

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GEOMETRY-AWARE METRIC FOR DATASET DIVERSITY VIA PERSISTENCE LANDSCAPES

Anonymous authors

Paper under double-blind review

ABSTRACT

Diversity can be broadly defined as the presence of meaningful variation across elements, which may be viewed from multiple perspectives, including statistical variation and geometric structural richness in the dataset. Existing diversity metrics, such as feature-space dispersion and metric-space magnitude, primarily capture distributional variation or entropy, while largely neglecting the geometric structure of datasets. To address this gap, we introduce a framework based on topological data analysis (TDA) and persistence landscapes (PLs) to extract and quantify geometric features from data. This approach provides a theoretically grounded means of measuring diversity beyond entropy, capturing the rich geometric and structural properties of datasets. Through extensive experiments across diverse modalities, we demonstrate that our proposed PLs-based metric (PLDiv) is powerful, flexible, and interpretable, directly linking data diversity to its underlying geometry and offering new insights for dataset construction, augmentation, and evaluation.

1 INTRODUCTION

Life itself depends on diversity, as an ecosystem may collapse when a few species vanish, yet a single new species may reshape balance by either enriching resilience or triggering instability. In machine learning and artificial intelligence, data diversity plays the same essential role. Studying diversity has long been a central concern at nearly every stage of ML/AI: from data collection to ensure representational balance, to data and model evaluation for fairness and robustness (Rolf et al., 2021; Clemmensen & Kjærsgaard, 2022; Kim et al., 2025), to model training where variation prevents overfitting, and to model generalization, where data diversity reduces the gap between training distributions and real-world deployment (Liu & Zeldes, 2023; Ortega et al., 2022; Yu et al., 2022; Bian & Chen, 2021; Wang et al., 2020). It is well known that exposure to a wide range of data structures, styles, and semantic patterns supports the learning of more abstract, transferable representations, allowing for more capable and resilient models (Rebuffi et al., 2021; Shorten & Khoshgoftaar, 2019; Zhang, 2017). Recent work further demonstrates that diversity in training data influences the weight matrices of neural networks, directly affecting both in-distribution and out-of-distribution performance (Ba et al., 2024).

Yet beyond performance, a newer—and arguably more urgent—motivation for us to study diversity is the need to confront a growing risk. Today’s generative models are trained on overlapping, internet-scale corpora, then reused and adapted across countless applications. As these models are increasingly integrated into real-world writing, content creation, visual and audio materials, and codes, their outputs feed back into the very data streams that will train the next generation of models. Recent studies show that alignment-tuned models such as InstructGPT already exhibit significant reductions in lexical and conceptual diversity (Padmakumar & He, 2023). Unlike traditional data limitations, this homogenization is self-reinforcing: models trained on uniform outputs further reinforce uniformity in subsequent models (Bertrand et al., 2023; Alemohammad et al., 2024). The danger is not limited to text generation, as the same internet-scale sources, standardized pipelines, and optimization objectives underpin generative models across all data modalities. Combined with algorithmic feedback loops, platform-driven content shaping, and widespread reuse of foundation models, these forces may steadily contract the expressiveness and conceptual space of generative AI at scale.

At this stage, diversity is no longer just a desirable property; it has become a boundary condition for innovation, adaptability, and human-centered AI design. Meeting this challenge requires us to understand what *real* diversity is and be able to measure it. Reliable measurement allows us not only to detect the narrowing trajectories of generative models, but also to design interventions that can preserve and promote diversity. This understanding, in turn, can guide future efforts toward diversity-aware data collection, synthetic data generation, data augmentation strategies, and dataset–task alignment.

To quantify diversity, metrics such as the Vendi Score (Dan Friedman & Dieng, 2023) have been introduced, drawing inspiration from “community diversity” in ecology and biology (Daly et al., 2018; Leinster, 2021). Recently, measures based on magnitude (Limbeck et al., 2024) and probability-distribution views of similarity matrices (Zhu et al., 2025) have also been proposed. These methods are valuable, but none of them genuinely considers data from a geometric perspective, even when they claim to capture some geometric information.

