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ABSTRACT

AI for Industrial Asset Lifecycle Management aims to automate complex opera-
tional workflows, including condition monitoring, maintenance planning, and in-
tervention scheduling, thereby reducing human workload and minimizing system
downtime. Traditional AI/ML approaches have primarily tackled these problems
in isolation, solving narrow tasks within the broader operational pipeline. In con-
trast, the emergence of AI agents and large language models (LLMs) introduces
a next-generation opportunity: enabling end-to-end automation across the entire
asset lifecycle. This paper envisions a future where AI agents autonomously man-
age tasks that previously required distinct expertise and manual coordination. To
this end, we introduce AssetOpsBench, a unified framework and environment de-
signed to guide the development, orchestration, and evaluation of domain-specific
agents tailored for Industry 4.0 applications. We outline the key requirements
for such holistic systems and provide actionable insights into building agents that
integrate perception, reasoning, and control for real-world industrial operations.

1 INTRODUCTION

Industrial assets, such as data center chillers (Naug et al. (2024)) and wind farms (Monroc et al.
(2024)), are complex, multi-component systems that generate vast amounts of multimodal data,
including time-series sensor readings, textual inspection and workorder records, operational logs,
and images, throughout their lifecycle. The ability to monitor and interpret heterogeneous data
from diverse sources, such as IoT SCADA (Supervisory Control and Data Acquisition) sensors,
operational KPIs, failure mode libraries, maintenance work orders, and technical manuals, is key to
effective Asset Lifecycle Management (ALM). However, subject matter experts such as maintenance
engineers, site operators, and plant managers face considerable challenges in synthesizing insights
from these disparate data streams to support timely and condition-aware decisions. As highlighted
in Figure 12, the scale, semantic diversity of assets, and application-specific contexts often render
traditional monitoring and management systems inadequate.

(a) Complex Industrial Asset – Data Centers managing Chiller and Air
Handling Units (AHUs)

(b) Distribution of open-
sourced scenarios for
benchmarking agents in
a simulated environment.
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To address these challenges, the research and industrial communities are increasingly turning to AI
agents: autonomous and goal-driven systems capable of integrating data across silos, reasoning over
complex conditions, and triggering acti mkons. AI agents are particularly promising in the context
of Industry 4.0, where the confluence of real-time IoT telemetry (e.g., Oracle IoT Oracle (2025),
enterprise asset management (EAM) systems, and IBM Maximo IBM) and reliability engineering
frameworks necessitates scalable and intelligent automation. These agents promise to support a
wide range of industrial workflows, from anomaly detection to maintenance scheduling, by bridging
the gap between raw sensor data, maintaiance report, work-order and business-level insights.

Despite recent advances in agent-based systems, such as ReAct Yao et al. (2023), HuggingGPT Shen
et al. (2023), Chameleon Lu et al. (2023), and Generalist Agents Fourney et al. (2024); Marreed et al.
(2025), a gap remains in adapting these innovations for real-world industrial settings. Most recent
domain and application specific benchmarks (e.g., ITBench Jha et al. (2025), SWE-bench Chan et al.
(2025), τ−bench Yao et al. (2024) and its extension Fu-Hinthorn (2025), Customer Support Bench-
marks Team (2025)) are tailored toward machine learning, IT or customer-service domains and do
not address the unique challenges of industrial applications, such as data modality diversity(time
series and text), business object complexity(e.g., failure mode, work orders, asset hierarchies), and
task collaboration across multiple operational personas (reliability modeling by expert and time se-
ries modeling based on data scientist).

This paper introduces AssetOpsBench, the first dataset and benchmarking system designed to eval-
uate AI agents for real-world industrial asset management tasks. By leveraging experts in develop-
ment, we have carefully built real multi-source datasets, intent-aware scenarios, and domain-specific
agents to develop, evaluate, and compare multi-agent systems. Our system includes:

• A catalog of domain-specific AI agents, including an IoT agent, a failure mode to sensor
mapping (FMSR) agent, a foundation model-driven time series analyst (TSFM) agent, and
a work order (WO) agent. Each agent has tools and targets different modalities and tasks.

• A curated to be open-source intent-driven 141 scenario of human-authored natural lan-
guage queries, grounded in real industrial data center operations (Figure 1b), covering
tasks such as sensor-query mapping, anomaly detection, failure diagnosis, and work-order
modeling.

• A simulated industrial environment based on a CouchDB-backed IoT telemetry system
and real multi-source dataset, enabling end-to-end benchmarking of multi-agent workflows
and open source contributions without the constraints associated with production systems

• A comparative analysis of multi-agent architectural paradigms: Agent-As-Tool vs. Plan-
Executor, highlighting tradeoffs between interleaved decomposition or decomposition-first

• A three-pronged evaluation consisting of (i) an LLM-based rubric, (ii) reference-based
scoring of task decomposition and execution, and (iii) manual expert verification for certain
scenarios.

• A systematic procedure for the automated discovery of emerging failure modes in multi-
agent systems, extending beyond fixed taxonomies and its benefits.

A key insight from our study is that domain complexity in industrial settings necessitates a multi-
agent approach, where specialized agents are developed for isolated tasks, then orchestrated to
solve composite problems. For example, sensor data may be handled by an IoT agent, while fault
history is managed by an FMSR agent. These agents must collaborate intelligently to answer user
queries, such as “Why is the chiller efficiency dropping?”, which blend physical reasoning, histori-
cal correlation, and operational semantics. Furthermore, the design of agent workflows must respect
the natural language and intent patterns used by industrial end users. Unlike IT users, operators
and engineers often refer to assets in physical or operational terms (e.g., “chiller performance”,“oil
temperature spike”) rather than referring to database fields or ontologies. Crafting robust bench-
marks requires capturing this domain-specific linguistic variance, ensuring agents not only retrieve
correct answers but also follow reasoning patterns aligned with domain expectations.

Finally, we experimented with an additional closed-source 162 scenarios to demonstrate generality,
spanning 10 asset classes, 53 failure modes, and 20 sensors. These include 42 live-deployment
scenarios (>90% correctness verified by a domain expert), 17 hydraulic system, 15 metro train, and
88 failure-mode scenarios encompassing diverse asset–failure–sensor relationships.
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2 RELATED WORK

Generalist Agents. The development of generalist agents capable of orchestrating multiple sub-
agents to accomplish complex tasks has emerged as a prominent research direction. This paradigm
is evident across various domains, including web systems such as Magentic Fourney et al. (2024) and
CUGA Marreed et al. (2025), multimodal agents like GEA Szot et al. (2024), and software engineer-
ing platforms like HyperAgent Huy et al. (2025), ChatDev Qian et al. (2024), and MetaGPT Hong
et al. (2024). These agents typically employ predefined sets of sub-agents, such as terminals,
browsers, code editors, and file explorers, each assigned specific functional roles to facilitate task
decomposition and planning. While this architecture enables targeted integration and task special-
ization, it often lacks flexibility. Most systems adopt hard-coded reasoning paradigms, such as
plan-executor or ReAct, which limit their capacity to support new agents, adapt to novel task, or
alternative coordination strategies, such as AOP Li et al. (2025) and Prospector Kim et al. (2024).

Domain-Specific Agents. Solving specialized tasks often requires domain-specific capabilities,
prompting the development of tailored benchmarks such as MLEBench Chan et al. (2025) and
MLAgentBench Huang et al. (2024) Arena. These frameworks evaluate agents on a diverse set
of machine learning problems, such as classification and regression, across multiple modalities, in-
cluding tabular and image data. They simulate end-to-end workflows, from resolving GitHub issues
to automating model training and evaluation pipelines. The concept of the AI Research Agent has
gained traction, referring to agents built for scientific discovery and iterative experimentation. For
example, MLGym Nathani et al. (2025), a research agent in machine learning workflows. However,
most current benchmarks lack support for temporal and text data modalities together, which are
crucial in domains such as physical asset health monitoring.

Application-Specific Agents. Agent-based automation is also advancing in operational settings,
such as IT operations, customer support, and compliance monitoring. Frameworks developed un-
der initiatives like ITBench Jha et al. (2025) and AIOpsLab Chen et al. (2025) aim to replicate
real-world scenarios involving site reliability engineering, diagnostics, and system auditing. These
systems reinforce the importance of application-specific benchmarks, tailored to specific personas,
that not only evaluate agents across structured tasks but also expose capability gaps and drive in-
novation in reasoning and orchestration strategies. Current benchmarks in this space tend to be
domain-specific in scope, lacking the generality and composability required to assess agent perfor-
mance across diverse, multi-agent environments, especially those involving cross-modal reasoning
or domain-specific tool usage.

Fine-Tuned and Compact Models. Complementary to architectural advances, recent work has
focused on improving agent performance via fine-tuned language models. So-called Large Ac-
tion Models (LAMs) are designed to execute structured actions within environments, often trained
on large-scale datasets to support planning, sequencing, and low-level execution. Systems such
as TaskBenchShen et al. (2024), xLAMZhang et al. (2025b), AgentGen Hu et al. (2025), Agent-
Bank Song et al. (2024), AgentRM Xia et al. (2025), FireAct Chen et al. (2024), and ActionStu-
dio Zhang et al. (2025a) exemplify this trend. These models are frequently trained in grounded
settings, e.g., Windows-based environments Wang et al. (2025) and evaluated across diverse task
categories including arithmetic, programming, and web-based interaction. While effective, these
approaches are limited to textual or web environments and have not yet demonstrated broad appli-
cability to more complex or industrial automation tasks involving hybrid agent compositions.

Open Challenges. Despite these advances, several gaps remain. First, there is a lack of comprehen-
sive benchmark datasets targeting industrial asset domains, particularly those involving condition-
based monitoring, predictive maintenance, automated diagnostics, and work order planning. To
support this claim, we analyzed a catalog of 135 public datasets jonathanwvd (2025) and found
that only one dataset includes any form of work-order or operational context, and even that lacks
sensor history. Moreover, only 53 datasets mention failure modes, most of which contain just one or
two modes, and none of the datasets support agentic applications. Second, time-series data, which
plays a central role in industrial and infrastructure-related applications, remains underrepresented
in existing agentic benchmarks. Finally, few systems support orchestration across heterogeneous
agents, including those based on text, code, or simulations, nor do they offer modular reasoning
strategies adaptable to complex, multi-agent workflows. Addressing these gaps is essential to ad-
vance general-purpose agent intelligence in high-stakes, real-world domains.
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3 PROBLEM DEFINITION: INTELLIGENT AGENT-BASED ASSET OPERATIONS

AssetOpsBench aims to establish a generalist agent framework for managing the lifecycle of phys-
ical assets, integrating multiple domain-specific agents and a suite of application-specific tasks for
systematic evaluation. It encompasses a comprehensive set of operational and analytical tasks
that arise across the asset lifecycle. The benchmark focuses on scenarios commonly posed by
domain experts, such as maintenance engineers, reliability specialists, and facility planners, who
translate operational needs into data-driven actions. These scenarios cover key tasks including
anomaly detection, root cause analysis, fault explanation, predictive maintenance planning, work
order bundling, and service request initiation. For example, a user might request: “Help configure
an anomaly detection model to monitor power consumption of CUXP. Trigger alerts when usage is
projected to exceed 8 Watts above the maximum deviation observed over the past 30 days”. Such
task enables timely corrective actions such as “service request creation” to mitigate potential issues.

(a) Architecture of the Multi-Agent System: Time Series (TSFM)
Agent, Failure Mode Sensor Relations (FMSR) Agent, Work Order
(WO) Agent

(b) Exemplar AssetOps Task Hierar-
chy: Detailed hierarchy is given in
Appendix B

Figure 2a illustrates the foundational components of our proposed framework. At the core is the
AssetOps Agent, which functions as a global coordinator. It interprets high-level user queries ex-
pressed in natural language, decomposes them into structured subtasks, delegates these to special-
ized functional sub-agents (e.g., IoT, TSFM), and integrates their outputs into coherent responses.
The architecture supports on-demand instantiation of agents, dynamic task planning, and reactive
execution, capabilities essential for operating in complex, variable industrial environments. For-
mally, given a query or task τ ∈ T , the objective is to generate a valid plan π ∈ Π, leverage memory
M to propagate relevant context, coordinate appropriate agents Ai ∈ A for task fulfillment, and
produce an output o ∈ O that aligns with the intended goal and operational constraints. For brevity,
Appendix A.1 discusses the mathematical formulation of agent-oriented planning, and Section A.2
provides details on all four agents.

In this paper, we leveraged ISO documents to build a structured task taxonomy aligned with the
stages of the physical asset management ISO-2024 (2024); ISO (2016). Such a taxonomy pro-
vides a consistent and scalable approach to scenario generation for benchmarking. We refer to this
approach as intent-driven scenario generation, rather than API-driven scenario generation, as pop-
ularized in Yao et al. (2024); Shen et al. (2024). As illustrated in Figure 2b, the taxonomy begins
with Asset Configuration, encompassing activities such as retrieving Failure Mode and Effects
Analysis (FMEA) documentation and selecting performance KPIs, typically carried out by reliabil-
ity engineers. It progresses to Model Selection and Analysis, where data scientists apply anomaly
detection models (e.g., Time Series Foundation Model, ML Models) and use LLM-powered retrieval
to surface relevant historical failures. In the Monitoring and Execution phase, operations teams
manage live telemetry, refine detection models, and enforce safety guardrails. Finally, the Main-
tenance and Response phase focuses on actionable outputs: generating work orders, summarizing
system health, and prioritizing interventions—tasks typically handled by maintenance engineers.
Defining tasks and APIs based on a standard is key, as it generalizes various different application
software Oracle (2025); IBM.
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4 ASSETOPSBENCH

AssetOpsBench comprises a real multi-asset, multi-source dataset (Section 4.1) from a data cen-
ter, 141 manually constructed task scenarios (Section 4.2), and a benchmarking environment that
includes novel task-specific AI agents and an evaluation framework (Section 4.3). The scenarios are
developed in collaboration with SMEs and reflect the essential day-to-day capabilities that agents
operating in realistic industrial settings are expected to possess. We also compare scenario counts
with prior benchmarks (see Appendix Table C.3), where human-authored scenarios typically contain
about 100 scenarios, while LLM-generated benchmarks display greater variability in scale.

