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Abstract

In this work we study how explicit world-modeling objectives affect the inter-
nal representations and downstream capability of Transformers across different
training stages. We use a controlled 2x2x2 Rubik’s Cube and ask: (1) how does
explicitly pretraining a world model affect the model’s latent representations, and
(2) how does world-model quality affect the model’s performance after reinforce-
ment learning post-training? We compare standard next-token prediction to two
explicit world-modeling strategies — (i) state-prediction pretraining and (ii) a joint
state-prediction + next-token objective — and assess task performance after Group
Relative Policy Optimization (GRPO) is applied as post-training. We evaluate the
representation quality with linear probes and causal interventions. We find that
explicit world-modeling yields more linearly decodable and causally steerable state
representations. More importantly, we find that improved state representations lead
to higher gains for GRPO, especially on harder cube states. Our results indicate
that sharpening state representations can improve the effectiveness of post-training
for sequence-planning tasks

1 Introduction

Language models have achieved impressive capabilities for various reasoning tasks. These models
typically go through multiple training stages, including pre-training on generic data, fine-tuning on
task-specific data, and post-training using reinforcement learning to further improve on the task.
However, it is unclear how each stage affects the internal representations of the model, and in turn
how such representations affect the latter stages.

We study these questions in a controlled setting. Namely, we train Transformers on a task that requires
planning: solving a 2x2x2 Rubik’s Cube.

Not only does the task require planning, but also requires the model to learn a “world model”, by
which the model must understand a latent cube state (i.e., “world”), and how its predictions (actions)
affect the cube state.

Interestingly, researchers have demonstrated that language models can implicitly learn world models
when trained via next-token predictions. For example, a model trained on transcripts of moves being
played in a board game such as Othello can learn to model the latent board-state, despite never given
any priors regarding the board [6 18]

However, these work only show the emergence of a world model, but do not study its relationship
with its downstream training stages nor capabilities. Thus in this work we ask two questions:

RQ1 How does explicitly pre-training a world model affect the representations of the model?

!Code: https://anonymous . 4open.science/r/cubeLM_MI_workshop-40C8/
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RQ2 How does the quality of world models affect the model’s accuracy post-training?

From our experiments we find that (1) explicitly pre-training a world model leads to a more robust
representation, in terms of higher probe accuracies as well as better steerability of the model,
suggesting a higher reliance of the model on its latent cube state representations, and (2) an improved
world model can also lead to improved planning accuracy after applying reinforcement-learning.

2 Setups, Notations, Data

We study a Transformer model trained to solve 2x2x2 Rubik’s Cubes, which consist of 6 faces
and 4 squares per face. We formulate our task as sequence modeling with the following data:
D = {(S), A}, where S is a scrambled cube state representing the state of all 24 squares:
S := [z, . .. x23] and A is the optimal sequence of moves that solves the cube: A := [my, ..., my,],
where n is the cube distance for the initial state S from being solved. Each state token x specifies a
square’s color (z € C, |C| = 6). Each move token m specifies an action (m € M; using Singmaster’s
notations M| =9). Importantly, note that intermediate cube states from applying moves m do
not show up in the data, and must be implicitly learned by the model. Lastly, note that n < 12 (a
scrambled cube can only be at most 11 moves away from being solved).

We notate the hidden states of the model h’, token embeddings £, and token unembeddings /. We
experiment with a range of training setups, as described below.

2.1 Training Setups

Standard Fine-Tuning. In our standard setting, we train on D with the standard next-token
prediction objective. Namely, our model is given as input a scrambled cube S and is trained to
auto-regressively predict sequence \A:

L pr = CrossEntropy (U htL_l’ Ai)

Pre-training a World Model. In some settings, we add an optional pre-training step to explicitly
learn a world model first. Namely, we use a different dataset, Dy, ctrain = {(Sj , A )}, where Ais
now a sequence of random moves. The goal of pre-training is to explicitly predict the latent cube state
(rather than next moves) given a sequence of moves. This is done by substituting the unembedding
layer U with 24 alternative classification heads W; € IRICI*¢, one for each square i, that each classify
the correct state of the 24 squares of the cube, with the following loss:

23
Lpr = Z CrossEntropy (W;hf ™!, Sti)
i=0
where W, is the classifier for the i-th square and S, is the groundtruth color for the i-th square after

applying the first ¢ moves in A to the initial state S. Once pre-trained, the model is fine-tuned to
predict optimal moves, re-using all the weights except for that of W.

