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ABSTRACT

In offline reinforcement learning, it is necessary to manage out-of-distribution ac-
tions to prevent overestimation of value functions. One class of methods, policy-
regularized methods, address this problem by constraining the target policy to stay
close to the behavior policy. Although several approaches suggest representing the
behavior policy as an expressive diffusion model to boost performance, it remains
unclear how to regularize the target policy given a diffusion-modeled behavior
sampler. In this paper, we propose Diffusion Actor-Critic (DAC) that formulates
the Kullback-Leibler (KL) constraint policy iteration as a diffusion noise regres-
sion problem, enabling direct representation of target policies as diffusion models.
Our approach follows the actor-critic learning paradigm that we alternatively train
a diffusion-modeled target policy and a critic network. The actor training loss in-
cludes a soft Q-guidance term from the Q-gradient. The soft Q-guidance grounds
on the theoretical solution of the KL constraint policy iteration, which prevents the
learned policy from taking out-of-distribution actions. We demonstrate that such
diffusion-based policy constraint, along with the coupling of the lower confidence
bound of the Q-ensemble as value targets, not only preserves the multi-modality of
target policies but also contributes to stable convergence and strong performance
in DAC. Our approach is evaluated on the D4RL benchmarks and outperforms the
state-of-the-art in nearly all environments.

1 INTRODUCTION

Offline reinforcement learning (RL) aims at learning effective policies from previously collected
data, without the need for online interactions with the environment (Levine et al., 2020). It holds
promise to implement RL algorithm to real-world applications, where online interactions are risky,
expensive or even impossible. However, learning entirely from the offline data brings a new chal-
lenge. The prior data, such as human demonstration, is often sub-optimal and covers only a small
part of samples compared to the entire state-action space. Learning policies beyond the level of
behavior policy demands querying the value function of actions which are often not observed in the
dataset. Despite off-policy RL algorithms could be directly applied to the offline data, those out-of-
distribution (OOD) actions exacerbate the bootstrapping error of value function estimation, typically
causing overestimation of action-values and leading to poor performance (Kumar et al., 2019).

To alleviate the problem of overestimation on OOD actions, prior research of policy-regularized
algorithm suggests to regularize the learned policy by limiting its deviation from the behavior policy.
These methods generally regularize the learned policy by adding a behavior cloning term to the
loss function (Fujimoto & Gu, 2021; Wu et al., 2019; Wang et al., 2022) or training a behavior
sampler to assist in evaluating the Q-learning target (Kumar et al., 2019; Fujimoto et al., 2019;
Wang et al., 2022; Chen et al., 2022; Hansen-Estruch et al., 2023). However, due to the intricacy
of the behavior distribution, these methods require sufficient model representative capacity and an
appropriate regularization scheme to prevent sampling OOD actions and achieve strong performance
(Wang et al., 2022).
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With the emergence of diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020), recent
advances on policy-regularized algorithms suggest modeling the behavior policies using high-
expressive diffusion models (Janner et al., 2022; Wang et al., 2022; Chen et al., 2022; Hansen-
Estruch et al., 2023). However, there are several limitations with the current implementations of
diffusion models in offline RL. Some methods use the diffusion model as a behavior sampler for
subsequent action generation (Chen et al., 2022; Hansen-Estruch et al., 2023). Those methods re-
quire generating lots of action candidates to choose from, which hinders the real-world applications
for the slow inference process. Diffusion Q-learning (Wang et al., 2022) trains a biased diffusion
model to aid in the estimation of the Q-learning target. Nevertheless, the biased diffusion model no
longer prevents from sampling OOD actions (Figure 1 & 2), and the back-propagation of gradients
through the denoising process makes the training process time-consuming. Additionally, another
drawback of modeling behavior policies as diffusion models is the inability of the diffusion models
to explicitly estimate density values. Techniques that rely on access to density functions are not
directly applicable given a diffusion-modeled behavior policy (Peng et al., 2019; Nair et al., 2020).
Furthermore, it remains unclear how to regularize policies to stay close to a diffusion-modeled be-
havior that is both theoretically sound and effective in practical performance.

In this paper, we propose Diffusion Actor-Critic (DAC) to address the offline RL problem by training
a diffusion-modeled target policy. We focus on the optimization problem of constrained policy
iteration (Schulman et al., 2015; Peng et al., 2019; Nair et al., 2020; Chen et al., 2022), where the
target policy is trained to maximize the estimated Q-function while fulfilling the KL constraint of
the data distribution. We derive that the optimization problem can be formulated as a diffusion noise
regression problem, eliminating the need for explicit density estimation of either the behavior policy
or the target policy. The resulting noise prediction target involves a soft Q-guidance term that adjusts
the Q-gradient guidance according to the noise scales, which distinguishes it from both the guided
sampling with return prompts (Janner et al., 2022; Chen et al., 2021) and methods where the Q-
gradient is applied to the denoised action samples (Wang et al., 2022). DAC follows the actor-critic
learning paradigm, where we alternatively train a diffusion-modeled target policy and an action-
value model. During the actor learning step, we train policy model by regressing on a target diffusion
noise in a supervised manner. For the critic learning, we employ the lower confidence bound (LCB)
of a Q-ensemble to stabilize the estimation of Q-gradients under function approximation error. This
approach prevents the detrimental over-pessimistic bias of taking the ensemble minimum as used in
the previous research (Fujimoto et al., 2018; Fujimoto & Gu, 2021; Wang et al., 2022). Experiments
demonstrate that the LCB target balances the overestimation and underestimation of the value target,
leading to improved performance.

In conclusion, our main contributions are:

• Introducing DAC, a new offline RL algorithm that directly generates the target policy us-
ing diffusion models. The high-expressiveness of diffusion models is able to capture not
only the multi-modality of behavior polices, but also the complexity of target polices as
well. Moreover, the training of DAC avoids the back-propagation of gradients through the
denoising path, which significantly saves the training time for learning diffusion policies.

• Proposing the soft Q-guidance that analytically solves the KL constraint policy iteration us-
ing diffusion models, without the need for explicit density estimation of either the behavior
policy or the target policy. The necessity for constraint satisfaction in learning diffusion-
modeled target policies is not only crucial for theoretical comprehension but also guaran-
tees that the generated policy refrains from taking OOD actions.

• We demonstrate the effectiveness of DAC on the D4RL benchmarks and observe that it
outperforms nearly all prior methods by a significant margin, thereby establishing a new
state-of-the-art baseline. Additionally, DAC shows stable convergence and strong perfor-
mance without the need for online model selection (Wang et al., 2022; Kang et al., 2024),
making it more practical for real-world applications.

2 PRELIMINARIES

We consider the RL problem formulated as an infinite horizon discounted Markov Decision Process
(MDP), which is defined as a tuple (S,A, T , d0, r, γ) (Sutton & Barto, 1999) with state space S,
action space A, transition probabilities T (s′|s,a), initial state distribution s0 ∼ d0, reward function
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r(s,a), and discount factor γ ∈ (0, 1). The goal of RL is to train a policy π(a|s) : A × S →
[0, 1] that maximizes the expected return: J(π) := Eπ,T ,d0

[
∑∞

t=0 γ
tr(st,at)]. We also define

the discounted state visitation distribution dπ(s) := (1 − γ)
∑∞

t=0 γ
tpπ(st = s). Then the RL

objective J(π) has an equivalent form as maximizing the expected per-state-action rewards: J̃(π) =
Es∼dπ,a∼π(·|s)[r(s,a)] (Nachum & Dai, 2020). In offline RL, the agent has only access to a static
dataset D, which is collected by a potentially unknown behavior policy πβ , without the permission
to fetch new data from the environment.

