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Abstract

The explosive growth and diversity of machine learning applications motivate1

a fundamental rethinking of learning with mobile and edge devices. How can2

we address diverse/disparate client goals and learn with scarce heterogeneous3

data? While federated learning (FL) aims to address these issues, it has several4

bottlenecks and challenges hindering a unified solution. On the other hand, large5

transformer models have been shown to work across a variety of tasks often achiev-6

ing remarkable few-shot adaptation. This raises the question: Can FL clients use a7

single general-purpose model – rather than custom models for each task – while8

obeying device and network constraints? In this work, we investigate pretrained9

transformers (PTF) to achieve these on-device learning goals and thoroughly ex-10

plore the roles of model size and modularity, where the latter refers to adaptation11

through modules such as prompts or adapters. We demonstrate that: (1) Larger12

scale shrinks the accuracy gaps between alternative approaches and improves13

heterogeneity robustness. Crucially, scale allows clients to run more local SGD14

epochs which substantially (×4) reduces the number of communication rounds. At15

the extreme, clients can achieve respectable accuracy fully-locally reducing the16

need for collaboration. (2) Modularity enables >100× less communication in bits.17

Surprisingly, it also boosts the generalization capability of local adaptation methods18

and the robustness of smaller PTFs. To explain these benefits, we show that scale19

and modularity can synergistically mitigate the representation shift during FL.20

Finally, to harness multitasking capabilities of modern PTFs, we propose FedYolo:21

A new FL approach that assigns both dedicated and shared modules to FL tasks22

to manage their interference. Our extensive experiments demonstrate FedYolo’s23

value and the power of scale and modularity for multitasking.24

1 Introduction25

Federated learning (FL) has enjoyed significant success in enabling collaboration across large number26

of decentralized clients. Nevertheless, FL confronts challenges due to the limited client data, the27

heterogeneous nature of FL scenarios, and the necessity for multitasking, all of which can lead to28

issues like catastrophic forgetting(e.g. when client updates override each other)[21, 9, 19]. Despite29

rich FL literature, we still lack a clear unified strategy that overcomes these challenges. Meanwhile,30

PTFs can be few-shot adapted to various downstream tasks(i.e. power of scale [6, 20]), providing a31

warm-start for FL and better adaptation to local client distributions. Advances in mobile hardware[17]32

and model compression/distillation [14, 29, 32] enable the deployment of smaller, equally effective33

models on clients’ devices.34

However, it remains uncertain whether these benefits can be realized in multitask FL setting that35

involves heterogeneous data and communication bottlenecks. In this work, together with scale, we36

identify the power of modularity to address FL-specific challenges. The training strategies and37
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Figure 1: Left side: We investigate scale and modularity of pretrained transformers (PTF) to address federated
learning (FL) challenges. Center: The training can branch into either FL or Local-only learning, once PTF
model is loaded to the device. FL uses either FedAvg or FedAvg+Local. All three training schemes could be
implemented with two update methods: Full-update and modular-update as shown in the center box. Full-update
trains and communicates all model parameters whereas modular-update trains a small subset of parameters while
freezing the PTF backbone. Right side: For multitask FL, we propose FedYolo which assigns unique modules
for each task (distinct colors of Tasks A,B,C). FedYolo is superior to FedAvg (with full-update) as number of
tasks grow thanks to modularity.

update methods we explore are depicted in Figure 1. Updating only modules significantly reduces38

communication costs, as shown in supplementary materials. To explore benefits of PTFs, we study39

three training schemes, Local-only learning, FedAvg, and FedAvg+Local, for FL settings with40

heterogeneous data across tasks. In a nutshell, our main message is:41

Large PTFs with modular updates naturally enable communication-efficient, robust, multitask FL.42

This message generalizes well across different module choices (prompt, LoRA, adapter), pointing to43

the universal benefit of parameter-efficient FL. Specifically, we make the following contributions:44

• Need for collaboration / personalization. Scale allows for better few-shot learning and reduces45

the reliance on personalization and collaboration by shrinking the accuracy gaps between FedAvg and46

FedAvg+Local as well as FedAvg+Local and Local-only learning. We also found that modular-47

update often outperforms full-update under few-shot or heterogeneous data. This makes modular-48

update a surprisingly effective strategy for Local-only learning and FedAvg+Local. Importantly,49

combined benefits of modularity and scale make Local-only learning fairly competitive with FL.50

• Heterogeneity, Local SGD, Communication. We find that scale boosts robustness of FL to data51

heterogeneity, while the modularity particularly improves the robustness of smaller PTFs. They52

also both provide resilience to forgetting: Accuracy of FedAvg+Local remains competitive with53

FedAvg on the global distribution even after the local-learning phase. In synergy, larger scale54

significantly reduces the number of communication rounds by allowing clients to run much more55

local SGD epochs (×4 in Fig 7) without sacrificing global accuracy. We provide theoretical insights56

into these by demonstrating large model incur small representation shift even when trained with many57

epochs. Modules have in the order of tens of thousands of parameters, thus, modular updates unlock58

orders-of-magnitude communication savings compared to full update. We find that, this occurs while59

maintaining, and often accelerating, the rate of convergence in communication rounds.60

