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Abstract

The Segment Anything Model (SAM) marks a significant advancement in segmentation
models, offering robust zero-shot abilities and dynamic prompting. However, existing
medical SAMs are not suitable for the multi-scale nature of whole-slide images (WSIs),
restricting their effectiveness. To resolve this drawback, we present WSI-SAM, enhanc-
ing SAM with precise object segmentation capabilities for histopathology images using
multi-resolution patches, while preserving its efficient, prompt-driven design, and zero-shot
abilities. To fully exploit pretrained knowledge while minimizing training overhead, we keep
SAM frozen, introducing only minimal extra parameters and computational overhead. In
particular, we introduce High-Resolution (HR) token, Low-Resolution (LR) token and dual
mask decoder. This decoder integrates the original SAM mask decoder with a lightweight
fusion module that integrates features at multiple scales. Instead of predicting a mask in-
dependently, we integrate HR and LR token at intermediate layer to jointly learn features
of the same object across multiple resolutions. Experiments show that our WSI-SAM out-
performs state-of-the-art SAM and its variants. In particular, our model outperforms SAM
by 4.1 and 2.5 percent points on a ductal carcinoma in situ (DCIS) segmentation tasks and
breast cancer metastasis segmentation task (CAMELYON16 data set). The code will be
available at https://github.com/HongLiuuuuu/WSI-SAM.
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1 Introduction

Segmentation is crucial in histopathology images, enabling pathologists to analyze tissue
regions such as tumor and stroma and in turn use those results for a number of tasks such
as disease diagnosis, treatment planning, and monitoring progression. Current deep learning-
based models (Feng et al., 2021a; Wang et al., 2021; Xu et al., 2019; Feng et al., 2021b; Ni
et al., 2019; Qaiser et al., 2019; Han et al., 2022) have shown great promise in histopathology
image segmentation, which can significantly reduce time, labor, and expertise required,
and enable large-scale data set analysis. However, these models are typically designed and
trained for a specific segmentation task, which greatly limits the generalization to wider
applications in clinical practice. Therefore, it is essential to develop universal models with
zero-shot ability that can be trained once and then applied to a wide range of histopathology
segmentation tasks.

Recently, the segment anything model (SAM) (Kirillov et al., 2023) was released as a
segmentation foundation model for natural images, showcasing remarkable zero-shot abilities
across various scenarios. Enabling its application across a wide range of tasks (Mazurowski
et al., 2023; Cheng et al., 2023; Wang et al., 2023; Yue et al., 2023; Lei et al., 2023; Fazekas
et al., 2023; Chen et al., 2023; Zhang et al., 2023b) through simple prompting, this break-
through has catalyzed a significant paradigm shift. Some attempts have been made to
apply SAM to histopathology images to boost the performance on various segmentation
tasks. Med-SAM (Ma et al., 2024) fine-tunes the mask decoder of SAM on various medical
data sets, while Medical SAM Adapter (Wu et al., 2023) incorporates an adapter trained
on diverse medical data sets. Although these methods show strong performance on particu-
lar tasks, we hypothesize that they are suboptimal in processing histopathology WSIs that
possess a pyramid structure of multiple resolutions. For instance, to capture detailed infor-
mation of ductal carcinoma in situ (DCIS) lesions, patches must be extracted from images as
large as 10, 000× 10, 000 pixels at 10× magnification to manage costs (van Rijthoven et al.,
2021; Gu et al., 2018) and ensure compatibility with SAM, which has an input resolution of
1024×1024. A single resolution SAM model might fail because more contextual information
is needed in order to "understand" the object of interest is a lesion that should also include
the lesion interior, as shown in Figure 1. More visualization results can be found in the
supplementary materials.

To overcome the aforementioned limitation, in this work, we propose WSI-SAM, a model
that leverages multi-resolution patches (i.e., subregions from a WSI) to perform segmenta-
tion in a zero-shot manner. Similar to HookNet (van Rijthoven et al., 2021), we extract
a patch from a position within the WSI and couple it with a concentric lower-resolution
patch to capture essential contextual information, as illustrated in Figure 1 (right). Instead
of fusing the contextual information directly at the pixel level, we execute aggregation at
the token level due to token represent the segmented object information in the SAM mask
generation mechanism. Given that re-training the SAM model can significantly degrades
its general zero-shot performance (Ke et al., 2023), we propose the WSI-SAM architecture.
This design tightly integrates with and re-uses the existing learned structure of SAM to
fully retain its zero-shot capability. Specifically, we firstly introduce High-Resolution (HR)
Token and Low-Resolution (LR) Token. Unlike the original output tokens, our HR and LR
Token and their associated MLP layers are trained to predict masks of high-resolution and
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Figure 1: Comparison of DCIS segmentation in H&E-stained breast tissue by SAM, Med-
SAM, and our WSI-SAM. Using the same green box as input prompt on a 10×
magnification patch, SAM erroneously does not segment the interior wall of DCIS
lesion. This error is compounded by the presence of calcifications and necrosis in
the interior of the duct. MedSAM overlooks the ductal region beneath the lumen.
Leveraging additional context (right), our WSI-SAM predict more accurate entire
DCIS area, despite the intervening background and dark region.

