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ABSTRACT

Model Inversion (MI) attacks aim to reconstruct information from private training
data by exploiting access to machine learning models 7'. To evaluate such attacks,
the standard evaluation framework relies on an evaluation model E, trained under
the same task design as T'. This framework has become the de facto standard for
assessing progress in MI research, used across nearly all recent MI attacks and
defenses without question. In this paper, we present the first in-depth study of this
MI evaluation framework. In particular, we identify a critical issue of this standard
MI evaluation framework: Type-I adversarial examples. These are reconstructions
that do not capture the visual features of private training data, yet are still deemed
successful by the target model 7" and ultimately transferable to E. Such false
positives undermine the reliability of the standard MI evaluation framework. To
address this issue, we introduce a new evaluation framework, F;rra, Which
replaces ' with advanced Multimodal Large Language Models (MLLMs). We
propose systematic design principles for Fsrras. By leveraging their general-
purpose visual understanding, our MLLM-based framework does not depend on
training of shared task design as in 7', thus reducing Type-I transferability and
providing more faithful assessments of reconstruction success. Using our proposed
evaluation framework, we reevaluate 27 diverse MI attack setups and empirically
reveal consistently high false positive rates under the standard evaluation frame-
work. Importantly, we demonstrate that many state-of-the-art (SOTA) MI methods
report inflated attack accuracy, indicating that actual privacy leakage is significantly
lower than previously believed. By uncovering this critical issue and proposing a
robust solution, our work enables a reassessment of progress in MI research and
sets a new standard for reliable and robust evaluation. Our MLLM-based MI
evaluation framework and benchmarking suite are included in the Appendix.

1 INTRODUCTION

Model Inversion (MI) attacks pose a significant privacy threat by attempting to reconstruct confidential
information from sensitive training data through exploiting access to machine learning models. Recent
state-of-the-art (SOTA) MI attacks (Zhang et al., 20205 (Chen et al., 2021; [Wang et al.,|2021a; Nguyen
et al.} 2023alb; Qiu et al.| 2024} |Yuan et al.,|2023) have shown considerable advancements, reporting
attack success rates exceeding 90%. This vulnerability is particularly alarming for security-sensitive
applications such as face recognition (Meng et al.|[2021}; |Guo et al.;[2020; [Huang et al.| {2020} Schroff
et al.l [2015)), medical diagnosis (Dufumier et al.| 2021} [Yang et al., 2022} |Dippel et al., 2021)), or
speech recognition (Chang et al., [2020; [Krishna et al., [2019).

Research gap. Recently, there are many studies on improving MI attacks (Zhang et al., [2020;
Fredrikson et al., 20145 |An et al.| 2022} Chen et al.,|2021; |Yuan et al.| [2023; Qiu et al.,|2024; Nguyen
et al., [2023bza} [Kahla et al.| |2022; [Han et al., [2023)) and MI defenses (Wang et al., | 2021b; |[Peng et al.|
2022; Struppek et al., |2024b; Ho et al.,[2024; [Koh et al., 2024)). To assess the effectiveness of these
MI attacks/defenses, MI Attack Accuracy (AttAcc) is a standard and the most important metric. To
measure AttAcc, almost all recent MI studies adopt the evaluation framework introduced by (Zhang
et al., [2020), which we denote as F¢y,-. Under Foyr, an evaluation model F is used to predict
the identities of individuals based on the MI-reconstructed images. Model E is trained on the same
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Figure 1: In this work, we present the first and 1n-depth study on the Model Inversion (MI)
evaluation. Particularly, we investigate the most common MI evaluation framework Fcy to
measure MI Attack Accuracy (AttAcc). Feour is introduced in (Zhang et all [2020) and is utilized to
assess almost all recent MI attacks/defenses. However, we find that F¢,,,.. suffers from a significant
number of false positives. These false positive MI reconstructed samples do not capture visual identity
features of the target individual in the private training data, but they are still deemed successful attacks
according to F¢,, With a high confidence (indicated in red text). Extensive visualization of false
positives are included in the Appx.[C]

private dataset and follows the same training task design as in target model 7'. In particular, consider
the scenario where the adversary targets a specific identity y. From this point onward, we use y
exclusively to denote the target class (label) in the MI attack, rather than a label predicted by any
model. The adversary produces reconstructed images x, of the target label y by exploiting access
to the target model 7'. To measure AttAcc, these x, samples are then passed through an evaluation
model E. According to Fcuyrr, the attack is deemed successful if £ classifies z;, as y. Even though
such MI evaluation framework becomes the de facto standard and the accuracy measured
by Fcurr has been the most important metric in gauging MI research progress in almost all
recent MI studies, there has not been any in-depth and comprehensive study to understand the
accuracy of Fc,, and its limitations.

In this work, we conduct the first in-depth study of the standard MI evaluation framework Fcyp-.
For a truly successful attack, the reconstructed images x!, should capture the visual identity features
of y. However, we find that there exists a considerable number of MI reconstructed images that lack
visual identity features of y, yet both target model T" and evaluation model E under Fc,.- still assign
high probabilities to y, i.e., high values of Pg(y|z}). Some examples are illustrated in Fig.|I| These
false positives potentially inflate the reported success rate of recent SOTA MI attacks.

To shed light on the causes of these false positives, we systematically discover the impact of Type
I Adversarial Attacks (Nguyen et all, 2015}, [Tang et al. [2019) in Model Inversion, highlighting
a connection between two previously distinct research areas. The optimization processes in MI
attacks and Type I adversarial attacks are similar: both maximizing the likelihood with respect to
(w.r.t.) the input under a fixed model. We show that false positives in MI and Type I adversarial
examples are mathematically equivalent: MI false positives and Type I adversarial examples are
essentially the same construct mathematically, only arising under different problem contexts,
MI versus adversarial attacks. Moreover, due to the well-documented phenomenon of adversarial
transferabiliry (Nguyen et al., 2015)), these false positives can transfer to the MI evaluation model
E. This transferability is especially pronounced when the evaluation model £ in F¢,,, shares the
same task design as the target model T' (Liang et al., 2021}, [Papernot et al., 20164). Ultimately, we
demonstrate a fundamental issue in Fc.,.--, potentially leading to unreliable assessment and inflated
success rates reported for recent MI attacks under this evaluation framework.
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To mitigate this issue, we propose a new MI evaluation framework Fjsrras that replaces the
evaluation model E with Multimodal Large Language Models (MLLMs). We propose systematic
design principles for Fpsr,1,p7. While not relying on the same training task design used in 7', Fasr s
minimizes Type-I transferability and offers a more faithful assessment of MI attacks. Using data
annotated by Fasrra, we empirically benchmark the reliability of the common MI evaluation
framework F¢,, and reveal consistently high false positive rates across 27 diverse MI setups.
Our findings challenge the reliability of the standard MI evaluation framework and underscore
the importance of adopting our MLLM-based approach for more reliable assessments. Our main
contributions are summarized below:

* We present the first in-depth study on the most common evaluation framework F ¢ to
compute MI AttAcc. Our study identify the surprising effect of Type I Adversarial Features,
as well as adversarial transferability (Nguyen et al.,[2015; Tang et al.,|2019)), on MI attacks,
highlighting a relationship between two previously distinct research areas (see Sec. [3). Our
findings explain numerous false positives in Foqpr.

* To mitigate this issue, we propose an MLLM-based MI evaluation framework Fa;rras (see
Sec. .1). Our framework leverages the powerful general-purpose visual understanding
capabilities of advanced MLLMs to evaluate MI reconstructions, replacing the traditional
evaluation model E. We propose systematic design principles for Fpsr 1 ps. Without relying
on the same training task design used in T, Fasrras minimizes Type-I transferability and
provides a more faithful assessment of MI attacks.

 Using data annotated by our evaluation framework, we empirically demonstrate that there
are number type I adversarial examples under Fcy. Ultimately, our findings challenge the
validity of this dominant evaluation framework and underscore the importance of adopting
our proposed MI evaluation framework for more reliable assessments (see Sec. [4.2).