•Multitask learning. In a multitask setting where FL clients collaboratively and simultaneously61

learn multiple disparate tasks (e.g., classification on different domains such as CIFAR, CelebA, and62

FEMNIST datasets), the challenge is determining which parts of the model to update. Building on63

modularity and “one PTF for many tasks”, we propose the FedYolo algorithm (“You Only Load64

Once”) that assigns isolated modules to each task while keeping the PTF backend frozen. Fig. 165

(right side) demonstrates that FedYolo performs on par with learning each task in isolation whereas66

multitasking with full-update suffers from catastrophic forgetting even for large PTFs.67

Our findings have important implications. Adapting large PTFs via modular-update not only provides68

a simple communication-efficient strategy with relatively minor drawbacks but also provides signifi-69

cant potential upsides in terms of personalization, robustness, and multitasking. Notably, scale and70

modularity makes Local-only learning a fairly competitive alternative to FL approaches FedAvg or71

FedAvg+Local, hinting at the viability of full privacy on the client side. Additionally, our proposal72

FedYolo enables the clients to use a single PTF and multiple small modules to address diverse set of73

mobile ML goals, avoiding the need for maintaining/training multiple models.74

2 Related Work75

Federated Learning. Data heterogeneity, multitasking, and personalization have been studied in76

FL in various settings [21, 7, 23, 22]. Much of the prior works focus on the design of algorithms77
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Figure 2: Model performance of FedAvg with hetereogeneous data distribution. Larger PTFs outperform
smaller PTFs.
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Figure 3: Performance comparison between Local-only learning (blue) and FedAvg+Local (orange), for
different datsets and update strategies (full-update and modular-update). As PTF scale increases, local training
become more comparable to the federated setting.

rather than the model architecture. Closer to our work, [28] proposed FL with pretrained models,78

however only consider full updates whereas modularity is central to our message. Recent works79

[35, 36] explore related modular-update ideas for federated learning, however don’t explore the80

role of scale. Importantly, ours is the only work that explores and provides a concrete solution for81

multitask learning with PTFs.82

Parameter-efficient tuning and pretrained transformers. PTFs have garnered significant attention83

in machine learning, owing to their impressive performance across a wide variety of applications[2, 5].84

Although non-federated, recent works explored the benefits of scale (model size as well as data and85

computation during pretraining) in robustness to forgetting [26] and (few-shot) accuracy [10, 33,86

11]. Parameter-efficient tuning methods have shown significant promise for enabling lightweight87

adaptation of transformer architectures.88

3 Experiments89

Preliminaries and Experimental Setup: Following [25], we evaluate the performance on CIFAR90

[18] and two real-world datasets CelebA and FEMNIST [3] from the LEAF benchmark [3], following91

[25, 26]. For CIFAR, we simulate three data partitions(”homogeneous”, “mild heterogeneous” and92

“more heterogeneous”) and control the non-IID level by changing the number of classes included in93

each client. Importantly, all our experiments focus on the few-shot setting where we train on subsets94

of these datasets. For instance, our CelebA and FEMNIST experiments use 2.6% and 1.8% fraction95

of the total sample size respectively. Due to space limitations, we only include the results of the96

Adapter method in the main paper, while the results of the LoRA and VPT methods are similar and97

relegated to the Appendix. For evaluation metrics, unless otherwise stated, the evaluation of models98

is the average local accuracy across clients. Further details are in the supplementary material D.99

3.1 PTF Scale Boosts Performance100

Larger PTFs improve model performance: The impact of scale in FL is an underexplored topic. To101

evaluate performance on a heterogeneous data distribution, we use both simulated and real-world data102

heterogeneity. In Figure 4, the simulated data heterogeneity setting involves clients with different103

class distributions. In Figure 2, the real-world data heterogeneity involves clients with both different104

class distributions and different domains, such as each client having data relating to a particular105

celebrity in CelebA. In all cases, larger PTFs outperform smaller PTFs.106

Larger PTFs narrow the local vs. federated training gap: Intuitively, federated learning should107

perform better since information is shared between clients, but larger PTFs may approach the per-108

formance of federated learning. In Fig. 3, we compare the performance of Local-only learning109

and FedAvg+Local for the full-update and modular-update training strategies. The results show that110

Local-only learning becomes increasingly competitive with FedAvg+Local as the model scale111

increases. Moreover, employing modules can help achieve better performance and narrow the gap be-112

tween fully local and federated training (the gap between Local-only learning and FedAvg+Local113
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Figure 4: Test set accuracy under different levels of client data heterogeneity. Larger PTFs show consistently
better performance, especially in more heterogeneous settings. Comparing the proportion of the same curve’s
descent from left to right, we observe that larger scale and modularity can enhance performance.
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Figure 5: Test set accuracy with (FedAvg+Local) and without (FedAvg) personalization of modular-update.
As the PTF scale increases, the gap between the two approaches diminishes. full-update results are shown in
supplementary materials.