4.1 MULTI-SOURCE DATASET

A key distinguishing feature of AssetOpsBench is its integration of richly structured, expert-curated
multi-source data that reflects the complexity of real-world industrial asset operations. Unlike a sim-
ple data-gathering effort, constructing this benchmark required extensive data cleaning, the devel-
opment of a novel failure taxonomy, and careful alignment across heterogeneous sources. As shown
in Table 1, the benchmark includes over 2.3 million sensor data points across 6 assets (4 Chillers
and 2 AHUs), capturing time-series signals such as chiller return temperature, load percentage, and
condenser water flow. The structured failure models, derived from Failure Mode Effects Analysis
(FMEA) records, encompass 53 failure entries across three equipment assets. FMEA provides pro-
vide detailed insights into the physical locations of failures, degradation mechanisms (such as wear
and erosion), and the influencing factors (including runtime, fluid conditions, and shock loading) that
contribute to each failure. Work order histories span 4.2K records across 10+ assets and incorporate
ISO-standard failure codes, event timestamps, and linkages to alerts and detected anomalies.

Table 1: Key data modalities with 3 Example Fields used for open source scenario construction

Data Source Field Description

Sensor Data*
# Industrial Assets: 6
Quantity: 2.3M points

Chiller Return Temp. Measures temperature of water returning to chiller
Chiller % Loaded Indicates current load as a fraction of the maximum
Condenser Water Flow Indicates the current flow rate through the condenser

FMEA
# Industrial Assets: 3
Quantity: 53 records

Failure Location / Comp. Subsystem/part where failure occurs (e.g., bearings,)
Degradation Mechanism Physical process driving failure (e.g., wear, erosion)
Degradation Influences Stressors like runtime, fluid quality, or shock loading

Work Orders
# Ind. Assets: 10+
Quantity: 4.2K records

ISO Failure Code Standardized classification of the failure category.
Event Log Timestamp Time-marked entry recording an operational event
Linked Anomaly / Alert References to alerts or anomalies tied to work order

Additionally, the operational system generates a temporal sequence of alarm logs and also leverages
domain-specific technical rules obtained from experts, enabling contextual grounding of operational
anomalies. This diverse data foundation, comprising 9 modalities, facilitates a comprehensive eval-
uation of decision-making, tool usage, and multi-hop reasoning in industrial environments. Full
dataset description is provided in Appendix D.

4.2 SCENARIO DESIGN AND COVERAGE

Each scenario in AssetOpsBench represents a structured operational query grounded in the
lifecycle-aligned task taxonomy (Figure 2b) and asset-specific datasets (Table 1). Each scenario
is formalized as:

P = ⟨id , type, text , category , form⟩
where id is a unique identifier; type specifies the task type (e.g., knowledge retrieval, analytical); text
is the natural language query; category denotes the operational domain (e.g., IoT, FMSR, TSFM,
WO or End-2-End (i.e., more than one agent)); and characteristic form defines the expected output
(e.g., explanation, API call, action plan). Scenarios are categorized into two types: (1) single-agent
utterances, which only require probing a single specific agent (e.g., IoT, TSFM, FMSR, WO), and (2)
multi-agent tasks, which span multiple agents and require coordinated reasoning and data exchange.
As shown in Figure 1b, the to be open-sourced version comprises a total of 141 scenarios, consisting
of 99 single-agent and 42 multi-agent tasks.
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First, we introduce two representative agents to highlight the complexity at the tool level before
narrowing our focus to a specific scenario. Figure 3(a) depicts the TSFM agent, which leverages a
pretrained time series foundation model from Hugging Face, and the FMSR agent, which employs
an LLM to generate mappings between failure modes and sensors (get mapping). We have over
15 tools spread across these four agents. Figure 3(b) then presents Utterance 507, an instructive
case where a user requests a prediction of future energy consumption. To address this query, the
agent must first reason about which sensor variable to use, specifically the power input, and after
retrieving the data recognize that most values are zero, indicating an insufficient data condition. This
scenario highlights the importance of subject matter experts (SMEs) in designing tasks that assess
the reasoning capabilities of LLMs, rather than merely testing tool functionality. In its characteristic
form, we further emphasize key lexical markers that also enable a semantic-based analysis.

Figure 3: (a) Design of Agents with Domain Specific Guidance and Examples for In-context learning
(b) Scenario 507 Example

Our dataset, particularly the work-order records, spans over 11 years and includes rich fields such
as problem codes, finish dates, and labor hours. This helps to design a scenario such as “Examine
whether the year-over-year increase in corrective maintenance for CWC04009 warrants shifting
resources from annual repairs toward multi-year replacement planning”. Existing scenarios (IDs
407–413) support strategic work-order management tasks, including trend analysis, bundling, and
probability forecasting. Overall, our scenario includes analytical reasoning (including coding, fine-
tuning, and other approaches), context-aware decision-making, and language-based generalization.

4.3 SINGLE AND MULTI-AGENT IMPLEMENTATION

ReAct Yao et al. (2023) and CodeReAct Wang et al. (2024) are widely adopted baseline reason-
ing strategies for agent development. Three agents (TSFM, IoT, and FMSR) are built on ReAct,
while the WO agent adopts CodeReAct; our framework also supports alternative strategies such
as RAFA Liu et al. (2023) for extended testing. Given a mix of text- and code-based agents, it
becomes necessary to introduce a global coordinator, the AssetOps Agent, which facilitates collab-
oration among these agents and can operate either under an Agent-As-Tool paradigm or within a
Plan-Execute strategy.

In Agent-As-Tool, each individual agent is registered as a tool within a meta or supervisor agent,
and the supervisor itself is instantiated using ReAct. This architecture emulates the layered decision-
making found in real-world hierarchical organizations. On the other hand, Plan-Execute, as the
name suggests, the process consists of two phases: a Planner and a Reviewer, which together gen-
erate a plan represented as a directed acyclic graph (DAG). This plan is then passed to the Orches-
trator/Executor, which maintains a memory module that stores and transfers information between
agents according to the configuration settings. To further enhance performance, we introduce an
output augmentation mechanism that generates semantically enriched, self-descriptive outputs. This
enables agents to trigger follow-up actions, ask clarifying questions, and make informed decisions.
Read the full schema specifications in Appendix A.6.
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5 EXPERIMENTS AND LEADERBOARD

To evaluate orchestration techniques across varying LLM sizes and agent-specific preferences, we
adopt a rubric-based assessment LangChain (2025b); Wen et al. (2024); Wang et al. (2025); An-
drews et al. (2025) complemented by a reference-scoring mechanism Yao et al. (2024); Wen et al.
(2024); Cemri et al. (2025).

LLM-As-Judge. Each scenario is paired with a characteristic form, a structured specification defin-
ing both the expected final output and the intermediate reasoning or procedural steps required to
achieve it. This form serves as the soft ground truth for evaluating agent behavior and supports
rubric-based scoring with LLMs acting as judges. The evaluation rubric uses three qualitative met-
rics derived from experimental observations and common-sense principles. We define the Eval-
uation Agent as a scoring function that maps the original task query (Q), the agent’s trajectory
output (T , including intermediate reasoning and final output), and the characteristic form (C, the
ground-truth specification) to a set of scores (y1, y2, y3). These scalar scores (y1, y2, y3) ∈ [0, 1]3

correspond to Task Completeness (y1: are all required steps completed?), Data Retrieval Accu-
racy (y2: was the correct data retrieved and used?), and Result Verification (y3: is the final result
logically and factually correct?). A detailed system prompt is provided in Appendix 20.

Reference-Based Scoring. For each scenario, we construct a structured ground truth (See Appendix
E.1) inspired by Yao et al. (2024); Shen et al. (2024), where each entry captures the task workflow
through planning steps (high-level intended actions), execution steps (concrete actions
with corresponding inputs and outputs), and execution links (dependencies between steps).
This representation encodes both the logical structure and the expected outcomes. We assess an
agent’s task decomposition ability by comparing the planning steps with either the thinking
traces in the agent’s trajectory (for Agent-as-Tool) or the DAG produced by Plan-Execute. Since
agents communicate in natural language, a weighted score is employed to align action descriptions
and their inputs, thereby quantifying task execution performance.

Experimental Setting. To quantify agent effectiveness in scenario evaluations, we adopt the Passk
metric. Unlike the widely used Pass@k—which measures the probability that at least one of k inde-
pendent attempts succeeds—Passk estimates the probability that an agent succeeds on all k attempts.
This stricter criterion better captures the reliability demands of industrial applications, where retries
may be impractical and consistent behavior is essential for production systems LangChain (2025a);
Yao et al. (2024). In our benchmark, we report Pass1 by default (one trial per task), as agents are
executed only once per task instance. The evaluation agent, however, is executed five times to derive
the performance metrics, with a sampling temperature of zero for all agents within AgentOps Agent
and 0.3 for the evaluation agent. All reported results are obtained under this configuration.

5.1 ASSETOPSBENCH LEADERBOARD

Models. We conducted a series of benchmark experiments to evaluate a diverse set of lan-
guage models, including closed-source models (e.g., gpt-4.1), frontier open-source models
(e.g., llama-4-maverick, llama-4-scout, mistral-large, llama-3-405b), and
medium-to-small open-source models (e.g., llama-3-70b, granite-3-8b). Currently, we
have evaluated two different agentic strategies: Agent-As-Tool and Plan-Execute.

(a) Agent-As-Tool Approach (b) Plan-Executor Approach

Figure 4: Approach-wise Performance Evaluation. The order is based on the task completion rate.
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Agent-As-Tool vs Plan-Execute Approach. Figure 4 shows the combined performance of both ap-
proaches using the rubric method. Overall, the Agent-As-Tool approach, as illustrated in Figure 4a,
demonstrates that gpt-4.1 leads across nearly all metrics. llama-4-maverick also performs
competitively, particularly in result verification (60%) and clarity (78%). In contrast, smaller models
such as granite-3-8b and llama-3-3-70b underperform across most dimensions. Although
our benchmark did not yield promising results for small language models, as noted in a recent vision
paper Belcak et al. (2025), we discuss later an interesting outcome that demonstrates the potential
of combining model agency using both LLMs and SLMs for certain tasks.

A closer examination of the Plan-Execute approach (Figure 4b) shows that mistral-large
leads overall, achieving the highest scores in task completion (46%) and data retrieval (57%).
llama-4-maverick demonstrates balanced performance, particularly in task completion (46%)
and result verification (44%), with a average data retrieval rate (46%). Interestingly, gpt-4.1 ex-
hibits consistent mid-range performance across all axes, suggesting potential issues with planning.

Figure 5: Agent Level Task Accomplishment with
respect to Agent-As-Tool Approach

Upon deep examination, we observed that
larger models generate shorter plans for the
Plan-Execute approach (typically 2–3 steps)
compared to the Agent-As-Tool strategy, which
generally requires 5–6 steps (Appendix Sec-
tion E.2). Moreover, the execution time for
smaller models is nearly double, suggesting
that each sub-agent takes longer to complete its
assigned steps. Due to space constraints, a de-
tailed analysis of cost and runtime is provided
in the Appendix E.2 and E.13, where results
are presented by partitioning the 141 scenarios
into single-agent and multi-agent tasks. To fur-
ther emphasize the potential of small language
models (SLMs), we conducted a more in–depth
task–category–level analysis. As shown in Fig-
ure 5, SLMs perform particularly well on tasks
associated with the IoT Agent, while tasks re-
lated to WO and End-to-End agents still require
broader improvements across all model scales.

Human Validation. To assess the reliability of
using LLMs as automatic evaluators for benchmarking tasks, we compare model-generated judg-
ments against human annotations on a sample of 40 tasks. Each task is evaluated along three dimen-
sions by four domain experts, all operating under the same information constraints as the LLMs. We
use llama-4-maverick as the default model for conducting this study. These inter-rater relia-
bility scores indicate substantial agreement across key evaluation dimensions, with Data Retrieval
Accuracy showing the strongest consistency (Cohen’s κ = 0.79, 90.48% accuracy). Task Comple-
tion (κ = 0.62) and Generalized Result Verification (κ = 0.71) also reflect a high level of alignment
among evaluators.

Reference-Based Scoring. Focusing on the Plan-Execute paradigm, we observe that
mistral-large achieves the highest performance for task decomposition: rouge1 ≈ 0.42,
rouge2 ≈ 0.26, and rougeL ≈ 0.34. These results complement the LLM-based rubric findings
(Figure 5(b)), providing additional evidence supporting LLM based performance checking. A de-
tailed report is provided in Appendix E.7- E.9 to cover results on task execution score, etc. Lower
scores can result from outputs that are more verbose than the ground truth.

Ablation Study. We conducted ablation experiments using the Agent-As-Tool method. Injecting
10 out-of-domain distractors (e.g., SREAgent, EchoAgent) into 99 single-agent scenarios unex-
pectedly improved task completion, accuracy, and reasoning, suggesting that distractors may trigger
more deliberate reasoning in LLMs. In contrast, removing all in-context examples for 65 single-
agent tasks (IoT+FMSR+TSFM) caused performance to collapse—from 80% to 34% for gpt-4.1
and from 60% to 3% for granite-3-8b, highlighting the critical role of in-context learning for
ReAct-style coordination (Appendix E.6).
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5.2 EMERGING FAILURE MODES DISCOVERY

Trajectory analysis is critical for detecting agent mis-
takes, but becomes more challenging in multi-agent set-
tings. AssetOpsBench extends the fixed agent failure
taxonomy Cemri et al. (2025) by enabling continuous
monitoring and proactive detection of failure modes in
LLM-driven agents. We analyzed 881 execution trajec-
tories generated using the Agent-As-Tool approach and
used gpt-4.1 to estimate the distribution of 14 prede-
fined failure modes. As shown in Table 2, system design
emerges as a major failure source. To capture behaviors
beyond this taxonomy, we allowed self-discovery of up
to two novel failure modes per trace, revealing emergent
and compound failures not covered by existing classifi-
cations. Among all trajectories, 185 contained one novel
mode and 164 exhibited two. Common emergent failures
include Overstatement of Task Completion (122 cases,
23.8%), Extraneous or Ambiguous Output Formatting
(110 cases, 21.4%), and Ineffective Error Recovery (160
cases). Appendix F details the discovery procedure and
reports how incorporating Table 2 information improves
performance.