2 RELATED WORK

Model Inversion (MI) aims to extract information about the training data given a trained model.
Particularly, an adversary exploits a target model 7' that was trained on a private dataset Dy,;.;,.
However, D,,;, should not be disclosed. The main goal of MI attacks is to extract information
about the private samples in D,,.;,. The existing literature formulates MI attacks as a process of
reconstructing an input z,, that 7" is likely to classify into the target class (label) y. For example,
in facial recognition, MI attacks aim to reconstruct facial images that are likely to be identified as
belonging to a particular person.

Model Inversion Attacks. One of the initial methods for MI is proposed by Fredrikson et al.
(Fredrikson et al.| |2014])), who discover that attackers could use a machine learning model to extract
genomic and demographic information about patients. Their work is extended to facial recognition
(Fredrikson et al.,[2015), demonstrating the potential to reconstruct identifiable facial images from
model outputs. Advancing this concept, |Yang et al.| (2019) propose adversarial model inversion,
treating the target model as an encoder and using a secondary network to reconstruct the original
input data from the prediction vector. Recent advanced generative-based MI attack methods propose
reducing the search space to the latent space by training a deep generator (Zhang et al.| [2020; Wang
et al.,[2021aj |Chen et al., [2021} |Yang et al., 2019; |Yuan et al., 2023 [Nguyen et al.| [2023a} |Struppek
et al.| 2022} |Qiu et al., |2024), instead of directly performing MI attacks on high-dimensional space
such as the image space. Specifically, GMI (Zhang et al.| |2020) and PPA (Struppek et al., [2022])
employ pretrained GAN models (e.g., WGAN (Arjovsky et al.,[2017) or StyleGAN (Karras et al.,
2019)) on an auxiliary dataset similar to private training data D,,;,. Inversion images are found
through the latent vector of the generator. Recent efforts have aimed to enhance GAN-based MI
methods from multiple perspectives. From the perspective of prior knowledge, KEDMI (Chen et al.,
2021)) proposes training inversion-specific GANs using knowledge from the target model 7'. Similarly,
Pseudo-Label Guided MI (Yuan et al.| 2023 utilizes pseudo-labels to guide conditional GAN training,
while IF-GMI (Qiu et al., |2024) leverages intermediate feature representations from pretrained GAN
blocks. From MI objective perspective, max-margin loss (Yuan et al., [2023)) and logit loss (Nguyen
et al.}2023a)) are introduced to address limitations in Cross-Entropy loss used in MI attacks. From
MI overfitting perspective, LOMMA (Nguyen et al.,|2023a) employs augmented model concepts to
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improve generalizability of MI attacks. The Eq. [I|represents the general step of SOTA MI attacks:
w" = argmin(—log Pr(y|G(w)) + ALprior (w)) M

Here, — log Pr(y|G(w)) represents the identity loss, guiding the reconstruction of zj = G(w) that
is most likely to be classified as target class y by target classifier T'. The £, ., is a prior loss, using
public information to establish a distributional prior via GANs, thereby guiding the inversion process
towards meaningful reconstructions.

Model Inversion Defenses. In contrast to MI attacks, MI defenses aim to minimize the disclosure of
training samples during the MI optimization process. To protect against MI attacks, the objective
is to create a method to train the target classifier 7" on D,,.;, in such a way that T’ reveals as little
information about D,,.;, as possible, regarding specific labels, while still achieving satisfactory
model performance. Efforts have been made to develop defenses against MI attacks. MID (Wang
et al.| |2021b) adds a regularizer to the target classifier’s objective during training, penalizing the
mutual information between inputs 2 and outputs 7'(z). BiDO (Peng et al., [2022) introduces a
bilateral regularizer that minimizes the information about inputs x in feature representations z while
maximizing the information about labels ¥ in z. Beyond regularization-based defenses, TL-DMI (Ho
et al., [2024) improves MI robustness through transfer learning, while LS (Struppek et al., 2024b)
employs Negative Label Smoothing to improve MI robustness. Recently, MI robustness is also
explored from a architecture perspective (Koh et al., [2024)).

Model Inversion Evaluation Metrics. To evaluate MI attacks and defenses, almost all existing
studies rely on the standard MI evaluation framework from (Zhang et al., [2020), denoted as Fcyrr»
which computes attack accuracy and serves as the main metric for monitoring progress in MI research.
Suppose an adversary targets a class y and reconstructs images x; using access to the target model
T. These x; are then classified by an evaluation model F (trained on the same D,,;, but distinct
from T'). Under F ¢y, an attack is successful if £ predicts x, as y. Beyond attack accuracy, several
complementary metrics are also used. KNN distance is used in (Zhang et al., 2020; [Chen et al.|
2021;|Nguyen et al.,[2023a}, |Yuan et al.| 2023} [Struppek et al., [2022) to measure the shortest feature
distance between reconstructed and private images of class y, using features from FE or an external
extractor. FID is used in (Peng et al., 2022 |Q1u et al., 2024; Struppek et al.,|2022;|Yuan et al., 2023)) to
assess the realism of reconstructions. Knowledge Extraction Score is used in (Struppek et al., [2024b)
to evaluate discriminative information by training a surrogate classifier on reconstructed images
and measuring its accuracy on 1"s training data. Although these complementary metrics provide
additional perspectives, Fc,- remains the dominant evaluation framework and attack accuracy the
most widely used measure of progress in MI research. However, despite its prevalence, there has not
yet been a comprehensive study examining the reliability and limitations of Fcu. In this work, we
take the first step toward such an investigation.

3 CoOMMON MI EVALUATION FRAMEWORK HAS ISSUES: A CONNECTION
BETWEEN MI ATTACKS AND TYPE [ ADVERSARIAL ATTACKS

We discover, for the first time, the strong connection between Type I Adversarial Attacks and MI
Attacks. Due to this strong connection, the adversarial type I examples could be generated during
MI attacks. Additionally, due to the well-documented phenomenon of adversarial transferability
(Nguyen et al., 2015)), these adversarial type I examples can transfer to £ in Fy,,-. Ultimately, these
phenomenons results in unreliable assessment for Fery .

3.1 AN OVERVIEW OF ADVERSARIAL ATTACKS

An adversarial attack on machine learning models is an intentional manipulation of input data to
cause incorrect predictions, highlighting potential vulnerabilities of the model. Adversarial attacks
aim to create inputs that deceive machine learning classifiers into making errors while humans do
not. There are two main types of adversarial attacks: Type I and Type II. Type II Adversarial Attacks
(Goodfellow et al., 2014} [Szegedy et al., [2013; Kurakin et al., 2016; [Papernot et al., [2016b; |Carlini &
Wagner, [2017; Moosavi-Dezfooli et al.l2016; [Shafahi et al.|[2019) are commonly studied and aim
to produce false negatives. In this attack, minor and imperceptible perturbations are added to the
input data 2 to generate an adversarial example 2?7 which is incorrectly classified by the model.
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Mathematically, this is represented as:

F@) £ F(@) and Foracte (@) = foracte () @

Here, f is the model under attack, f,,4cie is an oracle or hypothetical, idealized classifier. In addition
to Type II attack, Type I Adversarial Attacks are designed in (Nguyen et al., 2015} |Tang et al.l | 2019)
to generate false positives by creating examples that are significantly different from the original input
but are still classified as the same class by the model. This involves producing an adversarial example
22T that, despite being significantly different from input z, the target model f mis-classifies as the
original class. Formally, Type I adversarial attack sample is defined as follows (Nguyen et al.,
2015; Tang et al., 2019):

F@T) = F(2) and foracte @) # Foraere () ©)

Type I adversarial samples can be produced by optimizing the input by iteratively updating it to
maximize the likelihood under a fixed target model classifier (Nguyen et al., 2015). This process
optimizes the input to remain within a targeted decision boundary, however, it is different from training
data by human perception. This phenomenon can also be viewed as over-confidence phenomenon of
machine learning models (Wei et al., [2022; |Guo et al., 2017).

