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ABSTRACT

How does scaling the number of parameters in large language models (LLMs)
affect their core capabilities? We study two scaling techniques: weight pruning and
dense scaling, which is simply training a smaller or larger model. Our study focuses
on how these techniques affect two core capabilities of LLMs: (a) recalling facts
presented during pre-training and (b) processing information presented in-context
during inference. By curating a suite of tasks that help disentangle these two
capabilities, we find a striking difference in how these two capabilities evolve due
to scaling. Reducing the model size by more than 30% (via either scaling approach)
significantly decreases the ability to (a) recall facts seen in pre-training, leading to
more than 5% drop in relative accuracy. Yet, a 60–70% reduction largely preserves
the various ways the model can (b) process in-context information, ranging from
retrieving answers from a long context to learning parameterized functions from
in-context examples, causing less than 5% drop in relative accuracy. The fact that
both dense scaling and weight pruning exhibit this behavior suggests that scaling
model size has an inherently disparate effect on fact recall and in-context learning.

1 INTRODUCTION

Scaling up the size of large language models (LLMs) has yielded impressive performance gains
on many natural language tasks (Kaplan et al., 2020; Hoffmann et al., 2022; Brown et al., 2020;
Wei et al., 2022). On the other hand, to deploy language models sustainably, it is also critical to
scale them down while preserving their end utility. Naturally, there is a growing interest in both
scaling up and scaling down language models (Kaplan et al. (2020); Hoffmann et al. (2022); Frantar
& Alistarh (2023); Jiang et al. (2023); Kurtic et al. (2022); Santacroce et al. (2023)). Most of these
works evaluate size–performance trade-offs of scaling through aggregate performance metrics such
as perplexity or downstream accuracy on existing benchmarks.

However, we argue that there exist subtle but important effects of scaling that standard metrics alone
cannot capture. Earlier works on image models found, for example, that pruning can bias the model
against certain label categories (Hooker et al., 2021) or improve robustness against noisy training
data (Jin et al., 2022) — these effects do not simply manifest in the overall accuracy of the model.
Taking inspiration from these works, we identify the subtle effects of scaling LLMs (up or down) on
their capabilities, the ability to perform fundamental tasks that underpin many applications.

Our approach. In this work, we study the effects of scaling the number of parameters in an LLM
on two fundamentally dichotomous capabilities put forth by Chan et al. (2022b;a): fact recall —
the capability to process information stored in weights (such as facts seen during pre-training) and
in-context learning — the capability to process information stored in context (such as hints given
in the prompt). It is, however, challenging to isolate the evaluation of these capabilities by simply
measuring performance on arbitrary downstream tasks — after all, most tasks require both capabilities
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Figure 1: Pruning to moderate sparsity (> 30% sparse) harms fact recall while in-context learning
withstands even aggressive pruning (60% sparse). We plot the accuracy versus sparsity for the
OPT-13B, OPT-30B, LLaMA-13B, and LLaMA-33B models on TriviaQA dataset for fact recall
evaluation (left) and linear classification dataset for ICL evaluation (right). We plot their average
performance in red. We color the range of sparsity where accuracy drop is within (relative) 5% of the
dense model in green. Accepting (relative) 5% accuracy drop w.r.t. the dense model, the maximum
sparsity on fact recall task is 30%, whereas the maximum sparsity on ICL task is 60%.

to varying extents to solve. Therefore, we carefully curate a suite of benchmarks that help tease apart
the performance of any given model on the two capabilities. We then evaluate the aforementioned
two capabilities under two different scaling techniques: pruning and dense scaling. For the former,
we consider recent scalable pruning methods that remove weights and subsequently update the
remaining weights in one shot (Frantar & Alistarh, 2023; Sun et al., 2024); for the latter, we use
(separately-trained) dense models with increased or reduced width and depth.

Benchmarks. Our curated suite of benchmarks involve four classes of tasks, featuring a gradation
of reliance on information stored in-weights and in-context. The first three are Q&A tasks: (1) a
closed book Q&A task that necessitates fact recall from pre-training for which the model needs
to recall information from the weights, (2) an open book Q&A task for which it suffices to copy
information from the context and (3) an overriding Q&A task, where the information provided
in-context overrides facts seen during pre-training (Li et al., 2023; Longpre et al., 2021). Finally,
to evaluate more sophisticated in-context learning capabilities, we test the model on (4) learning
tasks, where the model must learn parameterized classification functions (e.g., linear classifiers)
using input–output pairs presented in-context. Overall, we consider close-book, overriding Q&A
and learning tasks as a sequence of tasks that requires increasing levels of in-context learning (ICL)
capabilities (See Section 3 for more discussion). We summarize these tasks in Table 1.

Findings. We find surprisingly dichotomous effects of down-scaling on fact recall and ICL capabili-
ties. For fact recall, minimal pruning significantly degrades performance (Section 4) – specifically,
for the task in our benchmark that relies most heavily on the fact recall capability, removing more
than 30% of weights leads to significant (> 5%, relative) accuracy degradation (Figure 1, left).
This is surprising, given that prior pruning literature demonstrates significant down-scaling without
noticeable change to accuracy: pioneering work (Dong et al., 2017) removes∼ 45% of the weights in
a ResNet50 model without noticeable accuracy degradation. 1 In contrast, ICL withstands significant
pruning (Section 5). Specifically, for the task that relies most heavily on the ICL capability, even after
pruning 60% of weights, the relative accuracy decrease is less than 5% (Figure 1, right). Our results
challenges the hypothesis presented in the seminal work of Brown et al. (2020), that scaling up the
number of parameters strongly benefits the ICL capability of LLMs.2 Furthermore, fact recall and
ICL shows the same sensitivity and robustness to dense scaling, respectively (Section 6). Our work
reveals the disparate effects of scaling on LLM capabilities, which notably holds for two substantially
different types of scaling techniques: pruning and dense scaling. We hope that researchers and
practitioners may apply our findings to:

1Please refer to Section 4.1, Figure 2.(a) of Dong et al. (2017). Notably, Dong et al. (2017) obtained these
results similarly by pruning without retraining.

2“Since in-context learning involves absorbing many skills and tasks within the parameters of the model, it is
plausible that in-context learning abilities might show similarly strong gains with scale." (Brown et al., 2020)
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Table 1: Tasks employed in our experiments.

Task Type Task Context
Type

Recalling Facts
from Pre-training

Retrieving Facts
from Contexts

Learning Patterns
from Contexts

Considered
ICL

Q&A

WebQuestions Empty ✓ ✗ - ✗
NaturalQuestions Factual ✓ ✓ - ✓
TriviaQA Empty ✓ ✗ - ✗
TriviaQA (Filtered) Factual ✓ ✓ - ✓
DisentQA Overriding ✗ ✓ - ✓

Learning
Linear CLS Examples - - ✓ ✓
2-layer NN Examples - - ✓ ✓
Decision Tree Examples - - ✓ ✓

Improve inference efficiency. Our work reveals that scaling down model size alone has little impact
on tasks demanding processing information in the LLM’s context. Practitioners may thus use our
findings to identify scenarios where decisions could be routed to a smaller model instead of a larger
one without compromising task performance (Chen et al., 2023; Dohan et al., 2022).