Table 2: Distribution of Failure Subcat-
egories Across Stages of Execution

Failure Subcategory Stage & %

System Design (Total 37.38%)
Disobey Task Spec. Pre: 13.87%
Disobey Role Spec. Pre: 0.11%
Step Repetition Exec.: 16.41%
Loss of Conversation Pre: 0.00%
Unaware of Termination Post: 6.99%

Agent Coordination (Total 27.52%)
Conversation Reset Execution: 0.00%
Fail to Ask for Clarification Execution: 10.22%
Task Derailment Execution: 4.34%
Information Withholding Execution: 2.22%
Ignored Agent’s Input Execution: 2.06%
Action Mismatch Execution: 8.68%

Task Verification (Total 35.10%)
Premature Termination Pre: 3.92%
No or Incomplete Veri. Execution: 15.56%
Incorrect Verification Execution: 15.62%

5.3 GENERALITY AND PRODUCTION TESTING: 162 SCENARIOS

To evaluate the generality of our system, we applied it to three additional domains (air compressor,
hydraulic system, etc) and one internal production use case. Our framework is field-tested to mon-
itor 42 distinct assets across five different asset classes (Air Handling Unit, CRAC, Chiller, Pump,
and Boiler), generating asset health insights (“asset needs attention”) with varying complexity and
temporal context. Table 3 shows a summary of the results. These results demonstrate consistent,
high-quality agent behavior across core evaluation metrics. Manual review by an expert confirms
that agent outputs align with expected answers in nearly all cases (up to 100%), supporting the ro-
bustness and generalization of our approach under real-world deployment conditions. Except for
the Metro train, the remaining datasets have good performance, including SLM. Appendix E.15
provides a detailed discussion of example scenarios, asset coverage, and token count distribution
for consideration during deployment. Our original 141 Scenarios are complex and tough, whereas
Asset health is purely based on work orders and asset profile.

Table 3: Agent performance across multiple domains and scenarios.

Domain / Model Task
Completion

Data Retrieval
Accuracy

Generalized
Verification

Expert
Verification Source

Asset Health (42 tasks)
granite-3-8b 92.86% 100.00% 88.10% 85.71% Private
llama-4-maverick 100.00% 100.00% 100.00% 100.00% –
mistral-large 95.24% 100.00% 95.24% 95.24% –

FailureSensorIQ (88 tasks) ISO (2016)
llama-4-maverick 67.0% 71.6% 56.8% –

Metro Train (15 tasks) Davari & Gama (2021)
llama-4-maverick 26.7% 20.0% 40.0% –

Hydraulic System (17 tasks) Helwig & Schtze (2015)
llama-4-maverick 88.2% 100% 88.2% –

6 CONCLUSION

This paper presents a formalized framework for AI agents in industrial assets, encompassing a com-
prehensive and diverse set of scenarios derived from multiple data sources, a taxonomy, and a stan-
dardized evaluation methodology. The Agent-As-Tool paradigm offers a promising approach for
orchestrating multi-agent interactions. In future work, we plan to introduce realistic environment
constraints, such as compute limitations and API usage costs, to innovate novel algorithms.
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In the Appendix, we discuss four broad topics that both support the main paper and provide addi-
tional details to ensure reproducibility.

A AGENTS DEFINITION

This appendix provides a detailed exposition of the content introduced in Section 3. In particular,
we focus on the mathematical formulation of the agent architecture, followed by a brief overview
of the proposed framework. The goal is to formalize the agent’s operational components and offer
foundational context for readers interested in the underlying design principles.

A.1 AGENT-ORIENTED TASK AUTOMATION PROBLEM - AOP

We formalize the Agent-Oriented Problem (AOP) as a tuple:

AOP = ⟨A, T ,Π,M,O⟩
where each component defines a core capability of a modular, agent-based reasoning and action
system:

• A = {A1, A2, . . . , An} denotes the set of available agents. Each agent Ai is character-
ized by its reasoning capabilities, task specialization, internal memory, and communication
interfaces, enabling autonomous or cooperative execution of assigned subtasks.

• T = {τ1, τ2, . . . , τk} is the set of tasks. Each task τ is described by a triple ⟨g,M, C⟩,
where g denotes the task goal (e.g., fault detection or maintenance planning), M speci-
fies the required input modalities (e.g., time-series telemetry, FMEA documents, structured
metadata), and C captures any domain-specific or operational constraints (e.g., time win-
dows, asset type, or safety requirements).

• Π is the hierarchical plan space. A plan π ∈ Π is an ordered sequence of task-agent
assignments:

π = [⟨τ1, Ai⟩, ⟨τ2, Aj⟩, . . .]
where each subtask is delegated to an appropriate agent for execution, potentially with
dependencies among steps.

• M denotes the memory system, consisting of both agent-local and shared global compo-
nents. It is modeled as a dynamic key-value store M = {(ki, vi)}mi=1, supporting context
persistence, lookup, and updates throughout the planning and execution process.

• O represents the output space. Each output o ∈ O is the structured or unstructured result of
executing a plan. Outputs may include diagnostics, action recommendations, summaries,
or control triggers, depending on the task and domain.

A.2 FRAMEWORK INTRODUCTION

AssetOpsBench uses the ReAct framework Yao et al. (2023) in an end-to-end agent design that
integrates a Review Agent to verify the final answer. Figure 6 illustrates the full architecture.

The ReAct agent executes a Think-Act-Observe loop, solving tasks iteratively while detecting and
recovering from repetitive or ineffective actions. The Review agent verifies whether the ReAct agent
has successfully completed the task, ensuring the quality of the output. Subsequent sections present
the architecture in detail, highlighting the distinction between two architectural paradigms—Agent-
As-Tool (See SectionA.3) and Plan-Execute (See SectionA.4).

A.3 AGENT-AS-TOOL

For the Agent-As-Tool paradigm as shown in Figure 7, we implemented the following components:

• A standard ReAct (Think–Act–Observe) agent loop using open source framework. In the
initial setup, the number of reflections was set to one—effectively disabling reflection. We
have extended version of ReActXen, and in future, we will conduct experiments to enable
multi-step reflection within ReActXen.
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Figure 6: ReAct used to build individual agent

Figure 7: Agent-As-Tool

• A curated list of tools, the majority of which are stub interfaces that delegate functionality to
specialized sub-agents. The only standalone utility tool in this set was the JSONReader,
which reads a JSON object from a file and returns its contents as the tool’s direct response.

The sub-agent stubs were intentionally designed to be minimal. Each stub accepted a single input
parameter—a string called "request"—and returned a structured JSON output. The output JSON
object included the following fields:

• answer – the primary answer returned by the sub-agent, represented as a plain string.

• review – a nested JSON object capturing a review of the response, typically including
fields such as status, reasoning, and suggestions.

• summary – a brief description of the JSON object’s structure and semantics, useful for
interpretability or chaining with downstream tools.

The ReAct agent was initialized with a standard prompt that includes:

• Examples for In-Context Learning – A small number of sample interactions for each sub-
agent were provided to guide behavior. These examples followed the standard ReAct for-
mat of Think–Act–Observe, illustrating how to invoke tools and interpret their responses.
A representative example is shown below:

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Question: download asset history for CU02004 at SiteX
from 2016-07-14T20:30:00-04:00 to 2016-07-14T23:30:00-04:00
for "CHILLED WATER LEAVING TEMP" and
"CHILLED WATER RETURN TEMP"

Action 1: IoTAgent
Action Input 1: request=download asset history for CU02004
at SiteX from 2016-07-14T20:30:00-04:00 to
2016-07-14T23:30:00-04:00 for "CHILLED WATER LEAVING TEMP"
and "CHILLED WATER RETURN TEMP"

Observation 1: {
"site_name": "SiteX",
"assetnum": "CU02004",
"total_observations": 25,
"start": "2025-03-26T00:00:00.000000+00:00",
"final": "2025-04-02T00:00:00.000000+00:00",
"file_path": "/var/folders/fz/.../cbmdir/c328516a-643f-40e6-8701-

↪→ e875b1985c38.json",
"message": "found 25 observations. file_path contains a JSON array of

↪→ Observation data"
}

Listing 1: Example ReAct Prompt for IoTAgent

• Tool Demonstrations – These sample calls were concatenated to form a comprehensive
set of demonstrations for all tools available to the agent, effectively seeding it with usage
patterns.

The sample calls for all the tools are concatenated to form the examples.

• question - the question input to ReAct
• tool names - the list of sub-agent tool names (plus JSONReader)
• tool descriptions - descriptions of the sub-agents

Execution Framework. The ReAct engine is reinitialized for each question and executed un-
til either (a) successful completion—as determined by the Review component using an LLM-as-
judge—or (b) a maximum of ten iterations. The framework iterates through a list of models (e.g.,
mistralai/mistral-large) and a corresponding list of utterances to execute for each model.
The system supports retries for failed executions. After each ReAct run, the complete trajectory and
associated evaluation metrics are stored. The recorded metrics include:

• Question: the input query being processed
• Total execution time: duration of the entire ReAct loop
• Number of ReAct steps: count of action-observation cycles
• Review status: success or failure determined by the LLM-based reviewer

A.4 PLAN-EXECUTE

Plan-Execute. Plan-Execute is a widely used architectural paradigm for multi-agent systems. Fig-
ure 8 depicts the implementation adopted in our work. The process initiates when a user submits
a query, which is first processed by the Planner. The Planner decomposes the query into discrete,
executable tasks. These tasks are then vetted by a Reviewer component to ensure quality, com-
pleteness, and relevance. Upon approval, the Orchestrator assigns the tasks to the most appropriate
agents. Each agent independently executes its assigned task and returns a structured response. These
responses are then aggregated by the Summarization module, which synthesizes them into a coher-
ent final output that is returned to the user. This architecture supports modularity, robustness, and
interpretability across the task lifecycle.
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Figure 8: Plan-Execute Multi-Agent System

A.5 EXAMPLE DEMO

In the following Figures 9-11, we provide a few images to showcase working of Agent-As-Tool
approach for a single end-to-end utterance.

Figure 9: Execution is Initiated with an input query.

Figure 10: The Final step of the execution

A.6 ASSETOPS AGENT DESIGN - COMMUNICATION

Appendix A.2 already discussed how we implemented the two approaches for orchestra role: Agent-
As-Tool and Plan-Execute. In this appendix, we provide additional detail on how we enable com-
munication.

Listing 2 outlines how the FMSR agent packages its reasoning output into a structured message
for downstream agents or evaluators. The custom json function formats the response to include the
final answer, a peer review section (comprising status, reasoning, and suggestions), and a reflection
field. Additionally, a natural language message is synthesized to summarize the execution result,
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Figure 11: Anomaly Detection : Final Output

enhancing transparency and interpretability in multi-agent settings. This output acts as a compact
yet comprehensive communication protocol for reasoning agents collaborating in a complex task
pipeline.

def custom_json(obj):
if isinstance(obj, FMSRResponse):

return {
"answer": obj.answer,
"review": {

"status": obj.review["status"],
"reasoning": obj.review["reasoning"],
"suggestions": obj.review["suggestions"],

},
"reflection": obj.reflection,
"message": (

"I am FMSR Agent, and I have completed my task. "
f"The status of my execution is ’{obj.review[’status’]}’.

↪→ "
f"I also received a review from the reflection agent; "
f"suggestions are included in the review field for

↪→ further insights."
),

}
raise TypeError(f"Cannot serialize object of type {type(obj)}")

Listing 2: Formatted response message from FMSRAgent

B ASSETOPSBENCH HIERARCHY AND DOMAIN SPECIFIC AGENTS

This appendix presents the structured task taxonomy used in AssetOpsBench, which organizes
benchmark scenarios based on key stages in the industrial asset lifecycle. The taxonomy is designed
to support the creation of realistic, diverse, and role-specific evaluation tasks for intelligent agents
operating in complex environments, as shown in Figure 13 for the tasks related to the industrial asset
management.

To illustrate how the structured task taxonomy guides agent development and evaluation, we high-
light four representative agents: the IoT Agent, the FMSR Agent (Failure Mode Sensor Relations
Agent), TSFM (Time Series Foundation Model) Agent, and the WO Agent (Work Order Agent).
Among these, two agents—FMSR Agent and WO Agent—are particularly useful for their domain
specialization and integration depth within AssetOpsBench. Appendix B.2 presents the rationale for
FMSR Agent, emphasizing its role in bridging raw telemetry with diagnostic reasoning through sen-
sor–failure mapping. Appendix B.4 focuses on the WO Agent, which operationalizes maintenance
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Figure 12: Simulated Environment for Open Source Contribution and Testing

Figure 13: Representative Routine tasks in Asset Lifecycle Management.

planning and historical analysis by retrieving, filtering, and correlating work order records with asset
conditions. Together, these examples demonstrate how high-level task categories—such as failure
mode alignment, anomaly response, and intervention prioritization—are translated into grounded,
data-driven agent behaviors. This alignment reinforces AssetOpsBench’s emphasis on transparency,
domain specialization, and end-to-end task automation.
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Figure 14: Mapping Example internally used by FMSR Agent

B.1 RATIONALE FOR IOT AGENT OVER APPLICATION

The IoT Agent plays a foundational role in supporting Asset Configuration tasks within the Asse-
tOps framework, as illustrated in Figure 13. It enables structured access to real-time and historical
telemetry data, asset metadata, and site configurations. Specifically, it allows users to query avail-
able IoT-enabled sites, list all assets within a given site (e.g., MAIN facility), and retrieve detailed
metadata for specific assets such as chillers and air handling units (AHUs). Additionally, it pro-
vides access to time-series sensor data—such as power input, temperature, flow rate, and system
tonnage—across customizable time windows. These data queries form the backbone for monitor-
ing tasks, model inputs, and analytics performed by downstream agents like TSFM Agent and WO
Agent.