is smaller in Fig. 3a than Fig. 3b). In other words, if clients wish to avoid federated learning, large114

PTFs with modular updates that are trained on-device can achieve reasonable performance.115

Modular updates can outperform full updates: In a previous study [20], it was demonstrated116

that with larger scale PTFs, the performance gap between full updates and prompt tuning could be117

reduced. However, federated learning introduces additional challenges related to heterogeneity and118

decoupled data, leading to more interesting findings. In particular, we find that modular approaches119

can actually outperform full updates in certain situations. With heterogeneous data distribution in120

Fig. 2, the ViT-T PTF sometimes have higher accuracy with the modular-update. The advantage121

of modular-update is more pronounced when the data is even more heterogeneous, as depicted on122

the right half of Fig. 4. We conclude that full-update is more susceptible to issues introduced by123

federated learning, especially when using small-scale PTFs, and modular approaches can sometimes124

outperform them.125

3.2 Heterogeneous Client Data Distributions126

Enhancing Robustness to Heterogeneous Distributions: In Fig. 4, we plot the accuracy for full-127

update and modular-update training strategies, for varying amounts of data heterogeneity on the clients.128

The results show a notable decrease in test accuracy on heterogeneous data partitions when training129

smaller PTFs with full updates (solid blue curve), particularly in the highly heterogeneous setting.130

Employing larger PTFs or modular update maintains accuracy even under significant heterogeneity.131

Larger PTFs consistently outperform, irrespective of heterogeneity level or fine-tuning method. If132

PTFs are not sufficiently large, performance plummets as heterogeneity escalates (e.g., the solid blue133

curve). In contrast, modular update can enhance performance.134

Bridging the Personalization Gap: We next explore whether PTFs and modularity can help reduce135

the disparity between personalized training and the average global model. As shown in Figure 5,136

the disparity shrinks as the scale of the PTFs grows, for different datasets and update strategies.137

Full update tends to widen this gap, especially with smaller backbones, in contrast to the modular138

update. This suggests that employing larger PTFs and modular update could mitigate the necessity139

for computationally intensive personalized training.140

Mitigating Catastrophic Forgetting: We examine if larger scale and modularity can alleviate141

catastrophic forgetting, as depicted in Fig. 6. The model’s performance is compared pre- and post-142

personalization to induce forgetting. Initially, the model is trained on a global dataset, followed143

by personalization by training on a client-specific local dataset with fewer classes. Maintaining144

performance on the full set of 100 classes alongside improving accuracy on the local classes indicates145

better forgetting resistance. Fig. 6a shows the forgetting ratio (AccFedAvg−AccFedAvg+Local
AccFedAvg

, smaller is better).146

The results demonstrate that modular-update significantly reduces the forgetting ratio, with this ratio147

decreasing as the PTF scale increases. Fig. 6b plots the global vs. local accuracy. The results show148

that larger PTFs and modularity enable personalized models to simultaneously achieve higher global149

and local accuracy, effectively mitigating catastrophic forgetting.150
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Figure 7: We conducted experiments comparing two different scales of PTFs, ViT-L and ViT-T. The color
indicates the number of local training epochs (E). All experiments used the modular-update. To highlight
convergence speed, we employed early stopping when the training reached convergence.

3.3 Reducing Federated Communication Cost151

We aim to reduce communication cost while preserving accuracy, an objective intuitively achieved152

through modules that require fewer parameters for training than updating the entire model. When153

we compare the communication rounds and communication costs between the modular-update154

and full-update approaches, both with a default of one local epoch, we observe two significant155

benefits: Modularity decreases communication rounds and Modularity significantly reduces156

communication cost, by over 100×. The details are shown in C.2157

Large PTFs allow more local epochs: Large local training epochs (E) can reduce communication158

costs. However, a larger E may result in a decline in final performance on heterogeneous data159

partitions. Our study demonstrates that larger scales of PTFs can enable larger local training epochs160

even with heterogeneous data partitions. The results are presented in Fig. 7.161

Fig. 7a shows that using larger local training epochs (E) can significantly accelerate convergence.162

For fine-tuning with small PTFs, it was observed that larger E truly negatively impacted the per-163

formance. However, larger-scale PTFs can maintain or even improve performance when larger E164

values are used. We also compare the communication cost. As shown in Figure 13, larger-scale165

PTFs generally exhibit a higher communication cost due to larger number of trainable parameters.166

However, our findings in Figure 7b reveal that by simply using larger local epochs (E), larger-scale167

PTFs can achieve comparable or even better performance than smaller-scale PTFs within a fixed168

communication cost budget. For instance, for CIFAR100 dataset, when the communication cost is169

limited to 107, ViT-T(E = 1) achieves an accuracy of 54.61, while ViT-L(E = 20) achieves 75.04.170
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Figure 8: We fine-tune a model
(pre-trained on ImageNet-21k) on a
specific task, Task 1. An additional
Task 2, not involved in training, is
also shown. We depict the repre-
sentation shift (blue→red bubbles)
as the model is tuned. Larger trans-
former has better coverage and ro-
bust to shift.