Constrained policy iteration. Let Qπ : S × A → R be the Q-function of the policy π, which
is defined by Qπ(s,a) = Eπ,T [

∑∞
t=0 γ

tr(st,at)|s0 = s,a0 = a]. In a standard policy iteration
paradigm at iteration k, the algorithm iterates between improving the policy πk and estimating the
Q-function Qπk via Bellman backups (Sutton & Barto, 1999). Estimating Qπk in the offline set-
ting may request OOD actions that are not observed in the dataset, resulting in an accumulation of
bootstrapping errors. To address this issue, off-policy evaluation algorithms (Fujimoto et al., 2019;
Kumar et al., 2019; Wu et al., 2019; Schulman et al., 2015; Peng et al., 2019; Nair et al., 2020) pro-
pose to explicitly regularize the policy improvement step, leading to the constrained optimization
problem:

πk+1 = argmax
π

Es∼dπk [Ea∼π(·|s)Q
πk(s,a)]

s.t.D(π, πβ) ≤ ϵb.
(1)

Commonly used constraints for D are members from f -divergence family, such as KL-divergence,
χ2-divergence and total-variation distance (Peng et al., 2019; Nair et al., 2020; Nachum et al., 2019;
Nachum & Dai, 2020). In this paper we consider D being the expected state-wise (reverse) KL-
divergence: D(π, πβ) = Es∼dπDKL(π(·|s)∥πβ(·|s)). However, the complicated dependency of dπk

on πk makes it difficult to directly solve the KL constraint optimization problem (1) in offline RL. A
typical approach for addressing this issue involves substituting the on-policy distribution dπk with
the off-policy dataset D (Peng et al., 2019; Nair et al., 2020), resulting in the surrogate objective:

πk+1 = argmax
π

Es∼D[Ea∼π(·|s)Q
πk(s,a)]

s.t.Es∼D[DKL(π(·|s)||πβ(·|s))] ≤ ϵb,
(2)

where ϵb is a pre-defined hyperparameter to control the strength of the constraint.

Diffusion models. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020)
are generative models that assumes latent varibles following a Markovian noising and denoising
process. The forward noising process {x0:T } gradually adds Gaussian noise to the data x0 ∼ p(x0)
with a pre-defined noise schedule {β1:T }:

q(x1:T |x0) =

T∏
t=0

q(xt|xt−1), q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI). (3)

The joint distribution in (3) yields an analytic form of the marginal distribution

qt(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) for all t ∈ {1, ..., T}, (4)

using the notation αt := 1 − βt and ᾱt :=
∏t

s=1 αs. Given x0, the noisy sample xt can be easily
obtained through the re-parameterization trick:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I). (5)

DDPMs (Ho et al., 2020) use parameterized models pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t))

to reverse the diffusion process: pθ(x0:T ) = N (xT ;0, I)
∏T

t=1 pθ(xt−1|xt). The practical imple-
mentation involves directly predicting the Gaussian noise ϵ in (5) using a neural network ϵθ(xt, t)
to minimize the original evidence lower bound loss:

L(θ) = Ex0∼p(x0),t∼Unif(1,T ),ϵ∼N (0,I)||ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)||2. (6)

A natural approach to employing diffusion models in behavior cloning involves replacing the noise
predictor with a state-conditional model ϵθ(xt, s, t) that generates actions x0 ∈ A based on state s.

Score-based models. The key idea of score-based generative models (Vincent, 2011; Song & Er-
mon, 2019; 2020) is to estimate the (Stein) score function, which is defined as the gradient of the log-
likelihood∇x log p(x). Like diffusion models, score-based models perturb the data with a sequence
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Figure 1: A visual explanation of generating actions from noisy prior xT using (a) denoised Q-
guidance (b) hard Q-guidance and (c) soft Q-guidance. The soft Q-guidance reduces the intensity of
Q-guidance during the denoising steps, generating high-reward actions within the behavior support
without the need to backpropagate the gradient through the path.

of Gaussian noise and train a deep neural network sθ(xt, t) to estimate the score ∇xt log p(xt)
for noisy samples xt ∼ N (xt;x0, σ

2
t I) on different noise levels t = 1, 2, ..., T . The objective of

explicit score matching (Vincent, 2011) is given by:

Ex0∼p,xt∼N (xt;x0,σ2
t I),t∼Unif(1,T )[λ(t)||∇x log p(x)− sθ(xt, t)||2], (7)

where λ(t) > 0 is a positive weighting function. Once the estimated score functions have been
trained, samples are generated using score-based sampling techniques, such as Langevin dynamics
(Song & Ermon, 2019) and stochastic differential equations (Song et al., 2020).

3 DIFFUSION ACTOR-CRITIC

In this section, we introduce the Diffusion Actor-Critic (DAC) framework that models the target
policy directly as a diffusion model, eliminating the need for density estimation of either the behavior
policy or the target policy. Initially, we formulate the KL constraint policy optimization as a diffusion
noise regression problem, which yields a soft Q-guidance term for the noise prediction process that
enables the learning of the target policy in a supervised manner. Additionally, we introduce Q-
ensemble to stabilize the Q-gradient estimation, which utilizes LCB to mitigate the over-pessimistic
estimation associated with taking the ensemble minimum in prior research.

3.1 LEARNING DIFFUSION POLICY THROUGH SOFT Q-GUIDANCE

The problem of behavior constraint policy iteration (2) has closed form solution π∗
k+1 (Peng et al.,

2019; Nair et al., 2020; Chen et al., 2022) by utilizing the Lagrangian multiplier:

π∗
k+1(a|s) =

1

Z(s)
πβ(a|s) exp

(1
η
Qπk(s,a)

)
, (8)

where η > 0 is a Lagrangian multiplier and Z(s) is a state-conditional partition function. Obtaining
the closed form solution of π∗

k+1 directly from (8) is challenging as it requires estimation of the
density function of the behavior policy πβ and the partition function Z(s). Prior methods (Peng
et al., 2019; Nair et al., 2020; Chen et al., 2022) suggest addressing this issue by projecting π∗

k+1
onto a parameterized policy πθ using KL-divergence:

argmin
θ

Es∼D[DKL(π
∗
k+1(·|s)∥πθ(·|s))], (9)

resulting in the policy update algorithm:

θk+1 = argmax
θ

E(s,a)∼D[log πθ(a|s) exp
(1
η
Qπk(s,a)

)
]. (10)

Although (10) eliminates the necessity for estimating the partition function Z(s) and the behavior
policy πβ , it needs explicit modeling of the density function of the target policy πθ. Such require-
ment for πθ makes it unfeasible to directly use diffusion generative models due to the unavailability

4
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Figure 2: Comparison of generated policies on 2-dimensional bandit using different Q-gradient
guidance. We compare soft Q-guidance (magenta) against hard Q-guidance (blue) that eliminates the
noise scaling factor and denoised Q-guidance (Wang et al., 2022) (brown) on 2-D bandit examples.
The dots are behavior policies, which are colored based on the reward value. The dashed level
curves represent the estimated Q-value field. Soft Q-guidance are capable of generating high-reward
actions while remaining within the behavior support. We also observe that soft Q-guidance captures
the multi-modality of target policies as shown in the second plot. Experimental details can be found
in Appendix B.5.

of density function estimation. Prior methods employ Gaussian policies to estimate πθ (Peng et al.,
2019; Nair et al., 2020), which limits the expressiveness of the target policy. To address these issues,
we rewrite (8) using score functions:

∇a log π
∗
k+1(a|s) = ∇a log πβ(a|s) +

1

η
∇aQ

πk(s,a), a ∈ A, (11)

where the action space A is usually a compact set in Rd for d-dimensional actions. It seems that the
target score function ∇a log π