Although the IoT Agent does not perform anomaly detection or failure analysis directly, it is a
critical enabler by delivering high-fidelity, time-aligned telemetry required for advanced applications
(such as those using TSFM Agent). For example, users can retrieve the tonnage data for Chiller 6
during a specific week, download metadata for Chiller 9, or access sensor values recorded during
a known operational event. These capabilities align with the early-phase needs of asset lifecycle
management—specifically selecting data sources and configuring metrics of interest—ensuring all
downstream decision-making is grounded in accurate, context-rich operational data. The agent’s
flexible query interface and knowledge and data retrieval support allow it to seamlessly integrate
into automated pipelines for asset monitoring, diagnostics, and performance tracking.

B.2 RATIONALE FOR FMSR AGENT OVER APPLICATION

The sensor–failure alignment generation (See Figure 14) is a critical component of the AssetOps-
Bench benchmark, serving multiple roles in both dataset understanding and intelligent system de-
sign. Its inclusion is motivated by the following key factors:
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1. Bridging Raw Data and Diagnostic Insight: The table explicitly maps sensor variables to
relevant failure modes, establishing a direct link between low-level telemetry and high-level
maintenance reasoning. This supports tasks such as fault detection, root cause analysis, and
feature selection for learning-based systems.

2. Alignment with FMEA Methodology: By structuring failure explanations according to
the principles of Failure Modes and Effects Analysis (FMEA), the table offers a formalized,
interpretable view of asset health. Each sensor’s diagnostic role is contextualized through
failure causes, effects, and detection implications.

3. Supporting Explainability and Safety: In industrial environments, operational decisions
require transparency. The alignment table enhances system explainability by clarifying
why a given signal is relevant, how it relates to equipment health, and what operational
risks it may indicate.

4. Improving Dataset Transparency: The AssetOpsBench dataset includes a wide range
of sensors across multiple devices. This table functions as a documentation layer that
improves usability, reproducibility, and understanding for researchers and practitioners en-
gaging with the benchmark.

5. Guiding Model and Rule Development: Whether designing rule-based systems, hybrid
AI architectures, or physics-informed machine learning models, a well-defined mapping
of sensors to failure mechanisms is foundational. It informs the construction of robust
detection logic and contributes to generalizable reasoning strategies.

In sum, the sensor–failure alignment table plays a central role in transforming raw operational
telemetry into structured, actionable insight. It provides the semantic grounding necessary for de-
veloping interpretable, reliable, and effective AI agents for real-world industrial maintenance tasks.
Table 4 provides an extensive example for sensor-failure mode relation for a chiller system.

Table 4: Sensor Interpretation and Failure Mode Relevance in Chiller Systems - Illustrative

Sensor Explanation Impact on Chiller Health / Failure Mode
Relevance

Condenser Leaving
Temp

Temperature of water
leaving the condenser

Indicates heat rejection efficiency; abnor-
mal readings may signal fouling or reduced
flow — potential heat exchange failure.

VFD Output Voltage Voltage output from
Variable Frequency
Drive

Instability may affect fan/compressor oper-
ation — linked to electrical drive failure or
load imbalance.

CHWSTSP in Free
Mode

Chilled water setpoint
during free cooling mode

Misconfiguration can lead to energy ineffi-
ciency — related to control logic failure.

Cycling Code Indicates compressor cy-
cling state

Frequent cycles may indicate load mis-
match, sensor error, or compressor stress.

Ready Status Indicates if chiller is in a
ready state

Persistent unavailability may reflect con-
trol override, interlock failure, or alarm
lockout.

Manual Start/Stop Overrides for manual op-
eration

May cause unscheduled runtime or safety
override conditions.

Chilled Water Leav-
ing Temp

Temperature leaving
evaporator

Deviation may suggest capacity loss or im-
proper load conditions.

Condenser Flow Water flow through con-
denser loop

Low flow may cause high pressure shut-
down or heat rejection failure.

VFD Input Power Power input to VFD Spikes may indicate motor inefficiency,
overload, or harmonic distortion.

CNW Flow Hi Alarm
SP

High flow setpoint for
condenser loop

May indicate bypass valve issues or over-
pumping.

Watt/Ton Cooling efficiency met-
ric

Rising ratio suggests energy inefficiency or
component degradation.
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Sensor Explanation Impact on Chiller Health / Failure Mode
Relevance

Chilled Water Flow Water flow through
evaporator

May point to pump failure, valve issues, or
airlocks.

Motor Run Status Compressor motor oper-
ational state

Discrepancies could signal false starts,
sensor error, or runtime misreporting.

Vibration Point #1
SP

Vibration sensor setpoint
(location #1)

May indicate bearing failure, imbalance,
or mechanical looseness.

CHW Valve Position Position of chilled water
valve

Out-of-range position may imply valve ac-
tuator fault or control misbehavior.

CHW Differential
Pressure (D/P)

Pressure drop across
chilled water loop

Suggests clogging, filter fouling, or flow re-
sistance.

CHW Flow Hi Alarm
SP

Alarm setpoint for high
CHW flow

Triggered by pump overspeed, valve over-
shoot, or control issues.

Condenser Return
Temp

Water temperature re-
turning to the condenser

Important for thermal load calculation and
monitoring efficiency.

Average Amps Average motor current High current may indicate overload, bear-
ing drag, or electrical faults.

CHW Valve Close
Control

Control signal to close
CHW valve

Improper function may cause flow issues or
unmet loads.

CNW Differential
Pressure (D/P)

Pressure drop in con-
denser loop

Indicates scaling, fouling, or pump degra-
dation.

VFD Internal Ambi-
ent Temp

Internal temperature of
VFD

High temps may trigger thermal trips or
shorten VFD lifespan.

Freon Temp Refrigerant temperature Abnormal values may suggest charge is-
sues, expansion valve faults, or heat ex-
change failure.

Compressor Oil
Sump Temp

Oil sump temperature High temperature may signal bearing wear
or insufficient cooling.

Chilled Water Return
Temp

Return water temp to
evaporator

Used for cooling load and delta-T analysis.

Motor Run Status
RPT

Reported motor run con-
firmation

Mismatch suggests sensor/control error.

VFD Inverter Link
Current

Current through VFD in-
verter link

High current may indicate overload or
VFD stress.

CHWSTSP in Part
Mode

Setpoint in partial load
mode

Improper configuration can cause energy
waste or load mismatch.

VFD Phase A/B/C
Current

Phase currents from
VFD

Used to detect imbalances, shorts, or phase
loss.

VFD Converter Heat
Sink Temp

VFD heat sink tempera-
ture

Elevated temps reduce component life and
can cause failure.

Compressor Oil
Pressure

Oil pressure in compres-
sor

Low pressure risks lubrication failure and
component damage.

Failure (status flag) Direct failure indicator Used as ground truth label for fault evalua-
tion.

VFD Setpoint Speed or torque com-
mand

Affects energy usage, response time, and
cooling capacity.

CHW Flow High
Alarm

High flow warning flag May indicate system control faults or over-
sized flow components.

VFD DC Bus Volt-
age

DC voltage level inside
VFD

Instability can reflect power quality issues.

CNW Flow High
Alarm

High condenser water
flow warning

May reflect valve misposition or energy in-
efficiency.

CNW Flow Low
Alarm SP

Low flow alarm thresh-
old

Indicates risk of overheating or shutdown
due to poor heat rejection.

Warning Code Non-critical warning sta-
tus

Helpful for early diagnostics or trend de-
tection.
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Sensor Explanation Impact on Chiller Health / Failure Mode
Relevance

Vibration Points
#2/#3 SP

Additional vibration set-
points

Detect imbalance, wear, or mechanical
degradation.

B.3 RATIONALE FOR TSFM AGENT OVER APPLICATION

The TSFM Agent is purpose-built to support critical tasks within the AssetOps workflow, as outlined
in Figure 2a. Within Model Selection and Analysis, TSFM Agent enables forecasting of key per-
formance indicators (KPIs) using lightweight, pre-trained foundation models. Its adaptive anomaly
detection framework, based on post-hoc conformal prediction, supports calibrated and interpretable
anomaly scores, providing high utility for both Monitoring and Execution and Maintenance and
Response.

Specifically, the TSFM Agent can execute and refine models, classify anomalies based on historical
deviations, and support operational guardrails by simulating expected trends under normal condi-
tions. In downstream applications, the agent’s outputs can be used to summarize overall system
health by tracking the frequency of anomalies across selected KPIs. These anomalies serve as a
foundation for maintenance recommendations, enabling preventive and reactive work order genera-
tion. TSFM Agent facilitates real-time, data-driven decision-making throughout the asset lifecycle.

B.4 RATIONALE FOR WO AGENT OVER APPLICATION

The WO Agent, a code based ReAct, in AssetOpsBench is designed to enable intelligent interaction
with structured and unstructured maintenance records through a modular data model. It operates
over a set of Business Objects (BOs) that represent work orders, alerts, anomalies, failure codes, and
asset metadata. These BOs are categorized into five functional groups that collectively support the
WO Agent’s decision-making capabilities.

To reason over these BOs, the WO Agent is equipped with a collection of analytic functions that
allow it to retrieve, interpret, and act upon historical and real-time data. The agent’s capabilities are
structured as follows:

1. Historical Reasoning via Content Objects and Knowledge Extraction: The WO Agent
accesses raw maintenance data such as WorkOrders, Events, including Work orders, alerts,
and anomaly Events. Knowledge extraction functions enable the agent to retrieve and filter
this data by date, asset, and work order type, allowing targeted analysis and retrospective
diagnostics.

2. Standardized Interpretation with Meta/Profile Objects: BOs like ISO Failure Code,
AlertRule, and Equipment provide structured classification schemes. These allow the agent
to categorize failures, apply semantic filters, and maintain compatibility with domain con-
ventions—critical for aligning alerts and anomalies with actionable categories.

3. Temporal and Causal Reasoning via Statistical Functions: Leveraging relationship BOs
such as Alert-Rule Mapping and Anomaly Mapping, the WO Agent applies statistical func-
tions (e.g., Allen’s Interval Algebra) to detect temporal patterns—such as when alerts con-
sistently precede failures. It also detects repeated work order cycles, helping align mainte-
nance with actual degradation patterns instead of fixed schedules.

4. Predictive and Prescriptive Intelligence through Decision Support Functions: Using
the WorkOrderRecommendation BO, the agent forecasts future work orders, recommends
maintenance based on alerts or KPI anomalies, and identifies opportunities for bundling
related tasks. These decision support functions enable proactive scheduling and optimize
resource use across the asset lifecycle.

5. Persona-Aligned Interaction and Query Resolution: The WO Agent interfaces naturally
with domain personas. Maintenance engineers can explore past interventions for a given
failure, while planners can query upcoming work order demands or seek opportunities to
consolidate tasks. These capabilities are backed by modular functions that support flexible
querying and planning logic.
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In summary, the WO Agent is a hybrid reasoning and decision-support agent built atop structured
business objects and analytic functions. It connects historical insight with predictive planning, en-
abling lifecycle-aware maintenance interventions grounded in transparent, data-driven logic.

Table 5: WO Agent Summary of Business Objects, Source, Role, and Number of Records

Business Ob-
ject

Source Role Count

Content Objects
WorkOrder Work Order Man-

ager
Tracks scheduled and unscheduled mainte-
nance tasks, categorized as preventive or cor-
rective.

4392

Event Aggregated by
Authors

Consolidates event logs for tracking and
decision-making.

6929

Alert Events IoT Repository Logs real-time alerts triggered by IoT sensors
based on predefined conditions.

1995

Anomaly
Events

ML Generated Detects KPI deviations using machine learning
for predictive maintenance.

542

Meta/Profile Objects
ISO Failure
Code

Developed by
Authors

Standardizes failure classification for struc-
tured maintenance analysis.

137

ISO Primary
Failure Code

Developed by
Authors

Defines primary failure categories and links
related secondary codes.

68

AlertRule SME Provided Specifies conditions for triggering alerts based
on system behaviors.

77

Equipment SME Provided Represents industrial assets, including status
and specifications.

22

Relationship Causality Objects
Alert-Rule
Mapping

Relationship
Causality

Links alert rules to failure codes for automated
diagnostics.

46

Anomaly
Mapping

Relationship
Causality

Associates anomalies with failure codes for
predictive insights.

12

Recommendation Objects
WorkOrder
Recommen-
dation

Recommendation Suggests maintenance actions based on histor-
ical patterns.

N/A

Note: The design and structure of the business objects and corresponding analysis in this section are valid for
other industrial asset types, such as standby generators.

C SCENARIO CREATION PRINCIPLES

The scenarios in AssetOpsBench are crafted to evaluate a broad spectrum of capabilities expected
from autonomous agents in industrial settings. Each scenario is designed to challenge specific di-
mensions of reasoning, tool use, data interpretation, communication, and decision-making, as out-
lined below:

• Reasoning and Tool Use: Assesses domain-specific reasoning such as time and schema
operations, appropriate tool invocation, and structured command generation. Common
failure modes include premature halts or misuse of tools.

• Data Handling and Forecasting: Evaluates the agent’s ability to interpret telemetry, detect
anomalies, and configure appropriate forecasting or anomaly detection models. Tasks often
require translating domain knowledge into ML configuration steps (e.g., model selection,
fine-tuning).
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Table 6: Examples of Scenario with their Subtypes (Aligned with Task Taxonomy - Figure 2b)

Agent Group Subtype Task Descriptions

TSFM Agent
# Scenarios: 23

Forecasting Predict future KPI trends over time windows
Model Tuning Select or refine time series models for accuracy
Anomaly Detection Identify deviations in operational behavior
Hybrid Tasks Combine prediction with anomaly evaluation
Model Capabilities Query TSFM model limits and configurations

Work Order
Agent
# Scenarios: 36

Retrieval & Filter Filter work orders by asset, location, or time
Event Summary Summarize logs or alerts over time windows
Scheduling Recommend or optimize work order sequences
RCA & Alert Review Perform root cause or alert logic review
KPI-based Reco. Link alerts or KPI trends to work orders

Multi-Agent
(End-to-End)
Tasks
# Scenarios: 42

Knowledge Query Tasks involving anomaly detection or forecasting
Failure Reasoning Uses degradation models and causal logic
Sensor Mapping Maps failure modes to sensors
Sensor Inventory Retrieves installed sensors on an asset
Other Multi-step inference or decision-making

• Agent Communication and Coordination: Tests multi-agent workflows involving tar-
geted question-asking, summarization, and collaborative decision-making. Scenarios
mimic how agents may delegate or escalate tasks in real settings.

