "Wind Turbine"
"outputs": "[a list of sensor names]"
}
{
"name": "finish"
"action": "Finish"
"arguments": ""
"outputs": ""

}
]
"execution_links": [
{
"source": "get_available_sensor_information"
"target": "finish"

E.2 ASSETOPSBENCH: EXECUTION EFFICIENCY

In this section, we analyze AssetOpsBench execution efficiency of 7 LLMs, complementing the
Leaderboard results in Section Tables |17] and |18] present results from two multi-agent imple-
mentations. Metrics include the average number of steps taken per task and the average runtime (in
seconds) per task.

In the Agent-As-Tool execution mode, most models demonstrate relatively stable planning behav-
ior across both single-agent and multi-agent tasks. Compared to the Plan-Execute setting, models
here generally take more steps but operate with greater runtime efficiency. gpt -4 . 1 again exhibits
strong performance, balancing a higher number of steps with moderate runtime, indicating precise
control over tool invocation. Interestingly, 11lama—3-70b—instruct shows competitive effi-
ciency, achieving the lowest runtime in both task categories despite slightly fewer steps, suggesting
quicker tool usage or lower overhead per step. On the other hand, mistral-large exhibits ex-
treme runtime variability, skewed by a pathological case involving prolonged JSONReader calls
over large datasets. These results suggest that while tool-based execution benefits from more direct
action control, its efficiency is highly sensitive to the invoked tools and data volume.

In the Plan-Execute setting, the number of steps required for single-agent tasks closely mirrors
those of multi-agent tasks, indicating a tendency among LLMs to over-plan even for relatively
simple objectives. This pattern reflects limited sensitivity to task complexity during the planning
phase. Among all evaluated models, gpt—4.1 consistently outperforms others, demonstrating
both minimal average steps and lowest runtime, particularly in multi-agent tasks. This suggests that
gpt—4.1 leverages more effective internal representations and decision strategies, enabling ef-
ficient decomposition and execution of plans. In contrast, models like granite-3-3-8b and
llama-3-70b-instruct show pronounced inefficiency, often executing significantly more
steps and incurring higher computational costs. These results highlight a critical trade-off in Plan-
Execute agents: while the architecture enforces task structure, its effectiveness heavily depends on
the model’s reasoning efficiency. Models lacking strong planning priors or execution alignment

33

Under review as a conference paper at ICLR 2026

Table 17: Execution Statistics for Agent-As-Tool: Average Steps and Runtime Per Task

Model Single-Agent Tasks Multi-Agent Tasks
Steps Runtime (sec) Steps Runtime (sec)

gpt-4.1 6.0+£24 104 + 178 64+25 218 + 371
mistral-large 49+26 347 + 19871 52+£22 289 + 443
llama—-3-405b—-instruct 48+25 250 £ 773 5622 255 +248
llama—-3-70b-instruct 39+1.6 101 £ 107 43+2.1 151 £220
llama—-4-maverick—-17b-128e 43+1.5 120 £ 258 45+1.7 137 £ 175
llama—-4-scout—-17b-16e—-instruct 4.4+2.0 101 = 87 5829 178 £ 157
granite-3-3-8b 53+3.1 197 + 240 6.6 £3.6 228 +256

High standard deviation is due to one outlier task requiring nearly 5 hours. It repeatedly invoked the
JSONReader tool to process two years of historical data.

tend to generate unnecessarily long or suboptimal action sequences, especially in low-complexity
settings.

Table 18: Execution Statistics of Plan-Execute Agents: Average Steps and Runtime per Task

Model Single-Agent Tasks Multi-Agent Tasks
Steps Runtime (sec) Steps Runtime (sec)
gpt-4.1 26+1.0 93.3+£105.6 29+1.5 180.2+122.6
mistral-large 2.7+13 186942069 3.0%x14 209.7+139.1
llama-3-405b-instruct 3.1+1.9 2083+£176.5 4.0+1.5 224.4499.7
llama-3-70b-instruct 6.7+15 381.8+£240.2 6.54+0.9 369.6=£151.9
llama—-4-maverick-17b-128e 4.0+1.9 384.6+611.6 3.9+1.2 376.84281.0
llama-4-scout—-17b-16e 3.9+20 172.1+£114.7 44415 218.1£105.4
granite-3-3-8b 52+1.4 413.34+418.2 5.14+1.3 432.9+294.7

Conclusion. While the Plan-Execute architecture demonstrates greater efficiency—requiring
fewer steps and exhibiting lower runtime variability across tasks—our evaluation shows
that Agent-As-Tool significantly outperform in task performance metrics. For example,
gpt—4.1 achieves 65% task completion, 77% data retrieval accuracy in the Agent-As-
Tool setting, compared to only 38-44% on most metrics in Plan-Execute. Similarly,
llama-4-maverick-17b-128e-instruct excels in both setups but scores notably higher
in Agent-As-Tool, achieving 59-78% on core performance metrics versus 45-57% in Plan-Execute.

This pattern is consistent across most models: Agent-As-Tool incur higher execution costs but
deliver better reasoning fidelity. Conversely, Plan-Execute agents—while faster and more struc-
tured—often struggle with complex retrieval, verification, and consistency tasks. These findings
suggest a fundamental trade-off: Plan-Execute offers process efficiency, while Agent-As-Tool yield
higher end-task quality—a crucial insight for selecting agent architectures based on application goals
such as throughput vs. correctness.