3.2 THE STRONG CONNECTION BETWEEN MODEL INVERSION ATTACKS AND TYPE I
ADVERSARIAL ATTACKS

In the following, we analyze the connection Table 1: Mathematical equivalence of False Positive
between MI attacks and Type I adversarial (FP) in MI (Eq. [ and Type I adversarial attack (Eq.
attacks. The general inversion step used in [3) (Nguyen et al., 2015} Tang et al.,[2019).

SOTA MI attacks is described in Eq. [T} As False Positive Type I

a result, reconstructed images often exhibit —p——r in MI Adversarial Attack
high likelihood under the target classifier 7. Under Attack T f
However, not all reconstructed images suc-  Private/Original N -
cessfully capture the visual identity features Sample !

of the target individual from the private train- ~ Attack Sample ay it

ing data. Some examples are illustrated in  gormulation () = T(x,) F@ ) = f(z)

Fig.|l} We refer to these cases as false pos- o
itives (under T) in MI Speciﬁcally, With fO?(l(‘lt( ) 7& fO’!‘lZ(‘lE‘(ll/) forafle( ) 7é fmarle( )
target classifier T and f,qc1e denoting the oracle, false positive in MI attack is mathematically
represented as:

T(xy) =T(xy) =y

and foracle(xr) 7é foracle(‘ry)

Here, 27, does not resemble the visual identity feature of z,. However, T classifies xu as the target
label y. Hence z, is a false positive in MI. In Eq. 4} an alternative interpretation is that the false
positive zy is the example that can deceive T to classity it as the target label y while oracle classifier
can not recognize Xy, as y.

“

Critically, by comparing Eq.[dand Eq.[3 we reveal the mathematical equivalence of MI false
positives and Type I adversarial examples: both describe attack samples (), 22T resp.)
optimized under a fixed model (7', f resp.) that preserve the model’s prediction while deviating
from human-perceived identity. This equivalence uncovers a key insight: MI false positives
and Type I adversarial examples are essentially the same construct mathematically, only
arising under different problem contexts, MI versus adversarial attacks. Tab.[l|summarizes the
equivalence.

3.3 ADVERSARIAL TRANSFERABILITY CAN LEAD TO CRITICAL ISSUES IN THE COMMON
MODEL INVERSION EVALUATION FRAMEWORK

In Fcur, an evaluation model E is used to predict the identities of individuals based on MI-
reconstructed images. The model F is trained on the same private dataset and follows the same
training task design (i.e., an n-way classification task). Prior work has shown that adversarial exam-
ples crafted for one model can often transfer and mislead other models, even those with different
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Set of Images B
Does Image A depict the same individual as the images in Set B?

*

Figure 2: An example of evaluation query in our Fypm. The task is to determine whether “Image
A” depicts the same individual as those in “Image B”. We have two setups: (1) “Image A” and “Image
B” consist of private images and (2) “Image A” is an MI-reconstructed image x; of the target label y
while four real images of y are randomly selected as “Image B”. MLLM is tasked with responding
either “Yes” or “No” to indicate whether “Image A” matches the identity in “Image B”. The detailed
prompt can be found in the Appx.

architectures, as long as they are trained on the similar dataset and task design (Nguyen et al., 2015}
Papernot et al.,[2016a; [Liang et al.| 2021)). Therefore, the similarity between F and the target model
T may enable the transferability of Type I adversarial examples from 7" to E. This phenomenon can
be expressed mathematically as:

T(zy,) =T(zy) =y E(zy) = E(zy) =y )
and foracle (-73;) 7é fOTacle(xy)

In Sec. 3] we provide quantitative results to support our analysis and demonstrate how Type I adver-
sarial perturbations inflate the false-positive rates, leading to overestimation of attack effectiveness.

4  QOUR PROPOSED MLLM-BASED MODEL INVERSION EVALUATION
FRAMEWORK

In this section, we introduce a novel and faithful evaluation framework, Fypm. To mitigate the
undesirable effects of Type I adversarial transferability under 7, our key idea is to employ a model
trained under a fundamentally different learning regime. We argue that MLLMs are ideal candidates
because they are trained on broad, general-purpose tasks using data and optimization pipelines entirely
distinct from those of the target model in MI. In fact, MLLMs are increasingly used for automated
data labeling, offering robustness and scalability in both academia and industry (Community} 2025},
[Smith & Chenl [2024; [Lee & Patell 2024} [Zhou et al.| [2024). However, not every MLLM is suitable
for Fyrm when evaluating MI problems, even the most SOTA models. To systematically determine
an ideal candidate, we propose a principle for designing and selecting MLLMs in Sec. .1} Then,
we then re-evaluate MI attack accuracy using Fyrpm in Sec. Finally, in Sec.[4.3] we provide
quantitative evidence demonstrating the impact of Type I adversarial features on MI.

4.1 PRINCIPLE OF DESIGNING AND IMPLEMENTING Fumri.Lm

Furim design. We outline Fasr, 1 as design in Fig. @ Specifically, given a reconstructed image,
we form an evaluation query by pairing it with a set of private training images that include the target
identity. We then combine this query image with a natural language textual prompt and provide both
as input to the MLLM. The prompts shown in Tab. [S.6 are fixed across all evaluation queries to
ensure fairness. For each reconstructed image, the model outputs a categorical response (“Yes” or
“No”), where “Yes” indicates a successful attack. By evaluating many such queries and computing
the proportion of correct identifications, Fyipm provides an automated and faithful evaluation of MI.

The key lies in selecting a reliable MLLM for faithful MI evaluation. We propose two criteria:
(1) strong capability in understanding interleaved image-text inputs, and (2) have no usage
restrictions on MI tasks (e.g., some commercial MLLMs may refuse queries involving human
facial data). To quantify these criteria, we test whether the MLLLM can accurately recognize samples
from a private dataset (Zhang et all, [2020; Struppek et all,2022). As shown in Fig. 2] we design
two test sets: @ Positive pairs: “Image A” is a real image of the same individual present in “Images
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Table 2: Following our selection principle, the experiment results indicate that Gemini-2.0 serves
as a reliable MLLM for Fyy v by demonstrating (1) Strong capability in understandin interleaved
image-text inputs and (2) have no usage restrictions on MI tasks.

MLLM “Yes” rate 1 “No” rate | “Refuse” rate | “Yes” rate | “No” rate 1 “Refuse” rate |
Gemini 2.0 93.84% 3.16% 0% 4.41% 95.59% 0%
ositive Negative
ChatGPT-5 Palrs 17.50% 2.67% 79.83% Pairs 0.09% 23.04% 76.86%
Qwen2.5VL 88.51% 11.49% 0% 5.50% 94.55% 0%

B,” with the expected answer “Yes.” @ Negative pairs: “Image A” is a real image of a different
individual than those in “Images B,” with the expected answer “No”. An MLLM is considered a
reliable evaluator if it consistently yields high “Yes” rates for Positive pairs and high “No” rates for
Negative pairs. Moreover, we expect MLLMs to have a low “Refusal” rate when assessing queries.
We conduct this experiment on the widely used MI dataset FaceScrub (Ng & Winkler, 2014). We
evaluate several SOTA MLLMs, including ChatGPT-5, Gemini-2.0, and Qwen2.5VL-72B within our
Fuyom framework.

Results. The results are reported in Tab. 2] We observe that Gemini-2.0 achieves high “Yes” rates for
Positive pairs and high “No” rates for Negative pairs. Qwen2.5VL-72B may have limited capability of
current open-source MLLMs to understand interleaved image-text inputs compared to closed-source
commercial models. Despite ChatGPT-5 is a powerful closed-source model, it refuses to assess
MI queries with high “Refuse” rates (see examples in Appx.[A.1.7). At the end of the day, our
principle recommends Gemini-2.0 as a reliable MLLM for Fypm. Furthermore, Fy v powered
by Gemini-2.0 is robust to randomness, additional MI dataset, and aligns well with human evaluation
(See Appx.[A.T). Note that while Gemini-2.0 is a strong choice in our study, it is not the only MLLM
option for Fyrim. As MLLMs continue to evolve, we can adopt other models as long as they satisfiy
our selection principles.