• Workflow Orchestration and Decision-Making: Measures the agent’s ability to plan and
manage dependent subtasks, reason under uncertainty, and terminate appropriately when
faced with ambiguity or missing data.

C.1 SCENARIOS

As shown in Table 6, AssetOpsBench includes a total of 141 scenarios with 99 single-agent sce-
narios and 42 multi-agent scenarios. The goal is to test an agent’s ability across four capability
dimensions: Tool-Centric (e.g., tool and API interaction), Skill-Centric (e.g., analytical reason-
ing), Domain-Centric (e.g., context-aware decision-making), and LLM-Centric (e.g., language-
based generalization across tasks). Each scenario is associated with an utterance to complete a
task. Table 6 summarizes the distribution of scenario subtypes and their alignment with the task
taxonomy. Utterance-507 represents an LLM-Centric scenario, where the agent must recognize
that forecasting task is redundant in the presence of a zero-valued sensor reading—indicating that
the machine may not be operating. The agent is expected to bypass unnecessary computation and
recommend halting diagnostics to address the root issue directly. In contrast, Utterance-511 exem-
plifies a Skill-Centric task, requiring the agent to correlate energy consumption with a power input
variable and construct a corresponding model. This scenario tests the agent’s analytical reasoning
over telemetry data to uncover functional relationships. Detail for other scenario is in Appendix C.

C.2 EXAMPLES

We include two examples (Table 7 and Table 8) that showcase distinct behaviors of agent outputs.
Readers can observe that the characteristic form varies even for problems that appear similar on the
surface.

C.3 SCENARIO COMPARISON WITH OTHER BENCH

We prepare a table to compare with the literature in Table D.
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Table 7: Example Knowledge Query: Energy Prediction for Chiller 9

Field Description
ID 507
Type Knowledge Query
Text What is the predicted energy consumption for Chiller 9 in the week of

2020-04-27 based on data from the MAIN site?
Characteristic
Form

The expected response should confirm the successful execution of all
required actions, ensuring that the correct asset (Chiller 9), location
(MAIN), and time range (week of 2020-04-27) were used for data re-
trieval and analysis. It should specify that the agent identified the sensor
name (power input sensor) and retrieved the historical energy consump-
tion data for Chiller 9 during the specified time period.
The response must also explain that the agent attempted to analyze the
data for energy consumption prediction, but was unable to do so due
to insufficient data, as the power input for Chiller 9 was consistently
0.0 from 2020-04-20 to 2020-04-25, indicating that the chiller was not
operating.

Table 8: Example Knowledge Query: Predicting Energy Usage for Chiller 9

Field Description
ID 511
Type Knowledge Query
Text Can you predict Chiller 9’s energy usage for next week based on data

from the week of 2020-04-27 at MAIN?
Characteristic
Form

The expected response should confirm the successful execution of all
required actions, ensuring that the correct asset (Chiller 9) and location
(MAIN site) were used for data retrieval and analysis. It should specify
that the agent first identified the sensors for Chiller 9, then selected
the Chiller 9 Power Input sensor, and successfully retrieved the energy
usage data for the specified time period.
The response should confirm that the agent provided the file path where
the data is stored. Additionally, it should mention that although the
agent initially encountered errors while analyzing the data and making
predictions, it successfully corrected its mistakes and finetuned a Time
Series Forecasting model using the provided data. The agent should
have used the finetuned model to generate predictions for the next week,
with the results being stored in the specified file.

D REAL DATASETS FOR ASSETOPSBENCH AND UTILIZATION BY AGENTS

In this part, as extension of Section 4.1, we will zoom into the datasets utilized by the various agents
of AssetOpsBench (More details of the roles of the agents in the asset lifetime management can be
found at Appendix B).

D.1 SENSOR TELEMETRY DATASET FOR IOT AGENT AND TSFM AGENT

Both IoT Agent and TSFM Agent (Figure 2a) leverage the Sensor Telemetry Dataset, which com-
prises sensor telemetry collected from Building Management Systems (BMS) and the SkySpark
analytics platform. This dataset captures fifteen-minute interval operational data from industrial
HVAC systems, specifically a fleet of chillers. Each chiller unit (e.g., Chiller 4, Chiller 14) is in-
strumented with a standardized suite of physical sensors that monitor key operational parameters in
real-time.

A representative subset of these sensors is summarized in Table 10. These sensors record various
kinematic, dynamic, thermodynamic, electrical, and operational metrics essential to assessing the
performance and health of chiller systems. Measurements include water and refrigerant tempera-
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Table 9: Comparative overview of general-purpose and domain-specific benchmarks.

Benchmark TaskBench
(NeurIPS 2024)

ITBench
(ICML 2025)

AssetOpsBench
(Ours)

Data Generation Tool Graph + Back-
Instruct

Manual Manual

Tool Dependency ✓ ✓ ✓
Quality Control LLM Self-critique +

Rule-based
Human Verification Human Verification

Evaluation Task Decomposition +
Tool Selection + Pa-
rameter Prediction

ReActive Planning
+ Tool Selection

ReActive Planning
+ Tool Selection +
Parameter Predic-
tion

Tool Complexity Single tool to complex
tool graph

– Multiple tools;
same tools can
be called multiple
times

Dataset Scale 17,331 samples 141 scenarios 141 scenarios
Temporal / Dynamic
Query

× × ✓

Name Disambiguation × × ✓
Tools Output Opera-
tion

× × ✓

tures, power consumption, cooling capacity (tonnage), flow rates, and system setpoints. Addition-
ally, computed metrics such as chiller efficiency and load percentage serve as valuable real-time
indicators of system performance.

Table 10: Representative Sensors in the AssetOpsBench Dataset

Sensor Name Description
Chiller Return Temperature Temperature of water returning to the chiller
Supply Temperature Temperature of water exiting the chiller
Power Input Electrical power consumption
Tonnage Heat extraction rate (cooling capacity)
Condenser Water Supply to
Chiller Temperature

Temperature of water supplied to the condenser

Chiller Efficiency Instantaneous performance metric
Chiller % Loaded Current load as a percentage of the maximum
Condenser Water Flow Flow rate through the condenser
Liquid Refrigerant Evaporator
Temperature

Temperature of refrigerant in the evaporator

Run Status Binary indicator of whether the chiller is currently oper-
ating

Setpoint Temperature Current setpoint for chiller operation

Each sensor stream is accompanied by rich metadata, including sensor type, measurement units,
physical location, and structured device tags that define device associations. The dataset captures
realistic operational variability, encompassing noise, missing data, and seasonal patterns. As such,
it provides a robust foundation for developing and benchmarking models that require temporal rea-
soning, fault detection, and decision-making under uncertainty.

As illustration, Figure 15 presents layered time series subplots for key chiller sensors over a selected
snapshot period in June 2020 for Chiller 6. Each subplot corresponds to one sensor variable, en-
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abling a clear view of temporal dynamics and inter-variable behavior. This figure provides insight
into the operational profile of a single chiller unit during real-world usage.

Figure 15: Snapshot of time series data from Chiller 6 for June 2020. Each subplot shows an
individual sensor’s trend over time.

The IoT Agent interacts with this telemetry data through structured utterances. By leveraging the
standardized data provided by AssetOpsBench, the agent enables detailed, query-driven access to
operational information across HVAC assets such as chillers and air handling units (AHUs) at IoT-
enabled sites like the MAIN facility. Through these utterances, users can request both real-time
and historical data, retrieve metadata, and download sensor readings for specific timeframes. This
functionality supports knowledge and data queries, facilitating asset-level diagnostics, performance
monitoring, and intelligent decision-making, even in noisy or incomplete data.

On the other hand, the TSFM Agent operates on sensor telemetry data—either retrieved via the IoT
Agent or accessed directly from the sensor repository—to perform advanced time series analysis
across HVAC systems. It supports a range of analytical tasks, including multivariate forecasting,
and time series anomaly detection. At its core, the agent utilizes pre-trained time-series foundation
models. For anomaly detection, the TSFM Agent applies a model-agnostic, post-hoc adaptive con-
formal method that requires no additional fine-tuning data, making it highly practical for real-world,
resource-constrained deployments. By learning dynamic weighting strategies from prediction histo-
ries, it can detect distributional shifts and maintain calibrated, interpretable anomaly scores aligned
with user-defined false alarm rates. Through structured utterances, users can invoke forecasting on
specific variables (e.g., “Chiller 9 Condenser Water Flow”), fine-tune models with minimal data,
or detect anomalies in historical trends—all with minimal configuration. This seamless integration
of pre-trained models, adaptive analytics, and user-guided queries enables transparent, robust, and
immediately deployable monitoring solutions tailored for critical industrial systems.

D.2 FAILURE MODE DATASETS FOR FMSR AGENT

The failure mode datasets in AssetOpsBench are modeled using the principles of Failure Modes
and Effects Analysis (FMEA), a structured framework used in reliability engineering to identify
failure risks, assess root causes and effects, and inform condition-based maintenance strategies.
Each failure is defined by its mode, degradation mechanism, detection opportunity, and operational
impact, enabling structured reasoning for both rule-based diagnostics and machine learning.
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Failures in the dataset are annotated at the asset and subsystem levels, with a primary focus on
centrifugal chillers. These failures reflect realistic degradation pathways and operational stressors
derived from field experience. Each record in the failure model includes:

• Failure Location and Component: The subsystem or part where failure occurs, such as
bearings, gearboxes, impellers, or lubrication systems.

• Degradation Mechanism: The underlying physical process driving the failure, including
wear, erosion, oil degradation, vibration-induced fatigue, and misalignment.

• Degradation Influences: External or internal stressors such as run time, two-phase process
fluid, personnel error, or shock loading.

• Functional Failure Mode: The resulting operational defect, such as decreased oil pres-
sure, audible noise, low head pressure, or capacity loss.

• Detection Opportunities: Observable precursors or symptoms, including sensor readings
(e.g., oil sampling, vibration signals), condition-based alarms, or inspection results.

• Repair Time and Criticality: Estimated downtime and classification of failure risk, sup-
porting cost-based prioritization and scheduling.

• Preventive Task Type: Associated maintenance activity, such as oil analysis, vibration
analysis, or visual inspection, tagged with effectiveness ratings and intervention intervals.

For example, bearing wear—a recurring failure across chiller subsystems—may arise from lubri-
cation failure, misalignment, or fluid shock loading. This degradation is detectable via a combina-
tion of oil analysis and vibration monitoring, with failure symptoms including increased vibration,
reduced oil pressure, and audible anomalies. Similarly, impeller erosion is linked to aging and two-
phase fluid exposure, typically presenting as reduced capacity and lower head pressure.

Each maintenance task in the dataset is mapped to its detection mechanism and action type (e.g.,
condition monitoring vs. corrective repair), along with documentation on task content and recom-
mended frequency. These structured records not only support early fault detection and diagnostics
but also facilitate benchmarking of intelligent agents’ reasoning over real-world degradation patterns
and maintenance decisions.

Failures are temporally aligned with telemetry, enabling the study of degradation trajectories and
pre-failure conditions. This integrated design makes the dataset suitable for supervised learning,
causal inference, and evaluation of digital twins or predictive maintenance agents under realistic
operating uncertainty.

To utilize the failure modes and their association with the sensors, we design FMSR (Failure Mode
Sensor Relations) to interpret failure mode datasets within the AssetOpsBench framework, leverag-
ing structured FMEA (Failure Modes and Effects Analysis) principles to link sensor telemetry with
degradation mechanisms and operational failures. Using annotated failure records for assets such
as centrifugal chillers, the FMSR Agent builds knowledge graphs and reasoning models that con-
nect specific failure modes—like compressor overheating, evaporator fouling, or refrigerant valve
failure—to their underlying causes and detectable symptoms. These failure modes are mapped to
available sensor measurements (e.g., supply temperature, power input, vibration, flow rate) to iden-
tify observable precursors. For example, compressor overheating may be monitored through trends
in power input, chiller efficiency, and evaporator temperature, while condenser fouling can manifest
in abnormal return temperatures and flow rate deviations. Through structured utterances, users can
query which failure modes are associated with specific sensors, which are critical for detecting a
given failure, or even construct machine learning recipes for predictive modeling—such as anomaly
models for chiller trips or excessive purging. The agent leverages this data to perform rule-based
diagnostics, support causal analysis, and assist in condition-based maintenance planning. By align-
ing temporal sensor patterns with known failure signatures, the FMSR Agent enables explainable
fault detection and root cause inference, ultimately enhancing reliability, maintainability, and trans-
parency in HVAC operations.

D.3 WORK ORDER DATASETS FOR WO AGENT

Table 5 provide the summary of datasets (as business objects) and the size for each dataset. Those
work order datasets in AssetOpsBench provide a structured view of maintenance activity across in-
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Table 11: Work Order Event Schema Definition

Field Name Type Description
wo id String Unique identifier for the work order. Exam-

ple: "L247402"
wo description String Description of the work being done.