We envision a deeper link between the geometric structure of data and its diversity. For instance, as a fundamental geometric property, curvature is inherently linked to diversity (Limbeck et al., 2024): positive curvature, as on a sphere, compresses points and restricts possible configurations, while negative curvature, as in hyperbolic geometry, spreads space out faster, enabling richer variation. Topological data analysis (TDA) provides tools to capture the shape of data, encoding its structural geometry. By recognizing the connection between the persistent homology (PH) merging process (Edelsbrunner et al., 2002; 2008) and agglomerative hierarchical clustering (Murtagh & Contreras, 2012), we employ a vectorized representation of PH called the persistence landscapes (PLs) to estimate diversity. We compute the cumulative integral of their tent functions, which is referred to as persistence landscapes-based diversity (PLDiv), as shown in Fig. 1. PLDiv has a clear intuition, strong theoretical support, and interpretable results.

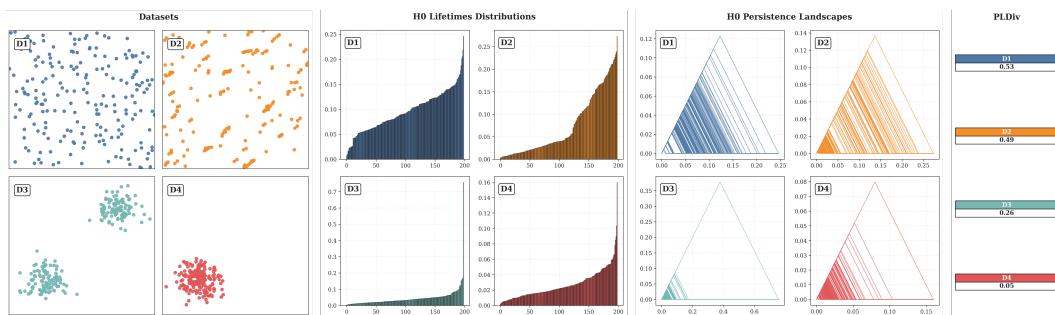


Figure 1: Illustration of PLDiv on four synthetic datasets. D1: uniformly scattered points; D2: less evenly spread distribution; D3: two separated clusters; D4: a single compact cluster with minimal diversity. We extract H_0 features via persistent homology, where lifetimes measure how long clusters persist before merging with their closest neighbors. Persistence landscapes capture these patterns, and PLDiv, defined as the sum of their integrals, reflects both scale and persistence, aligning with the datasets’ decreasing diversity.

Our contributions are summarized as follows:

- We propose a persistence landscape-based diversity measure, PLDiv. The core idea is that persistence homology encodes geometric information; thus, PLDiv highlights the value of topological features that play a key role in capturing meaningful structural patterns.
- We establish the theoretical foundations of PLDiv by proving that it satisfies multiple diversity axioms postulated by Leinster & Cobbold (2012), thereby ensuring its interpretability and principled behavior.
- Through comprehensive experiments across various tasks and data modalities, we demonstrate that PLDiv captures geometrical and structural diversity more effectively than conventional entropy-based approaches and offers practical advantages in robustness and interpretability.

108 To the best of our knowledge, we are the first to apply TDA concepts to measuring data diversity.
 109 Our study provides a novel approach to data diversity measurement and offers both the theoretical
 110 foundation and interpretability for a data geometry-aware diversity measure.
 111
 112

113 2 RELATED WORK

114 2.1 DIVERSITY MEASUREMENT

118 Several reference-based metrics compare generated data with human or gold-standard corpora. The
 119 Fréchet Inception Distance (FID) (Heusel et al., 2017) and related Inception Score were among the
 120 first to use pretrained embeddings to measure alignment between real and synthetic data distribu-
 121 tions. More recently, MAUVE (Pillutla et al., 2021) quantified distributional gaps between model
 122 and human text, while precision–recall metrics (Kynkäanniemi et al., 2019; Bronnec et al., 2024)
 123 provided a decomposition into fidelity (precision) and diversity (recall). Extensions such as density
 124 and coverage metrics (Naeem et al., 2020) improved robustness against outliers and unstable density
 125 estimates. Nevertheless, these methods are fundamentally tied to reference datasets, often entangle
 126 fidelity with diversity, and remain sensitive to embedding choices or manifold approximations.
 127