E.2.1 DEEP INVESTIGATION OF AGENT-AS-TOOL PERFORMANCE

To evaluate the capabilities of various large language models (LLMs) across a range of industrial-
relevant task categories, we present a radar chart (See Figure comparison covering five
key dimensions: loT-focused reasoning, Failure Mode and Sensor Reasoning (FMSR), Time Se-
ries and Fault Modeling (TSFM), Work Order (WO) understanding, and End-to-End task inte-
gration. The chart illustrates normalized performance scores for each model based on task-
specific benchmarks, with higher values indicating stronger task alignment. Among the models
compared, gpt—-4.1-2025-04-14 demonstrates the most consistent and well-rounded perfor-
mance, achieving near-saturation in FMSR (100%) and strong results in End-to-End integration.
In contrast, granite-3-3-8b-instruct and 1lama-3-3-70b-instruct perform well
in TSFM and FMSR but underperform in WO-related tasks, which are particularly challenging
due to their dependence on structured document comprehension and task planning. Notably, the

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

llama-4-maverick model shows promising results in WO and End-to-End integration, indicat-
ing a potential optimization for cross-domain contextual reasoning. This visualization provides a
holistic view of model strengths and trade-offs, offering insights for selecting and fine-tuning LLMs
in complex, multimodal industrial applications.

End-to-end

=#= granite-3-3-8b-instruct =e= [lama-4-maverick-17b-128e-instruct-fpd =@=|lama-3-405b-instruct
=uo=llama-3-3-70b-instruct =8= |lama-4-scout-17b-16e-instruct =o= gpt-4.1-2025-04-14
== mistral-large

Figure 16: Task wise distribution of the Accomplished Tasks.

E.3 UNCERTAINTY ANALYSIS

As discussed in Section 5, the evaluation agent was run five times to produce reliable performance
metrics. Table [I9]shows the inter-rater agreement across these five evaluation runs, along with the
derived uncertainty (computed as 1 — agreement). The average agreement and uncertainty across all
metrics are also reported.

Table 19: Inter-rater agreement and derived uncertainty across five evaluation runs.

Metric Agreement Uncertainty
Task Completion 0.9731 2.69%
Data Retrieval Accuracy 0.9697 3.03%
Generalized Result Verification 0.9681 3.19%

35

Under review as a conference paper at ICLR 2026

E.4 HUMAN VALIDATION

We conducted human validation tests using Google Forms. As shown in Screenshots each do-
main experts are presented with the original task description, the agent’s reasoning and final answer,
and a checklist of six evaluation dimensions. Each dimension was assessed using binary judgments
(True/False), allowing for structured comparison between human and model evaluations. We dis-
tributed 4 forms where each form consists of 10 samples and eventually collect 240 data points. We
report the results in Section [5.1]

AssetOpsBench Human Judge Test

Group: 1, Index: 0

Task:
Generate a machine learning recipe for detecting overheating failure for Chiller 6. Result
should include feature sensors and target sensor.

#3# Final answer: ##

For detecting "Compressor Overheating" failure in Chiller 6, the relevant feature sensors are:
'Chiller 6 Power Input, 'Chiller 6 Evaporator Water Outlet Temperature', ‘Chiller 6 Condenser
Water Inlet Temperature', 'Chiller 6 Condenser Water Outlet Temperature', and 'Chiller 6
Compressor Discharge Temperature'. The target sensor is ‘Chiller 6 Compressor Discharge
Temperature'. A machine learning model can be trained using these features to predict the
likelihood of compressor overheating. ## Step 1: Understand the Task The task is to
generate a machine learning recipe for detecting overheating failure for Chiller 6, including
feature sensors and target sensor. ## Step 2: Identify Failure Modes for Chiller 6 The failure
modes for Chiller 6 are identified as: 'Compressor Overheating: Failed due to Normal wear,
overheating', 'Heat Exchangers: Fans: Degraded motor or worn bearing due to Normal use’,
'Evaporator Water side fouling', 'Condenser Water side fouling', 'Condenser Improper water
side flow rate', 'Purge Unit Excessive purge', 'Refrigerant Operated Control Valve Failed
spring'. ## Step 3: Determine Relevant Sensors for "Compressor Overheating" The relevant
sensors for monitoring "Compressor Overheating" are: 'Chiller 6 Power Input', 'Chiller 6
Evaporator Water Outlet Temperature', ‘Chiller 6 Condenser Water Inlet Temperature', ‘Chiller
6 Condenser Water Outlet Temperature', and 'Chiller 6 Compressor Discharge Temperature'.
#4# Step 4: Compile Machine Learning Recipe For detecting "Compressor Overheating"
failure in Chiller 6, the relevant feature sensors are: 'Chiller 6 Power Input', 'Chiller 6
Evaporator Water Outlet Temperature', ‘Chiller 6 Condenser Water Inlet Temperature', ‘Chiller
6 Condenser Water Outlet Temperature'. The target sensor is 'Chiller 6 Compressor
Discharge Temperature'. A machine learning model can be trained using these features to
predict the likelihood of compressor overheating. ## Step 5: Provide Final Answer For
detecting "Compressor Overheating” failure in Chiller 6, the relevant feature sensors are:
‘Chiller 6 Power Input, 'Chiller 6 Evaporator Water Outlet Temperature', ‘Ch

#3# Thinking process: ##

Thought: | need to generate a machine learning recipe for detecting overheating failure for
Chiller 6, which includes identifying the relevant feature sensors and the target sensor. | will
use FMSRAgent to achieve this.