Example: "CHILLER COMP OIL
ANALYSIS"

collection String Broad group or system the work relates to.
Example: "compressor"

components String Specific part or component being serviced.
Example: "compressor"

primary code String Code representing the main type of work.
Example: "MT010"

primary code desc. String Description of the primary work code. Ex-
ample: "Oil Analysis"

secondary code String Sub-code under the primary category. Ex-
ample: "MT010b"

secondary code desc.String Description of the secondary code. Exam-
ple: "Routine Oil Analysis"

equipment id String Unique ID of the equipment. Example:
"CU02013"

equipment name String Human-readable name of the equipment.
Example: "Chiller 13"

preventive Boolean Indicates if this is preventive maintenance.
Example: TRUE

work priority Integer Priority level of the work (e.g., 1–5). Exam-
ple: 5

actual finish DateTime Date and time when the work was com-
pleted. Example: "4/6/16 14:00"

duration Duration Total job time. Format: HH:MM. Example:
"0:00"

actual labor hours Duration Actual labor time spent. Format: HH:MM.
Example: "0:00"

Table 12: Alert Event Schema Definition

Field Name Type Description
equipment id String Unique identifier for the equipment that trig-

gered the alert. Example: "CWC04701"
equipment name String Human-readable name of the equipment.

Example: "Chiller 1"
rule id String Identifier for the rule or condition that trig-

gered the alert. Example: "RUL0021"
start time DateTime Timestamp when the alert or event started.

Example: "11/24/20 19:00"
end time DateTime Timestamp when the alert or event ended.

Example: "11/24/20 23:59"

dustrial assets, encompassing both preventive and corrective interventions using work orders. Each
work order is associated with rich contextual data including equipment metadata, failure classi-
fication codes (e.g., ISO Failure Code, ISO Primary Failure Code), event logs, sensor-triggered
alerts, and machine-generated anomalies. These records are linked temporally and causally, allow-
ing agents to reason about asset history, detect recurring failure patterns, and recommend actions
based on past interventions.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 13: Anomaly Event Schema Definition

Field Name Type Description
timestamp DateTime The date and time when the anomaly event

was recorded. Example: "4/26/20
14:14"

KPI String The key performance indicator being moni-
tored (e.g., "Cooling Load").

asset name String The name of the asset or equipment being
measured. Example: "chiller 9"

value Numeric The actual measured value of the KPI at the
given timestamp. Example: 25978710

upper bound Numeric The upper threshold for the KPI. Exceeding
this may indicate an anomaly.

lower bound Numeric The lower threshold for the KPI. Falling be-
low this may indicate an anomaly.

anomaly score Float A score indicating how likely the data point
is an anomaly (typically 0 to 1).

Table 14: Mapping Table: KPI Anomalies to Failure Codes

Field Name Type Example Description
kpi name String Cooling Load Name of the key perfor-

mance indicator exhibiting
anomaly.

anomaly type String High Indicates the direction or na-
ture of the anomaly (e.g.,
High, Low, Spike).

category String Operational Failures Broad class of the failure
(e.g., Control System, Struc-
tural, External, Human).

primary code String OP004 Primary failure code associ-
ated with the anomaly.

pri. code des.String Incorrect Cooling
Zone Operation

Explanation of the primary
failure code.

seco. code String OP004c More specific sub-code re-
fining the root cause.

seco. code des.String Improperly Con-
trolled or Shut Off
Zones

Description of the secondary
failure code.

The group of datasets distinguishes between core content objects (e.g., WorkOrders, Alerts, Events,
Anomalies), metadata profiles, and relational structures that map alerts and anomalies to failure
codes.

The individual event tables — work orders (Table 11), alert events (Table 12), and anomaly events
(Table 13) — capture different but complementary signals related to equipment condition and be-
havior. To enable integrated analysis and causal reasoning, these events are unified into a common
event table schema (Table 15), allowing temporal alignment and cross-type relationship discovery
between maintenance actions, system warnings, and performance anomalies.

In addition, to support the linkage of failure code over the events, we provide two mapping tables:
one that connects alert rules to likely failure codes, and another that maps KPI-based anomalies to
structured failure categories (Tables of 16 and 14). These mappings enable agents to infer probable
root causes from real-time signals and integrate data-driven insights with expert failure taxonomies.
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Table 15: Unified Event Table Schema Definition

Field Name Type Description
event id String Unique identifier for the event (can be work

order ID, alert ID, anomaly ID, etc.). Exam-
ple: "WO-16170"

event group String High-level classification of the event
source (e.g., "WORK ORDER", "ALERT",
"ANOMALY").

event category String Sub-classification such as preventive main-
tenance ("PM"), corrective maintenance
("CM"), etc.

event type String Specific code/type of the event (e.g.,
"MT001", "RUL0021").

description String Human-readable description of the event.
Example: "Vibration Analysis" or
"Refrigerant Leak".

equipment id String Unique ID of the equipment involved in the
event. Example: "CWC04701"

equipment name String Name of the equipment. Example:
"Chiller 1"

event time DateTime Timestamp when the event occurred or
was logged. Format: YYYY-MM-DD
HH:MM:SS

note String Additional description for this event if nec-
essary

Table 16: Mapping Table: Alert Rule to Failure Code

Field Name Type Example Description
rule id String RUL0012 Identifier for the alert rule

triggered by a monitoring
system.

rule name String Chiller - Low Supply
Temperature

Descriptive name of the alert
rule logic or threshold con-
dition.

primary code String CS005 ISO failure code associated
with the likely root cause.

primary code String Control System Mal-
function

Human-readable explana-
tion of the failure code.

This help us to develop WO agent to support grounded evaluation of diagnostic reasoning, task
generation, and repair recommendation. More particularly, the WO agent analyze historical work
orders to identify repeated maintenance issues and improve task scheduling. It processed historical
work order, alerts (from IoT Agent) and anomalies (from TSFM agent) event, linking them to failure
codes to support predictive maintenance recommendations. In the potential industrial applications,
WO agent can complete to tasks of automating the interpretation of maintenance data, predicting
future work orders, and bundling related tasks to reduce operational downtime.

E ADDITIONAL EXPERIMENTS

E.1 EXAMPLE OF SAMPLE SCENARIO WITH GROUND TRUTH

We first prepared the ground truth that is verifiable.

Listing 3: Example FMSR task specification.
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1 {
2 "id": 105,
3 "type": "FMSR",
4 "deterministic": false,
5 "characteristic_form": "the answer should contain a list of sensor

names for asset wind turbine.",
6 "text": "Provide some sensors of asset Wind Turbine.",
7 "planning_steps": [
8 "Provide some sensors of asset Wind Turbine."
9 ],

10 "execution_steps": [
11 {
12 "name": "get_available_sensor_information",
13 "action": "Get Available Sensor Information",
14 "arguments": "Wind Turbine",
15 "outputs": "[a list of sensor names]"
16 },
17 {
18 "name": "finish",
19 "action": "Finish",
20 "arguments": "",
21 "outputs": ""
22 }
23 ],
24 "execution_links": [
25 {
26 "source": "get_available_sensor_information",
27 "target": "finish"
28 }
29 ]
30 }

E.2 ASSETOPSBENCH: EXECUTION EFFICIENCY

In this section, we analyze AssetOpsBench execution efficiency of 7 LLMs, complementing the
Leaderboard results in Section 5.1. Tables 17 and 18 present results from two multi-agent imple-
mentations. Metrics include the average number of steps taken per task and the average runtime (in
seconds) per task.

In the Agent-As-Tool execution mode, most models demonstrate relatively stable planning behav-
ior across both single-agent and multi-agent tasks. Compared to the Plan-Execute setting, models
here generally take more steps but operate with greater runtime efficiency. gpt-4.1 again exhibits
strong performance, balancing a higher number of steps with moderate runtime, indicating precise
control over tool invocation. Interestingly, llama-3-70b-instruct shows competitive effi-
ciency, achieving the lowest runtime in both task categories despite slightly fewer steps, suggesting
quicker tool usage or lower overhead per step. On the other hand, mistral-large exhibits ex-
treme runtime variability, skewed by a pathological case involving prolonged JSONReader calls
over large datasets. These results suggest that while tool-based execution benefits from more direct
action control, its efficiency is highly sensitive to the invoked tools and data volume.

In the Plan-Execute setting, the number of steps required for single-agent tasks closely mirrors
those of multi-agent tasks, indicating a tendency among LLMs to over-plan even for relatively
simple objectives. This pattern reflects limited sensitivity to task complexity during the planning
phase. Among all evaluated models, gpt-4.1 consistently outperforms others, demonstrating
both minimal average steps and lowest runtime, particularly in multi-agent tasks. This suggests that
gpt-4.1 leverages more effective internal representations and decision strategies, enabling ef-
ficient decomposition and execution of plans. In contrast, models like granite-3-3-8b and
llama-3-70b-instruct show pronounced inefficiency, often executing significantly more
steps and incurring higher computational costs. These results highlight a critical trade-off in Plan-
Execute agents: while the architecture enforces task structure, its effectiveness heavily depends on
the model’s reasoning efficiency. Models lacking strong planning priors or execution alignment
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Table 17: Execution Statistics for Agent-As-Tool: Average Steps and Runtime Per Task

Model Single-Agent Tasks Multi-Agent Tasks

Steps Runtime (sec) Steps Runtime (sec)

gpt-4.1 6.0 ± 2.4 104 ± 178 6.4 ± 2.5 218 ± 371
mistral-large 4.9 ± 2.6 347 ± 19871 5.2 ± 2.2 289 ± 443
llama-3-405b-instruct 4.8 ± 2.5 250 ± 773 5.6 ± 2.2 255 ± 248
llama-3-70b-instruct 3.9 ± 1.6 101 ± 107 4.3 ± 2.1 151 ± 220
llama-4-maverick-17b-128e 4.3 ± 1.5 120 ± 258 4.5 ± 1.7 137 ± 175
llama-4-scout-17b-16e-instruct 4.4 ± 2.0 101 ± 87 5.8 ± 2.9 178 ± 157
granite-3-3-8b 5.3 ± 3.1 197 ± 240 6.6 ± 3.6 228 ± 256

High standard deviation is due to one outlier task requiring nearly 5 hours. It repeatedly invoked the
JSONReader tool to process two years of historical data.

tend to generate unnecessarily long or suboptimal action sequences, especially in low-complexity
settings.

Table 18: Execution Statistics of Plan-Execute Agents: Average Steps and Runtime per Task

Model Single-Agent Tasks Multi-Agent Tasks

Steps Runtime (sec) Steps Runtime (sec)

gpt-4.1 2.6± 1.0 93.3± 105.6 2.9± 1.5 180.2± 122.6
mistral-large 2.7± 1.3 186.9± 206.9 3.0± 1.4 209.7± 139.1
llama-3-405b-instruct 3.1± 1.9 208.3± 176.5 4.0± 1.5 224.4± 99.7
llama-3-70b-instruct 6.7± 1.5 381.8± 240.2 6.5± 0.9 369.6± 151.9
llama-4-maverick-17b-128e 4.0± 1.9 384.6± 611.6 3.9± 1.2 376.8± 281.0
llama-4-scout-17b-16e 3.9± 2.0 172.1± 114.7 4.4± 1.5 218.1± 105.4
granite-3-3-8b 5.2± 1.4 413.3± 418.2 5.1± 1.3 432.9± 294.7

Conclusion. While the Plan-Execute architecture demonstrates greater efficiency—requiring
fewer steps and exhibiting lower runtime variability across tasks—our evaluation shows
that Agent-As-Tool significantly outperform in task performance metrics. For example,
gpt-4.1 achieves 65% task completion, 77% data retrieval accuracy in the Agent-As-
Tool setting, compared to only 38–44% on most metrics in Plan-Execute. Similarly,
llama-4-maverick-17b-128e-instruct excels in both setups but scores notably higher
in Agent-As-Tool, achieving 59–78% on core performance metrics versus 45–57% in Plan-Execute.

This pattern is consistent across most models: Agent-As-Tool incur higher execution costs but
deliver better reasoning fidelity. Conversely, Plan-Execute agents—while faster and more struc-
tured—often struggle with complex retrieval, verification, and consistency tasks. These findings
suggest a fundamental trade-off: Plan-Execute offers process efficiency, while Agent-As-Tool yield
higher end-task quality—a crucial insight for selecting agent architectures based on application goals
such as throughput vs. correctness.

E.2.1 DEEP INVESTIGATION OF AGENT-AS-TOOL PERFORMANCE

To evaluate the capabilities of various large language models (LLMs) across a range of industrial-
relevant task categories, we present a radar chart (See Figure 16) comparison covering five
key dimensions: IoT-focused reasoning, Failure Mode and Sensor Reasoning (FMSR), Time Se-
ries and Fault Modeling (TSFM), Work Order (WO) understanding, and End-to-End task inte-
gration. The chart illustrates normalized performance scores for each model based on task-
specific benchmarks, with higher values indicating stronger task alignment. Among the models
compared, gpt-4.1-2025-04-14 demonstrates the most consistent and well-rounded perfor-
mance, achieving near-saturation in FMSR (100%) and strong results in End-to-End integration.
In contrast, granite-3-3-8b-instruct and llama-3-3-70b-instruct perform well
in TSFM and FMSR but underperform in WO-related tasks, which are particularly challenging
due to their dependence on structured document comprehension and task planning. Notably, the
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llama-4-maverick model shows promising results in WO and End-to-End integration, indicat-
ing a potential optimization for cross-domain contextual reasoning. This visualization provides a
holistic view of model strengths and trade-offs, offering insights for selecting and fine-tuning LLMs
in complex, multimodal industrial applications.

Figure 16: Task wise distribution of the Accomplished Tasks.

E.3 UNCERTAINTY ANALYSIS

As discussed in Section 5, the evaluation agent was run five times to produce reliable performance
metrics. Table 19 shows the inter-rater agreement across these five evaluation runs, along with the
derived uncertainty (computed as 1− agreement). The average agreement and uncertainty across all
metrics are also reported.

Table 19: Inter-rater agreement and derived uncertainty across five evaluation runs.

Metric Agreement Uncertainty
Task Completion 0.9731 2.69%
Data Retrieval Accuracy 0.9697 3.03%
Generalized Result Verification 0.9681 3.19%
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E.4 HUMAN VALIDATION

We conducted human validation tests using Google Forms. As shown in Screenshots 17, each do-
main experts are presented with the original task description, the agent’s reasoning and final answer,
and a checklist of six evaluation dimensions. Each dimension was assessed using binary judgments
(True/False), allowing for structured comparison between human and model evaluations. We dis-
tributed 4 forms where each form consists of 10 samples and eventually collect 240 data points. We
report the results in Section 5.1.