128 A different line of work has explored representation-level measures that aim to be reference-free.
 129 Early proposals such as diversity, density, and homogeneity Lai et al. (2020) assessed dispersion
 130 in embedding spaces, but they remained limited to simple distributional statistics. More principled
 131 approaches emerged with entropy- or kernel-based methods: the Vendi Score (Dan Friedman &
 132 Dieng, 2023) measures diversity as the exponential of Shannon entropy derived from the similarity
 133 spectrum, while Renyi Kernel Entropy (RKE) and its variant RRKE (Jalali et al., 2023) extend this
 134 perspective using quantum information theory. However, such approaches often require expensive
 135 eigenvalue or singular-value decompositions, limiting their scalability to large datasets. Building on
 136 efficiency and separability, DCScore (Zhu et al., 2025) reframes diversity measurement as a clas-
 137 sification problem, avoiding eigenvalue computations and yielding faster, more scalable estimates.
 138 Complementary to this, magnitude-based methods (Limbeck et al., 2024) quantify effective dataset
 139 size across scales, offering metrics such as MAGAREA (reference-free) and MAGDIFF (reference-
 140 based). While these methods provide multi-scale summaries, they depend on tuning scale parameters
 141 and still abstract away the geometric or topological structures that can differentiate datasets with the
 142 same dispersion.
 143

144 2.2 PERSISTENT HOMOLOGY

145 Persistent Homology (PH) (Edelsbrunner et al., 2002; 2008) is a central tool in TDA for uncovering
 146 the underlying shape of data, typically represented as point clouds. By constructing nested simpli-
 147 cial complexes across scales and applying homology, PH tracks the birth and death of topological
 148 features such as connected components, loops, and voids. The result is a multi-scale summary, often
 149 visualized as barcodes or persistence diagrams, which distinguishes significant long-lived features
 150 from noise and is provably stable to perturbations.
 151

152 Building on these foundations, subsequent efforts have explored scalar invariants and geometric
 153 inference from persistence. Govc & Hepworth (2021) introduced persistent magnitude, a signed,
 154 exponentially weighted sum over barcode intervals that refines classical magnitude theory. This ap-
 155 proach provides interpretable scalar summaries encoding geometric complexity, including curvature,
 156 but it compresses the full topological signature into a single number, limiting its ability to capture
 157 heterogeneity or higher-order organization. In parallel, Bubenik et al. (2020) demonstrated that per-
 158 sistence can recover curvature information from sampled manifolds by combining diagrams with
 159 persistence landscapes, showing that even short-lived features carry meaningful geometric signals.
 160 While powerful, this line of work primarily targets smooth continuous geometry rather than irregu-
 161 lar or combinatorial variation common in real-world datasets. Together, these directions underscore
 162 the expressive capacity of PH, yet also highlight an open gap: existing uses either oversimplify per-
 163 sistence or focus narrowly on geometric inference, leaving the systematic role of PH in quantifying
 164 dataset diversity underexplored.
 165

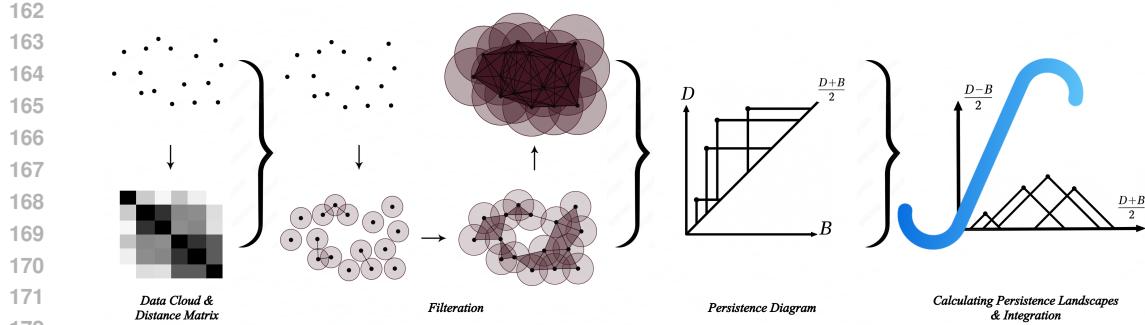


Figure 2: Illustration of the PLDiv pipeline. Using a data cloud or its distance matrix, we build a filtration of simplicial complexes and track the birth and death of H_0 components by persistent homology. The resulting persistence diagram is then used to calculate persistence landscapes. Lastly, PLDiv is obtained by integrating these landscapes and provides a metric for the dataset diversity.