Improve assessment of down-scaling techniques. Whether through pruning or training a distinct,
smaller model, our work calls for a balanced evaluation of the down-scaled model prior to its adoption.
Overemphasis on either fact recall or ICL risks skewing the assessment of LLM capabilities.

Improve LLM interpretability. We find a remarkably small set of weights responsible for ICL. This
underscores the potential of pruning as a tool for isolating neurons responsible for LLM capabilities.

Contributions.

1. We curate a set of benchmarks for assessing the disparate effects of down-scaling on core
capabilities of LLMs, focusing on fact recall and in-context learning (ICL).

2. Using these benchmarks, we evaluate two scalable weight pruning algorithms for LLMs. We
investigate an extensive set of models comprising six base LLMs, with sizes reaching up to 33
billion parameters. We find that:

• even moderate levels of pruning (> 30%) hurt fact recall. However, when the evidence
required to solve a question-answering task is provided in context, the model’s ability to
correctly answer questions survives to higher levels of sparsity;

• in contrast, ICL withstands aggressive pruning (up to 60–70%).

3. Similarly for dense scaling, we find the same disparate patterns as above for fact recall and ICL
capabilities as we vary dense model size. This underscores that the disparate effects on ICL and
fact recall are not exclusive to pruning but are broader characteristics of scaling in general.

2 RELATED WORK

LLM scaling. Studies on scaling laws (Hoffmann et al., 2022; Kaplan et al., 2020) suggest a
predictable relationship between the quality of language models (i.e., perplexity) and the size of the
pre-training corpus and model. Pursuant to this, many have scaled up and discovered remarkable
capabilities of language models. Brown et al. (2020) discover that LLMs can perform in-context
learning (ICL) effectively: the model learns to perform tasks based on a few examples of input–output
demonstrations in the model’s context. Other studies (Devlin et al., 2019; Wei et al., 2022; Liang et al.,
2023; Srivastava et al., 2023; Gao et al., 2021; Ganguli et al., 2022; Bubeck et al., 2023; Biderman
et al., 2023a) evaluate LLMs across many tasks and metrics and assess the utility of scaling. Our
work differs in two ways: instead of measuring model performance on arbitrary tasks, we focus on
the foundational capabilities of fact recall and ICL. These capabilities underpin the success of many
real world applications of LLMs. Furthermore, while prior work (Kaplan et al., 2020) studies joint
scaling of both pre-training corpus size and model size, we focus on scaling model size alone.

In-weight versus in-context learning. For LLMs, learning occurs both during weight updates and
context processing (Chan et al., 2022a). Recent research illustrates the similarities and differences
between these learning approaches: Von Oswald et al. (2023) demonstrated that ICL can implement
an algorithm akin to gradient descent, commonly associated with in-weight learning. Akyürek et al.
(2023) revealed that ICL resembles various in-weight learning algorithms, depending on model size.
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Chan et al. (2022b;a) study how the properties of the data distribution disparately affect the two
learning approaches. Our work identifies yet another difference: scaling model size has distinct
impacts on knowledge learned through model weights and knowledge acquired from model context.

Neural network pruning. Pruning removes unimportant parameters in a model. The origin of
pruning traces back to LeCun et al. (1990) and Hassibi et al. (1993), with a focus on reducing the
computational footprint. More recently, with the advent of deep learning, pruning research has seen a
resurgence (Renda et al., 2020; Han et al., 2016; Liu et al., 2017; Frankle et al., 2021; Molchanov
et al., 2017; Dong et al., 2017; Ma et al., 2023; Tao et al., 2023; Kurtic et al., 2022; Dettmers et al.,
2024). Though pruning traditionally focuses on preserving aggregate metrics such as accuracy, the
versatility of LLMs calls for a different approach to assessing pruned models. To this end, Frantar
& Alistarh (2023); Sun et al. (2024) assessed model size and task accuracy trade-off. Our work
continues to expand our toolkits for empirical assessment, proposing to evaluate pruning’s effect on
fact recall and ICL. Our investigation extends a growing line of studies on effects of pruning beyond
aggregate metrics such as accuracy and perplexity. Hooker et al. (2021; 2020) show that pruning may
harm under-represented categories of examples; Liebenwein et al. (2021) suggest that the pruned
models are less accurate than the dense one when predicting out-of-distribution examples. Jin et al.
(2022) demonstrate that pruning mitigates the harmful effects of noisy data on generalization.

Concurrent to our work, Yin et al. (2023); Jaiswal et al. (2024) remarked on the pronounced negative
effect of pruning on knowledge-intensive tasks. These works extensively evaluate tasks that require
capabilities of fact recall and in-context information retrieval. Our work additionally curates a
gradation of tasks that further disentangle these abilities — specifically via overriding QA and ICL
tasks, which these concurrent works do not cover.

3 PRELIMINARIES

In this section, we introduce methodological details common to all our experiments.

Pruning algorithms. We investigate pruning as one possible technique to (down-)scale LLMs. Few
pruning algorithms currently scale to LLMs. We use SparseGPT (Frantar & Alistarh, 2023) in the
main text and Wanda (Sun et al., 2024) in Appendix D. Both are one-shot pruning algorithms that
scale to LLMs and outperform magnitude pruning (i.e., pruning the smallest magnitude weights),
without computationally intensive re-training (Frantar & Alistarh, 2023). SparseGPT prunes each
layer of the language model by minimizing the ℓ2-distance between the outputs of the original dense
layer and the pruned layer. It computes these outputs based on a small training dataset. Please refer
to Appendix M for implementation details of SparseGPT and Wanda pruning algorithms.

Following standard practice (Frantar & Alistarh, 2023; Frankle & Carbin, 2019), we exclusively
prune fully-connected layers. Fully-connected layers contain most of the parameters in attention and
feed-forward modules and they account for over 97.5% of the parameters in all models examined.
We exclude embedding layers, language modeling heads, and normalization layers from pruning.

Models. We evaluate 6 models from 3 families: OPT (Zhang et al., 2022), LLaMA (Touvron et al.,
2023) and Pythia (Biderman et al., 2023b). We focus on OPT and LLaMA in our main text and
present Pythia results in Appendix E. Pythia family models show consistent results as LLaMA and
OPT family models. From the OPT family, we evaluate the two largest models that fit in our hardware
setup – OPT-13B and OPT-30B, with 13 and 30 billion parameters, respectively. From the LLaMA
family, we evaluate LLaMA-13B and LLaMA-33B, with 13 and 33 billion parameters, respectively.

A notable difference between OPT and LLaMA families is the ratio of pretraining data to model
parameters. Zhang et al. (2022) train the OPT models using 180 billion tokens, resulting in ratios of
approximately 14 and 5.5 tokens per parameter for the two OPT models we consider. Touvron et al.
(2023) train the LLaMA-13B model with 1 trillion tokens, resulting in 77 tokens per parameter, and
the LLaMA-33B model with 1.4 trillion tokens, resulting in 42 tokens per parameter.