4.2 REASSESSING MI ATTACK ACCURACY USING OUR MLLM-BASED EVALUATION
FRAMEWORK

We empirically reassess SOTA MI attacks using our proposed evaluation framework Fym. Impor-
tantly, we quantitatively show that there are many Type I adversarial examples, which are classified
as successful by Fcyr but do not to capture true visual identity. The false positive rates is consistently
high and up to 99% (See Tab. [3). This demonstrates that many SOTA MI methods report inflated
attack accuracy, indicating that actual privacy leakage is significantly lower than previously believed.

Experimental Setups. Using our evaluation framework Fyy v, we reassess 27 SOTA MI attacks
across 5 attacks, 4 defenses, 3 private datasets, 4 public datasets, and 9 target models 7', following
the original setups. Detailed settings are in Appx. [B.4] We will release the MI-reconstructed image
collection publicly upon publication.

Signiﬁcant False Positive by F ., are Type I adversarial examples. An ideally successful
attack, :n should capture the visual identity of y. However, for a successful attack as according
to .7:curr, ac only needs to be classified as y by an evaluation model E. As shown in Fig. I we
observe that within MI-reconstructed images @7 , there are cases where the visual identity to y is
minimal. Nevertheless, E assigns very high probabilities to y for these examples, i.e., high values
of PE(y|a:Z) We refer to these cases as false positives under the Fco,rr framework. To better
understand the extent of this false positive rate, we compare the ground truth success rate (established
using our Fpsrrns) to the success rate as measured by Fon,rr framework. Particularly, given the
MLLM-annotated labels and the prediction via F o, Wwe compute the False Positives (FP) rate,
False Negatives (FN) rate, True Positives (TP) rate, and True Negatives (TP) rate for each MI setup.

The AttAcc via Fouyrr, AttAccr,,,,, = FN+;£IFP+TN

The results in Tab. 3] consistently show that the FP rates are significant high across MI setups. In
other words, there are numerous MI reconstructed images that do not capture visual identity of, yet
they are deemed success by Fourr- Such high FP rate contributes to the significant inflation in
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Table 3: Our investigation on MI evaluation framework using our comprehensive dataset of
MI attack samples. We study 27 standard MI setups covering SOTA MI studies (PPA (Struppek
et al.,|2022), LOMMA (Qiu et al., 2024), KEDMI (Chen et al., 2021), PLGMI (Yuan et al.} [2023)),
IFGMI (Qiu et al.|[2024), TL (Ho et al.,[2024), TTS (Koh et al.,[2024), RoLSS (Koh et al.| [2024),
LS (Struppek et al.,2024b)), spanning 9 target classifiers T, 3 private datasets D4y, and 4 public
datasets Dp,,p. Details are in the Appx. Under Fcoyrr, we find high false positive (FP) rates,
indicating that prior work overestimates MI threats. For example, while SOTA attacks (e.g., IFGMI,
LOMMA, PLGM]I, PPA) claim over 90-100% AttAcc in some setups, actual privacy leakage remains
below 80% across all setups, with some attacks falling under 60%.

‘F ‘F urr
MIAttack Dy Dpus MLEM ©

AttAcc E AttAcc FP rate FN rate TP rate TN rate
ResNet18 28.37% 91.39% 90.09% 5.32% 94.58% 9.91%
ResNet101  28.68% 84.69% 82.71% 10.36% 89.64% 17.29%
ResNet152  30.26% 86.84% 85.09% 9.12% 90.88% 14.91%
PPA FaceScrub ~ FFHQ MobileNet-V2 47.18% InceptionNetV3 83.37% 80.39% 13.30% 86.70% 19.61%
DenseNetl21 27.43% 72.41% 70.13% 21.58% 78.42% 29.87%
MaxViT 30.19% 79.48% 77.16% 15.16% 84.84% 22.84%
Stanford Dogs AFHQ  ResNestl0l  74.58% InceptionNetV3 81.98% 61.07% 10.89% 89.11% 38.93%
FFHQ ResNet18 34.46% . 95.85% 94.60% 1.78% 98.22% 5.40%

IFGMI FaceScrub ———— InceptionNetV3
Metfaces  ResNetl8 1.56% 72.50% 72.21% 9.09% 90.91% 27.79%
CelebA VGG16 73.73% 98.73% 99.49% 1.54% 98.46% 0.51%

PLGMI CelebA _ FaceNet112
FFHQ VGG16 48.47% 88.67% 88.49% 11.14% 88.86% 11.51%
IR152 79.80% 90.40% 86.80% 8.69% 91.31% 13.20%
CelebA  FaceNet64  78.73% 92.00% 93.73% 8.47% 91.53% 6.27%
VGG16 79.93% 90.13% 90.70% 10.01% 89.99% 9.30%

LOMMA CelebA —n— FaceNet112
IR152 44.93% 77.73% 77.85% 22.40% 77.60% 30.27%
FFHQ FaceNet64  46.27% 72.13% 69.73% 25.07% 74.93% 22.15%
VGG16 55.27% 63.07% 61.55% 35.71% 64.29% 38.45%
IR152 66.73% 79.27% 74.55% 18.38% 81.62% 24.45%
CelebA  FaceNet64  65.73% 80.53% 78.40% 18.36% 81.64% 21.60%
VGG16 69.53% 73.13% 69.80% 25.41% 74.59% 30.20%

KEDMI CelebA ——— FaceNet112
1IR152 37.67% 52.20% 51.02% 45.84% 54.16% 48.98%
FFHQ FaceNet64  36.07% 54.60% 52.24% 41.22% 58.78% 47.76%
VGG16 38.07% 42.47% 41.33% 55.69% 44.31% 58.67%

reported AttAcc via Foyry Of latest SOTA MI attack such as PPA, PLGMI, IFGMI, or LOMMA.
Notably, in their reported AttAcc using F ., these recent attacks report AttAcc values exceeding
90%, or even nearly 100% for certain setups. However, across a wide range of MI setups, the actual
success rates never reach 80%. While we focus on high FP rates, FN rates also reveal limitations in
the F e Across MI setups, FN rates are consistently lower than FP rates. The FN rates depend on
the classification accuracy and generalization capability of E. For example, under the PLGMI attack,
when E = FaceNetl12 is trained on CelebA and evaluated with MI reconstructed images also from
CelebA prior (Dp,,» = CelebA), FN rates are lower. In contrast, if this E is evaluated with MI
reconstructed images from FFHQ prior (Dp.s = FFHQ), FN rates increase due to distribution shifts.

Furthermore, in certain MI setups, we find that Fcour does not align well with Fyrprng in
evaluating MI attacks. For example, in the setup of MaxViT as T under the PPA attack, the
AttAcc measured by Foyrr i1 11.91% lower than the setup for ResNet18 as 7" under the same
attack. However, the MaxViT as T setup shows a 1.82% higher AttAcc measured by Fasr s than
the ResNet18 as T setup. This suggests that, although less effective, the common MI evaluation
framework F ¢, could rate the attack as more successful than it actually is. In conclusion, our
analysis shows that the common MI evaluation framework F vy is suffered from very high FP rate,
significantly affecting the reported results of contemporary MI studies based on F cayrr-
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Table 4: Our controlled experiment to show the effect of Type I adversarial attacks in MI and
false positive rates. We compare false positive rates of negative 7 (many are affected by Type I
adversarial features) and negative x;‘at’“’al (free from such features; see main text for construction).
Results show w; suffers significantly high false positive rates. Experiments are conducted across all
previous MI evaluation models E (e.g., InceptionNetV3 for PPA, FaceNet112 for PLGMI) and an
additional architecture (MaxViT for PPA). Further results are provided in the Appx.