3 PRELIMINARIES

3.1 PERSISTENCE DIAGRAMS

PH provides a multiscale description of the topological structure of data. Starting from a point cloud $\mathcal{X} = \{x_1, \dots, x_n\}$, it builds a nested sequence of simplicial complexes (a filtration), such as the Vietoris–Rips filtration. This filtration can be understood as growing balls (or “bubbles”) of radius r around each data point and increasing r gradually. As the radius grows, the bubbles begin to overlap, creating higher-dimensional simplices (see Fig. 2). In this process, new topological features such as connected components, loops, and voids appear and eventually vanish when the bubbles merge or fill in. This viewpoint highlights that persistent homology captures how the topology of the data evolves across scales of the underlying radius parameter.

Formally, each topological feature is associated with a birth time b_i , the smallest radius at which it appears, and a death time d_i , the radius at which it disappears (for instance, when two connected components merge or when a loop becomes filled). The difference $\ell_i = d_i - b_i$ is called the *lifetime* (or persistence) of the feature and quantifies its robustness across scales.

The output of persistent homology is summarized in a *persistence diagram*, defined as the multiset

$$\mathcal{D} = \{(b_i, d_i)\}_{i=1}^m, \quad b_i < d_i,$$

where each point (b_i, d_i) represents the birth and death scales of a feature. The diagram is typically plotted in the plane \mathbb{R}^2 , with each feature as a point above the diagonal $b = d$. Features with long lifetimes (points far from the diagonal) are often interpreted as meaningful structural signals in the data, while short-lived features (points near the diagonal) are commonly attributed to noise. Persistence diagrams thus provide a compact and interpretable summary of the multiscale topological properties of the dataset.

3.2 PERSISTENCE LANDSCAPES

Although persistence diagrams provide a geometric summary of topological features, they are multisets, represented by points on a plane, which makes it challenging to apply classical statistical and machine learning techniques directly. To address this problem, Bubenik et al. (2015) introduced *persistence landscapes*, a functional summary of persistent homology that embeds the information of a persistence diagram into a Banach space, enabling the use of standard statistical tools.

Given a persistence diagram $\mathcal{D} = \{(b_i, d_i)\}_{i=1}^m$, we first associate each birth-death pair (b_i, d_i) with a piecewise linear “tent” function.

$$\lambda_{(b,d)}(t) = \begin{cases} t - b, & b \leq t \leq \frac{b+d}{2}, \\ d - t, & \frac{b+d}{2} < t \leq d, \\ 0, & \text{otherwise.} \end{cases}$$

216 This function attains its maximum value, $\frac{d_i - b_i}{2}$, at the midpoint of the interval. The persistence
 217 landscape is then defined as the sequence of functions
 218

$$219 \quad \lambda_k(t) = k\text{-th largest value among } \{\lambda_{(b_i, d_i)}(t)\}_{i=1}^m, \quad k = 1, 2, \dots$$

220 for each $t \in \mathbb{R}$. Thus, λ_1 records the largest “tent” value at each t , λ_2 records the second largest,
 221 and so forth. Collectively, the functions $\{\lambda_k\}_{k \geq 1}$ constitute the persistence landscape.
 222

223 Persistence landscapes inherit stability from persistence diagrams and have the advantage of lying
 224 in the L^p function space. The persistence landscape is a vectorized form of a persistence diagram,
 225 equivalent to a 45° rotation that preserves all information, with $X = (d + b)/2$ and $Y = (d - b)/2$
 226 (see Fig. 2).
 227

228 4 METHODOLOGY

229 4.1 DIVERSITY MEASURE VIA PERSISTENCE LANDSCAPES

231 **Definition 4.1.** Let $\mathcal{X} = \{x_1, \dots, x_n\}$ be a dataset and let $\Lambda(\mathcal{X}) = \{\lambda_k\}_{k \geq 1}$ denote its persistence
 232 landscape obtained from persistent homology. The *persistence landscapes based diversity score*,
 233 $\text{PLDiv}(\mathcal{X})$, is defined as
 234

$$235 \quad \text{PLDiv}(\mathcal{X}) = \sum_{k=1}^{\infty} \int_{\mathbb{R}} \lambda_k(t) dt. \quad (1)$$