Joint Training. An alternative approach to explicitly train a world model is to learn the two
objectives jointly in a single stage. Here the model uses both classification heads (U4, VW) with loss:

Lioint = Lrr + LpT

Post Training: GRPO. Once a model is trained to solve a Rubik’s Cube with one of the recipes
above, we are also interested in studying the effects of post-training with reinforcement learning.
Namely, we use GRPO [11]]. At a high level, given a training sample (scrambled cube state), GRPO
samples multiple rollouts from the model and assigns a reward per rollout, which is used to compute
a loss term. In our setting, we simply assign a reward of 1 for rollouts that solve the cube, and a
reward of O for all other rollouts.

Hyperparameters for our training can be found in Appendix [A]

*https://en.wikipedia.org/wiki/Rubik%27s_Cube#Solutions
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2.2 Data

We design our data splits for controlled comparisons across training strategies. A 2x2x2 cube has
roughly 3.67¢5 possible states. We split this data into two training sets and a validation set.

First, we carefully split between the train sets and validation set to minimize the number of overlaps
in intermittent cube states (e.g., from applying moves from .A on §). We build our validation set by
first constructing a set of scrambled cube states that are maximally far from being solved (11 moves
away), and apply optimal moves towards the solved cube state. We collect all intermediate states
from these paths, and use these states as our validation set. This results in 114, 606 cube states for
validation.

All other trajectories from our data that do not cross these intermediate states are used as training data.
This ensures that the intermediate cube states in the train and validation sets are disjointEl This results
in 3, 559, 560 cube states for training. The distribution of cube complexities (number of moves away
from being solved) in our train and test splits are provided in Figure[T]

Cube Distances: Train (Log Scale) Cube Distance: Validation (Log Scale)
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Figure 1: Distribution of cube complexities (i.e., number of moves away from being solved).

The remaining training data is split into two sets of equal sizes, notated DY D) where

train’ = train’
|Dt(rii)n|7 |Dt(fli)n\ ~ 1,779, 780. We use the split data to study two different settings: (1) Pre-training:
We use both splits to train models on each of the three training approaches above; (2) Post-training:
We use the first split to pre-train models, and use the second split for post-training using GRPO.

These two different setups allow us to answer our two research questions.
Table [T] summarizes our training setups and data. The first three rows are designed to answer RQ1
while the latter three rows are to study RQ2.

Table 1: Summary of training configurations and datasets used. Fine-tuning is performed on one or
both training splits, and GRPO post-training is always done on D

train*
Description Training Setup
Fine-Tune ‘CFT (Dt(rzlu)n U Dt(rii)n)
Pre-Train + Fine-Tune Lp7(Dpre) = LpT (Dt(rii)n U Dt(ri])n)
Joint Train Ejoint(Dt(r:;lii)n U Dt(rii)n)
Fine-Tune + GRPO ﬁFT(Dt(rzlii)n) — LarPo (Dt(rii)n)
Pre-Train + Fine-Tune + GRPO  Lpr(Dpre) = L7 (Dl(;i)n) — Larro (Dt(ju)n)
Joint Train + GRPO ﬁjoint(pt(rii)n) — LarPo (Dt(rii)n)

For each configuration, we train 5 runs with different seeds. We train 8 layer Transformer models
with 8 attention heads and a dimension of 512. Hyperparameters are provided in Appendix [A]

3This disjointness does not hold for cube states less than two moves from being solved, i.e., cube states that
are nearly solved, the number of such states is small.
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3 RQ1: Effect of Pre-Training on World Model Representations

Probing. How does explicitly training a world model affect the model’s representations? We answer
this question by (1) training linear probes to decode cube state information, and (2) steer the model’s
predictions using the linear probes.

We follow prior work [8] to train linear probes. Namely, at each timestep ¢, layer ¢, we learn 24 linear
decoders (one for each square 7) i.e., Vf’l- € R®*?, that minimizes:

Lprove(t, £,1) = CrossEntropy(Vf,ihf,St,i); Vi € R6*

Vi can be thought of as six vectors that each encode the color of square ¢ at timestep ¢. The projection
V;:ht e IRS can be thought of logits for predicting each of the 6 possible colors for square 1.

Figure [2] demonstrates the results. Observe that explicitly training a world model (pre-trained or
joint-trained) leads to an improved cube state representation.