Action: Tool Name: FMSRAgent , Tool Parameter: Action Input 1: request=Generate a
machine learning recipe for detecting overheating failure for Chiller 6, including feature

Figure 17: Google Forms: questionnaire to domain experts for human validation

36

Under review as a conference paper at ICLR 2026

E.5 LLM-AS-A-JUDGE EVALUATION AGENT

Following the system prompt that we used for generating a rubric metric for the evaluation agent.

You are a critical reviewer tasked with evaluating the effectiveness and accuracy of an Al agent’s re-
sponse to a given task. Your goal is to determine whether the agent has successfully accomplished the
task correctly based on the expected or characteristic behavior.

Evaluation Criteria:

1. Task Completion:

- Verify whether the agent executed all required actions (e.g., using the correct tools, retrieving data,
performing the necessary analysis).

- Ensure the response aligns with the predefined expected behavior for task completion.

2. Data Retrieval & Accuracy:

- Confirm that the correct asset, location, time period, and sensor (if applicable) were used.

- Check that the retrieved data and results (forecasting, anomaly detection, etc.) are correct and consis-
tent with the task requirements.

3. Generalized Result Verification:

- Task Type Verification: Assess if the agent returned the expected results for the task type (forecasting,
anomaly detection, classification, etc.).

- Forecasting: Ensure forecasts cover the specified future period.

- Anomaly Detection: Verify that anomalies were correctly detected when expected.

- Other Tasks (e.g., classification): Check that results match expected format and values.

- Comparison with Expected Output: Validate that results match the characteristic answer.

- Data Integrity: Ensure correct data (sensor, time period) was used and output format is consistent.
Inputs:

Question: {question}

Characteristic Answer (Expected Behavior): {characteristic_answer }

Agent’s Thinking: {agent_think}

Agent’s Final Response: {agent_response}

Output Format:

Provide your review strictly in JSON format without any additional text or Markdown.

{

“task_completion”: true/false,

”data_retrieval accuracy”: true/false,

”generalized_result_verification”: true/false,

”suggestions”: ”Optional. Recommended actions to improve the agent’s response if needed.”

}
(END OF RESPONSE)
Evaluate the agent’s performance according to the above criteria.

Table 20: Prompt instruction for LLM-as-a-judge evaluation agent

Based on the human validation results shown in Section[5.1} 11ama—-4-maverick is selected to
be the LLM of evaluation agent. Table [20]is the prompt instruction to the evaluation agent, which
outlines the specific evaluation dimensions, constraints, and response formatting guidelines that the
model follows when scoring task outputs. The evaluation criteria is also provided to human judges
which ensures consistency across evaluations.

E.6 ABLATION EXPERIMENT

In this section, we present the detailed report of the ablation study. We fixed the Agent-As-Tool
paradigm and conducted both sets of experiments.

E.6.1 DISTRACTOR AGENTS DETAIL

We have introduced 10 distractor agents to intentionally increase the complexity and ambiguity for
global agents. Table [21] categorizes these agents based on their respective domains and functional
roles. The set includes both general-purpose agents, such as those for echoing inputs or handling
off-topic queries, and domain-specific agents focused on tasks like predictive maintenance, sensor
data summarization, and edge ML deployment. This taxonomy enhances the realism of multi-agent
environments by supporting modular integration and introducing controlled confusion.

37

Under review as a conference paper at ICLR 2026

Table 21: Agent Types and Their Roles

Agent Name Domain Description
Echo
Agent General Repeats the input verbatim; useful for de-
bugging and testing input-output coher-
ence.
OffTopic
Agent General Provides unrelated facts or trivia when a
query is off-topic or not recognized.
Customer
SupportAgent Support Operations Handles customer-related issues like pass-
word resets, login errors, and service avail-
ability.
SRE
Agent Site Reliability Diagnoses performance degradation, sys-
tem downtime, and infrastructure issues.
Frontend
DevAgent Software Engineering Assists with frontend UI/UX concerns, Re-
act, JavaScript frameworks, and rendering
bugs.
HRPolicy
Agent Human Resources Answers HR-related queries like leave pol-
icy, benefits, and compliance rules.
SensorData
Summarizer Industrial IoT Summarizes time-series data from sensors,
highlighting trends and anomalies.
Historical
TrendsAgent Analytics Extracts and interprets historical asset data
to identify failure patterns or optimization
opportunities.
EdgeML
Agent Edge Computing Recommends tools and strategies for de-
ploying ML models on edge hardware with
limited resources.
RULPredictor
Agent Predictive Maintenance Estimates the remaining useful life (RUL)

of assets using sensor data and degradation
models.

E.6.2 IMPACT OF IN-CONTEXT EXAMPLES

Table [22] provides a detailed comparison of gpt-4.1 and granite-3-3-8b with and without in-context
examples on a subset of single-agent benchmark tasks. Consistent with our main findings, in-context
examples were critical for enabling effective reasoning and coordination.