∗
k+1(a|s) can be trained by regression on the right-hand-side. How-

ever, since πβ is unknown, we do not have the explicit regression target ∇a log πβ(a|s). Drawing
inspiration from explicit score matching with finite samples (Vincent, 2011), we smoothly extend
the policy functions and the value function defined in A to the extended action space Rd. Then we
consider (11) of the optimal score functions to hold for noisy perturbations of the observation set:

∇xt log p
∗
t (xt|s) = ∇xt log pt(xt|s) +

1

η
∇xtQ

πk(s,xt), xt ∈ Rd, (12)

where p∗t (xt|s) =
∫
qt(xt|a)π∗

k+1(a|s)da and pt(xt|s) =
∫
qt(xt|a)πβ(a|s)da are noise distribu-

tions. The noisy perturbation xt ∼ qt(xt|a) is defined in (4) with x0 = a. When the perturbation
is small, i.e. qt(xt|a) ≈ δ(xt − a), then p∗t (xt|s) ≈ π∗

k+1(a|s) and pt(xt|s) ≈ πβ(a|s), which
recovers the relationship between score functions within the action space A as described in (11).
Tackling the score function of noise distribution is favorable, since ∇xt

log p∗t (xt|s) itself serves
as a means of generating π∗

k+1 using diffusion models, without the need for score-based sampling
methods such as Langevin dynamics, as described in the following theorem.
Theorem 1. Let ϵ∗(xt, s, t) := −

√
1− ᾱt∇xt

log p∗t (xt|s). Then ϵ∗(xt, s, t) is a Gaussian noise
predictor which defines a diffusion model for generating π∗

k+1.

Although ϵ∗(xt, s, t) determines the diffusion model that directly generates the target policy, the
form of the target noise ϵ∗(xt, s, t) necessitates the estimation of the noisy score function of the
behavior policy ∇xt

log pt(xt|s) by (12), which is typically not accessible. To tackle this problem,
we investigate the learning objective when utilizing function approximators. Specifically, we project
the target noise ϵ∗(xt, s, t) onto a parameterized conditional noise model ϵθ(xt, s, t) via L2-loss,
following the standard training objective of diffusion models:

argmin
θ

Es∼D,a∼π∗,xt∼qt(xt|a),t||ϵθ(xt, s, t)− ϵ∗(xt, s, t)||2. (13)

To eliminate the need for sampling from the unknown target policy π∗
k+1, we approximate the ex-

pectation through a ∼ π∗
k+1 by the behavior data a ∼ D, resulting in the surrogate objective:

argmin
θ

E(s,a)∼D,xt∼qt(xt|a),t||ϵθ(xt, s, t)− ϵ∗(xt, s, t)||2. (14)

Such learning objective has an equivalent form which is easy to optimize.
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Algorithm 1 Diffusion Actor-Critic Training
Require: offline dataset D, batch size B, learning rates αϕ, αθ, αη and αema, behavior cloning

threshold b, pessimism factor ρ, initial Lagrangian multiplier ηinit, ensemble size H
1: Initialize: diffusion policy ϵθ, target diffusion policy ϵθ̄ = ϵθ, Q-networks Qϕh , target Q-

networks Qϕ̄h = Qϕh (h = 1, 2, ...,H), Lagrangian multiplier η = ηinit
2: while training not convergent do
3: Sample a batch of B transitions {(s,a, r, s′)} ⊂ D
4: Sample a′ = x0 through denoising process using noise predictor ϵθ̄(xt, t, s).
5: for h in {1, 2, ...,H} do
6: Update ϕh ← ϕh − αϕ∇ϕhLC(ϕ

h) (17) ▷ Critic learning
7: end for
8: Sample ϵ ∼ N (0, I), t ∼ Unif(0, T ) and compute xt =

√
ᾱta+

√
1− ᾱtϵ

9: Estimate Q-gradient∇xt
Qπk(s,xt) using (18)

10: θ ← θ − αθ∇θLA(θ) (16) ▷ Actor learning
11: η ← η + αη(||ϵθ(xt, s, t)− ϵ||2 − b) ▷ Dual gradient ascent (optional)
12: θ̄ ← (1− αema)θ̄ + αemaθ
13: ϕ̄h ← (1− αema)ϕ̄

h + αemaϕ
h ▷ Update target networks using EMA

14: end while

Theorem 2. Training parameters θ according to (14) is equivalent to optimize the following objec-
tive:

argmin
θ

E(s,a)∼D,ϵ∼N (0,I),t||ϵθ(xt, s, t)− ϵ+
1

η

√
1− ᾱt∇xt

Qπk(s,xt)||2, (15)

where xt =
√
ᾱta+

√
1− ᾱtϵ.

The learning objective (15) defines a noise regression problem that approximates the solution of
the KL constraint policy iteration (2) within the diffusion model framework, without requiring the
estimation of densities for either the behavior policy or the target policy. We refer the last term in the
noise target as the soft Q diffusion guidance or simply soft Q-guidance. Within the soft Q-guidance,
the Q-gradient is weighted by the noise scale

√
1− ᾱt. In a typical diffusion model, the noise scale√

1− ᾱt → 0 as t→ 0 during the denoising process. This suggests that soft Q-guidance encourages
the exploration of high-reward regions in the initial steps of the denoising process, and then gradually
fades the guidance strength as the denoising step approaches the final output. In comparison to the
hard Q-guidance that eliminates the noise scaling factor or guidance on denoised actions (see Figure
1 for illustrations), soft Q-guidance produces high-fidelity actions that closely resemble the behavior
policies, thereby preventing the sampling of out-of-distribution (OOD) actions (Figure 2).

To connect the learning objective (15) with policy-regularized methods, we rearrange the terms in
(15) and incorporate constant(s) into η, resulting in the following actor learning loss:

LA(θ) = E(s,a)∼D,ϵ,t

[
η||ϵθ(xt, s, t)− ϵ||2 +

√
1− ᾱt ϵθ(xt, s, t) · ∇xt

Qπk(s,xt)
]
, (16)

where the dot (·) implies inner product. The Lagrangian multiplier η determines the trade-off be-
tween the behavior cloning and the policy improvement. As η → ∞, the noise prediction loss (16)
reduces to behavior cloning using a parameterized conditional diffusion model, as used in the re-
cent research (Chen et al., 2022; Hansen-Estruch et al., 2023; Wang et al., 2022). The second term
involves a inner product between the predicted noise and the Q-gradient, promoting the acquired
denoising directions to align with the estimated Q-gradient field. In practical implementation, DAC
balances the behavior cloning and policy improvement by controlling η to be either fixed or learnable
through dual gradient ascent. If η is learnable, DAC trains η to ensure that ||ϵθ(xt, s, t) − ϵ||2 ≤ b
for a given threshold value b > 0.

During critic learning, we approximate Qπk with neural networks. To enhance the stability of es-
timating the Q-gradient used in (16), we follow the method of using pessimistic Q-ensembles (Wu
et al., 2019; Agarwal et al., 2020; Smit et al., 2021; Lee et al., 2021; 2022; An et al., 2021). Specifi-
cally, we train an ensemble of H parameterized Q-networks Qϕh

k
and target Q-networks Qϕ̄h

k
, along

with lower confidence bound (LCB) as value targets (Ghasemipour et al., 2022), which leads to the
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critic learning loss:

LC(ϕ
h) =E(s,a,r,s′)∼D,a′∼πθk

[
r + γQLCB(s

′,a′)−Qϕh(s,a)
]2
,

QLCB(s
′,a′) = Eh[Qϕ̄h

k
(s′,a′)]− ρ

√
Varh[Qϕ̄h

k
(s′,a′)],

(17)

where ρ ≥ 0 is a hyperparameter that determines the level of pessimism, and Eh[·] and Varh[·] are
empirical mean and variance operators over the H ensembles. Once the Q-functions are trained, the
Q-gradient in the soft Q-guidance can be estimated by the ensemble’s average of target Q-networks:

∇xt
Qπk(s,xt) ≈

1

HC

H∑
h=1

∇xt
Qϕ̄h

k
(s,xt), (18)

where C = E(s,a)∼D|Qϕ̄h
k
(s,a)| is an estimated scaling constant that eliminates the influence of

varying Q-value scales in different environments. We summarize the full algorithm of DAC for
offline RL in Algorithm 1.