Benchmark design. We evaluate models on two complementary capabilities: the capability to call
on information seen during pre-training (and then stored in the model’s weights) and the capability to
call on information presented in-context. Unfortunately, it is difficult to construct tasks that strictly
isolate one of these two capability: on the one hand, for every conceivable natural language task,
the model must rely on the semantic representations of language it learned from pre-training and
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stored in the weights. On the other, every conceivable task necessitates processing model context to
understand the instructions in the first place. To help disentangle the two broad capabilities, we focus
on two well-defined instantiations of these capabilities: (a) the ability to recall facts from pre-training
to answer questions and, complementing that (b) the ability to learn patterns from context.

We isolate (a) by evaluating the model on recalling facts from pre-training data not provided in-context.
We do this using closed-book QA benchmarks.

To evaluate (b), we consider a gradation of tasks that require the increasingly advanced ways of
learning from in-context information. Broadly, we consider a series of in-context learning tasks: tasks
where the context contains examples of (query, answer) pairs in some form, followed by a test query
that the model has to answer.

First, as a simple ICL task, we consider an Open-book QA (Section 4) counterpart of our QA task.
In this task setup, the context includes supporting evidence that directly helps answer the question.
Essentially, the ICL task involves a test query that appears within the evidence as an in-context
example, complete with its correct answer. For instance, if the test query asks, “Who is the author of
the novel The Eagle Has Landed?", the supporting evidence would state, “The author of The Eagle
Has Landed is...", and include the answer, “Jack Higgins". Note that in addition to the aforementioned
evidence–question–answer triplet, we further aid the model with an independent one-shot triplet to
demonstrate how to format its answer.

In the above case, the answer provided in-context may also have been present in pre-training data;
thus the model may opt to ignore the context, and recall facts from pre-training, and still succeed at the
task. Thus, to more rigorously isolate the two mechanisms, we proceed to evaluate on the Overriding
QA task (Section 4), where the in-context evidence contradicts a fact present in pre-training data.
We present a one-shot evidence–question–answer triplet, where the correct answer follows from
contextual evidence rather than from pre-training data. Thus, to solve the task correctly, the model
must retrieve from the context rather than recall pre-training facts.

Next, we investigate ICL capabilities more sophisticated than copying an answer present as an
in-context example. To this end, we are interested in tasks where the model must respond to a test
query that it has not already seen in-context. A frequently cited example of ICL is the English–French
translation task (Brown et al., 2020), where pairs of English and French phrases serve as examples,
with the test query being a novel English phrase. However, such conventional instances of ICL
tasks require significant background knowledge of languages not available in the context, thereby
conflating the evaluation of ICL with the recall of information learned during model pre-training.

To ensure we disentangle the role of knowledge recall from ICL, we consider tasks where the query–
answer mapping is a parameterized function (e.g., linear classifiers). Arguably, learning this mapping
requires advanced context-processing mechanisms that go beyond information-retrieval mechanisms
required for the Open-book and Overriding QA tasks.

Metrics. We reproduce the effects of down-scaling on perplexity as in Frantar & Alistarh (2023);
Sun et al. (2024) in Appendix A. However, our main metric is exact match accuracy (of the answer to
each task) because it is a direct measure of the model’s ability to satisfactorily perform a task.

Software and hardware. We perform pruning on 80GB version of A100 GPUs, using the implemen-
tation of SparseGPT (Frantar & Alistarh, 2023). We perform our evaluations using TPU v3 running
PyTorch (Paszke et al., 2019) with XLA backend. Our research project consumes approximately 3
TPU-month worth of computation. Using TPUs necessitates bfloat16 numerical format. We assess its
impact on our experimental results in Appendix I.

4 EFFECT OF PRUNING ON QUESTION ANSWERING TASKS

The ability of LLMs to answer questions underpins many applications of LLMs. Within a question-
answering evaluation framework, we examine the effect of pruning on its capability to recall facts
learnt during pre-training. We also test a simple form of ICL capability – extracting answers from
supporting evidence in the model’s context, where the answer is unlikely available in pre-training
data. Finally, we evaluate an interpolation between these two capabilities – extracting answers from
supporting evidence in the model’s context, where the answer is likely also available in pre-training
data. Our results expose that, with supporting evidence in question-answering tasks, the model’s
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Figure 2: Evaluation for question answering tasks under pruning. Each color represents a different
model; each line-style/marker-shape combination represents a different QA dataset. Moderate pruning
harms LLMs’ capability to recall facts learnt during pre-training: in close-book QA tasks, accepting
a 5% drop in average accuracy w.r.t. the dense models, we can prune to 30 and 40% on TriviaQA
and WebQA dataset. However, when we present the model with the supporting evidence to answer
the question in its context, the model’s ability to answer questions survives to higher sparsity: on
open-book QA tasks, accepting the same drop in average accuracy, we can prune to 50% and 60% on
TriviaQA(F) and NatQ dataset, respectively. On the overriding task (DissentQA dataset), we may
even prune to 70% while maintaining the same acceptable relative accuracy drop.

ability to answer questions withstands more aggressive pruning than without. With no supporting
evidence in context, accuracy rapidly drops as sparsity increases.

Datasets. We use these datasets: (a) TriviaQA. Joshi et al. (2017) developed the TriviaQA dataset
with questions and supporting evidence. We use its Wikipedia validation partition consisting of
7993 questions. (b) WebQuestions. Berant et al. (2013) collected question-answer pairs from the
Freebase knowledge database. We use its test set consisting of 2032 questions. (c) NaturalQuestions.
Kwiatkowski et al. (2019) compiled the NaturalQuestions dataset from Google search queries. We
sampled a 7700-question subset of its validation partition (the same size as the following dataset
derived from it), to make our evaluation computationally feasible. (d) DissentQA. Neeman et al.
(2023) constructed the DissentQA dataset from the NaturalQuestions dataset. It contains pairs of
questions and evidence for a made-up answer that is different from the factual one. We use its
validation partition consisting of 7700 questions.

Evaluation setup. Using the aforementioned datasets, we evaluate the ability of pruned models on
the following task setup: (i) Close-book. We feed the question without any supporting evidence to
the model. We use the Wikipedia partition of the TriviaQA dataset and the WebQA dataset for this
setup. (ii) Open-book. We feed the question with supporting evidence to the model in its context.
Notably, this evaluation setup only evaluates whether the answer is right; it is however agnostic to
the mechanism by which the model retrieves the answer: the model may either generate its answer
using the supporting evidence, or by recalling facts from pre-training. To create this dataset, we use a
subset of the TriviaQA dataset whose context can fit within the maximum sequence length of the
model, consisting of 881 questions. We denote this filtered subset as TriviaQA(F). Additionally, we
use the NaturalQuestions dataset for this setup with factual contexts. (iii) Overriding. We present the
question accompanied by evidence that deviates from the facts presented during pre-training. Given
that the anticipated made-up answers are randomized and different from the factual ones, the model is
likely unable to rely on memorization from its pre-training data to generate responses. This evaluation
rigorously assesses the model’s capability to override its pre-training data with new, context-specific
information. We use the DisentQA dataset with supporting evidence for the made-up answer for this
setup. Examples of the setups are shown in Appendix G.