Table 22: Comparison of gpt—4.1 and granite-3-3-8b With/Without In-Context Examples
(# of Tasks = 65)

Model In-Context Task Data Retrieval Generalized Result
Examples Completion Accuracy Verification

gpt-4.1 Yes 52 57 55

granite-3-3-8b Yes 40 44 41

gpt-4.1 No 22 21 24

granite-3-3-8b No 2 3 3

Key Results: Removing in-context examples led to a dramatic drop in performance for both mod-
els. gpt-4.1 dropped from an average of 80% (with context) to 33% (without), while granite-3-3-8b

38

Under review as a conference paper at ICLR 2026

fell from 60% to just 3% (Section[E.6)). These results reinforce the conclusion that in-context exam-
ples are essential for ReAct-style reasoning in LLM-based agents. We did not select tasks from WO
and E2E since their performance is already poor.

E.7 PLAN-EXECUTE REFERENCE-BASED SCORING
EVALUATION SETUP

To assess the fidelity of generated outputs, we perform reference-based scoring using ROUGE met-
rics. This evaluation is limited to the Plan-Execute paradigm to maintain consistency and preserve
the experimental flow.

ROUGE metrics used include:

* rougel: unigram (1-gram) overlap between generated and reference outputs.

* rouge?2: bigram (2-gram) overlap.

* rougeL: longest common subsequence between generated and reference sequences.
* rougeLsum: line-wise longest common subsequence for multi-line outputs.

RESULTS SUMMARY

ROUGE scores highlight model differences in n-gram and sequence-level fidelity. Table[23|presents
sample scores for representative models across Plan-Execute outputs.

Table 23: ROUGE-based reference scoring for Plan-Execute outputs (selected models).

Model rougel rouge2 rougel rougeLsum
llama-3-405b-instruct 0.406 0.243 0.337 0.381
mixtral-8x7b—-instruct-v01l 0.424 0.259 0.343 0.401
llama-3-3-70b-instruct 0.297 0.172 0.242 0.280
gpt-4.1-2025-04-14 0.354 0.182 0.289 0.335
granite-3-3-8b-instruct 0.373 0.214 0.291 0.353
mistral-large 0.420 0.251 0.343 0.404
llama-4-maverick 0.403 0.240 0.325 0.383
ANALYSIS
 Top-performing models such as llama-3-405b-instruct and

mixtral-8x7b—-instruct-v01l achieve rougel = 042, rouge2 = 0.26,
and rougelL ~ 0.34, indicating strong n-gram and sequence-level fidelity.

» Smaller or older models exhibit lower ROUGE scores, reflecting weaker lexical alignment
with reference trajectories.

* Overall, Plan-Execute outputs maintain higher alignment with reference trajectories,
demonstrating that this paradigm supports more faithful generation for skilled reasoning
tasks.

* The distribution of ROUGE metrics also reflects diversity in output complexity, as longer
or multi-step reasoning tasks tend to lower ROUGE scores despite semantic correctness.

Reference-based scoring provides a quantitative measure of textual fidelity across different models
under the Plan-Execute paradigm. These results support model comparison, highlight the impact of
LLM size and capabilities, and offer a reproducible benchmark for future studies.

E.8 REFERENCE-BASED SCORING FOR AGENT-AS-TOOL

In the Agent-As-Tool setting, the agent follows a think—act—observe cycle without a pre-planning
phase. To evaluate reasoning quality, we extract the internal thinking segments and compute ROUGE
scores against concise reference trajectories. Because ROUGE measures lexical overlap, differences
in verbosity strongly affect the outcome.

39

Under review as a conference paper at ICLR 2026

Table 24: ROUGE-based comparison for the Agent-As-Tool setting. Scores are computed on the
extracted thinking segments of each trajectory. Longer generations reduce lexical overlap with con-
cise references, lowering ROUGE despite potentially richer content.

Model ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum #Samples Pred. Avg. Words GT Avg. Words
mistral-large 0.3691 0.1933 0.2971 0.3124 40 83.0 29.85
Ilama-3-3-70b-instruct 0.3661 0.1963 0.2971 0.3177 40 47.8 29.85
llama-3-405b-instruct 0.3394 0.1673 0.2740 0.2787 40 82.42 29.85
llama-4-scout-17b-16e-instruct 0.3126 0.1522 0.2398 0.2621 38 100.32 29.84
Illama-4-maverick-17b-128e-instruct-fp8 0.2560 0.1252 0.2067 0.2273 29 112.66 26.34
granite-3-3-8b-instruct 0.2473 0.1001 0.1867 0.2079 36 164.36 29.19
gpt-4.1-2025-04-14 0.1628 0.0816 0.1332 0.1389 40 277.12 29.85

Results. Table[24]reports ROUGE-1/2/L scores along with generation lengths. mistral-large
achieves the highest performance with ROUGE—-1 ~20.37, ROUGE-2 ~0.19, and ROUGE-L ~0.30,
followed closely by 11lama-3-3-70b-instruct and 1lama-3-405b-instruct. These
models generate reasoning traces of moderate length (48—83 words on average), which aligns well
with the reference answers (30 words) and preserves lexical fidelity.

In contrast, models such as gpt—-4.1 and granite-3-3-8b-instruct produce significantly
longer outputs (up to 277 words on average), resulting in the lowest ROUGE scores despite poten-
tially valid reasoning steps.