3.2 POLICY EXTRACTION

We denote πθ(a|s) as the trained diffusion policy through denoisng process using noise predictor
ϵθ(xt, s, t). While πθ(a|s) is capable of generating the target policy, we aim to reduce the un-
certainty of the denoising process during the evaluation phase. To achieve this, we sample a small
batch of Na actions and select the action with the highest Q-ensemble mean value, resulting in better
performance:

π(s) = argmaxa1,...,aNa∼πθ(·|s)Eh[Qϕ̄h
k
(s,a)]. (19)

This approach is commonly employed in methods where a stochastic actor is trained for critic
learning, and a deterministic policy is implemented during evaluation (Brandfonbrener et al., 2021;
Haarnoja et al., 2018). Since πθ(a|s) is trained as a target policy, the sampling number Na can be
relatively small. Through our experiments, we find that DAC can achieve superior performance with
Na = 10. In comparison, SfBC (Chen et al., 2022), Diffusion Q-learning (Wang et al., 2022) and
IDQL (Hansen-Estruch et al., 2023) use Na = 32, Na = 50 and Na = 128, respectively.

4 RELATED WORK

Offline RL. Recent research on offline RL often use value-based algorithms based on Q-learning or
actor-critic learning (Sutton & Barto, 1999). Policy-regularization methods typically train a biased
behavior sampler to help estimate the maximum Q-values within the behavior support. Among these
approaches, BCQ (Fujimoto et al., 2019) learns a conditional-VAE (Sohn et al., 2015) to aid in sam-
pling Q-learning targets; BEAR (Kumar et al., 2019) employs maximum mean discrepancy (MMD)
to regularize the learned policy. Moreover, BRAC (Wu et al., 2019) is based on actor-critic learning
framework and explores various regularization methods as value penalties; TD3+BC (Fujimoto &
Gu, 2021) adds a behavior cloning term to regularize the learned policy in a supervised manner. Ad-
ditionally, some methods implicitly regularize the policy by training pessimistic value-functions or
using in-sample estimation. CQL (Kumar et al., 2020) learns conservative Q-values on OOD actions.
IQL (Kostrikov et al., 2021) and IDQL (Hansen-Estruch et al., 2023) use asymmetric loss functions
to approximate the maximal Q-value target via in-sample data. IVR (Xu et al., 2023) also employs
in-sample learning while within the framework of behavior-regularized MDP problem, resulting
in two implicit Q-learning objectives. Extreme Q-learning (Garg et al., 2023) estimates maximal
Q-values using Gumbel regression. In addition to regularizing target policies to align with behav-
ior policies, recent studies also emphasize the importance of regulating the steps of policy updates
within the trust region (Schulman et al., 2015; 2017) to ensure policy improvements (Zhuang et al.,
2023; Zhang & Tan, 2024; Lei et al., 2023). Our method conducts policy-regularization by focus-
ing on KL-regularized policy iteration (Schulman et al., 2015; Peng et al., 2019; Nair et al., 2020),
which regularizes the policy improvement step to fulfill the KL-divergence constraint, preventing
the bootstrapping error of estimating Bellman targets.

Diffusion models for offline RL. Recent studies that utilize diffusion models for offline RL can
be broadly categorized into two types: those that model entire trajectories and those that generate
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Table 1: Average normalized scores of DAC compared to other baselines. We use the following
abbreviations: “m” for “medium”; “r” for “replay”; “e” for “expert”; “u” for “umaze”; “div” for
“diverse” and “l” for “large”. For locomotion tasks, we use “v-2” version; for antmaze tasks, we use
“v-0” version. We highlight in boldface the numbers within 5% of the maximal scores in each task.
Furthermore, we also underline the highest scores achieved by prior methods.

Dataset Onestep-RL CQL IQL IVR EQL Diffuser DTQL AlignIQL SfBC DQL IDQL-A DAC (ours)
halfcheetah-m 48.4 44.0 47.4 48.3 48.3 44.2 57.9 46.0 45.9 51.1 51.0 59.1 ± 0.4
hopper-m 59.6 58.5 66.3 75.5 74.2 58.5 99.6 56.1 57.1 90.5 65.4 101.2 ± 2.0
walker2d-m 81.8 72.5 78.3 84.2 84.2 79.7 89.4 78.5 77.9 87.0 82.5 96.8 ± 3.6
halfcheetah-m-r 38.1 45.5 44.2 44.8 45.2 42.2 50.9 41.1 37.1 47.8 45.9 55.0 ± 0.2
hopper-m-r 97.5 95.0 94.7 99.7 100.7 96.8 100.0 74.8 86.2 101.3 92.1 103.1 ± 0.3
walker2d-m-r 49.5 77.2 73.9 81.2 82.2 61.2 88.5 76.5 65.1 95.5 85.1 96.8 ± 1.0
halfcheetah-m-e 93.4 91.6 86.7 94.0 94.2 79.8 92.7 89.1 92.6 96.8 95.9 99.1 ± 0.9
hopper-m-e 103.3 105.4 91.5 111.8 111.2 107.2 109.3 107.1 108.6 111.1 108.6 111.7 ± 1.0
walker2d-m-e 113.0 108.8 109.6 110.2 112.7 108.4 110.0 111.9 109.8 110.1 112.7 113.6 ± 3.5
locomotion total 684.6 698.5 749.7 749.7 752.9 678.0 798.3 681.1 680.3 791.2 739.2 836.4

antmaze-u 64.3 74.0 87.5 93.2 93.8 - 94.8 94.8 92.0 93.4 94.0 99.5 ± 0.9
antmaze-u-div 60.7 84.0 62.2 74.0 82.0 - 78.8 82.4 85.3 66.2 80.2 85.0 ± 7.9
antmaze-m-play 0.3 61.2 71.2 80.2 76.0 - 79.6 80.5 81.3 76.6 84.2 85.8 ± 5.5
antmaze-m-div 0.0 53.7 70.0 79.1 73.6 - 82.2 85.5 82.0 78.6 84.8 84.0 ± 6.2
antmaze-l-play 0.0 15.8 39.6 53.2 46.5 - 52.0 65.2 59.3 46.4 63.5 50.3 ± 8.6
antmaze-l-div 0.0 14.9 47.5 52.3 49.0 - 66.4 54.0 45.5 56.6 67.9 55.3 ± 10.3
antmaze total 125.3 303.6 378.0 432.0 420.9 - 441.4 474.8 445.4 417.8 474.6 459.9

behavior policies. Diffuser (Janner et al., 2022) trains a diffusion model as a trajectory planner. The
policies are generated through guided-sampling with return prompts, similar to methods that mod-
eling trajectories using Transformer (Chen et al., 2021; Janner et al., 2021). Diffusion Q-learning
(Wang et al., 2022) employs a diffusion model as a biased behavior sampler, incorporating an ad-
ditional loss to promote the denoised actions to achieve maximal Q-values. IDQL (Hansen-Estruch
et al., 2023) and SfBC (Chen et al., 2022) use diffusion models to generate behavior policies. The
target policies are extracted by re-sampling from diffusion-generated actions. Diffusion trusted Q-
learning (Chen et al., 2024) also models behavior policies as diffusion models, while the diffusion-
modeled behavior samplers are used to extract Gaussian policies that focus on high-reward modes.
In comparison, DAC directly utilizes trained diffusion model as the target policy in the actor-critic
paradigm, rather than using it as a behavior sampler to estimate Q-learning targets.