To summarize: across these setups, our prompts have three parts to them: first, (1) an example
evidence–question–answer triplet (or question–answer pair in close-book setting) for demonstration,
(2) the supporting evidence for a test question (except in the close-book setup), and (3) a test question
to answer. Answers are the model’s prompt completions using greedy decoding. We report the
percentage of answers that exactly match ground truth.
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Close-book versus open-book results. Left 2 plots of Figure 2 shows close-book and open-book
results. Notably, for all the models, the pruned model maintains performance on open-book tasks
until much higher sparsity levels compared to close-book tasks. In particular, when we accept a
relative decrease of 5% from pruning in the mean accuracy over four models, the highest achievable
sparsities for closed-book tasks are 30% on TriviaQA and 40% on WebQA.

In contrast, maintaining the same acceptable performance drop, the highest acceptable sparsity levels
for open-book tasks are 50% on TriviaQA(F) and 60% on NaturalQuestions. Our results suggest that
while pruning hurts the model’s ability to recall information from its pre-training data at moderate
sparsity (30–40%), one possible remedy is to provide the model with supporting evidence in context.
The model’s ability to answer questions with supporting evidence in its context remains largely intact
to higher sparsity levels (50–60%).

Overriding results. The rightmost plot of Figure 2 demonstrates a consistent trend for the overriding
tasks. On the DisentQA dataset with supporting evidence for the made-up answers, the highest
achievable sparsity is 70% allowing for the same 5% accuracy drop as before. Recall that to solve the
overriding task, the model must rely on in-context information rather than in-weights information
from the pre-training data. Thus, our observations here further substantiate that the model’s ability to
extracting information from its context remains largely intact at higher sparsity levels.

Accuracy improvements. We note that, surprisingly, on open-book and overriding tasks, there can
be small accuracy boosts from pruning. For example, the pruned OPT-30B sees a 9.7% accuracy
improvement on DissentQA dataset in overriding task setup. The pruned LLaMa-13B sees 3.5%
accuracy improvement on NaturalQuestions in the open-book task setup. Though prior work often
reports accuracy improvements with pruning (Frankle & Carbin, 2019; Renda et al., 2020), we are, to
the best of our knowledge, the first to observe such improvement in the QA setup.

Takeaways. Our findings suggest that scaling via pruning has a much higher impact on the model’s
capability to retrieve facts learnt during pre-training than on its capability to retrieve information
from the context. Pruning may even improve model’s capability to answer questions when its context
includes the necessary information to answer the question.

5 SOPHISTICATED IN-CONTEXT LEARNING

Section 4 demonstrates that moderate pruning preserves question answering task accuracy when
supporting evidence is available in context. In this section, we show that even with more sophisticated
ICL tasks than previously studied, moderately pruned models maintain their ICL abilities.

Typical ICL tasks require models to have extensive knowledge about language and the world learnt
during pre-training. However, Section 4 shows that pruning likely impairs such knowledge. So, to
isolate the LLMs’ ICL capability from its fact recall capability, we select tasks that require learning a
parameterized function (e.g., a linear model) through input-output examples present in-context.

Method. We evaluate LLMs with multiclass classification problems of the form f : RD →
{0, 1, · · ·K − 1} from in-context examples, where D refers to the input dimensionality and K the
number of label categories. To generate a sequence consisting of a context, query and an answer, we
first pick a random parameterized function f from one of three function classes: a). 2-way linear
classifiers, b). 2-way neural network classifiers with 2 layers, where the hidden dimension size equals
the input dimension size, and c). 4-way decision tree classifiers. For instance, to pick a random 2-way
linear classifier, we sample a random classification hyperplane in the input space; see Appendix B for
more details regarding the construction of f . Then, in the context, we provide N examples of the
form (x, f(x)), followed by a novel query xquery. The goal of the model is to correctly predict the
answer as f(xquery). Please refer to Appendix G for an example of the full prompt.

We construct M instances of parametric function f for each function class. For each instance,
we generate N in-context examples split evenly across all possible labels. We generate the test
example randomly and we ensure equal probabilities for its classification into all possible label
categories. We do not use any advanced prompting technique when solving ICL tasks. The LLMs
only generate answer tokens corresponding directly to classification labels, they do not generate any
other tokens during evaluation. We draw all random numbers uniformly from integers between -10
and 10 inclusive. We set M = 2048, D = 4, N = 32.
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Figure 3: ICL withstands aggresive pruning (60-70% spasity). Accepting a relative average (over 4
models) accuracy drop of 5% w.r.t. the dense models, we can prune to 60%, 60% and 70% on linear
classification, 2-layer NN, decision tree tasks, respectively.

Pruning results. Figure 19 shows the accuracy of pruned models versus sparsity. We can remove a
substantial number of parameters from the models without affecting their ICL capability. Specifically,
the average accuracy of the pruned models on linear, 2-layer NN, decision tree classification tasks is
within 5% of the dense models up to 60%, 60% and 70% sparsity, respectively.

Task difficulty. One trivial explanation for our observation is that perhaps these tasks are so easy
that they are solvable even by a severely pruned model. To eliminate this hypothesis, in Appendix C,
we increase the input dimension (D) of the linear classification task. Even as we increase this to a
significant extent (say, to an extent that the task is almost, but not totally, unlearnable), we find that
the model maintains its ICL performance even under aggressive pruning.

Conclusion. Our results suggest that when pruning LLMs moderately (i.e., to < 70% sparsity), the
model’s ICL capability stays largely intact. Thus, unlike fact recall tasks, one can prune models
significantly more while maintaining ICL performance.

6 DENSE SCALING

For vision models, pruned models behave similarly to smaller dense models trained with similar
hyperparameters (Jin et al., 2022). Here, we examine the effects of dense scaling (i.e., choosing from
a suite of independently trained models of various sizes) on fact recall vs. ICL capabilities of LLMs.
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Figure 4: Like pruning, moderate dense down-scaling preserves ICL while harming fact recall.
Gray lines show the sequence of dense down-scaled OPT models; we also show the sequence of
pruned OPT-30B and OPT-13B models in red and yellow for comparison. Each line style and marker
shape combination corresponds to a unique tasks. For the left plot: fact recall is highly sensitive
to dense scaling: gray lines shows that, moving from the 30B model to the next largest 13B model
leads to more than 5% relative accuracy drop on close-book TriviaQA (solid line/circle marker) and
WebQA task (dashed line/square marker), respectively. For the middle plot, open-book/overriding
QA accuracy is much less sensitive to dense down-scaling; maintaining the same 5% acceptable
accuracy drop, one may down-scale a 30B model to a 6.7B model on TriviaQA(F) (gray, solid
line/circle marker), NaturalQuestions dataset (gray, dashed line/square marker) and DisentQA (gray,
dotted line/triangle marker). For the right plot, model performance on sophisticated ICL tasks (linear
classification, 2-layer NN and decision tree) are highly robust to dense down-scaling.
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Method. With the same benchmarks as in Sections 4 and 5, we evaluate the accuracy of dense
models with different parameter count, but the same pre-training data size. The OPT family of models
provides an ideal collection of dense models for our evaluation: Zhang et al. (2022) trained all OPT
models with the same number of tokens (300b).