Fine-Tune Pre-Train + Fine-Tune L Joint Train

1.0 _ 1.0 ———a=%- .0 ——
Layer Layer Layer
0.8 —~o| 0.8 "~ o | 0.8 0
> 1 1 1
© 0.6 ) 5| 06 5| 06 .
3 — 3 — 3 — 3
goa __ 4] 04 __ 4] 04 4
— 5 — 5 — 5
0.2 6 0.2 6 0.2 6
7 — 7 — 7
0.0

0.0 0.0
01234567 891011 01234567 891011 01234567 891011
Timestep Timestep Timestep

Figure 2: Probing Accuracy. Explicitly training a world model (i.e., Pre-Train or Joint Train) leads
to improved cube state representations. Note that we see high accuracies near the end of the sequence
(after timestep 9) because the cube state is close to being solved by then.

Steering. Next we study how dependent each model’s predictions are on its internal cube state
representations. This is done by causally intervening on the model’s cube state representations, in
which we use our linear probes to override the model’s representations for the original cube state
S with that of an alternative target cube state 7. A successful intervention means the model’s new
prediction reflects a good move for the alternative cube state 7 instead of S, with a higher intervention
success rate suggesting higher dependency on the model’s cube state representations.

‘We construct the intervention dataset from the 114,606 cube states in our validation set. For each
state, we append an optimal move sequence to the input context. At each timestep ¢ € {0,...,11},
we sample up to 1,000 random instances, yielding 36,440 total samples. For each instance with
groundtruth cube state S, we randomly select an alternative cube state 7 with the same optimal
distance to the solved state as S. We additionally ensure that S and 7 do not share any common
good next moves.

We intervene on the activations to first remove information about all 24 squares of the previous cube
state. This is done by first projecting out the original cube state’s colors using the linear probes. We
then add in information about the target cube state. More formally, let the groundtruth square colors
of S be [z, ... za3]. Let v; = fl[xl] € R be the z;’th row of V;,; which indicates the vector that
represents color x; for square 4. Finally let [yo, . . . y23] indicate the colors of the target cube state T,
and v; = fﬂ- [ys]. Then our intervention is:

2T 23
h§:<I_Z 112>hf+ Q;U;
= llvill i=0
———
project out S add T



110
111

112
113
114
115
116
117

118
119
120
121
122
123
124
125

126

127
128

129
130
131

132

133

134
135

136
137
138
139
140

% 1.0 —— Fine-Tune
“ Pre-Train + Fine-Tune
o 0.8 — Joint Train
(0]

V]

5

n 0.6

c

°

€ 0.4

(7]

>

@

E 0.2

1 2 3 4 5 6 7 8 9 10
# of optimal moves away from solved state

Figure 3: Intervention success rates. Higher intervention success rates suggest that the model relies
more on the latent cube state representations. A successful intervention means that the model predicts
a good move for the alternative target cube state 7 instead of the original cube state S. We see that
models that were explicitly trained on world modeling have higher intervention success rates.

After intervening, h! is re-normalized to match the original norm before the intervention. We
intervene on layers 5-7 (but not the last layer, layer 8).

Note that our intervention requires hyperparameters «; to determine how strongly to encode our
target cube state. If « is too small, we may not correctly encode the desired color, while if too large it
may degrade the model’s performance by going off distribution. Thus we adaptively select each «
value such that (V¢ ;hY),. > max..,, (V' ;h! ). + h. i 1l in t that th
i)y, > ey Vit ;) +m, where m is a small margin to ensure that the
decoded logits for the intended color y; exceeds all alternatives (¢ # y;) by at least m. Put differently,
we scale o up until we guarantee that the correct board-state is encoded according to our probes.

We test on m = 0.5, 1,2 and find that m = 1 resulted in the best results for all three models, and
report our results in Figure 3] The y-axis indicates intervention success rates, in which the model’s
prediction reflects a good move (i.e., a move that takes the cube state one step closer to being solved)
for the alternative cube state 7 instead of cube state S. Again, note that we ensure that the original
cube state S and target cube state 7 do not share any common good moves. The x-axis indicates
the cube-complexity of each test sample. We see that the pre-trained and joint-trained models have
higher intervention success rates, suggesting that these models rely on its underlying cube state
representation more.

4 RQ2: Effect of World Model on Post-Training

Now that we know that explicitly training a world model improves cube state representations, we ask
what is the relationship between the quality of a world model and post-training?

