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Abstract

As machine learning models are increasingly deployed in dynamic environments,
it becomes paramount to assess and quantify uncertainties associated with dis-
tribution shifts. A distribution shift occurs when the underlying data-generating
process changes, leading to a deviation in the model’s performance. The predic-
tion interval, which captures the range of likely outcomes for a given prediction,
serves as a crucial tool for characterizing uncertainties induced by their underlying
distribution. In this paper, we propose methodologies for aggregating prediction
intervals to obtain one with minimal width and adequate coverage on the target
domain under unsupervised domain shift, under which we have labeled samples
from a related source domain and unlabeled covariates from the target domain.
Our analysis encompasses scenarios where the source and the target domain are
related via i) a bounded density ratio, and ii) a measure-preserving transformation.
Our proposed methodologies are computationally efficient and easy to implement.
Beyond illustrating the performance of our method through real-world datasets,
we also delve into the theoretical details. This includes establishing rigorous the-
oretical guarantees, coupled with finite sample bounds, regarding the coverage
and width of our prediction intervals. Our approach excels in practical applica-
tions and is underpinned by a solid theoretical framework, ensuring its reliability
and effectiveness across diverse contexts.

1 Introduction

In the modern era of big data and complex machine learning models, extensive data collected from
diverse sources are often used to build a predictive model. However, the assumption of independent
and identically distributed (i.i.d.) data is frequently violated in practical scenarios. Take algorith-
mic fairness as an example: historical data often exhibit sampling biases towards certain groups,
like females being underrepresented in credit card data. Over time, the differences in group propor-
tions have diminished, leading to distribution shifts. Consequently, models trained on historical data
may face shifted distributions during testing, and proper adjustments are needed. Distribution shift
has garnered significant attention from statistical and machine learning communities under various
names, i.e., transfer learning [PY09, WKW16], domain adaptation [FVRA21], domain generaliza-
tion [ZLQ+22, WLL+22], continual learning [DLAM+21, MLJ+22], multitask learning [ZY21]
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etc. While numerous methods are available in the literature for training predictive models under dis-
tribution shift, uncertainty quantification under distribution shift has received relatively scant atten-
tion despite its crucial importance. One notable exception is conformal prediction under distribution
shift; [TFBCR19] proposed a variant of standard conformal inference methods to accommodate test
data from a distinct distribution from the training data under the covariate shift. Recently, [GC21]
introduced an adaptive conformal inference approach suitable for continuously changing distribu-
tions over time. Additionally, quantile regression under distribution shift offers another avenue for
addressing uncertainty quantification under distribution shift [ERS+22].

Although few methods exist for constructing prediction intervals under distribution shift, most focus
primarily on ensuring coverage guarantee rather than minimizing interval width. This prompts the
immediate question:

Can we generate prediction intervals in the target domain that provide both i) coverage guarantee
and ii) minimal width?

This paper seeks to address this question by leveraging model aggregation techniques
[NW15, MNW16, CEN14, Vov15, HKNC14]. Suppose we have K different methods for
constructing prediction intervals in the source domain. Our proposed approach efficiently combines
these methods to produce prediction intervals in the target domain with adequate coverage and
minimal width. When individual methods are the elementary basis functions, such as the kernel
basis, the resulting aggregation is indeed a construction of the prediction interval based on the
basis functions. Our methodology draws inspiration primarily from recent work [FGM23] on
prediction interval aggregation under the i.i.d. setting. However, a key distinction lies in our
focus on unsupervised domain adaptation, where we can access labeled samples from the source
and unlabeled samples from the target domain. Certain assumptions regarding the similarities
between these domains are necessary to facilitate knowledge transfer from the source to the
target domain. We explore two types of similarities in this paper: i) covariate shift, where we
assume that the distribution of the response variable Y given X is consistent across both domains,
albeit the distribution of X may differ, and ii) domain shift, where we assume that the condi-
tional distribution of Y given X remains unchanged up to a measure-preserving transformation.
Covariate shift is a well-explored concept in transfer learning and has also garnered attention
in uncertainty quantification. It allows different distributions of X while maintaining identical
conditional distributions Y |X across domains. For constructing conformal prediction intervals
within this framework, see [TFBCR19, HL23, YKT22, LC21] and references therein. On the other
hand, distribution shift is more general, allowing both the distribution of X and the conditional
distribution of Y |X to differ across domains. Our methods in this context draw upon domain
matching principles via transport map, as proposed in [CFT14] and further elaborated in subsequent
works like [CFTR16, CFHR17, RHS17], among others. The key assumption is the existence of
a measure-preserving/domain-aligning map T from the target to the source domain, such that the
conditional distribution of Y |X on the target domain matches Y |T (X) on the source domain, i.e.,
conditional distributions matches upon domain alignment. The case where the domain-aligning
map is the optimal transport map has received considerable attention in the literature, e.g., see
[CFT14, CFTR16, CFHR17, XLW+20]. Empirical evidence supports the efficacy of domain
alignment through optimal transport maps across various datasets. For instance, in [XLW+20],
a variant of this method is applied for domain adaptation in image recognition tasks, such as
recognizing similarities between USPS [Hul94], MNIST [LBBH98], and SVHN digit images
[NWC+11], as well as between different types of images in the Office-home dataset [VECP17],
including artistic and product images. Additionally, in [CFT14], the authors explore the impact
of domain alignment via optimal transport maps on the face recognition problem, where different
poses give rise to distinct domains. However, most of these works concentrate on training predictors
that perform well on the target domain without any guarantee regarding uncertainty quantification.
To our knowledge, this is the first work to propose a method with rigorous theoretical guarantees
for constructing prediction intervals on the target domain under the domain-aligning assumption
within an unsupervised domain adaptation framework. We now summarize our contributions.

Our Contributions: This paper introduces a novel methodology for aggregating various
prediction methods available on the source domain to construct a unified prediction interval on the
target domain under both covariate shift and domain shift assumptions. Our approach is simple
and easy to implement and requires solving a convex optimization problem, which can even be
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simplified to a linear program problem in certain scenarios. We also establish rigorous theoretical
guarantees, presenting finite sample concentration bounds to demonstrate that our method achieves
adequate coverage with a small width. Furthermore, our methodology extends beyond model
aggregation; it can be used to construct efficient prediction intervals from any convex collection of
candidate functions. In the paper, we adopt this broader perspective, discussing how the aggregation
of prediction intervals emerges as a particular case. Lastly, we validate the effectiveness of our
approach by analyzing real-world datasets.

We also want to highlight the differences between our method and a related method proposed in
[FGM23]. We deal with unsupervised domain adaptation, i.e., we do not observe any label from the
target domain, in contrast to [FGM23], which only deals with i.i.d. data. Hence, significant changes
in methodology are required to address the domain shift. Furthermore, as pointed out in Section 3,
the shift may cause the optimization problem non-convex, for which we need to introduce a convex
surrogate (e.g., the hinge function), leading to additional theoretical challenges.

2 Notations and preliminaries

Notation The covariates of the source and the target domains are denoted by XS and XT , respec-
tively, and X := XS ∪ XT . The space of the label is denoted by Y . We use the notation ES (resp.
ET ) to denote the expectation with respect to the source (resp. target) distribution. The expectation
with respect to sample distribution is denoted by En,S and En,T . We use pS (resp. pT ) to denote the
probability density function of X on the source and the target domain, respectively. Throughout the
paper, we use c to denote universal constants, which may vary from line to line.

2.1 Problem formulation

Our setup aligns with the unsupervised domain adaption; we assume to have nS i.i.d. labeled
samples {XS,i, YS,i}nS

i=1 ∼ PS(X,Y ) from the source domain, and nT i.i.d. unlabeled samples
{XT,i}nT

i=1 ∼ PT (X) from the target domain. Given any α > 0, ideally, we want to construct a
valid prediction interval with minimal width on the target domain:

min
u,l

ET [u(X)− l(X)], s.t. PT (l(X) ≤ Y ≤ u(X)) ≥ 1− α . (2.1)

In many practical contexts, the preferred prediction interval takes the form of m(X)± g(X), where
m(X) is a predictor for Y given X (an estimator of ET [Y | X]), and g(X) gauges the uncertainty
of the predictor m(X). The optimizer of (2.1) takes this simplified form when the distribution
of Y − ET [Y | X] is symmetric around 0. Moreover, it offers a straightforward interpretation
as the pair (m, g) is a predictor and a function quantifying its uncertainty. Within the framework
of this simplified prediction interval, we need to estimate m and g. Estimating the conditional
mean function m is relatively easy and has been extensively studied; one may use any suitable
parametric/non-parametric method. Upon estimating m, we need to estimate g so that the prediction
interval [m(X)±g(X)] has both adequate coverage and minimal width. This translates into solving
the following optimization problem:

min
f∈F

ET [f(X)], s.t. PT

(
(Y −m(X))2 > f(X)

)
≤ α . (2.2)

Let f0 be the solution of the above optimization problem. Then the optimal prediction interval is
[m0(x)±

√
f0(x)]. However, the key challenge here is that we do not observe the response variable

Y from the target, and consequently, solving (2.2) becomes infeasible. Hence, we must rely on
transferring our knowledge acquired from labeled observations in the source domain, which neces-
sitates making certain assumptions regarding the similarity between the two domains. Depending
on the nature of these assumptions regarding domain similarity, our findings are presented in two
sections: Section 3 addresses covariate shift under the bounded density ratio assumption, while Sec-
tion 4 considers a more general distribution assumption under measure-preserving transformations.
Furthermore, as will be shown later, this problem, though well-defined, is not easily implementable.
Therefore, we propose a surrogate convex optimization problem in this paper and provide its theo-
retical guarantees.