Attack Dopriv E FP rates under
r

InceptionV3 N Nei thi ral 9(;)-9(190;%
PPA FaceScrub eg; Ty _ 73. ad (;
MaxViT By 95%
Neg zpature 0.22%
PLGMI  CelebA  FaceNetl12 Negz, 99.49%
Neg aya+re 0.00%

4.3 THE EFFECT OF TYPE [ ADVERSARIAL FEATURES ON MI IN PRODUCING FALSE POSITIVES

In Sec.[3] we provide an analysis demonstrating that due to Type I adversarial transferability, there
are many false positives under the evaluation of E. In this section, we provide quantitative results to
support our analysis in MI setups.

Due to the similarity nature of Type I adversarial attacks and MI, i.e. maximizing the likelihood
with respect to (w.r.t) input under a fixed model, we hypothesize that a significant number of MI
reconstructed samples mz carrying Type I adversarial features. As a result, they are mis-classified
by T and F into the target label y although these x; do not resemble x, (Eq. [5). We conduct
experiments to validate our hypothesis. We take the two MI setups: e Setup 1: T'= ResNetl8,
Dpriv= FaceScrub, attack = PPA, E= InceptionV3/ MaxVIT e Setup 2: T'= VGG16, Dprip=
CelebA, attack = PLGMI, E= FaceNetl12. We conduct this experiment on a comprehensive setting
with all evaluation models E used in previous MI studies (i.e., InceptionNetV3 for PPA on and
FaceNet112 for PLGMI) and an additional architecture of E (i.e., MaxViT for PPA). We first perform
MI attacks to obtain MI-generated samples ;. We then identified all MI-generated negative

samples, denoted as Neg @y , through MLLM annotation, i.e., SFaanar (Neg a:;) # v (zy).
Let n denote the number of MI-generated negative samples |Neg sr:Z| = mn. We create another

dataset of natural negative samples, Neg x™*t“7! which is free from Type I adversarial attack,

for controlled experiments. We do so by randomly selecting » FFHQ images (no class overlapping
with FaceScrub), and intentionally mis-label these FFHQ images with randomly selected FaceScrub
identities, obtaining n Neg a:;“‘t"“” (famrprae (Neg mZ“t“ml) # furooav(xy)). Importantly,

natural
Y

from Type I adversarial attack. Neg «

unlike Neg ;c; these Neg x are randomly selected from FFHQ and therefore they are free

natural

Y is our controlled dataset.

We pass Neg ; and Neg w;’at“"al into E, and count the number of false positive, i.e., Neg </

Neg w;‘at’“’“l being mis-classified into y. The false positive rate of Neg «7 and Neg wzat“r“l
are compared in Tab. E} MI-generated negatives Neg :c;, with Type I adversarial feature learned

during MI, have a high FP rate, whereas natural negatives Neg 2t*%"!_ which are free from Type

I adversarial feature, have a low FP rate. For example, in Setup 1, FP rates of Neg a:Z is 90.09%

while FP rates of Neg azzat“m’ is 0.94%. This experiment further demonstrates the effect of Type I
Adversarial features in MI evaluation resulting in a significant number of false positives.

5 CONCLUSION

This work identifies a critical issue in the standard evaluation framework for Model Inversion attacks:
the inflation of attack success due to Type I adversarial examples that do not capture true visual
identity. To address this, we propose a reliable MLLM-based MI evaluation framework that minimize
the impact of Type I adversarial transferability. Our extensive empirical analysis across 27 MI attack
setups demonstrates that false positive rates under the standard evaluation framework can reach up to
99%, severely overstating actual privacy leakage. With our proposed evaluation framework, we offer
a more accurate and robust way to measure MI attack success, setting a new standard for evaluating
privacy risks in machine learning systems. Limitation and Ethical statement are included in App
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we will make our code and datasets publicly available
upon publication. The details of our model architecture, experimental setup, and hyperparameters
are provided in the main paper and further elaborated in the appendix. This approach allows other
researchers to replicate our experiments and build upon our findings.
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A ADDITIONAL RESULTS

A.1 ADDITIONAL RESULTS ON DESIGNING AND IMPLEMENTING F LM

A.1.1 Fpnrrra ALIGNS WELL WITH HUMAN EVALUATION

In Farrrna, we employ Gemini to assess the success of MI attacks given a query. In the main
paper, we demonstrate that Gemini is effective in recognizing samples from the private dataset. Such
experiment is conducted with natural images (i.e., training set of Facescrub). In this Supp, we further
demonstrate this with MI reconstructed images.

Setup. To establish positive and negative pairs for
MI reconstructed images, we leverage human annota-
tion for them. Since human annotation is costly and
time-consuming, we sample 30 images per attack setup
across 10 setups spanning 5 different MI attack meth-
ods. This results in a total of 300 images. Each image is
independently evaluated by four human participants. To
mitigate the subjectivity of human evaluation, we retain
only the images with high inter-annotator agreement,
defined as at least 3 out of 4 consistent annotations.
The final label for each retained image is the majority
vote among the consistent annotations. After filter-
ing, our human-annotated dataset includes 215 images,
which we treat as ground truth to assess the reliability
of Fumrim.

Results. The results are presented in Tab. We
observe consistently high “Yes” rates for positive pairs
and high “No” rates for negative pairs across datasets.
This indicates that Gemini is effective at recognizing
samples from the private dataset in both natural and

Table S.1: We conduct an experiment to
demonstrate Gemini’s effectiveness in rec-
ognizing samples from the private dataset.
This results establish that Gemini can
serve as a reliable evaluator in MI at-
tack setups. We collect samples for these
data from a comprehensive set of MI
setups spanning S different MI attacks:
PPA (Struppek et al., [2022), IFGMI (Qiu
et al) 2024), LOMMA (Nguyen et al.
2023a), KEDMI (Chen et al., [2021)), and
PLGMI (Yuan et al [2023), 3 Dpyup, 2
Dpriv, and 8 T'. The details of annotation
can be found in Sec.[AT1l

“Yes” Rate “No” Rate
Positive Pair 95.16% 4.84%
Negative Pair ~ 22.88% 77.12%

MIl-reconstructed images. These results further demonstrate that Gemini serves as a reliable evaluator

for our MI setups.

A.1.2 CHATGPT-5 REFUSES TO MI QUERIES

Despite ChatGPT-5 is a powerful closed-source model, it refuses to assess MI queries with high
“Refuse” rates. Some examples are provided in Fig.

A.1.3 Fprrrras IS ROBUST TO MI EVALUATION ACROSS DATASETS

The results in Tab. [S3] show that
FymrLam is robust to MI evaluation
across commonly used dataset in MI re-
search including Facescrub and CelebA

Table S.2: We conduct an experiment to demonstrate
Gemini’s effectiveness in recognizing samples from the
private dataset. This results establish that Gemini can
serve as a reliable evaluator in MI attack setups.

A.14 Farpong IS ROBUST Dataset ““Yes” rate (%) ‘“No” rate (%)
TO MI EVALUATION ACROSS PROMPTS Positive  CelebA 94.88 5.12
In this section, we provide an analysis of ~ P#TS FaceScrub 93.84 316
the variance in our proposed framework
with respect to: (1) the choice of refer- Negative CelebA 8.25 91.75
ence images, and (2) different questions, pairs

FaceScrub 4.41 95.59

as shown in Fig.[S.2] For different ques-
tions, We run our evaluation framework
three times with three different questions: “Does Image A depict the same individual as the images in
Set B?”, “Does Image A show the same person as those in Set B?”, “Is the person in Image A the
same as the one(s) shown in Set B?”. For different choices of reference images, we run our evaluation
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Image A

Set (-)f Images B
Does Image A depict the same individual as the images in Set B?

ChatGPT-5’s response

Sorry, | can’t help with
that.

Image A

Set of Images B
Does Image A depict the same individual as the images in Set B?

ChatGPT-5’s response

Sorry, | can’t help with
face recognition or
confirming whether
images show the same
person.

=

Ir;wage A

Set of Images B
Does Image A depict the same individual as the images in Set B?

ChatGPT-5’s response

Sorry, | can’t help with
that request. | can
describe non-identifying
features or discuss
general face-matching...