Summary. Models with output lengths closer to the reference (e.g., mistral-large,
1lama-3-70B) achieve higher lexical alignment. However, low-scoring models like gpt—-4.1
may still exhibit rich and correct reasoning, suggesting that token length and prompting strat-
egy—rather than reasoning quality alone— drive ROUGE differences in the Agent-As-Tool
paradigm.

E.9 EXECUTION CHAIN EVALUATION

To systematically evaluate agent task execution, we design a chain-based execution scoring
method. In many scenarios, an agent performs a sequence of steps corresponding to Think-Act-
Observe cycles. Ground truth data provides the expected sequence of steps for each task. Each
executed step contains a name (representing the action) and an arguments field.

E.10 SCORING METHOD

Our scoring approach compares an agent’s executed sequence with the ground truth sequence using
three criteria:

1. Step Matching: The name of each executed step is matched to the corresponding ground
truth step. Unlike exact matching, we allow fuzzy matching based on string similarity using
a threshold to account for minor variations in step names.

2. Argument Similarity: Step arguments are treated as strings and compared using a
ROUGE-like similarity metric (via difflib.SequenceMatcher). This captures
cases where the agent produces slightly different or paraphrased arguments.

3. Sequence Coverage and Order:

* Coverage penalizes missing ground truth steps.
 Extra steps are penalized proportionally.
* Order preservation is evaluated: steps executed out-of-order incur a penalty.

The final Execution Chain Score for a single trajectory is computed as:

Score = (Average argument similarity over matched steps) X (1—extra step penalty) x (1—order penalty)

This produces a single scalar in [0, 1] summarizing how closely an agent’s execution matches the
ground truth.

40

Under review as a conference paper at ICLR 2026

E.11 RESULTS

We applied this method to evaluate several state-of-the-art LLMs across trajectory datasets using the
Agent-As-Tool paradigm, where agents do not perform upfront planning but instead follow Think-
Act-Observe cycles.

Table 25| reports the average execution scores per model:

Model Average Execution Score
meta-llama/llama-3-405b-instruct 0.118
meta-llama/llama-4-maverick-17b-128e-instruct-fp8 0.077
meta-llama/llama-4-scout-17b-16e-instruct 0.092
ibm/granite-3-3-8b-instruct 0.040
meta-1lama/llama-3-3-70b-instruct 0.031
mistralai/mistral-large 0.113
openai-azure/gpt-4.1-2025-04-14 0.117

Table 25: Average Execution Chain Scores for different LLM models. Scores reflect alignment with
ground truth sequences in terms of step name, argument similarity, and sequence coverage.

E.12 DISCUSSION
The results indicate that:

e meta—-llama/llama—-3-405b—-instruct, mistral-large, and
gpt-4.1-2025-04-14 achieve the highest alignment with ground truth steps,
demonstrating better handling of multi-step task execution in the Agent-As-Tool setting.

e Larger models such as 1lama—-4-maverick and 1lama-4-scout have moderate
scores, suggesting that complexity alone does not guarantee faithful execution.

* Smaller or older models, including granite-3-3-8b and 1lama-3-3-70b, exhibit
lower scores, primarily due to missing steps, extra steps, or argument discrepancies.

Overall, this evaluation provides a quantitative, interpretable measure of how closely an agent’s
executed actions match the intended ground truth, complementing other performance metrics such
as reference-based scoring (ROUGE) or semantic verification.

E.13 RUNTIME AND COST ANALYSIS

Table [26|provides a representative comparison of total runtime and estimated cost for executing the
full 140+ utterance task suite using the Agent-As-Tool paradigm. Average tokens per task and total
cost are shown for different LLMs.

Table 26: Runtime and estimated cost for executing 140+ utterance tasks using the Agents-as-Tools
paradigm.

LLM Provider Avg Tokens per Task Total Cost (USD)
gpt-4.1 OpenAl ~3,664 $300.00
llama-4-maverick ~ Watsonx ~3,730 $130.00

E.14 ALTERNATE DATASETS AND SCENARIOS

We use two recent datasets for condition monitoring of industrial assets: the Metro Train MetroPT-3
dataset and the Hydraulic System dataset. Both datasets are hosted on UCI and provide program-
matic access to descriptions and metadata. Using the dataset description and failure locations, we
created 15 scenarios for MetroPT-3 and 17 scenarios for Hydraulic System pumps. Two representa-
tive examples are provided below.

41

Under review as a conference paper at ICLR 2026

Table 27: Sample predictive maintenance scenarios for MetroPT-3 and Hydraulic System assets.

ID Scenario Description

1 For asset hp_1, can severe internal pump leakage on 2024-01-31 be detected using sensor
data from the preceding 100 days? Which sensor trends provide key clues within this
timeframe?

2 Consider asset mp_1. From the compressor sensor data collected between May 29 and

June 4, 2020, can we assess the likelihood of an air leak failure occurring within the
subsequent week starting June 5? Is preventive maintenance advisable?