2.2 Complexity measure

The complexity of the function class F is usually quantified through the Rademacher complexity,
defined as follows.
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Definition 2.1 (Rademacher complexity). LetF be a function class and {Xi}ni=1 be a set of samples
drawn i.i.d. from a distribution D. The Rademacher complexity of F is defined as

Rn(F) = Eϵ,D

[
sup
f∈F

1

n

n∑
i=1

ϵif(Xi)

]
, (2.3)

where {ϵi}ni=1 are i.i.d. Rademacher random variables that equals to±1 with probability 1/2 each.

3 Covariate shift with bounded density ratio

Setup and methodology In this section, we focus on the covariate shift problems, where the
marginal densities pS(X) and pT (X) of the covariates may vary between the source and target do-
mains, albeit the conditional distribution Y |X remains the same. Denote by m0(x) = ET [Y |X =
x] = ES [Y |X = x], the conditional mean function. For the ease of the presentation, we assume
m0 is known. If unknown, one may use the labeled source data to estimate it using a suitable
parametric/non-parametric estimate (e.g., splines, local polynomial, or deep neural networks), sub-
sequently substituting m0 with m̂ in our approach. The density ratio of the source and the target
distribution of X is denoted by w0(x) := pT (x)/pS(x). We henceforth assume that the density
ratio is uniformly bounded:
Assumption 3.1. There exists W such that supx∈XS

w0(x) ≤W .

If w0 is known, (2.2) has the following sample level counterpart:
minf∈F En,T [f(X)], s.t. En,S

[
w0(X)1(Y−m0(X))2>f(X)

]
≤ α , (3.1)

which is NP-hard owing to the presence of the indicator function. However, in many practical
scenarios, it is observed that the shape of the prediction band does not change much if we change
the level of coverage (i.e., α); only the bands shrink/expand. Indeed, the true shape determines
the average width; if the shape is wrong, then the width of the prediction band is quite likely
to be unnecessarily large. Therefore, to obtain a prediction interval with adequate coverage and
minimal width, one should first identify the shape of the prediction band and then shrink/expand it
appropriately to get the desired coverage. This motivates the following two steps procedure:

Step 1: (Shape estimation) Obtain an initial estimate f̂init by solving (3.1) for α = 0 (to
capture the shape):

minf∈F En,T [f(X)] , s.t. f(Xi) ≥ (Yi −m0(Xi))
2 ∀ 1 ≤ i ≤ nS : w0(Xi) > 0 . (3.2)

Step 2: (Shrinkage) Refine f̂init by scaling it down using λ̂(α), defined as:

λ̂(α) = inf
{
λ ≥ 0 : En,S [w0(X)1(Y−m0(X))2>λf̂init(X)] ≤ α

}
. (3.3)

The final prediction interval is:

P̂I1−α(x) =

[
m0(x)−

√
λ̂(α)f̂init(x),m0(x) +

√
λ̂(α)f̂init(x)

]
. (3.4)

In Step 1, we relax (3.1) by effectively setting α = 0. This relaxation aids in determining the
optimal shape while also converting (3.1) into a convex optimization problem (equation (3.2)) as
long as F is a convex collection of functions. Furthermore, in (3.2), we only consider those source
observations for which w0(x) > 0, as otherwise, the samples are not informative for the target
domain. In practice, w0 is typically unknown; one may use the source and target domain covariates
to estimate w0. Various techniques are available for estimating the density ratio (e.g., [USS+16,
CMSE22, Qin98, GSH+08] and references therein). However, any such estimator ŵ(x) can be
non-zero for x where w0(x) = 0 due to estimation error. Consequently, ŵ may not be efficient in
selecting informative source samples. To mitigate this issue, we propose below a modification of
(3.2), utilizing a hinge function hδ(t) := max{0, (t/δ) + 1}:

min
f∈F

En,T [f(X)]

subject to En,S [ŵ(X)hδ

(
(Y −m0(X))2 − f(X)

)
] ≤ ϵ,

(3.5)

with δ and ϵ should be chosen based on sample size nS and the estimation accuracy of ŵ. When
ŵ = w0 (i.e., the density ratio is known), then by choosing ϵ = 0 and δ → 0, (3.5) recovers (3.2). As
hδ is convex, the optimization problem (3.5) is still a convex optimization problem. We summarize
our algorithm in Algorithm 1.
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Algorithm 1 Prediction intervals with bounded density ratio

1: Input: m0 (or m̂ if unknown), density ratio estimator ŵ, function class F , sample DS =
{(XS,i, YS,i)}nS

i=1 and DT = {XT,i}nT
i=1, parameters δ, ϵ, coverage level 1− α.

2: Obtain f̂init by solving (3.5).
3: Obtain the shrink level λ̂(α) by solving (3.3) with w0 replaced by ŵ.
4: Output: P̂I1−α(x) defined in (3.4).

Theoretical results We next present theoretical guarantees of the prediction interval obtained via
Algorithm 1. For technical convenience, we resort to data-splitting; we divide the source data into
two equal parts (DS,1 and DS,2), use DS,1 and DT to solve (3.5), and DS,2 to obtain the shrink level
λ̂(α). Without loss of generality, we assume m0 ≡ 0 (otherwise, we set Y ← Y − m0(X)). A
careful inspection of Step 1 reveals that f̂init aims to approximate a function f∗ defined as follows:

f∗ = argminf∈FET [f(X)] subject to Y 2 < f(X) almost surely on target domain . (3.6)

In other words, f̂init estimates f∗ that has minimal width among all functions covering the response
variable. This is motivated by the philosophy that the right shape leads to a smaller width. The
following theorem provides a finite sample concentration bound on the approximation error of f̂init:
Theorem 3.2. Suppose Y 2 − f∗(X) ≤ B on the source domain and has a density bounded by L.
Also assume ∥f∥∞ ≤ BF for all f ∈ F . Then for

ϵ ≥ Lδ +W
√

t
nS

+ B+δ
δ ·

(
ES [|ŵ(X)− w0(X)|] + (W +W ′)

√
t
nS

)
, (3.7)

we have with probability at least 1− 3e−t:

ET [f̂init(X)] ≤ ET [f
∗(X)] + 2RnT

(F − f∗) + 2BF

√
t

2nT

where W ′ = ∥ŵ∥∞.

The bound in the above theorem depends on the Rademacher complexity of F (the smaller, the
better), the estimation error of w0, and an interplay between the choice of (ϵ, δ). The lower bound
on ϵ in (3.7) depends on both δ and 1/δ. Although it is not immediate from the above theorem why
we need to choose ϵ to be as small as possible, it will be apparent in our subsequent analysis; indeed
if ϵ is large in (3.5), then f̂init ≡ 0 will be a solution of (3.5). Consequently, the shape will not be
captured. Therefore, one should first choose δ (say δ∗), that minimizes the lower bound (3.7), and
then set ϵ = ϵ∗ equal to the value of the right-hand side of (3.7) with δ = δ∗, which ensures that
ϵ∗ is optimally defined to capture the shape accurately. Once the shape is identified, we shrink it
properly in Step 2 to attain the desired coverage and reduce the width. Although ideally λ̂(α) ≤ 1,
it is not immediately guaranteed as we use separate data (DS,2) for shrinking. The following lemma
shows that λ̂(α) ≤ 1 for any fixed α > 0 as long as the sample size is large enough. Recall that the
data were split into exactly half with size nS = |DS |.
Lemma 3.3. Under the aforementioned choice of (ϵ∗, δ∗), we have with high probability:

1

nS/2

∑
i∈DS,2

ŵ(Xi)1{(Yi−m0(Xi))2>f̂init(Xi)} ≤ α ,

for all large nS , provided that ŵ is a consistent estimator of w0. Hence, λ̂(α) ≤ 1.

Our final theorem for this section provides a coverage guarantee for the prediction interval given by
Algorithm 1.
Theorem 3.4. For the prediction interval obtained in (3.4), with probability greater than 1− 2e−t:∣∣∣PT

(
Y 2 > λ̂(α)f̂init(X) | DS ∪ DT

)
− α

∣∣∣ ≤ ES [|ŵ(X)− w(X)|]+ (2W +W ′)
√

t
2nS

+
√

C
nS

for some constant C > 0 and W ′ = ∥ŵ∥∞.
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Theorem 3.4 validates the coverage of the prediction interval derived through Algorithm 1, achieving
the desired coverage level as the estimate of w0 improves and sample size expands. Theorems 3.2
and 3.4 collectively demonstrate the efficacy of our method in maintaining validity and accurately
capturing the optimal shape of the prediction band, which in turn leads to small interval widths.