Figure S.1: Examples of ChatGPT-5 refusing to evaluate MI-related queries

framework three times, each with a different random selection of reference images. we show that our

Fnrr o is robust to MI evaluation across prompts.

A.2 EVALUATION RESULTS ON MI DEFENSES

Our main focus in this work is MI attacks,
where we highlight that the previously re-

Table S.3: Fasrr s 1s robust to MI evaluation across

ported success rates using the Feoq - are prompts

problematic. In fact, the threat of MI Dataset  ““Yes” rate (%) ‘No” rate (%)
attacks has been overestimated and the

amount of leaked information is consider-  Positive ~ CelebA 94.88 5.12

ably less than previously assumed. As re-  pairs

cent MI defenses also use Fgyrr to cOM- FaceScrub 93.84 3.16
pute MI success rates, we aim to assess Negative CelebA 8.25 91.75

the effectiveness of these defenses using airs

our MLLM-annotated dataset. p FaceScrub 4.41 95.59

In this section, we focus on high-

resolution setups with PPA (Strupp I . Specifically, we include the latest SOTA MI
defenses, such as RoLSS (Koh et al.,[2024), TL (Ho et al.,[2024)), LS (Struppek et al.| 2024d), and
TTS 2024). The MI setups strictly follow the configurations in these MI defense studies.
The results can be found in Tab.

In general, similar to our observations on MI attacks in the main manuscript, F ¢, may inaccurately
assess the effectiveness of SOTA MI defenses. For example, we observe a mismatch between AttAcc
comparisons via Foqrr and AttAcc measured by Fasrpas. For example, AttAcc via Foyrr
suggests that TL outperforms RoLSS and TTS 2024). However, AttAcc
via Farr v indicates that RoLSS and TTS are more effective defenses. In what follows, we further
discuss these results.

These MI defenses result in a reduction in FP rates due to the degradation of the transferability of
adversarial characteristics from 7" to E. Specifically, under TL defense [2024), only the later
layers of T are fine-tuned on Dp,4,, While earlier layers are frozen from the pre-trained backbone.
Hence, later layers of T" capture Dy, features, while earlier layers of T capture Dpretrain features.
In contrast, E captures Dp,.4,, features across all layers since all layers of E are fine-tuned on Dy
This mismatch in feature representations between T and E under TL is likely to reduce adversarial
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Table S.4: Our investigation on the effectiveness of MI defenses using our MLLM-annotated
dataset of MI attack samples. We present the results of the latest MI defenses including RoLSS
(Koh et al.| [2024), TL (Ho et al., [2024), LS (Struppek et al., [2024a), and TTS (Koh et al., [2024).
We observe a mismatch between AttAcc comparisons via F g, and actual AttAcc measured by
Fnrron- Overall, consistent with our findings on MI attacks, this suggests that F - may have
issues in evaluating MI defenses.

,’F T urr
T Model Acc MELM ¢
AttAcc E AttAcc FPrate FNrate TP rate TN rate
ResNet101 94.86% 28.68% 84.69% 82.71% 10.36% 89.64% 17.29%
ResNet101-RoLSS  92.98% 19.46% 4347% 40.70% 45.09% 5491% 59.30%

ResNet101-TL 92.51%  25.09% InceptionNetV3 34.17% 31.27% 57.14% 42.86% 68.73%

ResNet101-TTS 94.16%  18.44% 42.52% 39.39% 43.61% 56.39% 60.61%

ResNet101-LS 92.21% 10.54% 16.56% 14.90% 69.35% 30.65% 85.10%

transferability (Ilyas et al., 2019;|Qin et al., 2022; Ma et al., 2024), thereby reducing FP rates. Under
LS defense (Struppek et all 2024a), negative label smoothing (LS) is employed to improve MI
robustness. LS slightly reduces label dominance and weakens gradient alignment between surrogate
and target models (Zhang et al.,|2024). Negative LS amplifies this effect, further degrading gradient
similarity. Therefore, training 7" with negative LS diminishes gradient alignment with E (trained
on standard labels), reducing adversarial transferability (Zhang et al.| 2024} |Demontis et al.,[2019).
Under RoLSS and TTS defenses (Koh et al., 2024), removing certain skip connections improves
resilience to MI attacks. Skip connections are known to improve adversarial transferability (Wu et al.
2020). By modifying T to remove some skip connections, adversarial examples generated by T'
transfer less effectively to E.

Regarding FN rates, although this is not the main focus of our study, we observe that FN rates tend to
increase under MI defenses compared to MI attacks. FN rates depend on the classification accuracy
and generalization capability of . SOTA MI defenses introduce various strategies (e.g., fixing
earlier layers trained on public data (Ho et al.||2024), perturbing labels (Struppek et al.| 2024a), and
removing skip connections (Koh et al.,[2024)) to encode less information in the predictions of T'.
These approaches may encourage T’ to learn more generalized features. As a result, reconstructed
images based on these generalized features of T may differ more from the seen training data.
However, in the prevalent MI setups, E in F o, 1S often trained with standard training procedures
and architectures. This could limit its generalization capacity, making it less capable of accurately
classifying these reconstructed images via the target models 7" under MI defenses.

A.3 ADDITIONAL RESULTS ON THE EFFECT OF TYPE I ADVERSARIAL ATTACKS IN MI ON
FALSE POSITIVE RATES

In Sec. 4.2 in the main manuscript, we provide an analysis to demonstrate the effect of Type I
adversarial attacks in MI on false positive rates. In this Supp, we provide results on additional setups.
The results are presented in Tab. [S.5] These additional results are consistent with our observation
in the main manuscript demonstrating the effect of Type I Adversarial features in MI evaluation
resulting in a significant number of false positives.

B DETAILED EXPERIMENTAL REPRODUCIBILITY

B.1 DETAILED Fpasrrn SETUP

Our implementation of Fpsr 1 as is illustrated in Fig. @ To evaluate whether a reconstructed image
is a successful or unsuccessful attack, we employ Gemini 2.0 Flash API (see the main manuscript for
our justification for choosing Gemini) for the evaluation.
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Private Training Data MI reconstructed Images

Textual
Prompt

Set of Imags B
Does Image A depict the same individual as the images in Set B?

Textual
Prompt

“No” “No” “Yes”

Textual
Prompt

In;age A Set of Images B i
Does Image A depict the same individual as the images in Set B?

Figure S.2: Our detailed implementation of MLLM-based MI Evaluation Framework F ;1 ns.
For each reconstructed image, we pair with a set of private training data to construct an evaluation
query image. Then, each evaluation query image is passed to Gemini with a textual prompt. The
detailed of textual prompt can be found in Sec.[B.2] The final attack accuracy is computed based on
Gemini’s responses.

Given a reconstructed image (Image A), we construct an evaluation query image by pairing it with a
set of private training images (Set B) that includes the target identity. We then formulate a natural
language textual prompt along with the evaluation query image and pass it to Gemini. The textual
prompts are shown in the table below and are fixed across evaluation queries for a fair comparison.

For each reconstructed image, the model outputs a categorical response (“Yes” or “No”). A “Yes”
answer is interpreted as a successful attack. By evaluating a large number of such queries and
computing the proportion of correct identifications, Fasras provide an automated and faithful
evaluation of MI.

B.2 THE DETAILED PROMPT IN F ..M

The detailed textual prompts in our MI evaluation framework can be found in Tab. [S.6]

B.3 ERROR BAR OF EVALUATION RESULTS WITH FarrL M

As mentioned in the main manuscript, we provide an error bar of evaluation results with Fnsr 1 ns
to further demonstrate the robustness of our proposed MI evaluation framework. The results can be
found in Tab.

B.4 DETAILED MI SETUP

To ensure the reproducibility, we strictly follow previous studies (Zhang et al.| [2020; |Chen et al.|

[2021} [Nguyen et al.,[2023a} [Struppek et all, 2022} [Qiu et al., 2024} [Koh et al. LIQUZZ]; Ho et al.}[2024)
for MI setups.