171

3.4 Representation-based Explanation of Power of Scale172

To shed light on our findings, we propose a representation-theoretic173

explanation. When fine-tuning the model for new tasks, larger174

PTFs tend to undergo less dramatic alterations in their feature175

embeddings. This concept is depicted in Figure 8. Here, we176

employ a bubble analogy to represent the model’s representational177

strength, where larger models/bubbles symbolize richer features.178

The expansive representation capacity of large PTFs allows them179

to encapsulate a wide spectrum of features that are inherently180

adaptable across diverse tasks. Notably, larger pre-trained models181

necessitate minor adjustments to adapt to Task 1. This would imply182

smaller changes in feature embeddings of Task 1 itself as well as183

an external Task 2 (which is not used in fine-tuning). We provide184

empirical justification for this hypothesis through the experiments185

provided in Sec. C.3186
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task-specific modules, outperforms conventional FedAvg.

4 Modular Multitask Learning with FedYolo187

Task Dataset # clients # samples Data partition
0 CIFAR100 20 100 mild hetero
1 CIFAR10 20 100 mild hetero
2 CelebA 787 ≤8 celebrity identity
3 FEMNIST 532 ≤120 character writer

Table 1: Details of data partitioning for multi-task learning

Traditional FedAvg entails high communication costs and vulnerability to heterogeneity due to shared188

full PTF parameters. The experiments within Section 3 have demonstrated the potential of large-scale189

PTFs and modularity to reduce communication costs and boost robustness, making them promising190

for multi-task federated learning. Based on these findings, we propose FedYolo as a multi-task191

federated learning method, as illustrated in Figure 1. FedYolo assigns both shared-across-tasks and192

task-dedicated modules and all modules are plugged into a single frozen PTF. This PTF is loaded once193

at the start of the training, equipping clients with a backbone architecture. The task-specific modules194

are then updated and communicated with minimal cost going forward. In the vanilla version, each195

client trains and sends the modules for their own tasks. This might potentially suffer from privacy196

leak as the server will know which client has what task/module. An alternative is letting clients send197

modules for all tasks, where most entries are zero and only the tasks at hand have non-zero entries.198

Combined with secure aggregation techniques [8, 24], this will ensure that the server will not learn199

which clients contributed to a particular task. The detailed algorithm is in the supplemental materials.200

To evaluate FedYolo, we train clients on multiple tasks simultaneously, including image classification201

on CIFAR-10, CIFAR-100, CelebA, and FEMNIST datasets, where each client is assigned to one202

task. The task assignments and data partitioning details are in Table 1. A FedAvg baseline with203

full-update is also trained on the same tasks. We display the evolving accuracy of Task 0. The204

results in Figure 9 show FedYolo (dashed line) consistently outperforming conventional FedAvg205

(solid line), particularly with more tasks and for smaller PTFs. To assess the impact of module206

sharing, we also compare FedYolo, without module sharing across tasks, with FedYolo(share),207

where tasks share the modules in initial layers. When introducing a related task (Task 1, CIFAR10),208

FedYolo(share) benefits from multitasking, for instance, for ViT-L, FedYolo(share) demonstrates a209

1.7% performance improvement compared to FedYolo. Conversely, when incorporating unrelated210

tasks (Task 2, 3), FedYolo(share) slightly degrades compared to FedYolo but is still significantly211

more robust than FedAvg and mostly maintains Task 0’s accuracy.212

To examine the impact of personalization, we conduct another experiment where we add local training213

for clients after the federated training is complete. The results in Fig. 9(right) show that FedYolo also214

surpasses FedAvg and Local-only learning with personalized models in terms of accuracy, espe-215

cially with smaller models. The performance gap narrows with larger models, supporting larger PTFs’216

role in balancing local and federated training. With larger PTFs, users can exclusively train locally217

with similar performance, valuable where data privacy is vital. Across PTF sizes, the near-identical218

performance of Local-only learning and FedAvg+Local implies standard FedAvg’s limited impact219

on the global model’s generalization ability, whereas FedYolo provides clear improvements by220

avoiding interference across distinct tasks.221
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A Organization of the Appendix326

In Section B, we provide a detailed supplementary explanation of Section 4. We have included the327

algorithm box for FedYolo and conducted further research on the impact of shared-across-tasks328

modules.329

In Section C, we add additional experiments. Specifically, we make the following observations:330

• Large PTFs allow for using more local epochs without sacrificing accuracy. This reduces331

the number of communication rounds in federated learning.332

• We provide evaluations for FedProx which is a state-of-the-art optimization-based federated333

learning method for heterogeneity. In line with main submission, FedYolo outperforms334

FedProx with full-updates in multitask settings.335

• In main submission, we only compared full-update and modular-update. An alternative is336

only tuning the classifier head i.e. the final layer(s). We find that modular-update achieves337

superior performance compared to only head-tuning under similar number of trainable338

parameters.339

• Our main empirical findings generalize well across module types (LoRa, Adapted, prompt-340

tuning).341

• Larger PTF retain its benefits over smaller PTF even if we use the same module size342