Diffusion models for online RL. Recent research also investigates diffusion policies for online
RL. QSM (Psenka et al., 2023) learns diffusion policies by directly aligning with the Boltzmann
distribution of Q-functions. DIPO (Yang et al., 2023) updates diffusion policies by adjusting action
samples in the replay buffer. To support online exploration, (Wang et al., 2024) employs Gaussian
mixture models to estimate densities and entropy. Although these methods also learn diffusion target
policy, they lack policy-regularization mechanisms to tackle the unique challenges of offline RL.

5 EXPERIMENTS

In this section, we empirically demonstrate the effectiveness of our proposed method by comparing
it with a comprehensive set of recent approaches on D4RL benchmarks (Fu et al., 2020). We also
conduct ablations to show the efficacy of soft Q-guidance in achieving stable convergence and strong
performance. Additionally, we include sensitivity analysis of the Q-ensemble size and action sample
size to demonstrate its robustness. Due to space limitations, we place experimental details and
ablation studies on LCB and other hyperparameters in Appendix B and C.

5.1 COMPARISONS ON OFFLINE RL BENCHMARKS

We compare our approach against an extensive collection of baselines that solve offline RL using
various methods. For explicit policy-regularization methods, we consider one-step RL (Onestep-RL)
(Brandfonbrener et al., 2021), which conducts a single step actor-critic learning. For value-constraint
methods, we compare against Conservative Q-learning (CQL) (Kumar et al., 2020). For in-sample
estimation of maximal value targets, we include Implicit Q-learning (IQL) (Kostrikov et al., 2021),
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Figure 3: Training curves of DAC with different Q-gradient guidance. We compare soft Q-guidance
(soft), hard Q-guidance (hard) and the denoised Q-guidance (denoised) on locomotion tasks. DAC
with soft Q-guidance achieves stable convergence and strong performance across all the tasks.

Implicit Value Regularization (IVR) (Xu et al., 2023) and Extreme Q-learning (EQL) (Garg et al.,
2023). Additionally, we compare our approach to methods that also learn diffusion policies. In this
category, we compare against the most recent works including Diffuser (Janner et al., 2022), SfBC
(Chen et al., 2022), Diffusion Q-learning (DQL) (Wang et al., 2022), Diffusion Trusted Q-Learning
(DTQL) (Chen et al., 2024), AlignIQL (He et al., 2024) and IDQL (Hansen-Estruch et al., 2023).
Specifically, we present the results of “IDQL-A” variant (Hansen-Estruch et al., 2023) for IDQL,
which permits tuning of any amount of hyperparameters and exhibits strong performance. For the
baselines, we report the best results from their own paper or tables in the recent papers (Wang et al.,
2022; Chen et al., 2022; Hansen-Estruch et al., 2023). The main results are shown in Table 1. As
for additional results on Adroit and Kitchen tasks, we refer readers to Appendix C.1.

Drawing from the experimental results, DAC outperforms prior methods by a significant margin
across nearly all tasks. DAC significantly enhances the overall score on locomotion tasks, with an
average increase of 5% compared to the best performance in prior studies. Notably, for “medium”
tasks, where the dataset contains numerous sub-optimal trajectories, DAC consistently achieves im-
provements of over 10%. The antmaze domain presents a greater challenge due to the sparsity
of rewards and the prevalence of sub-optimal trajectories. Consequently, algorithms must possess
strong capabilities in stitching together sub-optimal subsequences to achieve high scores (Janner
et al., 2022). It is evident that DAC outperforms or achieves competitive outcomes on antmaze
tasks, with an almost perfect mean score (≈ 100) on the “antmaze-umaze” task. In the case of the
most demanding “large” tasks, DAC performs comparably to previous methods, with the exception
of IDQL-A, which consistently showcases superior performance. One potential explanation for this
difference could be that we do not tune the rewards by subtracting a negative number, as is done in
previous studies (Kumar et al., 2020; Kostrikov et al., 2021; Wang et al., 2022; Hansen-Estruch et al.,
2023). This setting exacerbates the impact of reward sparsity in more intricate “large” environments,
leading to slower convergence.

It is worth mentioning that we report the performance after convergence, which imposes a stronger
requirement for evaluation, as it necessitates the model training to demonstrate the capability of con-
vergence, rather than relying on online model selection (Wang et al., 2022; Kang et al., 2024). These
requirements hold significant importance for ensuring robust deployment in real-world applications.

5.2 ABLATION STUDY ON Q-GRADIENT GUIDANCE

To demonstrate the effectiveness of soft Q-guidance, we compare DAC to two variants: one that
utilizes hard Q-guidance by eliminating the noise scaling factor, and another that employs denoised
Q-guidance by conducting guidance with denoised actions (see Appendix B for details). The training
curves are presented in Figure 3, with the corresponding final normalized scores in Table 2. DAC
with soft Q-guidance achieves the highest performance in nearly all tasks. The hard Q-guidance
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Table 2: Q-guidance ablation. We compare soft Q-guidance against hard Q-guidance and denoised
Q-guidance while maintaining the remaining settings the same, with the average normalized scores
surpassing prior methods (Table 1) highlighted in boldface.

Q-Target walker2d hopper halfcheetah
m m-r m-e m m-r m-e m m-r m-e

Denoised 8.4 ± 2.2 95.4 ± 7.5 5.9 ± 1.0 17.8 ± 8.2 105 ± 1.0 49.5 ± 1.4 71.9 ± 1.9 56.7 ± 5.3 1.76 ± 1.0
Hard 85.2 ± 16.1 96.9 ± 0.5 110.4 ± 6.3 103.1 ± 0.2 103.8 ± 0.3 110.2 ± 2.4 59.5 ± 0.5 55.3 ± 0.4 94.6 ± 0.9
Soft (Ours) 96.8 ± 3.6 96.8 ± 1.0 113.6 ± 3.5 101.2 ± 2.0 113.1 ± 0.3 111.7 ± 1.0 59.1 ± 0.4 55.0 ± 0.2 99.1 ± 0.9

also performs well when the behavior dataset comprises an adequate number of optimal demonstra-
tions. However, when confronted with tasks that involve numerous sub-optimal trajectories (such as
“medium” datasets), the hard Q-guidance falls behind in comparison to the soft Q-guidance. Fur-
thermore, the denoised Q-guidance often struggles to generate in-distribution actions and frequently
fails. Nevertheless, it yields the highest score on “halfcheetah-m” task, which could be attributed to
the fact that such task is more tolerant to OOD actions.

5.3 SENSITIVITY ANALYSIS
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Figure 4: Experiments of using different Q-ensemble
sizes (H) on hopper tasks.

Q-ensemble sizes. We compare the per-
formance of different Q-ensemble sizes in
Figure 4. We find that ensemble sizes ≥ 5
generally yield similar results, while using
a number as few as two can reduce perfor-
mance on certain tasks. This highlights the
importance of accurately estimating the Q-
gradient field in DAC for effective learn-
ing. Larger ensembles help smooth the
NN-estimated Q-gradient fields, leading to
more stable performance. We choose an
ensemble size of 10 for all tasks to balance
performance and computational cost.
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Figure 5: Experiments of using different number of ac-
tion samples (Na) on hopper tasks.