low-resolution patches. Secondly, we propose a dual mask decoder that integrates the orig-
inal SAM mask decoder with a fusion module. The fusion module enables the integration
of global semantic context with local detailed features by combining SAM’s mask decoder
features with early and late features from its ViT encoder. Finally, instead of predicting
masks independently, we integrate the HR and LR tokens at the intermediate decoder layer
for contextual information aggregation across both resolutions to generate accurate mask
details.

Our contributions are summarized as follows: (1) This paper introduces WSI-SAM, a
segmentation framework building upon SAM, designed to seamlessly integrate contextual
cues with high-resolution details, enabling the prediction of the detailed segmentation mask
for histopathology images in a zero-shot manner. (2) To achieve this objective, we introduce
the HR and LR Token, Dual Mask Decoder, and Token Aggregation, which together facilitate
enhanced segmentation without the need for training from scratch. (3) The effectiveness of
our method has been validated by two benchmarks, DCIS and CAMELYON16.

2 Method

2.1 Preliminary: SAM architecture

SAM consists of three fundamental components. The image encoder, utilizing a ViT-based
backbone, extracts image features to produce image embeddings. The prompt encoder
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Figure 2: WSI-SAM model architecture, which introduces HR and LR Tokens, Dual Mask
Decoder and Token Aggregation to SAM for for improving the mask quality in
histopathology WSIs.

captures positional information from input points, boxes, or masks, aiding in the mask
decoding process. Lastly, the mask decoder leverages both image embeddings and prompt
tokens to generate final mask predictions. One of SAM’s remarkable features is its robust
zero-shot capability to novel scenarios, thanks to extensive training on a vast repository of
prompt-mask pairs.

2.2 Ours: WSI-SAM

To maintain SAM’s zero-shot transfer ability and avoid model overfitting or catastrophic
forgetting (Ke et al., 2023), we opt for minimal adaptation rather than direct fine-tuning
SAM or incorporating a new, extensive decoder network. To this end, we introduce three
novel components in our WSI-SAM, as illustrated in Figure 2.

High and Low Resolution Tokens We introduce an efficient adaptation method to
enhance mask quality in histopathology WSIs. As shown in Figure 2, we use the output
token for mask prediction (Kirillov et al., 2023), predicting dynamic MLP weights and
subsequently applying a point-wise product with the mask features. To improve mask quality
in WSIs using SAM, we avoid directly utilizing SAM’s coarse masks as input. Instead, we
introduce HR and LR Tokens along with a new mask prediction layer, enabling refined
mask prediction at multiple resolutions. As depicted in Figure 2, we preserve SAM’s mask
decoder unchanged while introducing two new learnable tokens, HR and LR Tokens, each
with dimensions 1 × 256. These tokens are then merged with SAM’s output tokens (sized
4× 256) and prompt tokens (sized Nprompt× 256), serving as input to SAM’s mask decoder.
The HR and LR Tokens interact with their corresponding resolution image features for its
feature updating.
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Dual Mask Decoder To achieve the best interaction between token and ViT features, we
propose dual mask decoder, which include the SAM mask decoder and a lightweight fusion
module. HR and LR Tokens employ the point-wise MLP, which is shared with other tokens.
Once processed through the mask decoder layers, the updated HR and LR Tokens acquire
comprehensive insights into the global image context, crucial geometric/type information
conveyed by prompt tokens, and hidden mask details inherent in other output tokens. To
enhance mask quality, we augment the mask decoder features of SAM with both high-level
object context and low-level boundary/edge details at Fusion modules. Specifically, we
integrate new features by merging features from various stages of the SAM model, which
include features from both early and late layers of ViT encoder, as well as mask features
obtained from SAM’s mask decoder.