(i.e. equalizing the number of trainable parameters). We conducted this experiment because343

in the main body of the paper, we used the default module sizes which are proportional to344

the embedding dimension, thus, larger PTFs were using larger modules.345

In Section D, we provide further experiment details.346

B Further discussion of FedYolo347

Our FedYolo method is described in Algorithm 1. The trainable parameters could contain both348

shared-across-tasks and task-dedicated modules. The vanilla FedYolo assigns a unique module to349

each task, a distinct module is allocated to each task, preventing mutual benefit or detriment among350

tasks. This leads us to question whether it’s feasible to leverage the advantages of task sharing while351

circumventing vulnerability to heterogeneity. This can potentially be achieved by integrating the352

robustness of large-scale architecture and modularity. Consequently, our FedYolo also incorporates353

shared-across-task modules.354

To investigate the impact of task sharing, we conducted experiments with two sharing options: sharing355

the modules in initial models (half) or sharing all modules. The results are illustrated in Fig.10. When356

Introducing related tasks, FedYolo (share) consistently yields multitasking benefits. On the other357

hand, when integrating an unrelated task, FedYolo (share) experiences a minor reduction in perfor-358

mance compared to FedYolo. However, it maintains significantly higher robustness than FedAvg and359

predominantly preserves Task 0’s accuracy. Remarkably, even without computationally demanding360

methods such as Neural Architecture Search (NAS), the shared modules can be conveniently selected,361

resulting in comparable performance. Figure 10c further illustrates that when both FedAvg and362

FedYolo share all trainable parameters among tasks, FedYolo still exhibits substantial enhancement.363

Thus, the advantage of FedYolo stems not only from assigning distinct modules to each task to364

reduce the impact of task heterogeneity but also from effectively leveraging the robustness inherent365

in large pretrained transformers and modularity.366

C Additional Experiments367

C.1 Homogeneous client data distributions368

Larger PTFs improve model performance: In a federated setting, the presence of heterogeneous369

data distributions and limited samples among clients can lead to challenges in achieving optimal370

performance. The generalization benefits of large models (a.k.a. over-parameterization) has been371

explored empirically as well as theoretically [34]. However, the impact of scale in FL is an under-372

explored topic and it is not immediately clear whether large models will retain their benefits in FL373
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Algorithm 1 FedYolo
Parameters: Client set C; # of rounds T ; # of local epochs E; # of tasks K; # of clients per round
M ;
PTF parametersWfrozen; trainable parametersWk

train for task k (containing task-specific head and
module);
Local dataset Dm of client m.

1: Load and freeze PTFWfrozen on each client
2: for each communication round t = 1 to T do
3: Ct ← (randomly sample M clients from C )
4: for each client m ∈ Ct in parallel do
5: k← task ID of client m
6: LoadWt,k

train to the client
7: Wt+1,m,k

train ← LOCALTUNING(m,Wt,k
train)

8: Send client parametersWt+1,m,k
train to server

9: end for
10: for task k = 1 to K do
11: Ct,k ← clients in Ct with task k
12: Wt+1,k

train ← Average({Wt+1,m,k
train }m∈Ct,k )

13: end for
14: end for
15:
16: function LOCALTUNING(m,Wt,k

train)
17: Wt ← (assemble task-specificWt,k

train andWfrozen)
18: for epoch e = 1 to E do
19: Wt+1,m,k

train ← trainWt,k
train on dataset Dm

20: end for
21: SendWt+1,m,k

train to the server
22: end function

setting with local training and limited samples. To study this, we conduct experiments in a federated374

few-shot setting, exploring both homogeneous and heterogeneous data distributions to understand375

the effects on model performance. For a homogeneous data distribution where all clients have the376

complete set of 100 classes from CIFAR-100, we plot the accuracy as the number of samples per class377

increases in Fig. 11a. We can see that larger PTFs consistently outperform smaller PTFs, regardless378

of whether the full − update or modular − update method is employed.379

Larger PTFs narrow the local vs. federated training gap: The good performance of large PTFs380

raises the question of whether it is preferable to simply have clients store large PTFs locally and train381

them, without joint training through federated learning. To study this, we conduct experiments to382

directly compare federated with purely local training. Intuitively, federated learning should perform383

better since information is shared between clients, but larger PTFs may approach the performance384
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Figure 10: The figure illustrates the progression of FedYolo with increasing numbers of task-sharing
modules from left to right. (a) Represents the vanilla FedYolo with independent modules for each
task.(b) The modules in the initial half of the layers are shared among tasks.(c) All the modules are
shared among tasks. In (b,c), the results are averages derived from three separate runs.
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Figure 11: Accuracy as a function of the number of training samples per class (CIFAR-100, all clients with
100 classes). (a): Larger PTFs improve accuracy for both modular-update (dashed) and full-update (solid)
training strategies in the federated setting. (b,c): Comparing a federated setting (FedAvg, dashed) with a
purely local setting (Local-only learning, solid), larger PTFs reduce the performance gap, especially with the
modular-update training strategy.