Results. Figure 4 shows that fact recall capability is highly sensitive to dense scaling – e.g., focusing
on scaling downwards, moving from the 30B model to the next largest 13B model leads to more than
5% relative task accuracy degradation on close-book TriviaQA and WebQA task. However, open-
book/overriding QA accuracy is much less sensitive to dense scaling. Specifically, maintaining the
same 5% acceptable relative accuracy degradation with respect to the 30B models, one may replace a
30B model on TriviaQA(F), NaturalQuestions and DisentQA dataset with a 6.7B model. Figure 4
also shows that sophisticated ICL capability is similarly robust to dense scaling. Specifically, the
accuracy difference between the largest (30B) and the smallest (1.3B) dense OPT model we consider
is 1.8%, 1.4% and 0.1% on linear, 2-layer NN and decision tree classification tasks, respectively.

Conclusion. Like pruning, changing a dense model’s size more readily affects its capability to
retrieve facts from pre-training than to process information from context. We hypothesize that this
effect stems from scaling in general – be it pruning or using a dense model of different size.

7 CLOSING DISCUSSION

We study the effects of scaling model size via pruning and dense scaling on two core capabilities of
LLMs that underpin their practical success: the capability to recall facts and the capability to perform
in-context learning (ICL). In both cases, we find disparate effects on the two capabilities. Moderate
pruning (> 30% sparsity) harms fact recall, and yet the capability to learn from a few input-output
examples from context withstands aggressive pruning (up to 60–70% sparsity). The same disparity
arises when changing the width and depth of dense (independently-trained) models.

What could explain this disparity? We conjecture that the number of parameters required to store
a set of facts must scale in proportion to the number of independent facts. On the other hand, a
smaller set of parameters acting as a universal gradient descent module (Von Oswald et al., 2023)
may accomplish many kinds of in-context learning tasks. Verifying these hypotheses theoretically is
an important direction for future work. Our findings also invite various research directions:

Pruning & interpretability. Our findings suggest, remarkably, a relatively small fraction of weights
are responsible for ICL performance. This observation could prove to be valuable for enhancing
the interpretability of LLMs, reviving a decades-old motivation behind work in pruning (Mozer &
Smolensky, 1988). In particular, pruning may help better localize the weights responsible for ICL
and fact recall capabilities, and complement recent approaches such as identifying circuits consisting
of attention heads responsible for specific capabilities (Wang et al., 2023), and explaining neuron
functionalities using large language models themselves (Bills et al., 2023). In Appendix F, we present
preliminary results comparing the importance of feedforward (FFW) versus attention layers for
maintaining ICL and fact recall capabilities. Our evaluation shows that while FFW and attention
layers show similar importance for ICL, FFWs layers show greater importance for fact recall.

Memory augmentation. Our observations advocate for memory augmentation as a promising way
to improve the trade-off between computational cost and task accuracy. Memory augmentation
techniques present helpful facts to the model by augmenting them directly in the context. Thus, rather
than having the LLM to rely on fact recall from pre-training — an ability that is degraded under
downscaling — we can delegate fact-retrieval to a separate retrieval model (Borgeaud et al., 2022;
Guu et al., 2020), and allow the LLM to focus on retrieving the fact from the context—which is an
ability that is preserved under down-scaling.

Limitations. We validated claims on a large number of benchmarks (a total of 8 tasks and 6 models).
However, since our work is empirical in nature, our observations may not generalize to all tasks and
LLMs. Furthermore, we focused only on pruning algorithms that scale to the size of contemporary
LLMs, as we believe that scalability is essential for the wide adoption of any pruning algorithm.
Even though more sophisticated pruning algorithms exist (Renda et al., 2020), they typically require
re-training — re-running the training of these large-scale language models for every sparsity level we
examine. The cost of such an experiment is therefore beyond our means.
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Name/Sparsity 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0

OPT-13B 11.5 11.5 11.6 11.6 11.9 12.4 13.7 17.8 45.3 40362.3
OPT-30B 10.9 10.9 10.9 11.0 11.1 11.4 12.2 14.6 35.4 4187.5
LLaMa-13B 6.6 6.6 6.7 6.8 7.1 7.8 10.0 20.0 59.9 822.1
LLaMa-33B 5.9 6.0 6.0 6.1 6.4 7.0 8.5 13.7 36.1 355.9

Table 2: Pruning’s effect on perplexity.
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Figure 5: Pruning’s effect on model perplexity.

A PRUNING PERPLEXITY EVAL

In Table 2 we present the full range of pruning’s effect on the perplexity of models we consider in
this work. We obtain perplexity results by running the pruned model on a randomly sampled subset
of C4 validation set, following the precedent of Frantar et al. (2023).

B CONSTRUCTING PARAMETERIZED FUNCTIONS IN ICL EVALUATION

While it may be unreasonable to expect the model to infer any arbitrary f , we focus on three natural
classes of functions from which we pick f : the class of linear, 2-layered neural network, and decision
tree models. These classes are defined as follows: (a) Linear. For each task instance, we generate a
distinct random hyperplane in the D-dimensional input space as the decision boundary. We label
each example as positive/negative depending on the side of the decision boundary it falls on. (b)
2-layer NN. For each task instance, we generate a 2-layer neural network mapping a D-dimensional
input vector x to a binary label y with the following form: W2σ(W1x), where W1, W2 are D ×D,
D × 2 matrices correspondingly. We draw elements within these two matrices from independent,
Gaussian distributions with zero-mean and unit variance. We use ReLU as the activation function
σ. (c) Decision tree. For each task instance, we construct a full depth-2 binary decision tree, with
each of its four leaf nodes representing one possible label. This maps D-dimensional input vectors
to the said labels. We assign each non-leaf node an index from 0 to D − 1. We evaluate the tree
by traversing from the root, comparing the input vector’s value at each node’s associated index to
determine the next step: if negative, we go left; if zero or positive, we go right. Reaching a leaf node
marks the end of traversal, and the corresponding label represents the evaluation result.

C INCREASING INPUT DIMENSION OF ICL EVALUATION

In this section, we further evaluate the effect of pruning on ICL tasks with different input dimensions.

Method. In Section 5, we evaluate pruning’s effect on learning linear classification tasks in-context.
The task is to classify 4-dimensional input vectors. Here, we increase the input vector dimensions
to 8 and 16, and observe whether our observation about pruning’s effect generalize to larger input
dimenions.