Figure 17: Google Forms: questionnaire to domain experts for human validation
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E.5 LLM-AS-A-JUDGE EVALUATION AGENT

Following the system prompt that we used for generating a rubric metric for the evaluation agent.

You are a critical reviewer tasked with evaluating the effectiveness and accuracy of an AI agent’s re-
sponse to a given task. Your goal is to determine whether the agent has successfully accomplished the
task correctly based on the expected or characteristic behavior.
Evaluation Criteria:
1. Task Completion:
- Verify whether the agent executed all required actions (e.g., using the correct tools, retrieving data,
performing the necessary analysis).
- Ensure the response aligns with the predefined expected behavior for task completion.
2. Data Retrieval & Accuracy:
- Confirm that the correct asset, location, time period, and sensor (if applicable) were used.
- Check that the retrieved data and results (forecasting, anomaly detection, etc.) are correct and consis-
tent with the task requirements.
3. Generalized Result Verification:
- Task Type Verification: Assess if the agent returned the expected results for the task type (forecasting,
anomaly detection, classification, etc.).
- Forecasting: Ensure forecasts cover the specified future period.
- Anomaly Detection: Verify that anomalies were correctly detected when expected.
- Other Tasks (e.g., classification): Check that results match expected format and values.
- Comparison with Expected Output: Validate that results match the characteristic answer.
- Data Integrity: Ensure correct data (sensor, time period) was used and output format is consistent.
Inputs:
Question: {question}
Characteristic Answer (Expected Behavior): {characteristic answer}
Agent’s Thinking: {agent think}
Agent’s Final Response: {agent response}
Output Format:
Provide your review strictly in JSON format without any additional text or Markdown.
{
”task completion”: true/false,
”data retrieval accuracy”: true/false,
”generalized result verification”: true/false,
”suggestions”: ”Optional. Recommended actions to improve the agent’s response if needed.”
}
(END OF RESPONSE)
Evaluate the agent’s performance according to the above criteria.

Table 20: Prompt instruction for LLM-as-a-judge evaluation agent

Based on the human validation results shown in Section 5.1, llama-4-maverick is selected to
be the LLM of evaluation agent. Table 20 is the prompt instruction to the evaluation agent, which
outlines the specific evaluation dimensions, constraints, and response formatting guidelines that the
model follows when scoring task outputs. The evaluation criteria is also provided to human judges
which ensures consistency across evaluations.

E.6 ABLATION EXPERIMENT

In this section, we present the detailed report of the ablation study. We fixed the Agent-As-Tool
paradigm and conducted both sets of experiments.

E.6.1 DISTRACTOR AGENTS DETAIL

We have introduced 10 distractor agents to intentionally increase the complexity and ambiguity for
global agents. Table 21 categorizes these agents based on their respective domains and functional
roles. The set includes both general-purpose agents, such as those for echoing inputs or handling
off-topic queries, and domain-specific agents focused on tasks like predictive maintenance, sensor
data summarization, and edge ML deployment. This taxonomy enhances the realism of multi-agent
environments by supporting modular integration and introducing controlled confusion.
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Table 21: Agent Types and Their Roles

Agent Name Domain Description
Echo
Agent General Repeats the input verbatim; useful for de-

bugging and testing input-output coher-
ence.

OffTopic
Agent General Provides unrelated facts or trivia when a

query is off-topic or not recognized.
Customer

SupportAgent Support Operations Handles customer-related issues like pass-
word resets, login errors, and service avail-
ability.

SRE
Agent Site Reliability Diagnoses performance degradation, sys-

tem downtime, and infrastructure issues.
Frontend
DevAgent Software Engineering Assists with frontend UI/UX concerns, Re-

act, JavaScript frameworks, and rendering
bugs.

HRPolicy
Agent Human Resources Answers HR-related queries like leave pol-

icy, benefits, and compliance rules.
SensorData
Summarizer Industrial IoT Summarizes time-series data from sensors,

highlighting trends and anomalies.
Historical
TrendsAgent Analytics Extracts and interprets historical asset data

to identify failure patterns or optimization
opportunities.

EdgeML
Agent Edge Computing Recommends tools and strategies for de-

ploying ML models on edge hardware with
limited resources.

RULPredictor
Agent Predictive Maintenance Estimates the remaining useful life (RUL)

of assets using sensor data and degradation
models.

E.6.2 IMPACT OF IN-CONTEXT EXAMPLES

Table 22 provides a detailed comparison of gpt-4.1 and granite-3-3-8b with and without in-context
examples on a subset of single-agent benchmark tasks. Consistent with our main findings, in-context
examples were critical for enabling effective reasoning and coordination.

Table 22: Comparison of gpt-4.1 and granite-3-3-8b With/Without In-Context Examples
(# of Tasks = 65)

Model In-Context
Examples

Task
Completion

Data Retrieval
Accuracy

Generalized Result
Verification

gpt-4.1 Yes 52 57 55
granite-3-3-8b Yes 40 44 41

gpt-4.1 No 22 21 24
granite-3-3-8b No 2 3 3

Key Results: Removing in-context examples led to a dramatic drop in performance for both mod-
els. gpt-4.1 dropped from an average of 80% (with context) to 33% (without), while granite-3-3-8b
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fell from 60% to just 3% (Section E.6). These results reinforce the conclusion that in-context exam-
ples are essential for ReAct-style reasoning in LLM-based agents. We did not select tasks from WO
and E2E since their performance is already poor.

E.7 PLAN-EXECUTE REFERENCE-BASED SCORING

EVALUATION SETUP

To assess the fidelity of generated outputs, we perform reference-based scoring using ROUGE met-
rics. This evaluation is limited to the Plan-Execute paradigm to maintain consistency and preserve
the experimental flow.

ROUGE metrics used include:

• rouge1: unigram (1-gram) overlap between generated and reference outputs.
• rouge2: bigram (2-gram) overlap.
• rougeL: longest common subsequence between generated and reference sequences.
• rougeLsum: line-wise longest common subsequence for multi-line outputs.

RESULTS SUMMARY

ROUGE scores highlight model differences in n-gram and sequence-level fidelity. Table 23 presents
sample scores for representative models across Plan-Execute outputs.

Table 23: ROUGE-based reference scoring for Plan-Execute outputs (selected models).

Model rouge1 rouge2 rougeL rougeLsum

llama-3-405b-instruct 0.406 0.243 0.337 0.381
mixtral-8x7b-instruct-v01 0.424 0.259 0.343 0.401
llama-3-3-70b-instruct 0.297 0.172 0.242 0.280
gpt-4.1-2025-04-14 0.354 0.182 0.289 0.335
granite-3-3-8b-instruct 0.373 0.214 0.291 0.353
mistral-large 0.420 0.251 0.343 0.404
llama-4-maverick 0.403 0.240 0.325 0.383

ANALYSIS

• Top-performing models such as llama-3-405b-instruct and
mixtral-8x7b-instruct-v01 achieve rouge1 ≈ 0.42, rouge2 ≈ 0.26,
and rougeL ≈ 0.34, indicating strong n-gram and sequence-level fidelity.

• Smaller or older models exhibit lower ROUGE scores, reflecting weaker lexical alignment
with reference trajectories.

• Overall, Plan-Execute outputs maintain higher alignment with reference trajectories,
demonstrating that this paradigm supports more faithful generation for skilled reasoning
tasks.

• The distribution of ROUGE metrics also reflects diversity in output complexity, as longer
or multi-step reasoning tasks tend to lower ROUGE scores despite semantic correctness.

Reference-based scoring provides a quantitative measure of textual fidelity across different models
under the Plan-Execute paradigm. These results support model comparison, highlight the impact of
LLM size and capabilities, and offer a reproducible benchmark for future studies.

E.8 REFERENCE-BASED SCORING FOR AGENT-AS-TOOL

In the Agent-As-Tool setting, the agent follows a think–act–observe cycle without a pre-planning
phase. To evaluate reasoning quality, we extract the internal thinking segments and compute ROUGE
scores against concise reference trajectories. Because ROUGE measures lexical overlap, differences
in verbosity strongly affect the outcome.
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Table 24: ROUGE-based comparison for the Agent-As-Tool setting. Scores are computed on the
extracted thinking segments of each trajectory. Longer generations reduce lexical overlap with con-
cise references, lowering ROUGE despite potentially richer content.

Model ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum #Samples Pred. Avg. Words GT Avg. Words
mistral-large 0.3691 0.1933 0.2971 0.3124 40 83.0 29.85
llama-3-3-70b-instruct 0.3661 0.1963 0.2971 0.3177 40 47.8 29.85
llama-3-405b-instruct 0.3394 0.1673 0.2740 0.2787 40 82.42 29.85
llama-4-scout-17b-16e-instruct 0.3126 0.1522 0.2398 0.2621 38 100.32 29.84
llama-4-maverick-17b-128e-instruct-fp8 0.2560 0.1252 0.2067 0.2273 29 112.66 26.34
granite-3-3-8b-instruct 0.2473 0.1001 0.1867 0.2079 36 164.36 29.19
gpt-4.1-2025-04-14 0.1628 0.0816 0.1332 0.1389 40 277.12 29.85

Results. Table 24 reports ROUGE-1/2/L scores along with generation lengths. mistral-large
achieves the highest performance with ROUGE-1 ≈0.37, ROUGE-2 ≈0.19, and ROUGE-L ≈0.30,
followed closely by llama-3-3-70b-instruct and llama-3-405b-instruct. These
models generate reasoning traces of moderate length (48–83 words on average), which aligns well
with the reference answers (30 words) and preserves lexical fidelity.

In contrast, models such as gpt-4.1 and granite-3-3-8b-instruct produce significantly
longer outputs (up to 277 words on average), resulting in the lowest ROUGE scores despite poten-
tially valid reasoning steps.

Summary. Models with output lengths closer to the reference (e.g., mistral-large,
llama-3-70B) achieve higher lexical alignment. However, low-scoring models like gpt-4.1
may still exhibit rich and correct reasoning, suggesting that token length and prompting strat-
egy—rather than reasoning quality alone— drive ROUGE differences in the Agent-As-Tool
paradigm.

E.9 EXECUTION CHAIN EVALUATION

To systematically evaluate agent task execution, we design a chain-based execution scoring
method. In many scenarios, an agent performs a sequence of steps corresponding to Think-Act-
Observe cycles. Ground truth data provides the expected sequence of steps for each task. Each
executed step contains a name (representing the action) and an arguments field.

E.10 SCORING METHOD

Our scoring approach compares an agent’s executed sequence with the ground truth sequence using
three criteria:

1. Step Matching: The name of each executed step is matched to the corresponding ground
truth step. Unlike exact matching, we allow fuzzy matching based on string similarity using
a threshold to account for minor variations in step names.

2. Argument Similarity: Step arguments are treated as strings and compared using a
ROUGE-like similarity metric (via difflib.SequenceMatcher). This captures
cases where the agent produces slightly different or paraphrased arguments.

3. Sequence Coverage and Order:

• Coverage penalizes missing ground truth steps.
• Extra steps are penalized proportionally.
• Order preservation is evaluated: steps executed out-of-order incur a penalty.

The final Execution Chain Score for a single trajectory is computed as:

Score = (Average argument similarity over matched steps)×(1−extra step penalty)×(1−order penalty)

This produces a single scalar in [0, 1] summarizing how closely an agent’s execution matches the
ground truth.
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E.11 RESULTS

We applied this method to evaluate several state-of-the-art LLMs across trajectory datasets using the
Agent-As-Tool paradigm, where agents do not perform upfront planning but instead follow Think-
Act-Observe cycles.

Table 25 reports the average execution scores per model:

Model Average Execution Score
meta-llama/llama-3-405b-instruct 0.118
meta-llama/llama-4-maverick-17b-128e-instruct-fp8 0.077
meta-llama/llama-4-scout-17b-16e-instruct 0.092
ibm/granite-3-3-8b-instruct 0.040
meta-llama/llama-3-3-70b-instruct 0.031
mistralai/mistral-large 0.113
openai-azure/gpt-4.1-2025-04-14 0.117

Table 25: Average Execution Chain Scores for different LLM models. Scores reflect alignment with
ground truth sequences in terms of step name, argument similarity, and sequence coverage.

E.12 DISCUSSION

The results indicate that:

• meta-llama/llama-3-405b-instruct, mistral-large, and
gpt-4.1-2025-04-14 achieve the highest alignment with ground truth steps,
demonstrating better handling of multi-step task execution in the Agent-As-Tool setting.

• Larger models such as llama-4-maverick and llama-4-scout have moderate
scores, suggesting that complexity alone does not guarantee faithful execution.

• Smaller or older models, including granite-3-3-8b and llama-3-3-70b, exhibit
lower scores, primarily due to missing steps, extra steps, or argument discrepancies.

Overall, this evaluation provides a quantitative, interpretable measure of how closely an agent’s
executed actions match the intended ground truth, complementing other performance metrics such
as reference-based scoring (ROUGE) or semantic verification.

E.13 RUNTIME AND COST ANALYSIS

Table 26 provides a representative comparison of total runtime and estimated cost for executing the
full 140+ utterance task suite using the Agent-As-Tool paradigm. Average tokens per task and total
cost are shown for different LLMs.

Table 26: Runtime and estimated cost for executing 140+ utterance tasks using the Agents-as-Tools
paradigm.

LLM Provider Avg Tokens per Task Total Cost (USD)
gpt-4.1 OpenAI ≈3,664 $300.00
llama-4-maverick Watsonx ≈3,730 $130.00

E.14 ALTERNATE DATASETS AND SCENARIOS

We use two recent datasets for condition monitoring of industrial assets: the Metro Train MetroPT-3
dataset and the Hydraulic System dataset. Both datasets are hosted on UCI and provide program-
matic access to descriptions and metadata. Using the dataset description and failure locations, we
created 15 scenarios for MetroPT-3 and 17 scenarios for Hydraulic System pumps. Two representa-
tive examples are provided below.
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Table 27: Sample predictive maintenance scenarios for MetroPT-3 and Hydraulic System assets.