Remark 3.5. In our optimization problem, we’ve substituted the indicator loss with the hinge loss
function to ensure convexity. However, it’s worth noting that if we know the subset of XS where
w0(x) > 0 beforehand, we could directly optimize (3.2). This approach would be easy to implement
and wouldn’t involve tuning parameters (δ, ϵ). A special case is when w0(x) > 0 for all x ∈ XS (as
is true in our experiment), which simplifies the condition in (3.2) to f(Xi) ≥ (Yi−m0(Xi))

2 for all
1 ≤ i ≤ nS . However, if this information is unavailable, one can still employ (3.2) by enforcing the
constraint on all source observations. While this approach might result in wider prediction intervals,
it is easy to implement and doesn’t require tuning parameters.

4 Domain shift and transport map

Setup and methodology In the previous section, we assume a uniform bound on the density ratio.
However, this may not be the case in reality; it is possible that there exists x ∈ supp(XT )∩supp(X c

S),
which immediately implies that w0(x) = ∞. In image recognition problems, if the source data are
images taken during the day at some place, and the target data are images taken at night, then this
directly results in an unbounded density ratio (due to the change in the background color). Yet a
transport map could effectively model this shift by adapting features from the source to correspond
with those of the target, maintaining the underlying patterns or object recognition capabilities across
both domains. To perform transfer learning in this setup, we model the domain shift via a measure
transport map T0 that preserves the conditional distribution, as elaborated in the following assump-
tion:

Assumption 4.1. There exists a measure transport map T0 : XT → XS , i.e., T0(XT )
d
= XS , such

that: PT (Y | X = x)
d
= PS(Y | X = T0(x)), ∀x ∈ XT .

This assumption allows the extrapolation of source domain information to the target domain via T0,
enabling the construction of prediction intervals at x ∈ XT by leveraging the analogous intervals
at T0(x) ∈ XS . Inspired by this observation, we present our methodology in Algorithm 2 that es-
sentially consists of two key steps: i) constructing a prediction interval in the source domain and
ii) transporting this interval to the target domain using the estimated transport map T0. If T0 (or its
estimate) is not given, it must be estimated from the source and the target covariates. Various meth-
ods are available in the literature (e.g., [DNWP22, SDF+17, MTOL20, DGS21]), and practitioners
can pick a method at their convenience. Notably, the processes described in equations (4.1) and
(4.2) follow the methodology (i.e., (3.2) and (3.3)) from Section 3 for scenarios without shift (i.e.,
w0 ≡ 1), adding a slight δ to ensure coverage even when F is complex. In Algorithm 2, we assume

Algorithm 2 Transport map

1: Input: conditional mean function m0 on the source domain, transport map estimator T̂0, func-
tion class F , sample DS = {(XS,i, YS,i)}nS

i=1 and DT = {XT,i}nT
i=1, parameter δ, coverage

level 1− α.
2: Obtain f̂init by solving:

minf∈F
1
nS

∑nS

i=1 f(XS,i) , s.t. f(XS,i) ≥ (YS,i −m0(XS,i))
2 ∀ i ∈ [nS ] . (4.1)

3: Obtain the shrink level

λ̂(α) := inf
{
λ > 0 : 1

nS

∑nS

i=1 1(YS,i−m0(XS,i))2≥λ(f̂init(XS,i)+δ) ≤ α
}

. (4.2)

4: Output: P̂I1−α(x) =

[
m0 ◦ T̂0(x)±

√
λ̂(α) ·

(
f̂init ◦ T̂0(x) + δ

)]
.

the conditional mean function m0 on the source domain is known. In cases where the conditional
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mean function m0 on the source domain is unknown, it can be estimated using standard regression
methods from labeled source data, after which m0 is replaced by this estimate, m̂.

Remark 4.2 (Model aggregation). Suppose we have K different methods {f1, . . . , fK} for con-
structing prediction intervals in the source domain. In the context of model aggregation, (4.1) then
reduces to:

minα1,...,αK

1

nS

nS∑
i=1

{ K∑
j=1

αjfj(XS,i)
}

subject to
K∑
j=1

αjfj(XS,i) ≥ (YS,i −m0(XS,i))
2 ∀ i ∈ [nS ] ,

αj ≥ 0, ∀ 1 ≤ j ≤ K .

In other words, the function class F is a linear combination of the candidate methods. The problem
is then simplified to a linear program problem, which can be implemented efficiently using standard
solvers.

Theoretical results We now present theoretical guarantees of our methodology to ensure that our
method delivers what it promises: a prediction interval with adequate coverage and small width.
For technical simplicity, we split data here: divide the labeled source observation with two equal
parts (with nS/2 observations in each), namely DS,1 and DS,2. We use DS,1 to solve (4.1) and
obtain the initial estimator f̂init, and DS,2 to solve (4.2), i.e. obtaining the shrinkage factor λ̂(α).
Henceforth, without loss of generality, we assume m0 = 0 and present the theoretical guarantees
of our estimator. We start with an analog of Theorem 3.2, which ensures that with high probability
f̂init ◦ T̂0 approximates the function that has minimal width among all the functions in F composed
with T0 that covers the labels on the target almost surely:

Theorem 4.3. Assume the function class F is BF -bounded and LF -Lipschitz. Define

∆ = min
{
ET [f ◦ T0(X)] : f ∈ F , Y 2 ≤ f ◦ T0(X) a.s. on target domain

}
.

Then we have with probability ≥ 1− e−t:

ET [f̂init ◦ T̂0(X)] ≤ ∆+ 4RnS
(F) + LFET [|T̂0(X)− T0(X)|] + 4BF

√
t

2nS
.

The upper bound on the population width of f̂init ◦ T̂0(x) consists of four terms: the first term is the
minimal possible width that can be achieved using the functions from F , the second term involves
the Rademacher complexity of F , the third term encodes the estimation error of T0, and the last
term is the deviation term that influences the probability. Hence, the margin between the width of
the predicted interval and the minimum achievable width is small, with the convergence rate relying
on the precision of estimating T0 and the complexity of F , as expected.

We next establish the coverage guarantee of our estimator of Algorithm 2, obtained upon suitable
truncation of f̂init. As mentioned, the shrinkage operation is performed on a separate dataset DS,2.
Therefore, it is not immediate whether the shrinkage factor λ̂(α) is smaller than 1, i.e., whether
we are indeed shrinking the confidence interval (λ̂(α) > 1 is undesirable, as it will widen f̂init,
increasing the width of the prediction band). The following lemma shows that with high probability,
λ̂(α) ≤ 1.

Lemma 4.4. With probability greater than or equal to 1− e−t, we have:

P(λ̂(α) > 1 | DS,1,DT ) ≤ e
−

(α−pnS
)2nS

6pnS ,

where

pnS
= PS

(
Y 2 ≥ f̂init(X) + δ

∣∣DS,1,DT

)
≤ 4

δ

(√
ES [Y 4]

nS
+RnS

(F)
)
+
√

t
nS

.
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Here pnS
is the conditional probability of a test observation Y falling outside

[−
√
f̂init(X) + δ,

√
f̂init(X) + δ], which is small as evident from the above lemma. In par-

ticular, for model aggregation, if F is the linear combination of K functions, then pnS
is of the

order
√
K/nS . Hence, the final prediction interval is guaranteed to be a compressed form of f̂init

with an overwhelmingly high probability. We present our last theorem of this section, confirming
that the prediction interval derived from Algorithm 2 achieves the intended coverage level with a
high probability:
Theorem 4.5. Under the same setup of Theorem 4.3, along with the assumption that fS(y | x) is
uniformly bounded by G, we have with probability greater than 1− cn−10

S that∣∣∣PT

(
Y 2 ≥ λ̂(α)

(
f̂init ◦ T̂0(X) + δ

)
| DS ∪ DT

)
− α

∣∣∣
≤ C

√
log nS

nS
+GLF · ET

[∣∣∣T̂0(X)− T0(X)
∣∣∣] .

As for Theorem 4.3, the bound obtained in Theorem 4.5 also depends on two crucial terms:
Rademacher complexity of F and estimation error of T0. Therefore, the key takeaway of our the-
oretical analysis is that the prediction interval obtained from Algorithm 2 asymptotically achieves
nominal coverage guarantee and minimal width. Furthermore, the approximation error intrinsically
depends on the Rademacher complexity of the underlying function class and the precision in esti-
mating T0.
Remark 4.6 (Measure preserving transformation). In our approach, T0 is employed to maintain
measure transformation, although it may not necessarily be an optimal transport map. Yet, estimat-
ing T0 can be challenging in many practical scenarios. In such cases, simpler transformations like
linear or quadratic adjustments are often utilized to align the first few moments of the distributions.
Various methods provide such simple solutions, including, but not limited to, CORAL [SFS17] and
ADDA [THSD17].