of federated learning. In Figs. 11b,11c, we compare the performance of Local-only learning385

and FedAvg for the full-update and modular-update training strategies. The results show that386

Local-only learning becomes increasingly competitive with FedAvg as the model scale increases387

(i.e., the gap between the solid and dashed lines is smaller for larger PTFs). For instance, in the388

case of the modular − update training strategy with 16 samples per client in Fig. 11c, the accuracy389

gap between the largest PTF (ViT-L, red line) for the Local-only learning and FedAvg strategies is390

8.10, while for the smallest PTF (ViT-T, blue line), the gap is 15.44. Moreover, employing modules391

can help achieve better performance and narrow the gap between fully local and federated training392

(the gap between Local-only learning and FedAvg is smaller in Fig. 11c than Fig. 11b). In other393

words, if clients wish to completely avoid federated learning, large PTFs with modular updates that394

are trained on-device only can achieve reasonable performance.395
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Figure 12: Experiment results using state-of-the-art optimization-based federated learning method
FedProx and FedDyn, instead of FedAvg. (a,b) display the model performance with a heterogeneous
distribution for CIFAR-100, following the same setting as in Figure 2(left). We compare the perfor-
mance between FedProx (orange) and FedAvg (blue) for different update strategies (full-update and
modular-update). The results show that FedProx does not demonstrate notable improvement. In(c),
we present the model performance in the context of federated multi-task learning. Our proposed
method, FedYolo, consistently outperforms FedProx with full-update. Similar results were obtained
for FedDyn in figures (d,e,f).
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Figure 13: Communication cost is greatly decreased with modular-update compared to full-update.
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Figure 14: (a) We fine-tune a model (pre-trained on ImageNet-21k) on a specific task, Task 1. An additional
Task 2, not involved in training, is also shown. We depict the representation shift (blue→red bubbles) as the
model is tuned. Larger transformer has better coverage and robust to shift. (b&c) In our experiments, we
fine-tuned few-shot CIFAR-100 dataset (400 samples), as Task 1, using modular-update. We assessed the cosine
similarities of feature embedding before and after fine-tuning on CIFAR-100 (Task 1) and CIFAR-10 (Task 2)
test sets. These demonstrate that feature similarity increases with larger scale and the similarity on small models
declines more sharply with additional training epochs.

C.2 Reducing Federated Communication Cost396

We aim to reduce communication cost while preserving accuracy, an objective intuitively achieved397

through modules that require fewer parameters for training than updating the entire model. Table 2398

shows the number of transmitted parameters P , which is much smaller for modular-update compared399

to full-update across all ViT models. A consistent learning rate is maintained for a fair comparison.400

The experiments are conducted with mild heterogeneous CIFAR100.401

Modularity Decreases Communication Rounds: We compare the number of FL communication402

rounds required by modular-update and full-update, plotted in Fig 13 (left). The modular-update403

approach (dashed lines) outperforms full-update (solid line) during initial training stages and achieves404

target accuracy in fewer epochs 37.25 (±1.08) on average for modular-update, versus 47.25 (±1.48)405

for full-update. Contrary to previous studies [15, 4], we find that modular updates typically converge406

faster in the federated setting.407

Modularity significantly reduces communication cost, by over 100x: The communication cost408

can be defined as T ×M × P , where T is the number of communication rounds, M is the number409

of clients per round, and P is the number of transmitted parameters. We plot the accuracy as a410

function of communication cost in Fig 13 (right). modular-update significantly reduces the number of411

transmitted parameters compared to full-update, for all model sizes. This improvement in efficiency412

helps address the communication bottleneck commonly associated with federated learning.413

C.3 Experiments of the Representation-based Explanation414

Fig. 14b&14c. We utilized cosine similarity to quantify the changes in feature embeddings throughout415

the fine-tuning process with different PTF scales. These figures confirm the hypothesis and show416

that larger models indeed incur much smaller feature changes. Also, comparing Fig. 14b&14c,417

features of larger model does not incur significant shift even after 100 epochs! Intuitively, this is418

because, the fine-tuned model is already close to the initial model in the representation space (big blue419

bubble mostly subsumes T1), Thus, the model fully converges in 5-10 iterations and, 100 iterations420

doesn’t cause further shift. Finally, in additional experiments (see supplementary), we have found421

that, conducting the same evaluations with full-update results in consistently smaller similarities than422

with modular-update. This offers a potential explanation for the robustness and few-shot benefits of423

modular-update over full-update.424
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Figure 15: The results of head-tuning. (a,b) Accuracy as a function of the number of training samples
per class (CIFAR-100, all clients with 100 classes). Same as the setting in Fig. 11(a) Comparing
head-tuning (dashed) and full-update (solid) training strategies in the federated setting. (b) Comparing
the FedAvg (dashed) with Local-only learning(solid). (c,d) Experiments are conducted with the
mild heterogeneous CIFAR-100 dataset. (c) Model performance of FedAvg, with heterogeneous data
distribution. Same as the setting in Fig. 2. modular-update consistently outperforms head-tuning in
terms of performance. (d) Test accuracy under different levels of data heterogeneity. Same as the
setting in Fig. 4(right). Comparing the proportion of the same curve’s descent from left to right, we
observe that modular-update (dashed) can achieve performance compared to head-tuning (solid).