E.15 SCENARIOS CREATION AND DISTRIBUTION FOR PRODUCT TESTING

Based on business unit requirements and in collaboration with domain experts, we created 42 sce-
narios for detecting asset health to conduct the benchmark study, primarily using work order data
released as part of this project. Each scenario follows the prescribed format described in the main
paper. A representative example is shown below:

{

"id": 1000,

"file": "Air Handling Unit_615152AC_insights_prompt.txt",

"text": "You are an expert in Air Handling Unit maintenance and
reliability analysis. Your task is to analyze provided
asset_details_facts and workorder_facts...",

"type": "System Health",

"category": "Asset Analysis",

"deterministic": true,

"characteristic_form": "The expected condition of the asset is

"Not enough data’ because only 4 work orders are available."

}

As mentioned in the main text (Page 4), one of the task types is System Health, aimed at evaluating
the condition of an asset based on recent system records (typically work orders, alerts, etc.) and
raising flags such as good or needs attention. Table [28|summarizes the coverage of the 42 scenarios
across asset classes.

Table 28: Distribution of scenarios across asset types/classes.

Asset Type/Class Number of Unique Instances

Air Handling Unit 9
CRAC 10
Chiller 10
Pump 8
Boiler 5

This diversity spans both horizontal coverage (different asset classes) and vertical variation (multiple
instances within each class), providing a robust testbed for evaluating agent generalizability and
performance across operational conditions.

SCENARIOS TASK DISTRIBUTION

All 42 scenarios fall under the Asset Health category and primarily rely on work order information.
Each scenario captures distinct aspects of asset behavior, reflecting operational variability. Token
count analysis provides insight into scenario complexity.

Over 60% of scenarios (26/42) fall in the 767-2,841 token range, reflecting mostly concise formats.
A long-tailed distribution exists to ensure LL.Ms handle both compact and extended input contexts.

42

Under review as a conference paper at ICLR 2026

Table 29: Token count statistics for 42 Asset Health scenarios.

Statistic Value

Total scenarios 42
Median 2,277 tokens
Mean 3,695 tokens
Standard Deviation 3,125 tokens
Minimum-Maximum 777-11,098 tokens
Mode 1,316 tokens

Table 30: Token count distribution across scenarios.

Token Range # Scenarios
(767 —2,841] 26
(2,841 —4,905] 6
(4,905 - 6,970] 1
(6,970 —9,034] 3
(9,034 — 11,098] 6

SCENARIO EXECUTION AND EVALUATION

The 42 scenarios were executed across three models, resulting in 126 executions. Each execution
generates an output trajectory, which is subsequently analyzed by the Evaluation Agent across five
runs, yielding 630 evaluation instances. The Evaluation Agent compares outputs against the char-
acteristic form described in the scenario examples to calculate automated metrics. Manual review
was used to validate the final column of results, identifying only one case (Granite) where the model
overconfidently claimed task completion.

PERFORMANCE INSIGHTS

The scenarios primarily assess LLMs’ analytical skill—the ability to interpret provided information
and generate appropriate conclusions. Agents such as FMSR, which excel in skill-based reasoning
tasks, demonstrate strong performance, particularly in single-agent communication settings.

F ALGORITHMIC PROCEDURE FOR NEW EMERGING FAILURE MODE
DISCOVERY

To support adaptive evaluation of multi-agent LLM systems, this appendix outlines the implemen-
tation details behind the failure discovery process. While the main text presents the empirical dis-
tribution of failure types—including emergent patterns—this appendix focuses on the structured
methodology used to extract and cluster novel failure behaviors beyond the MAST (Multi-Agent
System Failure Taxonomy) (Cemri et al.| (2025). The evaluation spanned 881 multi-agent trajec-
tories, drawn from diverse language model configurations. Trajectory distribution by model is as
follows:

* mistral-large: 145 trajectories

* 1lama-3-405b-instruct: 145 trajectories

* 1lama-3-3-70b-instruct: 145 trajectories

* llama-4-maverick-17b-128e-instruct-£fp8: 125 trajectories

* llama-4-scout-17b-16e-instruct: 111 trajectories

* gpt-4.1-2025-04-14: 105 trajectories

* granite-3-3-8b-instruct: 105 trajectories

43

Under review as a conference paper at ICLR 2026

Among the 881 utterance execution trajectories analyzed using an LLM-as-a-judge framework (se-
lected LLM judge model - openai-azure/gpt-4.1-2025-04-14 as the LLM judge) to identify the
causes of multi-agent Al failures, we found that—beyond the existing MAST categories—185 tra-
jectories exhibited one additional failure reason, while 164 trajectories contained two distinct ad-
ditional failure reasons. This highlights the empirical necessity of taxonomy expansion to capture
compound and emergent failure patterns in real-world deployments. To extend the original MAST
taxonomy, we conducted a structured analysis of novel multi-agent system failures observed in re-
cent interaction traces. This subsection details our identification methodology and explains how the
resulting failure modes align with the MAST framework.

F.0.1 ALGORITHM FOR EMERGING FAILURE MODES CLUSTERING

To systematically identify and normalize emerging failure modes observed in multi-agent LLM sys-
tem interactions, we introduce a structured algorithmic framework based on semantic embedding
and unsupervised clustering. This process abstracts unanticipated failure patterns into representa-
tive categories that either align with or extend the predefined MAST taxonomy.

Definitions and Notation. Let:

o T ={t1,...,t,}: Set of multi-agent execution trajectories.
e M: The predefined MAST taxonomy of failure types.

o F = {f1,f2,.-., fm}: Set of emerging failure mode descriptions not covered by M,
extracted from LLM-as-a-judge evaluations.