Results. Figure 6 presents the relationship between task accuracy and sparsity for linear classifica-
tion task. We increase the input dimension from 4 to 8 and 16. We observe that tolerating the same
5% relative drop in the average accuracy among all four models with respect to the dense model, we
can prune to 60%, 80% sparsity on linear classification task with 4, 8 dimensional inputs respectively.
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Figure 6: Pruning’s effect on ICL linear classification tasks with input dimension of 4, 8 and 16.
We observe that even with increased input dimension, ICL ability of LLMs continue to be robust to
aggresive pruning.

Dense models perform close to chance on 16-dimensional inputs, thus we refrain from drawing
conclusions based on these results.

Conclusion. Even with higher dimensional inputs, model’s ICL ability remains resilient to aggres-
sive pruning (>= 60% sparsity).

D ADDITIONAL PRUNING ALGORITHM EVALUATION

In our main paper, we focus on a single pruning algorithm SparseGPT (Frantar & Alistarh, 2023). In
this section, we study whether our observation that scaling down LLM size affects fact recall more
readily than ICL generalize to another pruning algorithm.

Method. We repeat key experiments with another pruning algorithm called Wanda (Sun et al., 2024).
Notably, unlike SparseGPT, Wanda does not update the remaining weights after weights removal.
The author of Wanda shows that at 50% sparsity, Wanda achieves accuracy that is competitive with
SparseGPT.

Results. We observe the same disparate effects from pruning on fact recall versus ICL: while
moderate pruning hurts fact recall, ICL survives to higher sparsity. Specifically, accepting the
same 5% relative drop in accuracy as we did for SparseGPT results, one may remove 30%, 40%
and 50% weights on TriviaQA(Closebook), TriviaQA(Openbook) and Linear Classification tasks.
Unsurprisingly, given that Wanda is computationally less expensive, it underperforms SparseGPT at
high sparsities on ICL tasks.

Conclusion. With our experiments repeated with another pruning algorithm, we show that our
observation is general.

E PYTHIA MODELS EVALUATION

In this section, we study whether our observation that scaling down LLM size affects fact recall more
readily than ICL generalize to another model family: Pythia (Biderman et al., 2023b).

Method. We repeat key experiments with Pythia model family. With SparseGPT, we pruned two
variants of the Pythia-12B model, the original and a “deduped” variant where the model is trained on
a deduplicated dataset. They’re the most capable models in the Pythia family.

Results. Figure 8 shows consistent disparate effect of pruning on fact recall versus ICL. Specifically,
accepting the same 5% accuracy drop as in all our results, one can remove 20%, 30% and 50%
weights for TriviaQA(Closebook), TriviaQA(Openbook) and in-context linear classification tasks.
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Figure 7: An alternative pruning algorithm (Wanda) shows the same patterns of accuracy drop as
findings in our original paper: moderate pruning hurts fact recall (e.g., left, TriviaQA in Closebook
setting) while ICL (e.g., right, in-context linear classification) survives to higher sparsity. Specifi-
cally, accepting a 5% relative drop in accuracy, one may remove 30%, 40% and 50% weights on
TriviaQA(Closebook), TriviaQA(Openbook) and Linear Classification tasks, respectively.
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Figure 8: Two variants of Pythia-12B model shows the same patterns of accuracy drop as findings
in our original paper: moderate pruning hurts fact recall (e.g., left, TriviaQA in Closebook setting)
while ICL (e.g., right, in-context linear classification) survives to higher sparsity. Specifically,
accepting a 5% relative drop in average accuracy, one may remove 20%, 30% and 50% weights on
TriviaQA(Closebook), TriviaQA(Openbook) and Linear Classification tasks, respectively.

Conclusion. Our observation is robust to the choice of model families.
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Answer these questions:
Q: In Scotland a bothy/bothie is a?
A: House
Q: Which 90s sci fi series with James Belushi was based on Bruce Wagner’s comic strip
of the same name?
A:

Figure 10: Examples Prompt for Question-answering Task without Context.

F PRUNING ATTENTION AND FEED FORWARD LAYERS

A growing line of work (Dai et al., 2021; Meng et al., 2022) suggests that feed forward (FFW) layers
and the attention layers are responsibly for distinct capabilities considered in this paper — namely,
fact recall and in-context learning. To test this, we exclusively prune either type of layers and examine
how the model’s capabilities deteriorate on fact recall and ICL tasks.
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Figure 9: Effects of pruning only attention layers
versus pruning only FFW layers on fact recall (Triv-
iaQA) versus ICL (Linear Classification). Module
sparsity computes the fraction of parameters of the
specified module (attention or FFW) that pruning
removes. Attention and FFW layers appear equally
important for ICL. FFW layers appear more impor-
tant than attention layers for fact recall.

Method. We prune a LLaMA-13B model. We
either exclusively prune attention layers or ex-
clusively prune FFW layers and observe their
effects on accuracy of TriviaQA task (fact recall)
and linear classification task (ICL). We plot the
accuracy as a function of module sparsity. Mod-
ule sparsity refers to the fraction of parameters
pruned from a specific type of layers (either at-
tention or FFW), with respect to the total number
of parameters of that type.

Results. Figure 9 shows that while attention
and FFW layers appear equally important for
ICL, FFW layers appear more important for fact
recall. For example, pruning 60% FFW layers
lead to 14% more accuracy degradation than
pruning 60% of attention layers.

Conclusion. Attention and FFW layers show
similar importance for ICL; and FFW layers
show greater importance for fact recall.

G EXAMPLE PROMPTS

In this section, we present example prompts for Q&A tasks in Section 4 and ICL tasks in Section 5.

G.1 QUESTION-ANSWERING WITHOUT CONTEXT.

Our prompt follows the precedent of Touvron et al. (2023). We show our prompt for Q/A tasks
without context in Figure 10.

G.2 QUESTION-ANSWERING WITH CONTEXT.

We show an example prompt we use to evaluate Q/A task with the necessary information to answer
the question available in-context in Figure 11.

G.3 ICL TASK.

We present the prompt we use to evaluate ICL on linear classification task in Figure 12. Evaluations
for other ICL tasks uses analogous prompts.

19



Published as a conference paper at ICLR 2024

Answer these questions:
Context: Scattered across the Highlands and rural areas of Scotland, a bothy is a small
house that can be used by anyone.
Q: In Scotland a bothy/bothie is a?
A: House
Context: "Roses Are Red (My Love)" is a popular song composed by Al Byron and Paul
Evans. It was recorded by Bobby Vinton and was his first hit.
The song was released in April 1962. It reached No. 1 in Australia, New Zealand,
Norway, the Philippines, South Africa, and the United States, and was a major hit in many
other countries as well. The song topped the Billboard Hot 100 singles chart on July 14,
1962, and remained there for four weeks. The single was also the first number-one hit for
Epic Records. Billboard ranked the record as the No. 4 song of 1962.
Vinton found the song in a reject pile at Epic Records. He first recorded it as an R&B
number, but was allowed to re-record it in a slower more dramatic arrangement, with
strings and a vocal choir added.
Ronnie Carroll version
In the UK, a cover version by Ronnie Carroll reached No. 3 on the Record Retailer chart
on August 8, 1962, the same week that the Bobby Vinton record peaked at No. 15. It
peaked at No. 7 in the very first Irish Singles Chart published in October 1962.
Other versions
The song was recorded by Jim Reeves in 1963 and released on the album Gentleman Jim,
one of the last albums released while he was still alive. While it did not chart in the US,
it became a minor hit in Norway and Germany.
The song was covered by Singaporean female artist Zhuang Xue Fang, in edited Standard
Chinese lyrics written by Suyin under title name of, with Ruby Records in 1967.
In 1962, an answer song, entitled "Long As The Rose Is Red", was recorded by Florraine
Darlin. The song spent seven weeks on the Billboard Hot 100, reaching No. 62, while
reaching No. 15 on Billboards Easy Listening chart. It was released by Epic Records
(single #9529) and was also produced by Robert Morgan.
Charts
Bobby Vinton version
Ronnie Carroll version
Q: Which singer had a big 60s No 1 with Roses Are Red?
A:

Figure 11: Examples Prompt for Question-answering Task with Context.
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[5, -5, -1, 6] = -1
[3, 5, -9, -2] = 1
[-10, 5, -9, -10] = 1
[7, 0, -4, -7] = -1
[-2, -2, 9, -3] = -1
[9, -5, -5, -1] = -1
[-4, -1, -10, -8] = 1
[-10, -1, -3, 6] = -1
[3, 6, -5, -8] = 1
[-1, 7, -2, 6] = -1
[-5, 8, -1, -9] = 1
[-6, -1, -6, -9] = 1
[1, 0, -10, -9] = 1
[-5, 5, -3, 6] = -1
[-4, 6, -10, -7] = 1
[-4, 5, -6, -10] = 1
[-10, 5, -3, -9] = 1
[-7, -2, -7, -9] = 1
[-7, 1, -7, 4] = -1
[-2, 2, -3, -10] = 1
[1, -4, -4, 9] = -1
[7, 0, 6, -10] = -1
[2, 7, -6, -1] = 1
[1, -2, -10, -9] = 1
[-8, 3, 7, -7] = -1
[0, 7, -3, -8] = 1
[0, 2, 0, 0] = -1
[-7, 9, 2, 8] = -1
[1, -8, -9, 6] = -1
[-5, 1, -6, -10] = 1
[8, 8, 1, -4] = -1
[-3, 6, 2, 2] = -1
[-3, 9, 0, -5] =

Figure 12: Examples Prompt for ICL on Linear Classification Task.
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H ANALYSIS ON ACCURACY IMPROVEMENT

On many tasks, such as ICL on algorithmic tasks in Section 5, we observe accuracy improvement
from pruning. In this section, we provide further analysis on this phenomenon.

Method. We focus on the ICL task of check-sorting and check-even from Section 5, where the
pruned LLaMA models see significant accuracy improvement. We analyze the prediction of the
pruned model, in relation to the following two answers: 1). Answer without context. We compute the
classification output with the highest log likelihood, without all the in-context examples. The prompt
thus looks like "[1, 0, 3, -5]=" without any other information such as in-context training examples.
The LLM thus classifies this input array exclusively based on likelihood of a classification label as a
continuation of the prompt. We denote this classification outcome as the answer without context. 2).
Ground-truth answer.

Results. In Figure 13, we present the percentage of time when the prediction of the pruned model
matches the answer without context versus the ground truth. We observe that accuracy improvement
often mirrors a departure of the model’s prediction from answer without context (the solid line
dropping whilst the dashed line raising). This suggest that for some pruned models (for example
LLaMA-30B at 60% sparsity), the presence of in-context examples changes the prediction of the
LLM more than the dense models.

Conclusion. We hypothesize, without testing, that pruning may improve task accuracy by enhancing
the effect of contextual information on its prediction.
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Figure 13: Analyzing the accuracy improvement of pruned model on ICL tasks.
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I CHARACTERIZING ERRORS FROM NUMERICAL PRECISION

All our experiments run on TPU v3. The TPU hardware does not support float16 (IEEE 754 half
precision floating point format), which are the formats used for training the OPT/LLaMA models.
We thus use a closely related floating point format called bfloat16 (Brain Float) instead to evaluate
these models. Both bfloat 16 and float16 are floating point numbers requiring 16 bits to represent,
the key difference is that bfloat16 format can represent numbers in a slightly wider range of values,
but with slightly reduced precision compared with float16. For this reason, we expect our results to
contain small systematic errors. In this section, we characterize the difference between our results in
bfloat16 and standard results in float16.

Perplexity and accuracy results. In Figure 14, we plot the perplexity and accuracy in next token
prediction in bfloat16 on TPU v3 and float16 on A100. We observe that the average accuracy
difference is 1.0%, 0.89%, 0.70% and 0.68% for OPT-13B, OPT-30B, LLaMA-13B and LLaMA-33B.
The perplexity grows to very large numbers at high sparsity, so we report the average perplexity
difference for sparsity level less than or equal to 50%. The average perplexity difference is: 0.86,
0.69, 0.19, 0.13. We note that 1). the difference in accuracy and perplexity due to numerical precision
is systematic. The accuracy of next token prediction raises by a similar amount across all sparsity
levels. 2). the difference in next token prediction accuracy is small (<1%).

OPT. OPT models see higher difference in accuracy and perplexity. This is because its GPU
implementation uses mixed precision arithmetic, where the attention score computes in float32. Our
compiler and runtime, however, does not support mixed precision arithmetic, we therefore compute
entirely within bfloat16.
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Figure 14: Characterizing the difference between float16 and bfloat16.
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Figure 15: Reproducing TriviaQA Closebook and TriviaQA(F) Openbook results using beam search
(beam size=3) and more tolerant answer matching technique on LLaMA-13B/33B: we generate 32
tokens and check if the correct answer appear anywhere in the generated response. Our conclusion
remains unaffected: using our current experimental design, averaging over two LLaMA models, one
can prune 30% and 40% weights on Closebook and Openbook TriviaQA task, respectively. Using
beam search, one can prune 30% and 50% weights on Closebook and Openbook TriviaQA tasks,
respectively. The ability to retrieve answers from provided context remains more resilient to pruning
than the ability to recall information learnt during pre-training.
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K MORE TASKS
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Figure 16: Lambada

0.0 0.2 0.4 0.6
Sparsity (%)

10

20

30

BL
EU

 S
co

re

Translation (WMT14 EN-FR)

LLaMA 13B
LLaMA 30B

Figure 17: Translation

L IN-CONTEXT LEARNING ON ALGORITHMIC TASKS

Method. We use the following ICL task and for each task, generate a total of N task instances.
Each task instance consists of a set of in-context examples along with a test input. a). Check Sorting.
The task is to determine, whether a D-element input array is sorted. We label each example as
positive/negative depending on whether the input array is sorted or not.b). Check Contains Even
Number. The task is to determine, whether a D-element input array contains an even number. We label
each example as positive/negative depending on whether the input array contains an even number.
We present the pseudo code solution to these algorithmic tasks in Figure 18.