ID Scenario Description
1 For asset hp 1, can severe internal pump leakage on 2024-01-31 be detected using sensor

data from the preceding 100 days? Which sensor trends provide key clues within this
timeframe?

2 Consider asset mp 1. From the compressor sensor data collected between May 29 and
June 4, 2020, can we assess the likelihood of an air leak failure occurring within the
subsequent week starting June 5? Is preventive maintenance advisable?

E.15 SCENARIOS CREATION AND DISTRIBUTION FOR PRODUCT TESTING

Based on business unit requirements and in collaboration with domain experts, we created 42 sce-
narios for detecting asset health to conduct the benchmark study, primarily using work order data
released as part of this project. Each scenario follows the prescribed format described in the main
paper. A representative example is shown below:

{
"id": 1000,
"file": "Air Handling Unit_615152AC_insights_prompt.txt",
"text": "You are an expert in Air Handling Unit maintenance and

reliability analysis. Your task is to analyze provided
asset_details_facts and workorder_facts...",

"type": "System Health",
"category": "Asset Analysis",
"deterministic": true,
"characteristic_form": "The expected condition of the asset is
’Not enough data’ because only 4 work orders are available."

}

As mentioned in the main text (Page 4), one of the task types is System Health, aimed at evaluating
the condition of an asset based on recent system records (typically work orders, alerts, etc.) and
raising flags such as good or needs attention. Table 28 summarizes the coverage of the 42 scenarios
across asset classes.

Table 28: Distribution of scenarios across asset types/classes.

Asset Type/Class Number of Unique Instances
Air Handling Unit 9
CRAC 10
Chiller 10
Pump 8
Boiler 5

This diversity spans both horizontal coverage (different asset classes) and vertical variation (multiple
instances within each class), providing a robust testbed for evaluating agent generalizability and
performance across operational conditions.

SCENARIOS TASK DISTRIBUTION

All 42 scenarios fall under the Asset Health category and primarily rely on work order information.
Each scenario captures distinct aspects of asset behavior, reflecting operational variability. Token
count analysis provides insight into scenario complexity.

Over 60% of scenarios (26/42) fall in the 767–2,841 token range, reflecting mostly concise formats.
A long-tailed distribution exists to ensure LLMs handle both compact and extended input contexts.
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Table 29: Token count statistics for 42 Asset Health scenarios.

Statistic Value
Total scenarios 42
Median 2,277 tokens
Mean 3,695 tokens
Standard Deviation 3,125 tokens
Minimum–Maximum 777–11,098 tokens
Mode 1,316 tokens

Table 30: Token count distribution across scenarios.

Token Range # Scenarios
(767 – 2,841] 26
(2,841 – 4,905] 6
(4,905 – 6,970] 1
(6,970 – 9,034] 3
(9,034 – 11,098] 6

SCENARIO EXECUTION AND EVALUATION

The 42 scenarios were executed across three models, resulting in 126 executions. Each execution
generates an output trajectory, which is subsequently analyzed by the Evaluation Agent across five
runs, yielding 630 evaluation instances. The Evaluation Agent compares outputs against the char-
acteristic form described in the scenario examples to calculate automated metrics. Manual review
was used to validate the final column of results, identifying only one case (Granite) where the model
overconfidently claimed task completion.

PERFORMANCE INSIGHTS

The scenarios primarily assess LLMs’ analytical skill—the ability to interpret provided information
and generate appropriate conclusions. Agents such as FMSR, which excel in skill-based reasoning
tasks, demonstrate strong performance, particularly in single-agent communication settings.

F ALGORITHMIC PROCEDURE FOR NEW EMERGING FAILURE MODE
DISCOVERY

To support adaptive evaluation of multi-agent LLM systems, this appendix outlines the implemen-
tation details behind the failure discovery process. While the main text presents the empirical dis-
tribution of failure types—including emergent patterns—this appendix focuses on the structured
methodology used to extract and cluster novel failure behaviors beyond the MAST (Multi-Agent
System Failure Taxonomy) Cemri et al. (2025). The evaluation spanned 881 multi-agent trajec-
tories, drawn from diverse language model configurations. Trajectory distribution by model is as
follows:

• mistral-large: 145 trajectories

• llama-3-405b-instruct: 145 trajectories

• llama-3-3-70b-instruct: 145 trajectories

• llama-4-maverick-17b-128e-instruct-fp8: 125 trajectories

• llama-4-scout-17b-16e-instruct: 111 trajectories

• gpt-4.1-2025-04-14: 105 trajectories

• granite-3-3-8b-instruct: 105 trajectories
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Among the 881 utterance execution trajectories analyzed using an LLM-as-a-judge framework (se-
lected LLM judge model - openai-azure/gpt-4.1-2025-04-14 as the LLM judge) to identify the
causes of multi-agent AI failures, we found that—beyond the existing MAST categories—185 tra-
jectories exhibited one additional failure reason, while 164 trajectories contained two distinct ad-
ditional failure reasons. This highlights the empirical necessity of taxonomy expansion to capture
compound and emergent failure patterns in real-world deployments. To extend the original MAST
taxonomy, we conducted a structured analysis of novel multi-agent system failures observed in re-
cent interaction traces. This subsection details our identification methodology and explains how the
resulting failure modes align with the MAST framework.

F.0.1 ALGORITHM FOR EMERGING FAILURE MODES CLUSTERING

To systematically identify and normalize emerging failure modes observed in multi-agent LLM sys-
tem interactions, we introduce a structured algorithmic framework based on semantic embedding
and unsupervised clustering. This process abstracts unanticipated failure patterns into representa-
tive categories that either align with or extend the predefined MAST taxonomy.

Definitions and Notation. Let:

• T = {t1, . . . , tn}: Set of multi-agent execution trajectories.
• M: The predefined MAST taxonomy of failure types.
• F = {f1, f2, . . . , fm}: Set of emerging failure mode descriptions not covered by M,

extracted from LLM-as-a-judge evaluations.
• ϕ : S → Rd: Sentence embedding function (e.g., Sentence-BERT).
• E = [ϕ(f1), . . . , ϕ(fm)]⊤ ∈ Rm×d: Matrix of embedded failure descriptions.
• C = {C1, . . . , Ck}: Partition of F into k clusters, each with centroid µj .

Step 1: Emerging Failure Mode Extraction. Each trajectory ti ∈ T is evaluated by an LLM-as-
a-judge to identify:

• Labeled failure types from the MAST taxonomy M.
• Up to two emerging failure descriptions fi1, fi2 /∈ M.

The full set of novel descriptions is aggregated as:

F =

n⋃
i=1

{fi1, fi2} \ NULL

Step 2: Semantic Embedding. Each emerging failure mode fi ∈ F is transformed into a d-
dimensional vector:

ei = ϕ(fi), ∀fi ∈ F

E =


ϕ(f1)

⊤

ϕ(f2)
⊤

...
ϕ(fm)⊤

 ∈ Rm×d

Step 3: Optimal Clustering via K-Means. To discover latent groups of semantically similar
failure descriptions, we apply K-Means clustering over the embeddings E. The silhouette score for
a given point i is:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
Where:

• a(i): Mean distance from ei to other points in the same cluster.
• b(i): Minimum mean distance from ei to points in a different cluster.
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The optimal number of clusters is selected as:

k∗ = argmax
k

SilhouetteScore(k)

Figure 18: Silhouette analysis showing optimal number of clusters k∗ = 6.

Step 4: Cluster Center Selection. For interpretability, we select a representative f∗
j from each

cluster Cj as the most centrally located failure mode:

f∗
j = arg min

fi∈Cj

∥ϕ(fi)− µj∥2

Step 5: Taxonomy Alignment. Each representative failure mode f∗
j is reviewed and mapped to

one or more MAST categories:

• Specification Failures
• Inter-Agent Failures
• Task Verification Failures

Failures that exhibit characteristics of multiple categories are marked as compound or intersectional,
suggesting the need for extensions to the base taxonomy.

Outputs. The algorithm yields:

• A clustered taxonomy C = {C1, . . . , Ck∗} of emerging failure modes.
• Canonical representatives {f∗

1 , . . . , f
∗
k∗} for each cluster.

• Category mappings for taxonomy refinement or extension.
• Frequency statistics per failure type for prioritization.

F.0.2 METHODOLOGY: SEMANTIC CLUSTERING OF EMERGENT FAILURES

Building on the formal clustering algorithm outlined above, we implemented a practical instantiation
of the pipeline to organize the large volume of emerging failure mode descriptions identified by
the LLM-as-a-judge. We found lots of new and different behaviors when we first looked. But a
closer look showed that many of them were either just repeating the same idea or were only slightly
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different versions of the same core problems. To distill these into interpretable categories, we applied
a semantic clustering methodology grounded in high-dimensional language representations.

Each emerging failure description was manually or programmatically summarized into a concise
label and explanatory text. These summaries were then embedded into a semantic vector space
using the all-MiniLM-L6-v2 model from the SentenceTransformer library, yielding a set of
dense, comparable embeddings suitable for clustering.

We applied the KMeans algorithm to group these embeddings into semantically coherent clusters.
To determine the optimal number of clusters, we computed silhouette scores for values of k ranging
from 2 to 7 and selected the value that maximized mean silhouette score (see Figure 18). This
analysis yielded an optimal configuration of k∗ = 6 clusters.

For interpretability, each cluster was assigned a canonical label derived from the failure mode de-
scription closest to the cluster centroid. This process produced six representative categories of
emerging failure modes, summarized below:

• Cluster 0: Lack of Error Handling for Tool Failure (53 cases, 10.3%)
Agents fail to detect or appropriately respond to tool invocation errors.

• Cluster 1: Failure to Incorporate Feedback (41 cases, 8.0%)
Agents ignore or inadequately adjust to feedback from other agents or tools.

• Cluster 2: Invalid Action Formatting (27 cases, 5.3%)
Output includes syntactic or structural errors that prevent execution.

• Cluster 3: Overstatement of Task Completion (122 cases, 23.8%)
Agents claim completion without satisfying task criteria or producing valid outcomes.

• Cluster 4: Extraneous or Confusing Output Formatting (110 cases, 21.4%)
Responses contain unnecessary verbosity, ambiguous structure, or misleading formatting.

• Cluster 5: Ineffective Error Recovery (160 cases, 31.2%)
Agents fail to resolve prior mistakes or restart workflows effectively after failure.

These cluster-derived failure modes serve as canonical extensions to the base MAST taxonomy,
revealing previously unclassified behaviors that frequently arise in multi-agent LLM interactions.
Their emergence underscores the value of inductive, embedding-based clustering for scalable failure
mode discovery and taxonomy refinement.

F.0.3 TAXONOMIC ALIGNMENT WITH MAST OF EMERGENT FAILURES

These emergent failure modes reveal both alignment and tension with the original MAST taxonomy.
Each cluster can be mapped to one or more of MAST’s three core failure categories, but many
straddle boundaries or reveal overlapping failure dynamics:

• Specification Failures:
– Overstatement of Task Completion and Extraneous Output Formatting reflect unclear

success criteria, misunderstood task scopes, or ambiguous output specifications.
• Inter-Agent Failures:

– Failure to Incorporate Feedback and Lack of Error Handling for Tool Failure indicate
coordination breakdowns or limited adaptivity in dynamic environments.

• Task Verification Failures:
– Invalid Action Formatting and Ineffective Error Recovery highlight failures in runtime

execution monitoring, verification, and correction procedures.

Several emergent failure types cut across multiple categories, underscoring the complexity and inter-
dependence of failure dynamics in real-world multi-agent systems. These findings motivate future
refinement of MAST to support cross-category failure representation and compound behavior track-
ing.

This failure mode analysis contributes both methodologically and substantively to multi-agent sys-
tem evaluation. Methodologically, it introduces a scalable pipeline for inductively discovering and
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structuring new failure behaviors using LLM-judged outputs and semantic clustering. Substantively,
it extends the empirical coverage of the MAST taxonomy by surfacing nuanced, real-world failure
patterns that reflect the increasing complexity of autonomous agent collaboration.

These insights not only validate the need for flexible taxonomic frameworks but also point to the
importance of diagnostics that evolve with model behavior. As LLM-based agents continue to scale
in capability and deployment scope, the ability to detect emergent, intersectional failures becomes a
foundational requirement for reliable multi-agent orchestration.

F.1 IMPACT OF AGENT COMMUNICATION ON BENCHMARK PERFORMANCE

In our benchmark, the parameter enable agent ask controls whether the agent can ask clar-
ifying questions during task execution. In the Agent-As-Tool architecture, planning is performed
incrementally, and agent communication can influence task performance, unlike the Plan-Execute
paradigm where planning is done upfront.

For a fair comparison, our initial experiments used the default setting
(enable agent ask=False), preventing agents from asking questions beyond the given
task. Table 2 highlights that certain failures, such as not asking clarifying questions, con-
tribute to approximately 10% of errors. To evaluate the impact of agent communication, we
set enable agent ask=True and re-ran the experiments across multiple models. Table 31
summarizes the results.

Table 31: Benchmark performance with and without agent communication enabled.

Model enable agent ask=True enable agent ask=False
gpt-4.1-2025-04-14 63% 65%
lama-4-maverick 66% 59%
llama-3-405b-instruct 61% 44%
mistral-large 58% 40%
llama-3-3-70b-instruct 35% 40%
granite-3-3-8b-instruct 32% 35%

These results indicate that enabling agent communication improves performance substantially for
certain models (e.g., LLaMA-4 Maverick and LLaMA-3 405b), likely due to better multi-turn han-
dling and the ability to clarify ambiguous information. For other models, performance is less sensi-
tive to this parameter.

This experiment offers a compelling insight, highlighting the impact of hidden architectural fea-
tures on benchmark results. Furthermore, it demonstrates that our benchmark can capture subtle
differences in agent behavior and encourages transparent reporting of configuration parameters for
reproducibility.
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