Token Aggregation Rather than predicting the mask independently, we introduce Token
Aggregation to capture contextual information across multiple resolutions, thereby enhanc-
ing mask detail accuracy. We merge detailed features from the updated HR Token with
broader contextual features from the LR Token, as these tokens represent features of the
same object at different resolutions. As illustrated in Figure 2, the merge operation is formed
by averaging the updated HR and LR Tokens. This aggregation method is both simple and
effective, yielding segmentation results that preserve details while requiring minimal mem-
ory and computational resources. Subsequently, a spatial point-wise product is applied to
the HR and LR mask features to facilitate mask generation.

2.3 Training Objective

While training WSI-SAM, a separate loss is computed for each resolution. We propose a
loss function

L = λLhigh + (1− λ)Llow,

where Lhigh and Llow are the combination of dice loss and cross-entropy loss for different
resolutions, respectively, and λ controls the importance of each resolution.

3 Experiments and Results

Training data To train WSI-SAM in a data-efficient manner, we train on the CATCH
(Wilm et al., 2022) data set. This data set contain 350 WSIs of seven distinct subtypes of
canine cutaneous tumors, augmented with 12,424 polygon annotations across 13 histological
classes. Following the official division, the data set is split into a training set with 245 WSIs
and a validation set encompassing 35 WSIs.

Benchmark settings We assess our model’s performance on two Whole Slide Image
(WSI) data sets in a zero-shot manner. The first is a data set of Ductal Carcinoma in
Situ (DCIS (Wetstein et al., 2021)), a non-invasive breast cancer collection comprising 116
WSIs. From this, 50 WSIs were randomly selected for our test set. The second is the
CAMELYON161 data set, where we incorporated its official test set into our own. This
set includes a total of 47 WSIs.

1. https://camelyon17.grand-challenge.org/Data/
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3.1 Implementation Details

During training, we maintain the model parameters of the pre-trained SAM model un-
changed, focusing solely on making the proposed WSI-SAM learnable. Given SAM’s ca-
pability for handling flexible segmentation prompts, we train WSI-SAM using a variety of
prompt types, such as bounding boxes, randomly sampled points, and coarse masks. These
degraded masks are created by incorporating random Gaussian noise into the boundary ar-
eas of the GT masks. Given hardware constraints, we randomly select a limited number
of 1024× 1024 patches at 10× magnification and their corresponding concentric patches at
5× magnification from each WSI for training. We adpot TinyViT (Zhang et al., 2023a) as
its backbone. Our training employs a mini-batch size of 1 and a learning rate 0.001. We
conducted all experiments using PyTorch on a setup equipped with an NVIDIA TITAN Xp
GPU.

Tissue Ground 
Truth

SAM MedSAM WSI-SAM

Ground Truth
Prediction

Figure 3: Example of predicted tissue segmentation on DCIS. Yellow boxes indicate the
incorrect predictions.

3.2 Zero-shot Comparison with SAMs

Setup In our evaluation process, we conduct zero-shot mask prediction using prompts.
Our investigation includes two distinct types of prompts: box and point. To accurately
assess improvements in mask quality, we employ the Dice Similarity Coefficient (DSC) as
our reporting metric, which quantifies the overlap between the predicted and ground truth
masks, providing a reliable measure of segmentation performance.

Zero shot segmentation with box prompt We compare with SAM, fine-tuned SAM
and MedSAM on both DCIS and CAMELYON16 data sets. We simulate realistic human-
annotated bounding boxes by introducing noise to the GT object boxes. As shown in Ta-
ble 1, we observe a marked decrease in performance when fine-tuning SAM on histopathology
WSIs, likely due to model overfitting or catastrophic forgetting during the fine-tuning pro-
cess (Ke et al., 2023). In contrast, WSI-SAM outperforms SAM by 4.1 and 2.5 percent points
on the DCIS and CAMELYON16 data sets, respectively. Furthermore, when compared to
MedSAM, which was trained on a variety of medical data sets, WSI-SAM demonstrates a
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Method DCIS CAMELYON16
DCIS IDC ILC DUC avg

SAM (Kirillov et al., 2023) 73.35 86.06 81.36 72.86 80.09
SAM* 61.22 74.17 72.88 40.00 62.35
MedSAM (Ma et al., 2024) 64.71 77.91 75.24 71.64 74.93
WSI-SAM (Ours) 77.50 89.76 84.30 73.55 82.54

Table 1: Comparison of zero-shot segmentation results on the DCIS and CAMELYON16
test sets using bounding boxes as input prompts. * indicate fine-tune SAM’s mask
decoder on CATCH.