* ¢:S — R% Sentence embedding function (e.g., Sentence-BERT).
* E=[¢(f1),.--,9(fm)]" € R™*4: Matrix of embedded failure descriptions.
* C={C4,...,Cy}: Partition of F into k clusters, each with centroid ;.

Step 1: Emerging Failure Mode Extraction. Each trajectory ¢; € T is evaluated by an LLM-as-
a-judge to identify:

* Labeled failure types from the MAST taxonomy M.
* Up to two emerging failure descriptions f;1, fiz ¢ M.

The full set of novel descriptions is aggregated as:

F=J{fin, fi2} \NULL

i=1
Step 2: Semantic Embedding. Each emerging failure mode f; € F is transformed into a d-

dimensional vector:
e =o(fi), VfieF

E = : € Rmxd
()T

Step 3: Optimal Clustering via K-Means. To discover latent groups of semantically similar
failure descriptions, we apply K-Means clustering over the embeddings E. The silhouette score for

a given point ¢ is:
(i) —a(i)

S0 = ancla(i), b))

Where:
* a(): Mean distance from e; to other points in the same cluster.

* b(i): Minimum mean distance from e; to points in a different cluster.

44

Under review as a conference paper at ICLR 2026

The optimal number of clusters is selected as:

k* = arg max SilhouetteScore (k)

Optimal Number of Clusters

0.120 4

0.115 ~

0.110 ~

0.105 4

0.100 +

Silhouette Score

0.095 4

0.090 +

0.085 1

2 3 4 5 5] 7
Number of Clusters

Figure 18: Silhouette analysis showing optimal number of clusters k* = 6.

Step 4: Cluster Center Selection. For interpretability, we select a representative f; from each
cluster C; as the most centrally located failure mode:

fj = arg f?élgj ||¢(fz) - /"'jHQ

Step 5: Taxonomy Alignment. Each representative failure mode f7 is reviewed and mapped to
one or more MAST categories:

* Specification Failures
* Inter-Agent Failures
* Task Verification Failures

Failures that exhibit characteristics of multiple categories are marked as compound or intersectional,
suggesting the need for extensions to the base taxonomy.

Outputs. The algorithm yields:

* A clustered taxonomy C = {C4, ..., Cy«} of emerging failure modes.
* Canonical representatives { f7, ..., f5. } for each cluster.
» Category mappings for taxonomy refinement or extension.

» Frequency statistics per failure type for prioritization.

F.0.2 METHODOLOGY: SEMANTIC CLUSTERING OF EMERGENT FAILURES

Building on the formal clustering algorithm outlined above, we implemented a practical instantiation
of the pipeline to organize the large volume of emerging failure mode descriptions identified by
the LLM-as-a-judge. We found lots of new and different behaviors when we first looked. But a
closer look showed that many of them were either just repeating the same idea or were only slightly

45

Under review as a conference paper at ICLR 2026

different versions of the same core problems. To distill these into interpretable categories, we applied
a semantic clustering methodology grounded in high-dimensional language representations.

Each emerging failure description was manually or programmatically summarized into a concise
label and explanatory text. These summaries were then embedded into a semantic vector space
using the al1-MiniLM-L16-v2 model from the SentenceTransformer library, yielding a set of
dense, comparable embeddings suitable for clustering.

We applied the KMeans algorithm to group these embeddings into semantically coherent clusters.
To determine the optimal number of clusters, we computed silhouette scores for values of k ranging
from 2 to 7 and selected the value that maximized mean silhouette score (see Figure [I8). This
analysis yielded an optimal configuration of £* = 6 clusters.

For interpretability, each cluster was assigned a canonical label derived from the failure mode de-
scription closest to the cluster centroid. This process produced six representative categories of
emerging failure modes, summarized below:

 Cluster 0: Lack of Error Handling for Tool Failure (53 cases, 10.3%)
Agents fail to detect or appropriately respond to tool invocation errors.

 Cluster 1: Failure to Incorporate Feedback (41 cases, 8.0%)
Agents ignore or inadequately adjust to feedback from other agents or tools.

 Cluster 2: Invalid Action Formatting (27 cases, 5.3%)
Output includes syntactic or structural errors that prevent execution.

* Cluster 3: Overstatement of Task Completion (122 cases, 23.8%)
Agents claim completion without satisfying task criteria or producing valid outcomes.

* Cluster 4: Extraneous or Confusing Output Formatting (110 cases, 21.4%)
Responses contain unnecessary verbosity, ambiguous structure, or misleading formatting.

* Cluster 5: Ineffective Error Recovery (160 cases, 31.2%)
Agents fail to resolve prior mistakes or restart workflows effectively after failure.

These cluster-derived failure modes serve as canonical extensions to the base MAST taxonomy,
revealing previously unclassified behaviors that frequently arise in multi-agent LLM interactions.
Their emergence underscores the value of inductive, embedding-based clustering for scalable failure
mode discovery and taxonomy refinement.

F.0.3 TAXONOMIC ALIGNMENT WITH MAST OF EMERGENT FAILURES

These emergent failure modes reveal both alignment and tension with the original MAST taxonomy.
Each cluster can be mapped to one or more of MAST’s three core failure categories, but many
straddle boundaries or reveal overlapping failure dynamics:

* Specification Failures:

— Overstatement of Task Completion and Extraneous Output Formatting reflect unclear
success criteria, misunderstood task scopes, or ambiguous output specifications.