237 The summation is typically finite, as only a finite number of λ_k terms are actually non-zero.
 238 $\text{PLDiv}(\mathcal{X})$ measures the cumulative “area under the triangles” of the persistence landscape and
 239 quantifies the richness of topological features across all scales.
 240

Proposition 4.2. A closed form of PLDiv can be derived. Let $\mathcal{D} = \{(b_i, d_i)\}_{i=1}^m$ be the set of
 241 birth–death pairs produced by persistence homology, then
 242

$$243 \quad \text{PLDiv}(\mathcal{X}) = \sum_{k=1}^{\infty} \int_{\mathbb{R}} \lambda_k(t) dt = \sum_{i=1}^m \int_{\mathbb{R}} \lambda_{(b_i, d_i)}(t) dt = \frac{1}{4} \sum_{i=1}^m (d_i - b_i)^2.$$

246 *Proof.* Each tent function with its supports on the interval $[b_i, d_i]$ is a symmetric isosceles triangle
 247 of base length $d_i - b_i$ and height $(d_i - b_i)/2$, hence its area is
 248

$$249 \quad \int_{\mathbb{R}} \lambda_{(b_i, d_i)}(t) dt = \frac{1}{2} \cdot (d_i - b_i) \cdot \frac{d_i - b_i}{2} = \frac{(d_i - b_i)^2}{4}.$$

251 Summing them yields the closed form above. We provide a detailed proof in Appendix C.
 252

253 **Remark 4.3.** The area under λ_k measures both the *scale* and the *persistence* of topological features,
 254 representing how long and how strongly features persist across scales. Summing across k aggregates
 255 contributions across all topological structures, capturing both *local fluctuations* (short lifetimes) and
 256 *global connectivity* (long lifetimes).
 257

258 **Remark 4.4.** A large $\text{PLDiv}(\mathcal{X})$ indicates that features such as clusters or loops are well-separated
 259 and persist across scales, reflecting high structural diversity. Conversely, a smaller value corresponds
 260 to a dataset where data points collapse quickly into clusters, eliminating persistent features. In par-
 261 ticular, by Proposition 4.2, $\text{PLDiv}(\mathcal{X})$ coincides with the second moment of lifetimes of topological
 262 features, up to scaling.
 263

264 **Remark 4.5.** Since the persistence landscape lies in $L^p(\mathbb{R})$, the integral $\int_{\mathbb{R}} \lambda_k(t) dt$ can be inter-
 265 preted as the “expected persistence” of the k -th most prominent feature across random scales t .
 266 From the probabilistic perspective, $\text{PLDiv}(\mathcal{X})$ represents the total expected persistence across all
 267 topological features, analogous to computing an energy functional over the data manifold.
 268

269 $\text{PLDiv}(\mathcal{X})$ should be understood as a holistic measure of dataset complexity. Unlike conventional
 270 approaches in topological data analysis that treat short-lived features as noise, this measure incor-
 271 porates the full spectrum of topological features, emphasizing that both long- and short-lived structures
 272 contribute to the geometry of the data (follows the insights in Turkes et al. (2022)). In this sense,
 273 $\text{PLDiv}(\mathcal{X})$ provides a unified framework that balances mathematical rigor with interpretability.
 274

270 In practice, there are many choices for the filtration and the degree of persistent homology. For most
 271 tasks, 0-dimensional persistent homology is sufficient, because it efficiently captures the connectivity
 272 structure of the dataset while keeping computational costs low. Therefore, our metric (PLDiv) is
 273 computed based on H_0 features in the following experiments.
 274

275 4.2 AXIOMATIC PROPERTIES OF DIVERSITY

277 Among core diversity axiomatic properties provided by Leinster & Cobbold (2012) and Leinster
 278 (2021), our proposed diversity measure, PLDiv, satisfies four fundamental axioms: effective size,
 279 monotonicity, twin property, and symmetry. These axioms provide a foundation for reasonable and
 280 robust diversity evaluation. A description of these axioms is provided below, while the formal proofs
 281 of these properties on PLDiv are presented in Appendix C.