MI attacks. Our study focuses on SOTA GAN-based MI attack that achieve strong performance in
computer vision domain. These attacks optimize the GAN latent space rather than directly optimize
the image space.
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Table S.5: Our controlled experiment to show the effect of Type I adversarial attacks in MI on
false positive rates. We provide results on this experiment on additional setups in Appx.[B.4]

Attack E Dprinv Dpup T FP rates under E
Resnet101 Neg m; 82.71%
Neg a:;mtural 0.94%
Resnet152 N Negn ft;uml 8059(29(;70
PPA FFHQ eg ’ 9 48;
InceptionV3  Facescrub MaxViT Neg z, 79.48%
Neg w;mturul 0.94%
r 0]
DenseNet121 Negz, l 72.41%
Neg wzatura 0.94%
IFGMI MetFaces  Resnetl8 Neg x;, 72.71%
Neg mzatural 0.94%
PLGMI FFHQ VGG16 Neg z;, 88.49%
Neg mzatural 0.00%
FaceNet64 Neg 93.73%
Neg mLzatural 0.00%
CelebA IR152 Neg z, 86.80%
Neg m;zatural OOO%
VGG16 Neg z;, 90.70%
LOMMA Neg m;latural 0.00%
FaceNet64 Neg z; 69.73%
Neg mzatural 0.00%
FFHQ IR152 Neg z;, 77.85%
Neg x;atural 0.00%
FaceNet112 CelebA VGG16 Neg a;; 61.55%
Neg x;aturul 0.00%
FaceNet64 Neg z, l 78.40%
Neg w;atura 000%
CelebA IR152 Neg z;, 74.55%
Neg wzaturul 0.00%
VGG16 Neg z, 69.80%
KEDMI Neg wzatural 0.00%
r 0y
FaceNet64 Negz, 52.24%
Neg mzatural 0.00%
FFHQ IR152 Neg 51.02%
Neg mzatural 0.00%
Neg z7, 41.33%
VGGI16 y
Neg mnatural 0.00%

K]

KEDMI (Chen et al,[2021) Introduces an MI-specific GAN that incorporates knowledge from the
target classifier. The discriminator performs dual tasks: distinguishing real and fake samples and
predicting class-wise labels.

LOMMA (Nguyen et al.,[2023a) Improves MI attacks using a novel logit loss and model augmentation
to mitigate overfitting.

PLGMI (Yuan et al.,[2023)) Leverages conditional GANSs to isolate class-specific search spaces and
uses Max-Margin Loss to address vanishing gradients in MI optimization.

PPA (Struppek et al., [2022)) Utilizes powerful StyleGAN for high-resolution image MI attacks,
emphasizing a modular design adaptable to different architectures and datasets.

IFGMI (Qiu et al., [2024) Proposes Intermediate Features Generative Model Inversion, extending
optimization from latent codes to intermediate features, enhancing the attack’s expressive capability.
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Table S.6: Detailed textual prompts in our MI evaluation framework Fnsr.ras

Domain Dpriv Textual Prompt
Facescrub You are an expert in face recognition. Taking into account the face aging,
Face Recognition ——————  lighting, different hair styles, wearing and not wearing of eye glasses or
CelebA other accessory, do the task in the image. Only answer yes or no

You are an expert in dog breed recognition. Taking into account the lighting

Dog Recognition  Stanford Dogs and viewpoint, do the task in the image. Only answer yes or no

MI defense. Our study focuses on SOTA MI defenses. Differ from MI attacks, MI defenses aim to
minimize the disclosure of training samples during the MI optimization process.

TL (Ho et al.| 2024) Leverages Transfer Learning to limit sensitive information encoding in earlier
layers, degrading MI attack performance.

LS (Struppek et al.| |2024a) Introduces label smoothing with negative factors to impede class-related
information extraction.

RoLSS (Koh et al.| 2024) Demonstrates that removing skip connections in the last stage significantly
reduces MI attack accuracy, offering a better MI robustness trade-off.

TTS (Koh et al.,|2024)) Buliding on top of RoLSS. Particularly, in the first stage, the model T" with full
skip-connections architecture is trained on private dataset. Then in the stage 2, the skip connection
removed architecture, i.e. RoLSS, is fine-tuned on private dataset. The pre-trained parameters in
Stage 1 serves as initialization for the stage 2, thereby improve the convergence of model in stage 2.

Private training data D,,,;,,. Following previous works (Zhang et al.,{2020; |(Chen et al., 2021
Nguyen et al.| [2023a; Struppek et al., [2022; |Q1u et al.| [2024; Koh et al., [2024; Ho et al., [2024),
we focus on reconstruction of images and use the face recognition as a running example including
FaceScrub (Ng & Winkler, [2014) and CelebA (Liu et al., 2015).

FaceScrub (Ng & Winkler, [2014): FaceScrub provides cropped facial images for 530 identities. The
dataset publicly a total of 37,878 images. After train/test splitting, this resulted in 34,090 training
samples and 3,788 test samples.

CelebA (Liu et al.| [2015): CelebA is a dataset of celebrity facial images available for non-commercial
research. Following previous works (Zhang et al., |2020; |Chen et al., 2021; Nguyen et al., 2023aj;
Struppek et al., 2022 Q1u et al., |2024; Koh et al., [2024; |[Ho et al., [2024), we select the top 1,000
identities with the most samples from 10,177 available identities, resulting in 27,034 training samples
and 3,004 test samples.

Public data for GAN D,,,,;,. Following the data preparation in previous works (Zhang et al.,|{2020;
Chen et al., 2021; Nguyen et al., 2023aj Struppek et al.| |2022; |Qiu et al., 2024} |Koh et al.| [2024;
Ho et al.,[2024), we use Dp,p ensuring that the dataset Dpy4,, and Dpqp With no class intersection.
Dypriv 1s used to train the target classifier T', while Dp,,p is used to train GAN to extract general
features only.

CelebA (Liu et al., [2015): Following previous works (Zhang et al.| [2020; |Chen et al., 2021} Nguyen
et al.l 2023a} [Ho et al.l [2024), we select 30,000 images from identities distinct from the 1,000
identities in Dppiq .

FFHQ (Karras et al.,|2019): This dataset contains 70,000 high-quality human face images sourced
from Flickr, offering significant diversity in age, ethnicity, and backgrounds.

MetFaces (Karras et al.||2020). This dataset includes 1,336 high-quality artistic renderings of human
faces, covering various art styles. The images exhibit significant diversity and uniqueness.

Target Classifier T'. Following previous works (Zhang et al.| 2020; [Chen et al., [2021} Nguyen
et al., 2023a; [Struppek et al., [2022; |Q1u et al., [2024; Koh et al.,[2024; Ho et al.,2024), we include
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Table S.7: Our investigation on MI evaluation framework using our comprehensive dataset of
MI attack samples. We run the evaluations with our Fpsr 1 s threes times and report mean =+ std.

Fmrrm Feourr
MI Attack Dpuo  Dpus T
AttAce E AttAcc  FP rate FN rate TP rate TN rate
ResNet18 28.2240.30% 91.39% 90.0340.09% 4.824+0.51% 94.82+0.32% 9.9740.09%
ResNet101 28.48+0.36% 84.69% 82.7940.09% 10.52+0.16% 89.4840.16% 17.21£0.09%

PPA  FaceScrub FFHQ  pooNet152 30.20-£0.099% NCePHONNEtV3 g6 ¢40r 85 1340.14% 9.2140.34% 90.79-£0.34% 14.870.14%