5 Application

In this section, we illustrate the effectiveness of our method by applying it to five different datasets: i)
airfoil dataset [DG19], ii) real estate data [Yeh18], iii) energy efficiency data [TX12b], iv) appliance
energy prediction data [Can17], and v) ET Dataset (ETT-small) [ZZP+21]. The first four datasets
are freely available in the UCI repository, and the last dataset can be found in this GitHub link.
Here, we illustrate the procedure using the airfoil dataset, and the details of our experiments using
the other datasets can be found in Appendix C. The airfoil dataset includes 1503 observations, fea-
turing a response variable Y (scaled sound pressure level) and a five-dimensional covariate X (log
of frequency, angle of attack, chord length, free-stream velocity, log of suction side displacement
thickness). We assess and compare the performance of our prediction intervals in terms of cover-
age and width with those generated by the weighted split conformal prediction method described in
[TFBCR19]. We use the same data-generating process described in [TFBCR19] to facilitate a direct
comparison. We run experiments 200 times; each time, we randomly partition the data into two
parts Dtrain and Dtest, where Dtrain contains 75% of the data, and Dtest contains 25% of the data.
Following [TFBCR19], we shift the distribution of the covariates of Dtest by weighted sampling
with replacement, where the weights are proportional to

w(x) = exp(xTβ), where β = (−1, 0, 0, 0, 1).
These reweighted observations in Dtest, which we call Dshift, act as observations from the target
domain. Clearly, by our data generation mechanism w0(x) = fT (x)/fS(x) = c exp(x⊤β), where
c is the normalizing constant. The source and target domains share the same support under this
configuration. As our methodology is developed for unsupervised domain adaptation, we do not use
the label information of Dshift to develop the target domain’s prediction interval.

Density ratio estimation We use the probabilistic classification technique to estimate the density
based on the source and the target covariates. Let X1, . . . , Xn1 be the covariates in datasetDtrain and
Xn1+1, . . . , Xn1+n2 be the covariates in dataset Dshift. The density ratio estimation proceeds in two
steps: (1) logistic regression is applied to the feature-class pairs {(Xi, Ci)}ni=1, where Ci = 0 for
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i = 1, . . . , n1 and Ci = 1 for i = n1 + 1, . . . , n1 + n2, yielding an estimate of P(C = 1 | X = x),
denoted as p̂(x); (2) the density ratio estimator is then defined as ŵ(x) = n1

n2
· p̂(x)
1−p̂(x) . Further

explanations are provided in Appendix B.

Implementation of our method and results As the mean function m0(x) = E[Y | X = x]
(which is the same on the source and the target domain) is unknown, we first estimate it via linear
regression, which henceforth will be denoted by m̂(x). To construct a prediction interval, we con-
sider the model aggregation approach, i.e., the function class F is defined as the linear combination
of the following six estimates:

(1) Estimator 1(f1): A neural network based estimator with depth=1, width=10 that estimates
the 0.85 quantile function of (Y − m̂(X))2 | X = x.

(2) Estimator 2(f2): A fully connected feed forward neural network with depth=2 and
width=50 that estimates the 0.95 quantile function of (Y − m̂(X))2 | X = x.

(3) Estimator 3(f3): A quantile regression forest estimating the 0.9 quantile function of (Y −
m̂(X))2 | X = x.

(4) Estimator 4(f4): A gradient boosting model estimating the 0.9 quantile function of (Y −
m̂(X))2 | X = x.

(5) Estimator 5(f5): An estimate of E[(Y − m̂(X))2 | X = x] using random forest.
(6) Estimator 6(f6): The constant function 1.

Here, the quantile estimators are obtained by minimizing the corresponding check loss. The im-
plementation of our method is summarized as follows: (1) We divide the training data Dtrain into
two halves D1 ∪ D2. We utilize dataset D1 to derive a mean estimator and six aforementioned esti-
mates. We also employ the covariates from D1 and Dshift to compute a density ratio estimator. (2)
We further split D2 into two equal parts D2,1 and D2,2. D2,1, along with covariates from Dshift,
is used to find the optimal aggregation of the six estimates to capture the shape, i.e., for obtaining
f̂init. The second part D2,2 is used to shrink the interval to achieve 1 − α = 0.95 coverage, i.e.
to estimate λ̂(α). (3) We evaluate the effectiveness of our approach in terms of the coverage and
average bandwidth on the Dshift dataset.

In Figure 1, we present the histograms of the coverage and the average bandwidth of our method, and
a more general version of weighted conformal prediction in [TFBCR19] over 200 experiments (see
Appendix B for details), which show that our method consistently yields a shorter prediction interval
than the weighted conformal prediction while maintaining coverage. Over 200 experiments, the
average coverage achieved by our method was 0.964029 (SD = 0.04), while the weighted conformal
prediction method achieved an average coverage of 0.9535 (SD = 0.036). Additionally, the average
width of the prediction intervals for our method was 13.654 (SD = 2.22), compared to 20.53 (SD
= 4.13) for the weighted conformal prediction. Regarding the performance of intervals over 95%
coverage, our method achieved this in 72.5% of cases with an average width of 14.35 (SD = 2.22).
In contrast, the weighted conformal prediction method did so in 57% of cases with an average width
of 21.4 (SD = 4.39). Boxplots are presented in Appendix B for further comparison.

5.1 Robustness of our method

One of the strengths of our approach lies in its resilience to the misspecification of certain com-
ponents. The core idea behind our method is to combine multiple predictors to create a prediction
interval that ensures sufficient coverage while maintaining a narrow average width. These individ-
ual prediction intervals may be based on estimators of conditional quantiles, means, variances, and
other metrics. If some of the component prediction intervals exhibit poor performance, whether
due to inadequate coverage or excessive width, our method typically assigns them lower weights,
making it robust to their deficiencies. In contrast, other conformal methods that heavily depend on a
single component tend to underperform, particularly with respect to average width. To illustrate this
phenomenon, we evaluate our method under model misspecification using a simple one-dimensional
simulation setup.

X ∼ unif([−1, 1]), ξ ∼ unif([−1, 1]), X ⊥⊥ ξ

Y =
√

1 + 25X4ξ .
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(a) Coverage of our method (b) Bandwidth of our method

(c) Coverage of weighted conformal (d) Bandwidth of weighted conformal

Figure 1: Experiments on Airfoil data using Algorithm 1

Max depth Avg. width–Our Method Avg. width–WVAC
3 2.07(0.975) 3.08(0.9712)
5 2.07(0.95) 3.28(0.9664)
7 2.068(0.94) 3.33(0.97)
15 2.08(0.97) 5.00(0.97)

Table 1: Robustness of our method and WVAC. The number inside the parenthesis is the median of
coverage over these Monte Carlo iterations.

As mentioned in the previous subsection, our method aggregates six predictor intervals, including
an estimator for the conditional variance function (Estimator 5). The weighted variance-adjusted
conformal prediction interval (WVAC) relies on accurately estimating this conditional variance. We
estimate the conditional variance using a random forest with varying depths ({3, 5, 7, 15}). For
simulation purpose, we generate n = 2500 samples, keeping 75% as source data and resampling
the remaining 25% with weighted samples proportional to w(x) ∝ (1 + exp(−2x))−1. As depth
increases, overfitting leads to poor out-of-sample variance predictions. Table 1 summarizes our
findings over 100 Monte Carlo iterations, showing that WVAC’s average width increases with depth,
while our method’s average width remains stable.

6 Conclusion

This paper focuses on unsupervised domain shift problems, where we have labeled samples from
the source domain and unlabeled samples from the target domain. We introduce methodologies for
constructing prediction intervals on the target domain that are designed to ensure adequate coverage
while minimizing width. Our analysis includes scenarios in which the source and target domains are
related either through a bounded density ratio or a measure-preserving transformation. Our proposed
methodologies are computationally efficient and easy to implement. We further establish rigorous
finite sample theoretical guarantees regarding the coverage and width of our prediction intervals.
Finally, we demonstrate the practical effectiveness of our methodology through its application to the
airfoil dataset.
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A Proofs

A.1 Proof of Theorem 3.2

First, we show that for our choice of (ϵ, δ), as depicted in Theorem 3.2, f∗ is a feasible solution of
equation (3.5). Consider w0 instead of ŵ. By definition of f∗,

PT (Y
2 ≤ f∗(X)) = 1 ⇐⇒ ES

[
w0(X)1Y 2>f∗(X)

]
= 0

⇐⇒ w0(X)1Y 2>f∗(X) = 0 a.s. on the source domain .
This implies:

1

nS/2

∑
i∈DS,1

w0(Xi)hδ

(
Y 2
i − f⋆(Xi)

)
=

1

nS/2

∑
i∈DS,1

w0(Xi)hδ

(
Y 2
i − f⋆(Xi)

)
1Y 2

i ≤f⋆(Xi)

=
1

nS/2

∑
i∈DS,1

w0(Xi)hδ

(
Y 2
i − f⋆(Xi)

)
1f⋆(Xi)−δ≤Y 2

i ≤f⋆(Xi)

≤ 1

nS/2

∑
i∈DS,1

w0(Xi)1f⋆(Xi)−δ≤Y 2
i ≤f⋆(Xi),

where the first equality follows from the fact that w0(X)1Y 2>f⋆(X) = 0 a.s. on the source do-
main, the second equality follows from the fact that hδ(t)1t<−δ = 0 for all t, and the last in-
equality follows from the fact that hδ(Y

2
i − f⋆(Xi)) ≤ 1 when Y 2

i − f⋆(Xi) ≤ 0. Since
w0(X)1f⋆(X)−δ≤Y 2≤f⋆(X) ≤ W , by Hoeffding’s inequality, we have with probability at least
1− e−t:

1

nS/2

∑
i∈DS,1

w0(Xi)hδ

(
Y 2
i − f⋆(Xi)

)
≤ ES

[
w0(X)1f⋆(X)−δ≤Y 2≤f⋆(X)

]
+W

√
t

nS

= PT

(
f⋆(X)− δ ≤ Y 2 ≤ f⋆(X)

)
+W

√
t

nS

≤ Lδ +W

√
t

nS
,

where L is upper bound on the density of Y 2 − f∗(X). Call this event Ω1 that the above bound
holds. At this event we have:

1

nS/2

∑
i∈DS,1

ŵ(Xi)hδ

(
Y 2
i − f⋆(Xi)

)
=

1

nS/2

∑
i∈DS,1

w0(Xi)hδ

(
Y 2
i − f⋆(Xi)

)
+

1

nS/2

∑
i∈DS,1

(ŵ(Xi)− w0(Xi))hδ

(
Y 2
i − f⋆(Xi)

)
≤ Lδ +W

√
t

nS
+

B + δ

δ
· 2

nS

nS/2∑
i=1

|ŵ(Xi)− w0(Xi)|,

where the last inequality follows from the fact that hδ(t) ≤ (B+δ)/δ if t ≤ B. Finally, to bound the
last summand, we again apply Hoeffding’s inequality. As ∥ŵ∥∞ ≤ W ′, we have with probability
greater than or equal to 1− e−t:

1

nS/2

nS/2∑
i=1

|ŵ(Xi)− w0(Xi)| ≤ ES [|ŵ(X)− w0(X)|] + (W +W ′)

√
t

nS
.

If we denote the event Ω2 where the above inequality holds, then on the event Ω1 ∩ Ω2, we have:
1

nS/2

∑
i

ŵ(Xi)hδ

(
Y 2
i − f⋆(Xi)

)
≤ Lδ +W

√
t

nS
+

B + δ

δ
·
(
ES [|ŵ(X)− w0(X)|] + (W +W ′)

√
t

nS

)
≤ ϵ .
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Furthermore,
P(Ω1 ∩ Ω2) ≥ P(Ω1) + P(Ω2)− 1 ≥ 1− 2e−t.

Therefore, we conclude that with probability ≥ 1− 2e−t, f∗ is a feasible solution.

We now proof Theorem 2.2 on the event Ω1 ∩ Ω2, when f∗ is a feasible solution. Then we have,
Pn,T (f̂init(X)) ≤ Pn,T (f

∗(X)) on this event, by the optimality of f̂init in equation (3.5). Then we
have:

ET [f̂init(X)] = PnT
(f̂init(X)) + (PT − PnT

) (f̂init(X))

≤ PnT
(f∗(X)) + (PT − PnT

) (f̂init(X))

= ET [f
∗(X)] + (PnT

− PT ) (f
∗(X)− f̂init(X))

≤ ET [f
∗(X)] + sup

f∈F
|(PnT

− PT ) (f
∗(X)− f(X))|

Finally as f − f∗ is upper bounded by F ′ = BF + ∥f∗∥∞ (as f is uniformly upper bounded by F).
Therefore, by Mcdiarmid’s inequality, we have with probability 1− e−t:

sup
f∈F
|(PnT

− PT ) (f
∗(X)− f(X))| ≤ ET

[
sup
f∈F
|(PnT

− PT ) (f
∗(X)− f(X))|

]
+ F ′

√
t

2nT
.

Call this event Ω3. Furthermore, by standard symmetrization:

ET

[
sup
f∈F
|(PnT

− PT ) (f
∗(X)− f(X))|

]
≤ 2RnT

(F − f∗) ,

whereRnT
(F − f∗) is the Rademacher complexity of F − f∗. Therefore, on ∩3i=1Ωi, we have:

ET [f̂init(X)] ≤ ET [f
∗(X)] + 2RnT

(F − f∗) + F ′
√

t

2nT
,

and P(∩3i=1Ωi) ≥ 1− 3e−t. This completes the proof.

A.2 Proof of Lemma 3.3

We prove the lemma into two steps; first we show that f̂init satisfies PT (Y
2 > f̂init(X)) ≤ τ

with high probability for some small τ . Next we argue that, on DS,2, we have
(2/nS) ·

∑
i∈DS,2

ŵ(Xi)1(Y
2
i ≥ f̂init(Xi)) ≤ τ̌ with high probability for some small τ̌ .

Then as long as τ̌ ≤ α, we conclude the proof of the lemma.

Step 1: Note that, by feasibility, f̂init satisfies:
1

nS/2

∑
i∈DS,1

ŵ(Xi)hδ(Y
2
i − f̂init(Xi)) ≤ ϵ .

This implies:

ET

[
hδ

(
Y 2 − f̂init(X)

)]
= ES

[
w0(X)hδ

(
Y 2 − f̂init(X)

)]
=

1

nS/2

∑
i∈DS,1

w0(Xi)hδ(Y
2
S − f̂init(Xi)) +

(
PS − PnS/2

)
w0(X)hδ(Y

2 − f̂init(X))

=
1

nS/2

∑
i∈DS,1

ŵ(Xi)hδ(Y
2
i − f̂init(Xi)) +

1

nS/2

∑
i∈DS,1

(w0(Xi)− ŵ(Xi))hδ(Y
2
i − f̂init(Xi))

+
(
PS − PnS/2

)
w0(X)hδ(Y

2 − f̂init(X))

≤ ϵ+
B + δ

δ
∥ŵ − w0∥L1(Pn1,S) + sup

f∈F

∣∣(PS − PnS/2

)
w0(X)hδ(Y

2 − f(X))
∣∣
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Now, as hδ(Y
2 − f(X)) ≤ (B + δ)/δ and w0 ≤ W , we have by Mcdiarmid’s inequality, with

probability ≥ 1− e−t:

sup
f∈F

∣∣(PS − PnS/2

)
w0(X)hδ(Y

2 − f(X))
∣∣

≤ ES

[
sup
f∈F

∣∣(PS − PnS/2

)
w0(X)hδ(Y

2 − f(X))
∣∣]+W

B + δ

δ

√
t

nS

≤ 2RnS/2,F (w0hδ ◦ f) +W
B + δ

δ

√
t

nS
.

Meanwhile, as in the proof of Theorem 3.2, with probability ≥ 1− e−t:

∥ŵ − w0∥L1(Pn1,S) ≤ ES [|ŵ(X)− w(X)|] + (W +W ′)

√
t

nS
.

Choosing t = 10 log nS we obtain that with probability ≥ 1− 2n−10
S :

ET

(
hδ

(
Y 2
T − f̂init(XT )

))
≤ ϵ+

B + δ

δ

(
ES [|ŵ(X)− w0(X)|] + (W +W ′)

√
10 log nS

nS

)

+ 2RnS/2,F (w0hδ ◦ f) +W
B + δ

δ

√
10 log nS

nS

≤ ϵ+
B + δ

δ

(
ES [|ŵ(X)− w0(X)|] + (2W +W ′)

√
10 log nS

nS

)
+ 2RnS/2,F (w0hδ ◦ f) .

We next bound the Rademacher complexity of RnS/2,F (w0hδ ◦ f). By symmetrization, we have
with ζ1, . . . ζnS/2 i.i.d. Rademacher(1/2):

RnS/2,F (w0hδ ◦ f) = 2ES

[
sup
f∈F

∣∣∣∣∣ 1

nS/2

∑
i

ζiw0(Xi)hδ(Y
2
i − f(Xi))

∣∣∣∣∣
]

= 2ES

[
sup
f∈F

∣∣∣∣∣ 1

nS/2

∑
i

ζiϕ
(
w0(Xi), Y

2
i − f(Xi)

)∣∣∣∣∣
]

[ϕ(x, y) = xhδ(y)]

We first show that ϕ : R2 → R is a Lipschitz function on its domain. The first argument of ϕ is
w0(x) which lies within [−W,W ]. The second argument of ϕ is Y 2−f(X) (on the source domain),
which is bounded by B. Therefore, hδ(Y

2− f(X)) is bounded above by (B+ δ)/δ. The derivative
of hδ is 0 for x ≤ −δ and δ for x ≥ −δ. Hence, we have the following:

∥∇ϕ(x, y)∥ = ∥(hδ(y) xh′
δ(y))∥ ≤

√
(B + δ)2

δ2
+

W 2

δ2
≤ B +W + δ

δ
.