C.4 Comparisons to Existing FL Methods425

We also compare our proposed method to the state-of-the-art optimization-based federated learning426

method FedProx [21] and FedDyn[1]. FedProx uses a proximal term in the local objective function427

to mitigate weight divergence issues. We keep all the hyperparameters and set the penalty constant µ428

in the proximal term of FedProx to 0.1. We tune the hyperparameter µ using ViT-B and modular-429

update with a grid search approach and then apply the same value to all the other scales of PTFs and430

update strategy (full-update). The results are shown in Fig. 12. FedProx does not show a significant431

improvement in the model’s performance compared to FedAvg. Our method FedYolo continues432

to demonstrate a substantial advantage. We conclude that FedYolo outperforms recent methods433

designed for federated learning, offering superior performance without the need for fine-tuning434

optimization parameters. FedDyn propose a dynamic regularizer for each device at each round. The435

results are similar. It should also be mentioned that FedYolo can be easily combined with those436

optimization-based methods.437

C.5 Comparison to Head-tuning438

We also evaluate the performance of the head-tuning method and compare it with modular-update439

in our experiments. The results can be found in Figure 15. Among all the settings, the results440

show that the observations from the modular-update experiments also hold true for head-tuning.441

Furthermore, the results consistently demonstrate that modular-update outperforms head-tuning.442

Figures 15b and 15a illustrate the model performance with homogeneous data, while Figures 15c443

and 15d compare the model performance and robustness under the heterogeneous setting. In addition444

to the previous observation, we find that the head-tuning performs worse than modular-update in445

terms of both performance and robustness.446

447
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Figure 16: The results of other modules,VPT(a-d) and LoRA(e-h). (a,b,e,f) Accuracy as a function
of the number of training samples per class (CIFAR-100, all clients with 100 classes). Same as the
setting in Fig. 11. (c,d) Experiments are conducted with the mild heterogeneous CIFAR-100 dataset.

C.6 Results of Other Modules448

In Figure 16, we present the results of VPT and LoRA. While the type of module does influence the449

performance, our main findings generalize well across module types and experiments.450

C.7 The Impact of Trainable Parameter Count451

To verify that our empirical findings indeed arise from large-scale and modularity rather than other452

factors, we conduct ablation experiments. Due to the nature of module architectures like LoRA,453

fixed-size modules across different backbone sizes were not feasible. We use fixed dimension instead454

of fixed # of parameters across different scales of PTFs for a fair comparison. We explored the455

influence of the # of parameters in the modules using the VPT method. Among the modules, the456

15



dimensions of prompts are flexible and can be adjusted accordingly. We vary the dimensions of the457

VPT while keeping the total number of parameters equal to that of the ViT-L used in our experiments458

(299,108 parameters). In [20], the results indicate that there is a saturation point of prompt size459

in performance improvement. Beyond that value, further increasing the prompt size does not lead460

to a significant improvement in performance. Our results(shown in Fig. 17) also verify the same461

conclusion. This finding suggests that the advantage of larger PTFs is not attributed to the larger462

number of parameters.463
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Figure 17: Our experiments demonstrate that increasing the number of parameters for smaller PTFs
does not necessarily lead to improved performance. This finding suggests that the advantage of larger
PTFs is not due to the larger number of parameters.

C.8 Comparison to Centralized Training464

In order to assess the impact of heterogeneity on model performance, we also compare the federated465

accuracies to the centralized accuracies. The results are shown in Figure 18, where we observe that466

models with larger scale exhibit greater robustness to heterogeneity, consistent with our previous467

findings.
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(c) FEMNIST
Figure 18: Comparison of different models with FedAvg aggregation and centralized training. The dashed line
corresponds to the baseline of full-update centralized training.

468

C.9 The Impact of Pretraining469

Previous works [30, 25] experimentally show that using pretrained models could achieve better470

performance compared to the models trained from scratch for federated learning settings. Our471

experiments align with these findings and further indicate that larger models tend to benefit more in472

scenarios where few-shot training is employed. The results are shown in Fig. 19. We apply FedAvg473

as the training algorithm and test on CIFAR100 with varying levels of heterogeneity.474

C.10 Experiments with other datasets or training strategies475

The results are shown in Fig. 20,21476

D Experiment details and reproducibility477

We employed a linear learning rate with linear warm-up and cosine decay scheduler for our experi-478

ments. In all federated learning methods, we set the local training epoch (E) to 1 (unless otherwise479

specified) and the total communication rounds to 150. We used the stochastic gradient descent (SGD)480
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Figure 19: Our experiments confirm that employing pretrained models in federated learning leads to
improved performance compared to models trained from scratch. Furthermore, our findings show
that larger-scale models benefit more significantly from pretraining.
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(a) CelebA, modular-update
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Figure 20: CelebA results for Fig. 3

optimizer with momentum of 0.9 and no weight decay. The local training batch size was set to 32,481

and the input image resolution was fixed at 224 × 224 for all methods. For CIFAR experiments,482

we randomly sampled 5 clients per round, while for FEMNIST and CelebA, we randomly sampled483