All task instances consist of K positive in-context examples and K negative in-context examples. We
draw all random numbers from integers between -10 to 10 inclusive. We set N=2048, D=4, K=16.

Sparsity results. Figure 19 shows the accuracy of pruned models versus sparsity. We can remove
substantial number of parameters from the models without affecting their ICL ability. Specifically, the
average accuracy of the pruned models on check sorting and check contains even number is within
5% of the dense models up to 60% and 70% sparsity respectively.

Conclusion. Our results suggest that when pruning to moderate sparsity levels (60-70%), the
model’s ICL ability stays largely intact. Compared with pruning on fact recall tasks, one can prune to
much higher sparsity levels while maintaining or even improving ICL performance.

1 def is_sorted4d(A):
2 s = True
3 s = s and A[0] <= A[1]
4 s = s and A[1] <= A[2]
5 s = s and A[2] <= A[3]
6 return s
7

1 def contains_even4d(A):
2 c = False
3 c = c or A[0] % 2 == 0
4 c = c or A[1] % 2 == 0
5 c = c or A[2] % 2 == 0
6 c = c or A[3] % 2 == 0
7 return c
8

Figure 18: Algorithmic tasks for in-context learning evaluation. (Left) Check if a 4-D vector is sorted.
(Right) Determine whether a 4-D input vector contains an even number.
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Figure 19: ICL withstands aggresive pruning (60-70% spasity). Accepting a relative average (over
4 models) accuracy drop of 5% w.r.t. the dense models, we can prune to 60% and 70% on check
sorting and check contains even number tasks, respectively.

M PRUNING ALGORITHMS DESCRIPTION

In this section, we present implementation details of pruning algorithms we evaluate in this work.

M.1 SPARSEGPT.

The SparseGPT algorithm prunes weights in a language model layer by layer. For each layer’s weight
Wl, where l is the layer index, it produces a binary mask Ml and a updated set of weights Ŵl to
minimize the layerwise reconstruction loss ∥WlX − (M ⊙ Ŵl)X∥22, where ⊙ denotes element-wise
multiplication, and X correspond to inputs to layer l. Such inputs are computed using a small set of
calibration data, randomly drawn from the training dataset. Note that rows in Wl do not interact with
one another, SparseGPT thus prunes each row independently.

Weight selection and repair. SparseGPT builds on optimal brain surgeon (OBS) (Hassibi et al.,
1993; Frantar et al., 2021), a classical approach in weight pruning. For a given weight row w, upon
removing an element at position m, OBS suggests the optimal weight update δm to compensate for
the effects of removed weights, and characterize the associated reconstruction error ϵm as follows:

δm = − wm

[H−1]mm
·H−1

:,m, ϵm =
w2

m

[H−1]mm
. (1)

The SparseGPT thus prunes rows of Wl independently and in parallel. Within each row, the algorithm
prunes weights in vectors of size B = 128. The algorithm selects weights for removal based on
the lowest reconstruction error ϵ After removing weights, SparseGPT iteratively applies the OBS
weight update. An important difference between SparseGPT and OBS is that while OBS adjusts
all remaining weights to compensate for removed weights, SparseGPT only updates a subset of
remaining weights to reduce the computational complexity associated with computing the Hessian
inverse. This complexity reduction enables SparseGPT to scale to very large language models (175B).
See pseudocode below for details about the exact subset of remaining weights updated by SparseGPT.

Pseudocode The following pseudocode is a simplified version of SparseGPT largely based on
Algorithm. 1 of Frantar & Alistarh (2023). This algorithm prunes the layer weight matrix W to p%
unstructured sparsity given inverse Hessian H−1 = (XXT )−1, weight vector size B.
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Algorithm 1 The SparseGPT algorithm.

1: M ← 1drow×dcol
▷ binary pruning mask

2: E ← 0drow×B ▷ block pruning errors
3: for i = 0, B, 2B, . . . do
4: M:,j:(j+Bs) ← mask of (1− p%) weights wc in W:,j:(j+Bs) with largest w2

c/[H
−1]cc

5: # Apply the OBS update to a subset of remaining weights.
6: for j = i, . . . , i+B − 1 do
7: E:,j−i ←W:,j/[H

−1]jj
8: E:,j−i ← (1−M:,j) · E:,j−i

9: W:,j:(i+B) ←W:,j:(i+B) − E:,j−i · [H−1]j:(i+B)

10: end for
11: W:,i:(i+B) ←W:,i:(i+B) − E ·H−1

i:(i+B),(i+B)

12: end for
13: W ←W ·M ▷ set pruned weights to 0

M.2 WANDA

Wanda(Sun et al., 2024) similarly prunes a language model layer by layer. Within each layer, it
independently prunes individual rows in the weight matrix. The inputs to a layer, denoted as X , have
the shape (N,L,Cin). Here, N , L, and Cin refer to the batch size, sequence length, and input hidden
dimension size, respectively. The inputs to the layer W derive from a small set of calibration data.
The weight matrix to prune has shape (Cin, Cout). Cin and Cout refer to the input and output hidden
dimension sizes. Wanda scores each weight Wi,j using the following equation:

Sij = |Wij | · ∥Xj∥2 ,

where |.| denotes the absolute value function. Wanda removes p% of the weights with the lowest
scores in each row Wi. Notably, unlike SparseGPT, there is no weight update after weights removal.

N STRUCTURED PRUNING (LLM-PRUNER) RESULTS

In this section, we test our findings using structured pruning algorithm LLM-Pruner (Ma et al., 2023).

Configuration. We use LLaMA7B/13B instead of 13B/30B in the main paper because LLM-Pruner
appears to consume significantly more GPU memory than SparseGPT, and 30B model does not fit
within our hardware setup.

Following the recommended setup of Ma et al. (2023) in their code repository, we skip the first 4
layers and last 2 layers for all LLaMA models we test. Following Frantar & Alistarh (2023), we
sample calibration data of maximum sequence length (2048 tokens) from C4 dataset. The number of
samples in the calibration data is configured to maximum allowed by our system memory size (167
GB CPU memory + 80GB GPU memory), which is 2 for 7B and 1 for 13B LLaMA model.

Since Ma et al. (2023) focuses on the low-sparsity regime (0-20%) in the paper, we similarly focus
on this regime of sparsity. Specifically, we prune each of the prunable layers (which excludes 4 initial
and 2 final layers) to 5%, 10%, 15%, 20%, and 25% sparsity. We refer to this sparsity ratio as local
sparsity, since it refers to the sparsity ratio within prunable layers only. In Figure 20, we report global
sparsity to remain consistent with our main paper – global sparsity refers to the number of remaining
parameters divided by the total number of parameters of the full model.

Results. Figure 20 shows that our main conclusion that fact recall deteriorates faster than ICL
under down-scaling remains valid with the structured pruning algorithm. Specifically, averaging over
two models, we can prune to 0%, 5% and 20% local sparsity on Closebook (TriviaQA), Openbook
(TriviaQA(F)) and ICL linear classification tasks, respectively, without dropping more than 5%
relative accuracy.
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Figure 20: Structured pruning results.
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