We next apply vector-valued Ledoux-Talagrand contraction inequality on the function ϕ (equation
(1) of [Mau16]), to obtain the following bound on the Rademacher complexity:

2ES

[
sup
f∈F

∣∣∣∣∣ 1

nS/2

∑
i

ζiϕ
(
w0(Xi), Y

2
i − f(Xi)

)∣∣∣∣∣
]

≤ 2
√
2

(
B +W + δ

δ

)
ES

[
sup
f∈F

∣∣∣∣∣ 1

nS/2

∑
i

(
ζi1w0(Xi) + ζi2(Y

2
i − f(Xi))

)∣∣∣∣∣
]

≤ 2
√
2

(
B +W + δ

δ

)ES

[∣∣∣∣∣ 1

nS/2

∑
i

ζi1w0(Xi)

∣∣∣∣∣
]

+ ES

∣∣∣∣∣∣ 1

nS/2

∑
i∈DS,1

ζi,2Y
2
i

∣∣∣∣∣∣
RnS/2(F)


≤ 2
√
2

(
B +W + δ

δ

)[∥w0∥L2(PXS
)√

nS/2
+

√
ES [Y 4]

nS/2
+RnS/2(F)

]
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Using this, we obtain the following:

ET

(
hδ

(
Y 2 − f̂init(X)

))
≤ ϵ+

B + δ

δ

(
ES [|ŵ(X)− w0(X)|] + (2W +W ′)

√
5 log (nS/2)

nS/2

)

+ 4
√
2

(
B +W + δ

δ

)[∥w0∥L2(PXS
) +

√
ES [Y 4]

√
nS

+ RnS/2(F)

]

≤ ϵ+ 4
√
2

(
B +W + δ

δ

)[
E [|ŵ(XS)− w(XS)|] + (2W +W ′)

√
5 log (nS/2)

nS/2

+
∥w0∥L2(PXS

) +
√
ES [Y 4]√

nS/2
+ RnS/2(F)

]

≤ ϵ+ 4
√
2

(
B +W + δ

δ

)[
E [|ŵ(XS)− w(XS)|] + (2W +W ′)

√
5 log (nS/2)

nS/2
+

W +
√
ES [Y 4]√

nS/2
+ RnS/2(F)

]
Choosing

ϵ = Lδ +W

√
5 log (nS/2)

nS/2
+

B + δ

δ
·

(
ES [|ŵ(X)− w0(X)|] + (W +W ′)

√
5 log (nS/2)

nS/2

)
,

we obtain

ET

(
hδ

(
Y 2 − f̂init(X)

))
≲ Lδ +

B +W + δ

δ
·

(
(ES [|ŵ(X)− w0(X)|] + (W +W ′)

√
5 log nS

nS
+RnS/2(F)

)

≲

√√√√L(B +W )

(
(ES [|ŵ(X)− w0(X)|] + (W +W ′)

√
5 log nS

nS
+RnS/2(F)

)

+ (ES [|ŵ(X)− w0(X)|] + (W +W ′)

√
5 log nS

nS
+RnS/2(F)

(by choosing δ to balance the terms)

≜ τ

Call the above event Ω1. This completes the proof of Step 1.

Step 2: Coming back to DS,2, we have:
1

nS/2

∑
i∈DS,2

ŵ(XS,i)1Y 2
i >f̂init(Xi)

≤ 1

nS/2

∑
i∈DS,2

|ŵ(Xi)−w0(Xi)|+
1

nS/2

∑
i∈DS,2

w0(Xi)1Y 2
i >f̂init(Xi)

Furthermore, by Hoeffding’s inequality, we have with probability ≥ 1− e−t:

1

nS/2

∑
i∈D2

w0(Xi)1Y 2
i >f̂init(Xi)

≤ ES

[
w0(X)1Y 2>f̂init(X)

]
+W

√
t

nS

≤ ES

[
w0(X)hδ

(
Y 2 − f̂init(X)

)]
+W

√
t

nS

= ET

(
hδ

(
Y 2 − f̂init(X)

))
+W

√
t

nS

Meanwhile, with probability ≥ 1− e−t:

1

nS/2

∑
i∈DS,2

|ŵ(Xi)− w0(Xi)| ≤ ES [|ŵ(X)− w0(X)|] + (W +W ′)

√
t

nS
.
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Therefore, with t = 10 log nS , we have with probability ≥ 1− 2n−10
S :

1

nS/2

∑
i∈DS,2

ŵ(Xi)1Y 2
i >f̂init(Xi)

≤ ES [|ŵ(X)− w0(X)|] + (W +W ′)

√
10 log nS

nS

+ ET

(
hδ

(
Y 2 − f̂init(X)

))
+W

√
10 log nS

nS
.

Call this event Ω2. Therefore, on Ω1 ∩ Ω2 we have:

1

nS/2

∑
i∈DS,2

ŵ(Xi)1Y 2
i >f̂init(Xi)

≤ ES [|ŵ(X)− w0(X)|] + (2W +W ′)

√
10 log nS

nS
+ τ ≜ τ̃ .

This completes the proof of Step 2. For any fixed α > 0, we have τ̃ ≤ α as long as nS is large
enough and ES [|ŵ(X)− w0(X)|] is small enough, and as a consequence λ̂(α) ≤ 1. This completes
the proof.

A.3 Proof of Theorem 3.4

Recall that we construct the prediction intervals using data splitting; from the first part of the data
(namely D1), we estimate f̂init and use the second part of the data (namely D2) to estimate λ̂(α).
Conditional on D1, define a function class G ≡ G(f̂) as:

G =
{
gλ(x, y) = w0(x)1y2−λf̂init(x)≥0 : λ ≥ 0

}
.

As G only depends on a scalar parameter λ (as w0 and f̂init are fixed conditionally on DS,1,DT ), it
is a VC class of function with VC-dim ≤ 2.

PT

(
Y 2 ≥ λ̂(α)f̂init(X)

)
= ES

[
w0(X)1Y 2−λ̂(α)f̂init(X)≥0

]
=

1

nS/2

∑
i∈DS,2

w0(Xi)1Y 2
i −λ̂(α)f̂init(Xi)

+ (PS − PnS/2)w0(X)1Y 2≥λ̂(α)f̂init(X)

=
1

nS/2

∑
i∈DS,2

ŵ(Xi)1Y 2
i −λ̂(α)f̂init(Xi)≥0 +

1

nS/2

∑
i∈DS,2

(w0(Xi)− ŵ(Xi))1Y 2
i −λ̂(α)f̂init(Xi)≥0

+ (PS − PnS/2)w0(X)1Y 2−λ̂(α)f̂init(X)≥0 (A.1)

Now, by the definition of λ̂(α) (see Step 2), we have:

α− 1

nS/2
≤ 1

nS/2

∑
i∈DS,2

ŵ(Xi)1Y 2
i −λ̂(α)f̂init(Xi)≥0 ≤ α .

We use a similar technique to control the second summand as in the proof of Theorem 3.2. By using
the fact that the indicator function is less than one, we have:∣∣∣∣∣∣ 1

nS/2

∑
i∈DS,2

(w0(Xi)− ŵ(Xi))1Y 2
i −λ̂(α)f̂init(Xi)≥0

∣∣∣∣∣∣ ≤ 1

nS/2

∑
i∈DS,2

|ŵ(Xi)− w0(Xi)| .

Applying Hoeffding’s inequality (with the fact that ∥ŵ∥∞ ≤ W ′ and ∥w0∥∞ ≤ W ), we have with
probability greater than or equal to 1− e−t:

1

nS/2

∑
i∈DS,2

|ŵ(Xi)− w0(Xi)| ≤ ES [|ŵ(X)− w(X)|] + (W +W ′)

√
t

nS
.

To control the third summand of (A.1), note that, conditional on DS,1 and DT (i.e., assuming f̂init
fixed), and using the fact that ∥g∥∞ ≤ ∥w0∥∞ ≤ W for all g ∈ G, we have by Mcdiarmid’s
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inequality with probability greater than or equal to 1− e−t:

sup
g∈G

∣∣(PS − PnS/2)g(X,Y )
∣∣ ≤ ES

[
sup
g∈G

∣∣(PS − PnS/2)g(X,Y )
∣∣ | DS,1,DT

]
+W

√
t

nS

≤ 2RnS/2 (G | DS,1,DT ) +W

√
t

nS
.

Now conditional on DS,1,DT , G is a VC class of function with VC dimension ≤ 2. Therefore,

RnS/2 (G | DS,1,DT ) ≤
√

C

nS

for some constant C > 0. Thus, we have

sup
g∈G

∣∣(PS − PnS/2)g(X,Y )
∣∣ ≤√ C

nS
+W

√
t

nS
.

Combining the bounds, we have, with probability ≥ 1− 2e−t:∣∣∣PT

(
Y 2 > λ̂(α)f̂init(X)

)
− α

∣∣∣
≤ 1

nS/2
+ ES [|ŵ(X)− w0(X)|] + (2W +W ′)

√
t

nS
+

√
C

nS
.

This completes the proof.

A.4 Proof of Theorem 4.3

We start with the following decomposition:

ET [f̂init ◦ T̂0(X)] = ET [f̂init ◦ T0(X)] + ET [f̂init ◦ T̂0(X)− f̂init ◦ T0(X)]

= ES [f̂init(X)] + ET [f̂init ◦ T̂0(X)− f̂init ◦ T0(X)]

≤ ES [f̂init(X)] + LFET [|T̂0(X)− T0(X)|]

where the second equation follows from the fact that when X ∼ PT , then T0(X) ∼ PS , and the last
line follows from the fact f ∈ F is LF Lipschitz. A similar argument as in the proof of Theorem
3.5 [FGM23] yields:

ES [f̂init(X)] ≤ ∆+ 4RnS
(F) + 4BF

√
t

2nS
.

with probability ≥ 1− e−t. We then finish the proofs.