Number of action samples. Compared
with methods that use diffusion models as
behavior samplers, DAC directly models
the target policy as a diffusion model, per-
mitting fewer action samples to achieve
good results. To demonstrate that DAC is
robust to the choices of Na, we conduct
experiments with various Na on hopper
tasks, as shown in Figure 5. We observe
that increasing Na > 10 gives similar re-
sults, while a small Na is detrimental to
the performance by the randomness of de-
noising process of diffusion models.

6 CONCLUSION

In this paper, we propose the Diffusion Actor-Critic framework, which theoretically formulates the
KL constraint policy iteration as a diffusion noise regression problem. The resulting policy im-
provement loss includes a soft Q-guidance term that adjusts the strength of Q-gradient guidance
based on noise scales. This approach encourages the generation of high-reward actions while re-
maining within the behavior support. Furthermore, DAC avoids gradient propagation through the
denoising path, significantly reducing training time for diffusion policies. Experiments demonstrate
that our algorithm achieves stable convergence and superior performance on D4RL benchmarks,
outperforming previous methods across nearly all tasks without the need for online model selection.
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A PROOFS OF THEORETICAL RESULTS

Lemma 1. Let ϵ ∼ N (0, I) be a standard Gaussian noise, and xt =
√
ᾱta +

√
1− ᾱtϵ be the

noise perturbation of the action a defined in (4). Then the denoising score function∇xt
log qt(xt|a)

maintains the property:
∇xt

log qt(xt|a) = −
ϵ√

1− ᾱt
, (20)

Proof. Since qt(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), the density of noise distribution has the closed

form:

qt(xt|a) ∝ exp [− (xt −
√
ᾱta)

2

2(1− ᾱt)
]. (21)

Therefore, we have

∇xt
log qt(xt|a) = −

xt −
√
ᾱta

1− ᾱt
= −
√
1− ᾱtϵ

1− ᾱt

= − ϵ√
1− ᾱt

.
(22)

A.1 PROOF OF THEOREM 1

Proof. Let ϵ ∼ N (0, I) be a standard Gaussian noise. Consider the diffusion process qt(xt|a)
defined in (4) using reparameterization trick. Then ϵ∗ solves the noisy score matching objective:

ϵ∗ = argmin
ϵ̃

Ea∼π∗
k+1,t,xt∼qt(·|a)[

1

2
||ϵ̃(xt, s, t) +

√
1− ᾱt∇xt

log p∗t (xt|s)||2]. (23)

We can rewrite the objective to obtain:

ϵ∗ = argmin
ϵ̃

Ea∼π∗
k+1,t,xt∼qt(·|a),[

1

2
||ϵ̃(xt, s, t)||2 + ϵ̃(xt, s, t) ·

√
1− ᾱt∇xt

log p∗t (xt|s)] + C1.

(24)
Consider the second term:

Ext∼p∗
t (·|s)[ϵ̃(xt, s, t) ·

√
1− ᾱt∇xt log p

∗
t (xt|s)]

=
√
1− ᾱt

∫
xt

p∗t (xt|s)ϵ̃(xt, s, t) · ∇xt
log p∗t (xt|s)dxt

=
√
1− ᾱt

∫
xt

ϵ̃(xt, s, t) · ∇xt
p∗t (xt|s)dxt

=
√
1− ᾱt

∫
xt

ϵ̃(xt, s, t) · ∇xt

∫
a

qt(xt|a)π∗(a|s)dadxt

=
√
1− ᾱt

∫
xt

ϵ̃(xt, s, t) ·
∫
a

qt(xt|a)∇xt
log qt(xt|a)π∗(a|s)dadxt

=

∫
xt

∫
a

ϵ̃(xt, s, t) ·
√
1− ᾱt∇xt

log qt(xt|a)qt(xt|a)π∗(a|s)dadxt

= Ea∼π∗
k+1,xt∼qt(·|a)[ϵ̃(xt, s, t) ·

√
1− ᾱt∇xt

log qt(xt|a)].

Thus we obtain:

ϵ∗ = argmin
ϵ̃

Ea∼π∗
k+1,t,xt∼qt(·|a)[

1

2
||ϵ̃(xt, s, t)||2 + ϵ̃(xt, s, t) ·

√
1− ᾱt∇xt log qt(xt|a)] + C1

= argmin
ϵ̃

Ea∼π∗
k+1,t,xt∼qt(·|a)[

1

2
||ϵ̃(xt, s, t) +

√
1− ᾱt∇xt

log qt(xt|a)||2] + C1 − C2

= argmin
ϵ̃

Ea∼π∗
k+1,t,xt∼qt(·|a)[

1

2
||ϵ̃(xt, s, t)− ϵ||2] + C1 − C2. (by Lemma 1)

Here C1 and C2 are constants independent of ϵ̃, which completes the proof.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.2 PROOF OF THEOREM 2

Proof. Let the diffusion process qt(xt|a) be defined in (4) using reparameterization trick by sam-
pling standard Gaussian noise ϵ ∼ N (0, I). We rewrite the training objective:

argmin
θ

E(s,a)∼D,t,xt∼qt(xt|a)[
1

2
||ϵθ(xt, s, t)− ϵ∗(xt, s, t)||2]

= argmin
θ

E(s,a)∼D,t,xt∼qt(xt|a)[
1

2
||ϵθ(xt, s, t) +

√
1− ᾱt∇xt log p

∗
t (xt|s)||2]

= argmin
θ

E(s,a)∼D,t,xt∼qt(xt|a)[
1

2
||ϵθ(xt, s, t) +

√
1− ᾱt∇xt

log pt(xt|s)

+
1

η
∇xt

Qπk

(xt, s)||2]

= argmin
θ

E(s,a)∼D,t,xt∼qt(xt|a)[
1

2
||ϵθ(xt, s, t)||2 + ϵθ(xt, s, t) ·

√
1− ᾱt∇xt log pt(xt|s)

+ ϵθ(xt, s, t) ·
1

η
∇xt

Qπk

(xt, s)] + C1

Similar to the proof of Theorem 1, we can rewrite the second term to obtain:
Et,xt∼pt(·|s)[ϵθ(xt, s, t) ·

√
1− ᾱt∇xt log pt(xt|s)]

=
√
1− ᾱt

∫
xt

pt(xt|s)ϵθ(xt, s, t)(xt, s, t) · ∇xt log pt(xt|s)dxt

=
√
1− ᾱt

∫
xt

ϵθ(xt, s, t) · ∇xt
pt(xt|s)dxt

=
√
1− ᾱt

∫
xt

ϵθ(xt, s, t) · ∇xt

∫
a

qt(xt|a)πβ(a|s)dadxt

=
√
1− ᾱt

∫
xt

ϵθ(xt, s, t) ·
∫
a

qt(xt|a)∇xt
log qt(xt|a)πβ(a|s)dadxt

=
√
1− ᾱt

∫
xt

∫
a

ϵθ(xt, s, t) · ∇xt
log qt(xt|a)qt(xt|a)πβ(a|s)dadxt

= Ea∼πβ ,t,xt∼qt(·|a)[ϵθ(xt, s, t) ·
√
1− ᾱt∇xt

log qt(xt|a)]
= Ea∼πβ ,t,xt∼qt(·|a)[−ϵθ(xt, s, t) · ϵ] (by Lemma 1).