We demonstrate task accuracy of 3 different training strategies: standard fine-tuning (FT), pre-training
followed by fine-tuning ( ), and joint-training (Joint). For each of the 3 training strategies,
we study 3 variants (See Table [T] for our exact setup):

1. Apply training strategy on the first half of data: FT(D,), , Joint(Dy)
2. Apply training strategy on the full data: FT(D;UDs5), ,Joint(D;UD»)

3. Apply training strategy on the first half of the data, use GRPO for the second half of the
data: FT(D;) + GRPO(D3), , Joint(D1)+GRPO(D3)

This results in a total of nine models. Figure[d]reports their task accuracies, defined as the percentage
of scrambles for which the model generates a valid sequence that solves the initial scrambled cube
state within N+3 moves, where N is the scramble’s optimal solution length. We break down the
results by cube complexity, i.e., optimal distance to solve each initial cube state (x-axis), to highlight
GRPO’s gains for more difficult cube states.
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Figure 4: Task accuracy after GRPO. Applying GRPO instead of each training strategy (FT, Pretrain
+ FT, Joint Train) leads to improved results, especially for more complex cube states that require
longer rollouts (solid lines vs. dashed lines). Models that were explicitly trained on world modeling
also see higher gains from GRPO (orange curves vs. green curves vs. blue curves).

There are numerous points of comparisons to make: Within each color, comparing dashed lines
(e.g. FT(D1 U Dy)) vs. solid lines (e.g., FT(D1) + GRPO(D>)) demonstrates the benefit of applying
GRPO over continuing to use the original training strategy.

Comparing across colors of the same line-style (e.g., FT(D; U Ds) vs.

vs. Joint(Dy U Dy), or, FT(D1)+GRPO(Ds3) vs. VSs.
Joint(D1)+GRPO(D>)) shows the difference in performance of the three training strategies. We find
that explicitly training a world model (pre-train or joint-train) significantly outperforms not explicitly
training a world model, with pre-training outperforming joint-training.

5 Related Work

5.1 World Modeling

Though the term “world-modeling” is often used, it is not yet precisely defined. We use the term
“world model” to refer to the ability for the model to keep track of the state of its (latent) environment
(i.e., “world”), and understanding how its actions affect the state of the world [3}[7].

Interestingly, [6] demonstrate that Transformers can learn world models from simple next-token
prediction tasks. Namely, they demonstrate that a model trained on transcripts of game moves can
learn to reconstruct the correct board state (i.e., “world”’) and make the correct move predictions that
reflect the state of the board. [8]] later demonstrated that such latent board state representations can be
linearly decoded using linear probes.

5.2 Probing, Causal Interventions

On a similar note, a growing line of work is relying on linear probes to decode interpretable
representations from the model’s hidden states [[1]]. This idea can be extended on contemporary
language models, to uncover that many human-interpretable concepts are also linearly encoded in the
model’s activations [4} 5, (10, 9, [2]].

A common practice is to verify the role that such linear representations pay by conducting causal
interventions: given the simplicity of linear representations, one can simply scale such representations
smaller or larger to control the model’s end behavior.
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6 Conclusion

In this work we study the relationship between model representations and different training stages.
First, we ask how explicitly pre-training a world model affects the model’s representations, and find
that doing so can lead to a more robust world model. Second, we study the relationship between the
quality of model representations and post-training. We find that explicitly training for a world model
can lead to better performance after post-training with reinforcement learning.

Limitations. We view this work as work in progress, and as such there are a few limitations to
highlight. First, our experiments are limited to a single model, with a single task. An obvious
extension we plan on is to check whether our findings generalize to additional settings. Second, we
believe there are additional ways to measure how much the model relies on cube state representations
in addition to our causal analyses, such as the use of mutual information between the model’s
predictions and cube state representations.
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Parameter Value

Learning Rate le-5
Weight Decay 0.01
Batch Size 64
Hidden Dimension | 512
Validation Size 512
Validation Patience | 10
Optimizer AdamW

Table 2: Hyperparameters for fine-tuning.

Parameter Value
Learning Rate le-5
Per device train batch size | 256
Per device eval batch size | 128
Number of rollouts 8
Weight Decay 0.01
KL penalty Beta 0.01
Max generation length 13
Optimizer AdamW

Table 3: Hyperparameters for GRPO.

A Hyperparameters
Here we provide hyperparameters used to train each setup.

A.1 Standard Fine-Tuning, Pretraining, Joint-Training

We train a 8 layer model with 8 attention heads. Table [2]demonstrate the hyperparameters used to
train our models.

A2 GRPO

Table 3| contains the hyperparameters used for GRPO.

A.3 Probing

Table [ contains the hyperparameters used for training our probes.

Parameter Value
Learning Rate le-3
Weight Decay 0.01
Batch size 32
Validation size 512
Validation patience | 10
Epochs 1
Optimizer AdamW

Table 4: Hyperparameters for Probing.
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