A.5 Proof of Lemma 4.4

By the definition of λ̂(α), we have

{
λ̂(α) ≥ 1

}
=⇒

 1

nS/2

∑
i∈DS,2

1
(
Y 2
i ≥ f̂init(Xi) + δ

)
> α

 .

Now by an application of Chernoff bound for binomial distribution, we have:

P

 1

nS/2

∑
i∈DS,2

1
(
Y 2
i ≥ f̂init(Xi) + δ

)
> α | DS,1,DT

 ≤ e
−

(α−pnS
)2nS

6pnS .

Hence, we have the following:

P(λ̂(α) > 1 | DS,1,DT ) ≤ e
−

(α−pnS
)2nS

6pnS .
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We next establish the high probability bound on pnS
. We define a function ℓδ(x) which is 1 when

x ≤ −δ, 0 when x ≥ 0 and −x/δ when −δ ≤ x ≤ 0.

pnS
= ES

[
1Y 2≥f̂init(X)+δ

]
≤ ES

[
ℓδ(f̂init(X)− Y 2)

]
=

1

nS/2

∑
i∈DS,1

ℓδ(f̂init(Xi)− Y 2
i ) +

(
PnS/2 − PS

)
ℓδ(f̂init(X)− Y 2)

≤ sup
f∈F

(
PnS/2 − PS

)
ℓδ(f(X)− Y 2)

≤ 4

δ

√ES [Y 4]

nS
+RnS/2(F)

+

√
t

nS
.

where the first inequality used ℓδ(x) ≥ 1(x ≤ −δ), second inequality uses the fact that sample aver-
age of ℓδ overDS,1 is 0 by the definition of f̂init, third inequality uses Ledoux-Talagrand contraction
inequality observing that ℓδ is 1/δ-Lipschitz. This completes the proof.

A.6 Proof of Theorem 4.5

PT

(
Y 2 ≥ λ̂(α)(f̂init ◦ T̂0(X) + δ)

)
= PT

(
Y 2 ≥ λ̂(α)(f̂init ◦ T0(X) + δ)

)
+
∣∣∣PT

(
Y 2 ≥ λ̂(α)(f̂init ◦ T̂0(X) + δ)

)
− PT

(
Y 2 ≥ λ̂(α)(f̂init ◦ T0(X) + δ)

)∣∣∣
≜ T1 + T2 . (A.2)

We start with analyzing the first term:

T1 = PT

(
Y 2 ≥ λ̂(α)(f̂init ◦ T0(X) + δ)

)
=

∫
XT

∫
Y
1y2≥λ̂(α)(f̂init(T0(x))+δ) fT (y | XT = x) pT (x) dydx

=

∫
XT

∫
Y
1y2≥λ̂(α)(f̂init(T0(x))+δ) fS(y | XS = T0(x)) pT (x) dydx

=

∫
XS

∫
Y
1y2≥λ̂(α)(f̂init(z)+δ) fS(y | XS = z) pT (T

−1
0 (z))|∇T−1

0 (z)| dydx

=

∫
XS

∫
Y
1y2≥λ̂(α)(f̂init(z)+δ) fS(y | XS = z) pS(z) dydx

= PS(Y
2 ≥ λ̂(α)(f̂init(X) + δ)) .

Therefore, we need a high probability upper bound on PS(Y
2 ≥ λ̂(α)(f̂init(X) + δ) | DS ∪ DT ).

Towards that end, we start with the following expansion:

PS

(
Y 2 ≥ λ̂(α)(f̂init(X) + δ) | DS ∪ DT

)
=

1

nS/2

∑
i∈DS,2

1Y 2
i ≥λ̂(α)(f̂init(Xi)+δ) +

(
PnS/2 − PS

)
1Y 2≥λ̂(α)(f̂init(X)+δ) (A.3)

Now, note that, by the definition of λ̂(α), we have:

α− 1

nS/2
≤ 1

nS/2

∑
i∈DS,2

1Y 2
i ≥λ̂(α)(f̂init(Xi)+δ) ≤ α .

To bound the second term in (A.3), we use:∣∣∣(PnS/2 − PS

)
1Y 2≥λ̂(α)(f̂init(X)+δ)

∣∣∣ ≤ sup
λ≥0

∣∣∣(PnS/2 − PS

)
1Y 2≥λ(f̂init(X)+δ)

∣∣∣ := Zn .

20



To bound the supremum we use standard techniques from the empirical process theory. Define a
collection of functions G =

{
1Y 2≥λ(f̂init(X)+δ) : λ ≥ 0

}
. Note that, here we condition on DS,1, so

we treat f̂init as a constant function. For notational simplicity, suppose

Ψn = ES

[
sup
λ≥0

∣∣∣(PnS/2 − PS

)
1Y 2≥λ(f̂init(X)+δ)

∣∣∣ | DS,1

]
= ES

[
sup
g∈G

∣∣(PnS/2 − PS

)
g(X,Y )

∣∣ | DS,1

]
.

As the functions in G are uniformly bounded by 1 (and consequently, E[g2(X,Y )] ≤ 1), we have
by Talagrand’s concentration inequality of the suprema of the empirical process:

P

(
Zn ≥ Ψn +

√
2t
1 + 4Ψn

nS
+

4t

3nS
| DS,1

)
≤ e−t . (A.4)

Therefore, we need an upper bound on Ψn to obtain a high probability upper bound on Zn. Towards
that end, observe that G is a VC class with VC-dim less than or equal to 2 (as it is an indicator
function of a collection of functions with one parameter). Hence, we have, by symmetrization and
Dudley’s metric entropy bound:

Ψn ≤ 2ES

sup
g∈G

∣∣∣∣∣∣ 1

nS/2

∑
i∈DS,2

ϵig(Xi, Yi)

∣∣∣∣∣∣ | DS,1

 ≤ C
√
nS

.

Therefore, going back to (A.4), we have with probability ≥ 1− e−t

Zn ≤
C
√
nS

+

√
C1

nS
+

C2

n
3/2
S

√
t+

4t

3nS
.

Hence, we have: ∣∣∣PS

(
Y 2 ≥ λ̂(α)(f̂init(X) + δ) | DS ∪ DT

)
− α

∣∣∣ ≲√ t

nS

with probability ≥ 1− e−t. This completes the proof of T1. To obtain a bound on T2, note that:

T2

=
∣∣∣PT

(
Y 2 ≥ λ̂(α)(f̂init ◦ T̂0(X) + δ)

)
− PT

(
Y 2 ≥ λ̂(α)(f̂init ◦ T0(X) + δ)

)∣∣∣
=

∣∣∣∣∫
XT

(
PT (Y

2 ≤ λ̂(α)(f̂init(T̂0(x)) + δ) | XT = x)

−PT (Y
2 ≤ λ̂(α)(f̂init(T0(x)) + δ) | XT = x)

)
pT (x) dx

∣∣∣
=

∣∣∣∣∫
XT

(
FY 2

T |XT=x(λ̂(α)(f̂init(T̂0(x)) + δ))− FY 2
T |XT=x(λ̂(α)(f̂init(T0(x)) + δ)

)
pT (x) dx

∣∣∣∣
≤ G

∫
XT

λ̂(α)
∣∣∣f̂init(T0(x))− f̂init(T̂0(x))

∣∣∣ pT (x) dx
≤ GLF ET [|T0(X)− T̂0(X)|] .

Here, the penultimate inequality uses the fact that the conditional distribution of Y 2
T given XT is

Lipschitz (as the density of Y 2
T given XT is bounded), and the last inequality uses the fact that f̂init

is Lipschitz as we have assumed all functions in F are Lipschitz.

B Details of the experiment

B.1 Density ratio estimation via probabilistic classification

Suppose we observe {X1, . . . , Xn1} from a distribution P (with density p) and
{Xn1+1, . . . , Xn1+n2

} from another distribution Q (with density q). We are interested in es-
timating w0(x) = q(x)/p(x), where we assume Q is absolutely continuous with respect to P
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(otherwise, the density ratio can be unbounded with positive probability). Define, n1 + n2 mane
binary random variables {C1, . . . , Cn1+n2} such that Ci = 0 for 1 ≤ i ≤ n1 and Ci = 1 for
n1 + 1 ≤ i ≤ n1 + n2. Consider the augmented dataset D = {(Xi, Ci)}1≤i≤n1+n2 . We can think
that this dataset is generated from a mixture distribution ρp(X)+(1−ρ)q(x) where ρ = P(C = 1).
For this mixture distribution, the posterior distribution of C given X is:

P(C = 1|X = x) =
P (X = x | C = 1)P (C = 1)

P (X = x | C = 1)P (C = 1) + P (X = x | C = 0)P (C = 0)

=
ρq(x)

ρq(x) + (1− ρ)p(x)

=
(ρ/(1− ρ))w0(x)

(ρ/(1− ρ))w0(x) + 1

This implies:

w0(x) =
1− ρ

ρ

P(C = 1 | X = x)

1− P(C = 1 | X = x)
.