Method SAM MedSAM WSI-SAM
DSC 56.00 56.43 57.37

Table 2: Comparison of zero-shot segmentation results on the test set of DCIS. We use nnU-
Net (Isensee et al., 2021) trained on DCIS as box prompt generator.

significant performance enhancement, as evidenced by the increase from 64.71% to 77.50%.
Moreover, to simulate real-world scenarios, we further evaluated our method using prompts
generated from nnU-Net (Isensee et al., 2021). WSI-SAM surpasses both SAM and Med-
SAM (e.g., 56.0, 56.73 vs 59.9), showcasing the resilience and robustness of our approach.
To provide additional validation, we conduct a segmentation qualitative analysis on DCIS,
as illustrated in Figure 3.

Zero shot segmentation with point prompt To investigate the segmentation capabil-
ities of WSI-SAM using interactive point prompts, we conducted a comparison with SAM,
evaluating their performances across a range of input point quantities on both the DCIS
and CAMELYON16 data sets. Noting that MedSAM is limited to box prompts. For the
CAMELYON16 data set, we present an average performance across the three tumor classes,
with comprehensive metrics for each class detailed in the supplementary materials. WSI-
SAM consistently outperforms SAM on both data sets, regardless of the number of point
prompts utilized, as shown in the Figure 4.

3.3 Ablation Study

We conducted an ablation study for WSI-SAM on DCIS data set with bounding boxes as
input prompts.

Effect of the HR and LR Tokens. WSI-SAM leverages HR and LR Tokens to fuse
more contextual information, enhancing mask prediction accuracy. We examined various
aggregation target, specifically fuse the HR and LR feature by average-pooling, fuse with
expand HR feature region on the HR feature, and HR and LR token aggregation. Re-
sults presented in Table 3b indicate that utilizing HR and LR Tokens, outperforms these
alternatives, achieving performance improvements of 5.3 percent points on DCIS data set.
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Figure 4: Comparison of zero-shot interactive segmentation results using a varying number
of input points on the DCIS and CAMELYON16 data set.

Aggregation Dice
Concat.-FC 77.24

Max. 75.91
Avg. 77.50

(a)

Aggregation Target Dice
HR feat. and LR feat. 72.20

HR feat. and expand HR feat. 59.04
HR Token and LR Token 77.50

(b)

λ Dice
0.0 74.16
0.5 77.50
1.0 75.20

(c)

Table 3: Ablation experiments on DCIS data set. (a) Ablation study on aggregation ways of
HR and LR features or Tokens using box prompts; (b) Ablation study on aggrega-
tion target for integrating contextual information using box prompts; (c) Ablation
study on different values of λ in loss function.

Ablation on Tokens Aggregation We evaluate three ways of fusing HR and LR Tokens:
(1) Concatenating followed by one learnable FC layer (Concat-FC); (2) Max pooling (Max);
(3) Average pooling (Avg). Table 3a shows that the average pooling turns out to be the best
way for aggregation.

Ablation on λ in loss function. The influence of losses from HR and LR Tokens is
modulated by λ. Experiments were conducted with λ = 0.0 to ignore the HR Token,
λ = 0.5 to balance both tokens equally, and λ = 1.0 to ignore the LR Token. According to
Table 3c, setting λ = 0.5 yields the best performance enhancement.

4 Conclusion

We introduce WSI-SAM, the zero-shot segmentation model tailored for WSIs, incorporating
innovative HR and LR Tokens to refine the mask prediction of SAM’s output token and
enhancing the original SAM with minimal additional computational cost. Our zero-shot
transfer evaluations on the DCIS and CAMELYON16 data sets showcase WSI-SAM’s supe-
rior performance, marking a substantial advancement in zero-shot segmentation for WSIs.
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Appendix A.

Method IDC ILC DUC
SAM 85.26 80.76 60.13

WSI-SAM 85.63 81.66 61.73
(a)

Method IDC ILC DUC
SAM 87.53 82.09 66.48

WSI-SAM 89.53 84.90 68.16
(b)

Method IDC ILC DUC
SAM 89.43 83.97 74.61

WSI-SAM 91.53 86.23 75.22
(c)

Table 4: Comparison of zero-shot segmentation results on CAMELYON16 test sets using
different numbers of points as input prompts. (a) 3 positive points; (b) 5 positive
points; (c) 10 positive points.
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Tissue Ground 
Truth SAM MedSAM WSI-SAM

Figure 5: Comparison of segmentation mask predictions in DCIS data set.

Tissue Ground 
Truth SAM MedSAM WSI-SAM

Figure 6: Comparison of segmentation mask predictions in CAMELYON16 data set.
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