10% of clients per round. All experiments were conducted on Tesla V100 or A100 GPU. All the484

experiments were run for 5 independent runs.485

D.1 Data partition486

• CIFAR-10 and CIFAR-100: For federated learning, we have 20 clients inspired from the settings of487

[25, 26]. To explore the performance under a limited sample size, we utilize a subset of the original488

training dataset. Experiments are conducted in both homogeneous and heterogeneous settings, where489

in the homogeneous setting, each client contains samples from all classes, and in the heterogeneous490

setting, each client contains samples from a subset of classes. We simulate three data partitions491

and control the non-IID level by changing the number of classes included in each client. For the492

CIFAR-100 dataset, the “mild heterogeneous” data partition denotes 20 classes per client, while the493

“more heterogeneous” data partition denotes 5 classes per client. To ensure fair comparison across494

data partitions and meet the challenge of limited local data, we assign 100 samples to each client,495

regardless of the degree of heterogeneity. The data distribution of each local test set matches that496

of the local train set for each client. Further details are in the supplementary. The details of data497

partition are provided in Fig. 22.498

• CelebA and FEMNIST: For CelebA, we partition the dataset onto the clients based on the celebrity499

in each photo and test on the binary classification task of smile presence. For FEMNIST, we partition500

the data based on the writer of the digit/character. In accordance with [3, 25], we increase the task501

difficulty by dropping clients with large number of samples (specifically, 8 samples for CelebA and502

120 samples for FEMNIST). For each client, we partition the data into equal 50/50 train/test sets, so503

the class distribution of each local test set matches that of the local train set for each client.504

D.2 Pre-trained Transformer (PTFs):505

In this study, all methods except for full-update, employed frozen PTF backbones. We utilized506

different scales of the Vision Transformer (ViT) architecture: ViT-large (ViT-L), ViT-base (ViT-B),507

ViT-small (ViT-S), and ViT-tiny (ViT-T). The models are pre-trained on ImageNet-21K from the508

official Google JAX implementation [6, 27, 31]. A dataset-specific header is deployed to adapt to the509

number of classes for each dataset. The number of trainable parameters for is shown in Table. 2. For510

other training strategies, the number of trainable parameters is available in the supplementary.511
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Figure 21: Test set accuracy with (FedAvg+Local) and without (FedAvg) personalization. As the PTF scale
increases, the gap between the two approaches diminishes. full-update results for Fig. 5.
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(a) CIFAR100, More heterogeneous
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(b) CIFAR100, Mild heterogeneous
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(c) CIFAR10, More heterogeneous
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(d) CIFAR10, Mild heterogeneous

Figure 22: Data partition for different non-IID level

D.3 Modules:512

We evaluated several modules for the modular-update method, including Adapter [12], LoRA [13], and513

VPT [16]. Due to space limitations, we only include the results of the Adapter in the main paper, while514

the results of the LoRA and VPT methods are similar and relegated to the supplementary material.515

Therefore, in the results below, the modular-update and “Adapter” terms are used interchangeably.516

To ensure a fair comparison, we deploy the modules on all transformer blocks, maintaining a fixed517

embedding dimension of 8 across different scales. The Appendix provides further details on the size518

of each module plus PTF. The number of trainable parameters for each training strategy was shown519

in Table. 3520

D.4 Personalized training:521

For heterogeneous data distribution (§3.2), we also perform personalized training after the global522

federated training. Each client will thus have its own personalized model. During the personalized523

18



ViT-T ViT-S ViT-B ViT-L
Full-update 5.5M 21.7M 85.9M 303.4M
Modular-update 58.6K 116.9K 233.6K 418.0K

Table 2: Number of parameters for different PTF scales.

ViT-T ViT-S ViT-B ViT-L
Full model 5,543,716 21,704,164 85,875,556 303,404,132
Adapter 58,564 116,932 233,668 417,984
LoRA 93,028 185,956 371,812 888,932
VPT 37,732 75,364 150,628 299,108
Header 19,300 38,500 76,900 102,500

Table 3: Number of parameters for different PTF scales and different tuning methods.

training, we fine-tune the average global model using local data to obtain a customized model for524

each client.525

D.5 Evaluation metrics:526

Unless otherwise stated, the evaluation of all models is based on the average local accuracy across527

clients. In the case of FedAvg, the performance of the average global model is calculated and shared528

among all clients. For Local-only learning and FedAvg+Local, each client has its own fine-tuned529

model, so we compute the average performance of the individual models. In all figures, error bars530

correspond to one standard deviation.531

D.6 Optimizers:532

We use FedAvg with SGD optimizer, momentum parameter of 0.9, and no weight decay. The local533

training batch size is set to 32. In appendix, we also provide experiments for FedProx [21] and534

FedDyn [1] which led to consistent conclusions as FedAvg (see supplementary).535
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