Now, from the data, we can estimate ρ̂ = n2/(n1+n2) and P(C = 1 | X = x) by any classification
technique (e.g., using logistic regression, boosting, random forest, deep neural networks etc). Let
ĝ(x) be one such classifier. Then we can estimate w0(x) by (n1/n2)(ĝ(x)/(1− ĝ(x))).

B.2 General weighted conformal prediction

The weighted conformal prediction method, as presented in [TFBCR19], consists of two main steps:

1. Split the source data into parts; estimate the conditional mean function E[Y | X = x], say
µ̂(x) using the first part of the source data.

2. Use the second part of the source data and the target data to construct weight w(Xi) and
the score function S(x, y) = |y − µ̂(x)| to construct the confidence interval.

In Section 5, we have implemented a generalized version of it, where we modify the score function
as follows:

1. We estimate the conditional standard deviation function
√

var(Y | X = x) along with the
conditional mean function from the first part of the data. Call it σ̂(x).

2. We use the modified score function s(x, y) = |y − µ̂(x)|/σ̂(x).

The rest of the method is the same as [TFBCR19]. This additional estimated conditional variance
function allows more expressivity and flexibility to the conformal prediction band, as observed in
Section 5.2 of [LGR+18], as this captures the local heterogeneity of the conditional distribution of
Y given X .

B.3 Boxplots to compare coverage and bandwidth

In this subsection, we present two boxplots to compare the variation in coverage and average width
of the prediction bands between our method and the generalized weighted conformal prediction (as
described in the previous subsection).

(a) Average Bandwidth (b) Coverage
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Real Estate Data
Outcome Our Method WVAC WQC
Coverage (Median) 0.98 0.962 0.971
Coverage (IQR) 0.058 0.048 0.048
Bandwidth (Median) 36.889 46.392 46.858
Bandwidth (IQR) 15.001 19.027 14.189
Bandwidth (Median for
Coverage > 95%)

40.774 50.703 51.031

Table 2: Experimental results for the real estate data

The boxplots immediately show that our methods yield similar coverage (even with lesser vari-
ability) with significantly lower average width than the generalized weighted conformal prediction
method.

C Additional Experiments

In this section, we present the details of the additional experiments based on four other datasets,
as mentioned in Section 5. We compare our methodology against two other widely used confor-
mal methods, namely Weighted Variance-adjusted Conformal (WVAC) [TFBCR19], and Weighted
Quantile-adjusted Conformal (WQC)—which is a variant of WVAC, where the score function is
changed to the conditional quantile [RPC19].

C.1 Experiment 1: Real estate data

The Real Estate Valuation dataset available at the UCI Machine Learning Repository contains data
used to estimate the value of real estate properties. Collected from Taipei, Taiwan, this dataset is
useful for predictive modeling in the real estate sector. It consists of 414 instances, with each entry
representing a different real estate transaction. This dataset was originally introduced in [TX12a]. In
this dataset, the goal is to predict the house price per unit area based on the 6 other features, namely
i) transaction date, ii) house age, iii) distance to the nearest MRT station, iv) number of convenience
stores, v) latitude and vi) longitude. The construction of shifted data (with β = (−1, 0,−1, 0, 1, 1))
and implementation procedure are the same as in Section 5. Table 2 and Figure 3 presented the
results over 200 Monte Carlo iterations. It is evident from the table that our method produced a
small average width in comparison to the other methods while maintaining the coverage guarantee.

C.2 Experiment 2: Energy efficiency data

The Energy Efficiency dataset available at the UCI Machine Learning Repository is designed to
help predict the heating load and cooling load requirements of buildings. The dataset was originally
introduced in [YH18]. The dataset includes various building parameters such as: i) wall area, ii)
surface area, iii) roof area, iv) orientation, etc. The goal is to predict the heating load based on 8
other covariates. The construction of shifted data (with β = (−1, 0, 1, 0,−1, 0, 0,−1)) and imple-
mentation procedure are the same as in Section 5. Our results over 200 Monte Carlo iterations are
presented in Table 3 and Figure 4. The table shows that our method produced a smaller bandwidth
than WVAC. While WQC has a smaller median bandwidth, it sacrifices coverage. The last row
indicates that for experiments with coverage ≥ 95%, WQC’s median average width is significantly
larger than ours. Thus, whenever WQC provides adequate coverage, its bandwidth is much larger
than ours.

C.3 Experiment 3: Appliances Energy Prediction Dataset

Appliances Energy Prediction Dataset is freely available from the UCI repository. This dataset is
a time series data with 28 covariates and one response variable. We used data from 2016-01-11
to 2016-02-15 (5000 samples) as our training set and data from 2016-05-13 to 2016-05-27 (2000
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Energy efficiency data
Outcome Our Method WVAC WQC
Coverage (Median) 0.995 0.969 0.973
Coverage (IQR) 0.047 0.036 0.05
Bandwidth (Median) 4.332 5.045 2.842
Bandwidth (IQR) 1.358 3.269 2.551
Bandwidth (Median for
Coverage > 95%)

4.373 5.681 4.94

Table 3: Experimental results for the energy efficiency data

samples) as our testing set. Since the source and target data are from different time periods, this
experiment involves a non-synthetic real-world time shift. The results based on our Algorithm 2 are
presented below:

Appliances Energy Prediction Dataset
Outcome Our Method WVAC WQC
Coverage 0.95 1.00 1.00
Bandwidth 461.69 6809.87 2032.12

Table 4: Experimental results for the Appliances Energy Prediction Dataset

C.4 Experiment 4: ETDataset

We applied our method to the ETDataset (ETT-small) from [ZZP+21], which contains hourly-level
data from two electricity transformers at two different stations, including load and oil temperature
measurements. Each data point consists of 8 features, including the date of the point, the predictive
value ”oil temperature”, and 6 different types of external power load features. For our experiment,
we used the data from one transformer during the period from July 1, 2016, to November 2, 2016,
as our source data, and data from the same time period from the other transformer as our target data.
As our source data and the target data are from different locations, we have a geographical covariate
shift; see [ZZP+21] for more details. Our results are as follows:

ETDataset
Outcome Our Method WVAC WQC
Coverage 0.976 0.982 0.842
Bandwidth 41.525 57.9 54.981

Table 5: Experimental results for the ETDataset

C.5 Experiment 5: Airfoil data

In Section 5, we have implemented our Algorithm 1 on the Airfoil data [TFBCR19] to showcase
the efficacy of our method. Here, additionally, we implement Algorithm 2 on the same dataset to
evaluate the performance of our second method based on optimal transport-based domain alignment.
Here, the data shifting procedure (to create data from the target domain with a shifted distribution)
is different from the rest of the experiments; we use the linear transformation x 7→ Ax + b with
A = diag(1.5, 1.2, 1.6, 2, 1.8) and b = (1, 0, 0, 1, 0) to generate covariates on the target domain. As
before, we split the data into two parts; we keep 75% of the data as it is, and shift the rest 25% of
the data. The results are given in Table 6 and Figure 5. The second column of Table 6, namely Our
Method (Without OT) is the aggregation method proposed in this paper, without domain alignment
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Airfoil data
Outcome Our Method Our Method

(without OT)
WVAC WQC

Coverage (Median) 0.928 0.749 0.984 0.952
Coverage (IQR) 0.035 0.22 0.024 0.077
Bandwidth (Median) 15.075 18.512 36.298 32.143
Bandwidth (IQR) 1.638 3.089 10.619 8.364
Bandwidth (Median for
Coverage > 95%)

16.429 25.268 37.783 36.433

Table 6: Experimental results for the airfoil data using optimal transport

through optimal transport, i.e., we use source data to construct the prediction interval and use the
same prediction interval on the target domain. As evident from Table 6, our method outperforms
all other methods in terms of the average width of the prediction interval while maintaining a good
coverage guarantee.
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(a) Our-Width (b) Our-Coverage

(c) WQC-Width (d) WQC-Coverage

(e) WVAC-Width (f) WVAC-Coverage

Figure 3: Experiments on real estate data

(a) Our-Width (b) Our-Coverage

(c) WQC-Width (d) WQC-Coverage

(e) WVAC-Width (f) WVAC-Coverage

Figure 4: Experiments on Energy efficiency data

(a) Our-Width (b) Our-Coverage (c) Our(No OT)-Width (d) Our(No OT)-Coverage

(e) WQC-Width (f) WQC-Coverage (g) WVAC-Width (h) WVAC-Coverage

Figure 5: Experiments on Airfoil data using optimal transport
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Section 3, 4 and 5.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [No]

Justification: We have proposed a method for aggregating prediction intervals along with
theoretical guarantees and experiments in this paper. Our theory is valid under certain
assumptions clearly mentioned in the main paper. One limitation of the theory is that we
do not know the performance of our method if the assumptions are violated, as is true for
any theory of methods. Furthermore, one needs to verify the methodology on various real
datasets to under the applicability of our method, which is outside the scope of this paper.
As these are quite standard limitations, we refrain from including them in the main draft.
However, if the referees feel that this should be included in the main draft, we would be
happy to oblige.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: See Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: See Section 5.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: Both methods in the experiment took approximately 10 minutes to run on a
MacBook Pro laptop (with M2 Max CPU, 10 Cores, 32 GB RAM, and no GPU).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work, none which we
feel must be specifically highlighted here.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: See Section 5.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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