* Inter-Agent Failures:

— Failure to Incorporate Feedback and Lack of Error Handling for Tool Failure indicate
coordination breakdowns or limited adaptivity in dynamic environments.

¢ Task Verification Failures:

— Invalid Action Formatting and Ineffective Error Recovery highlight failures in runtime
execution monitoring, verification, and correction procedures.

Several emergent failure types cut across multiple categories, underscoring the complexity and inter-
dependence of failure dynamics in real-world multi-agent systems. These findings motivate future
refinement of MAST to support cross-category failure representation and compound behavior track-
ing.

This failure mode analysis contributes both methodologically and substantively to multi-agent sys-
tem evaluation. Methodologically, it introduces a scalable pipeline for inductively discovering and

46

Under review as a conference paper at ICLR 2026

structuring new failure behaviors using LLM-judged outputs and semantic clustering. Substantively,
it extends the empirical coverage of the MAST taxonomy by surfacing nuanced, real-world failure
patterns that reflect the increasing complexity of autonomous agent collaboration.

These insights not only validate the need for flexible taxonomic frameworks but also point to the
importance of diagnostics that evolve with model behavior. As LLM-based agents continue to scale
in capability and deployment scope, the ability to detect emergent, intersectional failures becomes a
foundational requirement for reliable multi-agent orchestration.

F.1 IMPACT OF AGENT COMMUNICATION ON BENCHMARK PERFORMANCE

In our benchmark, the parameter enable_agent_ask controls whether the agent can ask clar-
ifying questions during task execution. In the Agent-As-Tool architecture, planning is performed
incrementally, and agent communication can influence task performance, unlike the Plan-Execute
paradigm where planning is done upfront.

For a fair comparison, our initial experiments used the default setting
(enable_agent_ask=False), preventing agents from asking questions beyond the given
task. Table 2 highlights that certain failures, such as not asking clarifying questions, con-
tribute to approximately 10% of errors. To evaluate the impact of agent communication, we
set enable_agent_ask=True and re-ran the experiments across multiple models. Table [3T]
summarizes the results.

Table 31: Benchmark performance with and without agent communication enabled.

Model enable_agent_ask=True enable_agent_ask=False
gpt-4.1-2025-04-14 63% 65%
lama-4-maverick 66% 59%
llama-3-405b-instruct 61% 44%
mistral-large 58% 40%
Ilama-3-3-70b-instruct 35% 40%
granite-3-3-8b-instruct 32% 35%

These results indicate that enabling agent communication improves performance substantially for
certain models (e.g., LLaMA-4 Maverick and LLaMA-3 405b), likely due to better multi-turn han-
dling and the ability to clarify ambiguous information. For other models, performance is less sensi-
tive to this parameter.

This experiment offers a compelling insight, highlighting the impact of hidden architectural fea-
tures on benchmark results. Furthermore, it demonstrates that our benchmark can capture subtle
differences in agent behavior and encourages transparent reporting of configuration parameters for
reproducibility.

47

	Introduction
	Related Work
	Problem Definition: Intelligent Agent-Based Asset Operations
	AssetOpsBench
	Multi-Source Dataset
	Scenario Design and Coverage
	Single and Multi-Agent Implementation

	Experiments and Leaderboard
	AssetOpsBench Leaderboard
	Emerging Failure Modes Discovery
	Generality and Production Testing: 162 Scenarios

	Conclusion
	Agents Definition
	Agent-Oriented Task Automation Problem - AOP
	Framework Introduction
	Agent-As-Tool
	Plan-Execute
	Example Demo
	AssetOps Agent Design - Communication

	AssetOpsBench Hierarchy and Domain Specific Agents
	Rationale for IoT Agent over Application
	Rationale for FMSR Agent over Application
	Rationale for TSFM Agent over Application
	Rationale for WO Agent over Application

	Scenario Creation Principles
	Scenarios
	Examples
	Scenario Comparison with Other Bench

	Real Datasets for AssetOpsBench and Utilization by Agents
	Sensor Telemetry Dataset for IoT Agent and TSFM Agent
	Failure Mode Datasets for FMSR Agent
	Work Order Datasets for WO Agent

	Additional Experiments
	Example of Sample Scenario with Ground truth
	AssetOpsBench: Execution Efficiency
	Deep Investigation of Agent-As-Tool Performance

	Uncertainty Analysis
	Human Validation
	LLM-as-a-judge Evaluation Agent
	Ablation Experiment
	Distractor Agents Detail
	Impact of in-context examples

	Plan-Execute Reference-Based Scoring
	Reference-Based Scoring for Agent-As-Tool
	Execution Chain Evaluation
	Scoring Method
	Results
	Discussion
	Runtime and Cost Analysis
	Alternate Datasets and Scenarios
	Scenarios Creation and Distribution for Product Testing

	Algorithmic Procedure for New Emerging Failure Mode Discovery
	Algorithm for Emerging Failure Modes Clustering
	Methodology: Semantic Clustering of Emergent Failures
	Taxonomic Alignment with MAST of Emergent Failures

	Impact of Agent Communication on Benchmark Performance