Therefore, we have:

argmin
θ

E(s,a)∼D,t,xt∼qt(xt|a)[
1

2
||ϵθ(xt, s, t)− ϵ∗(xt, s, t)||2]

= argmin
θ

E(s,a)∼D,t,xt∼qt(xt|a)[
1

2
||ϵθ(xt, s, t)||2 + ϵθ(xt, s, t) ·

√
1− ᾱt∇xt

log qt(xt|a)

+ ϵθ(xt, s, t) ·
1

η
∇xt

Qπk

(xt, s)] + C1

= argmin
θ

E(s,a)∼D,t,xt∼qt(xt|a)[
1

2
||ϵθ(xt, s, t)||2 − ϵθ(xt, s, t) · ϵ

+ ϵθ(xt, s, t) ·
1

η
∇xt

Qπk

(xt, s)] + C1

= argmin
θ

E(s,a)∼D,t,xt∼qt(xt|a)[
1

2
||ϵθ(xt, s, t)− ϵ+

1

η
∇xt

Qπk

(xt, s)||2] + C1 − C2

= argmin
θ

E(s,a)∼D,t,ϵ∼N (0,I)[
1

2
||ϵθ(xt, s, t)− ϵ+

1

η
∇xtQ

πk

(xt, s)||2] + C1 − C2,

where xt =
√
ᾱta +

√
1− ᾱtϵ is given by the reparameterization trick. C1 and C2 are constants

independent of ϵθ, which completes the proof.
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B EXPERIMENTAL DETAILS

We train our algorithm for 2 million gradient steps in order to ensure model convergence. For
each environment, we carry out 8 independent training processes, with each process evaluating
performance using 10 different seeds at intervals of 10,000 gradient steps. This leads to a total
of 80 rollouts for each evaluation. We report the average score of evaluations in the last 50,000
gradient steps without any early-stopping selection, which fairly reflects the true performance after
convergence. We perform our experiments on two GeForce RTX 4090 GPUs, with each experiment
taking approximately 4 hours to complete, including both the training and evaluation processes. Our
code implementation is built upon the jaxrl (Kostrikov, 2021) code base.

B.1 NETWORK ARCHITECTURE

We employ simple 3 layer MLP with hidden dimension of 256 and Mish (Misra, 2019) activation for
both the actor and critic networks. To enhance training stability, we implement target networks for
both actor and critic, which track the exponential moving average (EMA) of the training networks.
Specifically, we initialize the target networks ϵθ̄ and Qϕ̄h

k
with the same seed as training networks

ϵθ and Qϕ̄h
k

respectively. We update the target actor network ϵθ̄ every 5 gradient steps while update
the target critic networks Qϕ̄h

k
after each gradient step to further ensure training stability.

B.2 HYPERPARAMETERS

We maintain consistent hyperparameter settings for the diffusion models and networks across all
tasks. The hyperparameter settings are as follows:

Table 3: Hyperparameters for all networks and tasks.
Hyperparameter Value
T (Diffusion Steps) 5
βt (Noise Schedule) Variance Preserving (Song et al., 2020)
H (Ensemble Size) 10
B (Batch Size) 256
Learning Rates (for all networks) 3e-4, 1e-3 (antmaze-large)
Learning Rate Decay Cosine (Loshchilov & Hutter, 2016)
Optimizer Adam (Kingma & Ba, 2014)
ηinit (Initial Behavior Cloning Strength) [0.1, 1]
αη (for Dual Gradient Ascent) 0.001
αema (EMA Learning Rate) 5e-3
Na (Number of sampled actions for evaluation) 10
b (Behavior Cloning Threshold) [0.05, 1]
ρ (Pessimistic factor) [0, 2]

Regarding the pessimistic factor ρ, we empirically find that selecting the smallest possible value for ρ
without causing divergence in Q-value estimation yields good outcomes, as the learned target policy
already avoids sampling OOD actions. This makes the tuning of ρ to be relatively straightforward.
In terms of policy-regularization, DAC controls the trade-off between behavior cloning and policy
improvement using either a constant η ≡ ηinit or learnable η by setting b for dual gradient ascent
(Algorithm 1). For locomotion tasks, we employ dual gradient ascent which dynamically adjust η
to fulfil the policy constraint. As for antmaze tasks, we choose constant η ≡ ηinit during the training
process. Moreover, since different tasks involve varying action dimensions, we choose different
hyperparameters for each task. We consider values of ηinit ∈ [0.1, 1], b ∈ [0.05, 1] and ρ ∈ [0, 2].
We summarize the hyperparameter settings for the reported results in Table 4.

B.3 VALUE TARGET ESTIMATION

For the critic learning, we need to sample a′ ∼ πθk(·|s′) to estimate the value target in (17). To
enhance the training stability, we samples M = 10 actions from πθk(·|s′) through denoising pro-
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Table 4: Hyperparameters settings for tasks.
Tasks b η ρ Regularization Type
hopper-medium-v2 1 - 1.5 Learnable
hopper-medium-replay-v2 1 - 1.5 Learnable
hopper-medium-expert-v2 0.05 - 1.5 Learnable
walker2d-medium-v2 1 - 1 Learnable
walker2d-medium-replay-v2 1 - 1 Learnable
walker2d-medium-expert-v2 1 - 1 Learnable
halfcheetah-medium-v2 1 - 0 Learnable
halfcheetah-medium-replay-v2 1 - 0 Learnable
halfcheetah-medium-expert-v2 0.1 - 0 Learnable
antmaze-umaze-v0 - 0.1 1 Constant
antmaze-umaze-diverse-v0 - 0.1 1 Constant
antmaze-medium-play-v0 - 0.1 1 Constant
antmaze-medium-diverse-v0 - 0.1 1 Constant
antmaze-large-play-v0 - 0.1 1.1 Constant
antmaze-large-diverse-v0 - 0.1 1 Constant

cess. As for locomotion tasks, we calculate the average value 1/M
∑M

i [Qϕ̄h
k
(s′,a′i)] over the

sampled actions to estimate the target Q-value. While for antmaze tasks, we use the maximum
maxa′

1,...,a
′
M
[Qϕ̄h

k
(s′,a′i)] to address the problem of reward sparsity, which is consistent with previ-

ous research (Wang et al., 2022).

B.4 Q-GRADIENT GUIDANCE

To fairly assess the performance of different Q-guidance, as shown in the 2D-bandit example (Figure
2) and an ablation study in Section 5.2, we modify the actor learning loss of DAC while keeping all
the remaining settings the same. In the case of soft Q-guidance, we use the original loss of actor
learning for DAC (16). For the hard Q-guidance, we modify (16) to remove the noise scale factor:

Lhard(θ) = E(s,a)∼D,ϵ,t

[
η||ϵθ(xt, s, t)− ϵ||2 + ϵθ(xt, s, t) · ∇xt

Qπk(s,xt)
]
. (25)

Regarding the denoised Q-guidance used in Diffusion Q-learning (Wang et al., 2022), we use the
following denoised Q-guidance loss:

Ldenoised(θ) = E(s,a)∼D,ϵ,t

[
η||ϵθ(xt, s, t)− ϵ||2 + Ex0∼πθ

[Qπk(s,x0)]
]
, (26)

where the denoised action x0 is obtained through the denoising process used in DDPM, and the
gradient ∂Lhard(θ)/∂θ will be back-propagated through the denoising path. All the Q-functions are
re-scaled by an estimated constant 1

E(s,a)∼D|Qπk (s,a)| to remove the influence of different Q-value
scales.