DenseNet12127.4440.27% 72.41%70.1140.05% 21.5240.07% 78.4840.07% 29.89-0.05%
MaxViT ~ 30.3040.13% 79.48% 77.3240.16% 15.54£0.33% 84.464-0.34% 22.68-£0.14%
FFHQ ResNetl8 34.144:0.29% 95.85% 94.6140.03% 1.7540.07% 98.254-0.07% 5.394-0.03%
IFGMI  FaceScrub ——— InceptionNetV3
Metfaces ResNetl8  1.5740.07% 72.50% 72.2440.05% 11.3943.74% 88.6143.74% 27.76-£0.05%
CelebA  VGGI6  73.5140.75% 98.73% 99.3340.14% 1.4840.05% 98.524-0.05% 0.674-0.14%
PLGMI CelebA ——— FaceNetl12
FFHQ  VGGI6 48.5940.57% 88.67% 88.5140.07% 11.16-0.06% 88.84-£0.06% 11.470.07%
IRIS2  79.0240.30% 92.00% 92.4741.22% 8.1340.33% 91.8740.33% 7.5341.22%
CelebA  pyceNet64 79.7640.27% 90.40% 87.7120.80% 8.9240.20% 91.08-0.20% 12.29-£0.08%
VGG16  80.7340.77% 90.13% 90.2040.95% 9.9140.22% 90.094-0.21% 9.714-0.95%
LOMMA CelebA ——— FaceNetl12
IRI52  45.60-0.58% 77.73% 77.3740.45% 21.8440.52% 78.164-0.52% 22.63-£0.45%
FFHQ  EaceNet6d 45.4940.74% 72.13% 69.9240.18% 25.2140.17% 74.7940.17% 30.0840.18%
VGGI16  56.0941.20% 63.07% 61.3340.31% 35.5840.18% 64.424-0.18% 38.67-0.31%
IRIS2  67.24-0.83% 79.27% 74.9740.37% 18.6440.25% 81.364-0.25% 24.70-£0.23%
CelebA gy ceNet64 66.1540.73% 80.53% 77.2741.04% 17.81-£0.49% 82.19-£0.49% 30.15+1.56%
VGGI16  69.3841.04% 73.13% 69.851.56% 25.44-0.62% 74.564-0.62% 30.154£1.56%
KEDMI CelebA ——— FaceNet112
IRIS2  36.96-0.62% 52.20% 50.2440.75% 44.4241.34% 55.5841.34% 49.76-£0.75%
FFHQ  EaceNet6d 35.964-0.14% 54.60% 52.0820.62% 40.9141.13% 59.091.13% 47.92-£0.62%
VGGI16  38.8540.80% 42.47% 41.2440.36% 55.5040.58% 44.404-0.58% 58.76-£0.36%

a wide ranges of architectures as 7" in our study including ResNet18/101/152 (He et al., 2016),
DenseNet121(Huang et al.,|2017), MaxViT (Tu et al.|[2022), FaceNet (Chen et al.,[2021)), and VGG16
(He et al.l 2016). To ensure the reproducibility, we utilize the checkpoints of these target classifier in
the previous works.
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Figure S.3: Additional visualization of false positives. These MI false positives do not capture visual
identity features of the target individual in the private training data, but they are still deemed successful
attacks according to Foqyr» With a high confidence (indicated in red text). Here, T'=MaxViT

[Tu et a! |, 2022), Dpriv=FaceScrub (Ng & WlnElef], 2014), Dpup=FFHQ (Karras et al. |, 2019),
FE=InceptioNetV3 under PPA attack (Struppek et al., 2022).

Figure S.4: Additional visualization of false positives. These MI false positives do not capture visual
identity features of the target individual in the private training data, but they are still deemed successful
attacks according to F ¢, With a high confidence (indicated in red text). Here, T'=DenseNet121

(Huang et al}[2017), Dpy.s»=FaceScrub (Ng & Winkler, 2014), Dp,,»=FFHQ (Karras et al., 2019),

E=InceptioNetV3 under PPA attack (Struppek et al., 2022).

B.5 COMPUTING RESOURCES

We conducted all experiments on NVIDIA RTX A5000 GPUs running Ubuntu 20.04.2 LTS, with
AMD Ryzen Threadripper PRO 5975WX 32-Core processors. The environment setup includes CUDA
12.2, Python 3.8.18, and PyTorch 1.12.0 with Torchvision 0.14.1. For high-resolution tasks,
letall 2022} [Qiu et all,2024), we use model architectures and pre-trained ImageNet backbone weights

22



Under review as a conference paper at ICLR 2026

Figure S.5: Additional visualization of false positives. These MI false positives do not capture visual
identity features of the target individual in the private training data, but they are still deemed successful
attacks according to Fcoq.rr With a high confidence (indicated in red text). Here, T'=ResNet101

He et a!.[, 2016), Dprin=FaceScrub ( Ng & W1nEIer|, 2014), Dpup=FFHQ (Karras et ai.|, 2019),

E=InceptioNetV3 under PPA attack (Struppek et al.[[2022).

Figure S.6: Additional visualization of false positives. These MI false positives do not capture visual
identity features of the target individual in the private training data, but they are still deemed successful
attacks according to Fcrr With a high confidence (indicated in red text). Here, T'=ResNet152

He et all 2016), Dpi,=FaceScrub (Ng & Winkler, 2014), Dp.,»=FFHQ (Karras et al. 2019),

FE=InceptioNetV3 under PPA attack (Struppek et al., 2022).

from Torchvision. For the low-resolution setup, following (Chen et al., 2021 [Nguyen et al.,[2023a;
[2024), we employed VGG architecture with pre-trained ImageNet weights from Torchvision,
while we utilize IR152 and FaceNet architectures with pre-trained backbones from face.evoLVfﬂ

Uhttps://github.com/ZhaoJ9014/face.evoLVe
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Figure S.7: Additional visualization of false positives. These MI false positives do not capture visual
identity features of the target individual in the private training data, but they are still deemed successful
attacks according to F e With a high confidence (indicated in red text). Here, T'=ResNet18

He et a!.[, 2016), Dprin=FaceScrub (Ng & W1nE]er|, 2014), Dpup=FFHQ (Karras et ai.|, 2019),
E=InceptioNetV3 under IFGMI attack (Qiu et al., 2024).

We employ the Gemini 2.0 Flash API in Fy1m and emphasize that our implementation is both
reliable and cost efficient. Particularly, in our implementation, each evaluation query costs $0.0002886
(see the official Gemini API documentatiorﬂ for cost estimation). This cost is reasonable for large-
scale evaluations. For example, in our study involving larger-scale 26 experimental setups and a
total of 71,880 Ml-reconstructed images, the overall cost is around $20.75, making our evaluation
framework scalable and accessible for future research.

C ADDITIONAL VISUALIZATION OF FALSE POSITIVES

In the main paper, we provide some visualizations of MI false positives. In this Supp., we provide
more extensive visualizations of MI false positives in Fig.[S:3][S:4][S-3} [S-6][S-7]

These false positive MI do not capture the visual identity features of the target individual in private
training data, but are still considered successful attacks according to F ¢, With high confidence.

D LIMITATION

While this study provides valuable insights into the limitations of the MI evaluation framework and
propose a more reliable automated MI evaluation framework for future MI study, it is important
to acknowledge certain limitations. One such limitation is the focus on specific architectures and

datasets. While we strictly follow previous works (Zhang et all 2020; |Chen et al. Nguyen
et al} 20234} [Struppek et al}, 2022} [Qiu et al., 2024} [Koh et al.| [2024; Ho et al.,[2024) to includes 26

MI setups, these setups may not include the latest architectures or dataset that are not considered in
prevalent MI setups. Future research could expand upon our findings by exploring a wider range of
model architectures and datasets. This would further shed the light of MI evaluation and contribute to
the development of better MI evaluation frameworks.

https://ai.google.dev/gemini-api/docs
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E ETHICAL STATEMENT

This study examines the limitations of widely used evaluation frameworks for Model Inversion
(MI) attacks, which hold critical implications for privacy and data security. Our analysis reveals an
overestimation of MI attack success rates, underscoring the need for accurate and reliable evaluation
metrics to avoid inflated perceptions of privacy risks. To support the research community, we propose
a more reliable and cost-efficient MI evaluation framework based on MLLM. Furthermore, we release
the code and a large-scale collection of MI reconstructed images upon publication, advocating for
their ethical use to advance privacy protection.

F LLM USAGE

We used a large language model to help polish the grammar, wording, and other minor text issues
in this manuscript. The authors are fully responsible for the ideas, analysis and conclusions in this
submission.
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