B.5 2-D BANDIT EXAMPLE

For the 2-D bandit example (Figure 2), we generate 400 sub-optimal behavior actions by drawing
samples from patterns with Gaussian noises. The reward values for each action are determined by
the distances between action points and (0.4,−0.4), i.e., reward ∼ −

√
(x− 0.4)2 + (y + 0.4)2 +

N (0, 0.5I). Therefore, the majority of actions are sub-optimal and the estimated gradient field will
tend to promote the generation of out-of-distribution (OOD) actions. However, given that the true
reward values associated with OOD actions are agnostic to the learner, a well-performing policy
learned through offline RL should not deviate significantly from the behavior support. This high-
lights the superiority of DAC in this protocol. To reproduce the results presented in Figure 2, we
train 20,000 gradient steps with a batch size of 128, a learning rate of 1e-3, a diffusion step T = 50,
and behavior cloning threshold b = 1.3 for all the methods.
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B.6 REWARD TUNING

We adhere to the reward tuning conventions for locomotion tasks in the previous research (Kostrikov
et al., 2021), which is defined as:

r̃ = 1000× r

maximal trajectory return−minimal trajectory return
. (27)

As for antmaze task, it faces the challenge of sparse rewards, with the agent receiving a reward of 1
upon reaching the goal and 0 otherwise. Previous methods typically subtracts a negative constants
(such as -1) from the rewards to tackle the issue of reward sparsity (Kostrikov et al., 2021; Wang
et al., 2022). However, we empirically find that DAC performs well for most tasks without the need
for such reward tuning technique. In our experiments, we simply employ the same tuning method
(27) as the one used for locomotion tasks, which in fact scales the rewards by 1,000 for antmaze
environments. This tuning method does not effectively tackle the problem of sparse rewards, which
could potentially result in the inferior performance of DAC on the “large” antmaze tasks.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 RESULTS ON ADROIT AND KITCHEN TASKS

We provide additional results of DAC on Kitchen and Adroit tasks from D4RL dataset. Here we
also involve the reported results from Diffusion Q-learning (Diffusion QL) Wang et al. (2022) as
comparison. The results are summarized in Table (5), and the training curves are show in Figure
10 and Figure 11. Given that Diffusion Q-learning reports the scores with online model selection,
it might be unfair to make direct comparison. Nevertheless, we do observe that DAC outperforms
Diffusion Q-learning in Adroit domain.

Table 5: Additional experiments on Adroit and Kitchen tasks. Similar to locomotion and antmaze
tasks, we report the convergent performance of DAC by averaging the scores in the last 50,000
gradient steps. Given that Diffusion Q-learning reports the scores with online model selection,
it might be unfair to make direct comparison. However, we still observe that DAC outperforms
Diffusion Q-learning in Adroit domain.

Tasks CQL IQL Diffusion QL DTQL DAC
pen-human-v1 35.2 71.5 72.8 64.1 81.3 ± 4.9
pen-cloned-v1 27.2 37.3 57.3 81.3 63.9 ± 7.3
Adroit Average 31.2 54.4 65.1 72.7 72.6
kitchen-complete-v0 43.8 62.5 80.8 84.0 77.4 ± 4.7
kitchen-partial-v0 49.8 46.3 60.5 74.4 50.0 ± 5.7
kitchen-mixed-v0 51.0 51.0 62.6 60.5 60.2 ± 7.3
Kitchen Average 48.2 53.3 69.0 73.0 62.6

C.2 PESSIMISTIC VALUE TARGETS.

To demonstrate the importance of the LCB target in balancing the overestimation and underestima-
tion of value targets, we compare a variant of DAC on locomotion tasks, wherein the LCB target is
replaced by the ensemble minimum (min) (Fujimoto et al., 2018; Fujimoto & Gu, 2021; Wang et al.,
2022). The results are shown in Table 6 and Figure 8. It is noteworthy that the variants of DAC
without the LCB target also achieve competitive performance compared to prior research in many
tasks.

C.3 ADDITIONAL SENSITIVITY ANALYSIS OF HYPERPARAMETERS

Diffusion step T . We conduct experiments of DAC with different diffusion steps on hopper envi-
ronments, as shown in Table 7 and Figure 6. We find that increasing the diffusion steps gives similar
performance. Furthermore, we observe that larger T converges slower than smaller T , which con-
tradicts the claim in Diffusion Q-learning. In our experiments, we use T = 5 for all the tasks, and
despite the shorter diffusion path, it is sufficient to achieve strong results.
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Table 6: Ensemble Q-target ablation. We compare LCB target against the minimum target (min).
We also involve the best scores of the prior methods (SOTA) from Table 1 for comparison.

Q-Target walker2d hopper halfcheetah
m m-r m-e m m-r m-e m m-r m-e

SOTA 87.0 95.5 113.0 90.5 101.3 111.2 51.1 47.8 96.8
Min 83.9 ± 0.22 66.3 ± 9.7 110.0 ± 0.2 100.8 ± 0.9 102.9 ± 0.4 111.3 ± 0.1 49.3 ± 0.3 43.1 ± 0.2 43.2 ± 0.1
LCB (Ours) 96.8 ± 3.6 96.8 ± 1.0 113.6 ± 3.5 101.2 ± 2.0 103.1 ± 0.3 111.7 ± 1.0 59.1 ± 0.4 55.0 ± 0.2 99.1 ± 0.9

Table 7: Sensitivity analysis of different length of diffusion steps.
Diffusion step T 5 (ours) 10 20
hopper-medium-v2 101.2 102.0 99.7
hopper-medium-reply-v2 103.1 102.3 102.2
hopper-medium-expert-v2 111.7 110.2 110.1

Pessimistic factor ρ. We compare the performance of DAC with different pessimistic factors ρ,
which controls the pessimism of the LCB of value targets in (17). The results on walker2d tasks
are shown in Figure 7 (right). A small ρ usually leads to overestimation of value targets and cause
the Q-networks to diverge to +∞, resulting in failed learning (as seen with ρ = 0.5). While a
larger ρ may allow converge, underestimating value targets negatively impacts final performance.
In our experiments, we empirically find that selecting the smallest ρ that prevents divergence of the
Q-functions is sufficient for strong results, making tuning ρ straightforward in practice.

Behavior cloning threshold b. We also conduct a sensitivity analysis of b which controls the
strength of behavior cloning in walker2d environments, as shown in Figure 7 (left). Given the
constraint ||ϵθ(xt, s, t)− ϵ||2 ≤ b, the agent is prone to generate behavior data with a smaller b.

C.4 TRAINING TIME COMPARISON

DAC trains significantly faster than Diffusion Q-learning without requiring gradient back-
propagation through the denoising process. This time-saving advantage is more pronounced as
the number of diffusion steps T increases. To verify this, we conducted a experiment to assess the
average training time ratio of performing a single-step batch update in DAC compared to Diffusion
Q-learning. The results are shown in Table 8. The experiment shows that when T = 5, DAC re-
quires less than half the time needed by Diffusion Q-learning to perform one-step updates. While
for a diffusion step as large as 100, Diffusion Q-learning is more than 18 times slower compared
with DAC. Considering that Diffusion Q-learning is unlikely to match DAC’s performance with just
one-tenth or even one-third of the training steps, it suggests that DAC can be trained more quickly.

Table 8: Time ratio between soft Q-guidance and denoised Q-guidance for conducting one-step
batch gradient descent with different lengths of diffusion steps.

Diffusion step T 5 10 20 50 100
Time ratio 45.1% 31.4% 19.9% 9.7% 5.4%

C.5 ADDITIONAL TRAINING CURVES

We also involve additional training curves on D4RL tasks in Figure 9, Figure 10 and Figure 11.
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Figure 7: Sensitivity analysis of behavior cloning threshold b (left) and pessimistic factor ρ (right)
on the walker2d-medium task.
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Figure 8: Value target ablation. We compare the LCB target against the target using ensemble
minimum on locomotion tasks.
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Figure 9: Training curves for antmaze tasks.
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Figure 10: Training curves for Adroit tasks.
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Figure 11: Training curves for Kitchen tasks.
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