- 282 • **Effective size.** For a fixed number of points, $\text{PLDiv}(\mathcal{X})$ increases when data points are
 283 well-separated and decreases as they cluster, reaching a maximum when all points are dis-
 284 tinct and a minimum when all are identical.
- 285 • **Monotonicity.** Decreasing similarity increases diversity. Fix n and let \mathcal{X} be a point cloud
 286 in a metric space. If all pairwise distances in \mathcal{X} are scaled by a factor $\alpha > 1$ (i.e. replace
 287 the metric $d(\cdot, \cdot)$ by $\alpha d(\cdot, \cdot)$), then

$$289 \text{PLDiv}(\alpha \mathcal{X}) > \alpha^2 \text{PLDiv}(\mathcal{X}) \quad \text{if } \alpha > 1, \text{ and vice versa.}$$

- 291 • **Twin property.** Adding an exact duplicate of a point does not change $\text{PLDiv}(\mathcal{X})$. The
 292 duplicate induces a trivial birth-death pair $(0, 0)$, contributing zero to the diversity score.
 293 Let \mathcal{X} be a dataset and let $x_i \in \mathcal{X}$. For the set $\mathcal{X}' = \mathcal{X} \cup \{x_n\}$ where $x_n = x_i$, the diversity
 294 is unchanged:

$$295 \text{PLDiv}(\mathcal{X}') = \text{PLDiv}(\mathcal{X}).$$

- 296 • **Symmetry.** PLDiv is invariant to the ordering of data points (permutation invariance).
 297 Since persistent homology depends only on the metric structure of \mathcal{X} and $\text{PLDiv}(\mathcal{X})$ is
 298 computed from the multiset of intervals $\{(b_i, d_i)\}$, relabeling or reordering points does not
 299 affect the value of the score. Let $\mathcal{X} = (x_1, \dots, x_n)$ be an ordered sequence of points and let
 300 π be any permutation of $\{1, \dots, n\}$. For the permuted sequence $\mathcal{X}_\pi = (x_{\pi(1)}, \dots, x_{\pi(n)})$,
 301 we have

$$302 \text{PLDiv}(\mathcal{X}_\pi) = \text{PLDiv}(\mathcal{X}).$$

303 5 EXPERIMENT & ANALYSIS

306 5.1 CAPTURING DIVERSITY IN SUBSET SELECTION

308 A long-standing challenge in diversity measurement is the absence of ground truth labels. The
 309 issue is especially significant for complex data modalities such as text, where objective evaluation is
 310 difficult. To validate our diversity measure, we use outputs of a Determinantal Point Process (DPP)
 311 ([Kulesza et al., 2012](#)), a probabilistic model that favors selecting diverse subsets from a larger set.
 312 Instead of treating all subsets equally, DPP picks those where the elements are dissimilar to one
 313 another. Specifically, it works by first measuring the similarity between every pair of points in the
 314 dataset using a kernel. Subsets that contain points that are very similar to each other are less likely
 315 to be chosen, while subsets with points that are more distinct are more likely. This guarantees that
 316 DPP produces a diverse subset, making it particularly effective as ground truth for evaluating data
 317 diversity.

318 We apply k-DPP ([Kulesza & Taskar, 2011](#)) (selecting k diverse samples from the entire set) to both a
 319 simulation and the ArXiv-10 dataset (Farhangi et al., 2022). In the simulation, we construct a dataset
 320 of 200 points arranged into two adjacent clusters, with 100 points per cluster, from which 30 data
 321 points are selected. Additionally, we sample 100 data points from the first 1,000 instances of the
 322 ArXiv dataset and vectorize them using the text embedding model “all-MiniLM-L6-v2”. In both ex-
 323 periments, we use both uniform random sampling and k-DPP for comparison, using the Radial Basis
 324 Function (RBF) kernel for the simulation and cosine similarity for the similarity matrix construction
 325 in DPP for the ArXiv dataset. As shown in Fig. 3, our metric PLDiv effectively quantifies the higher

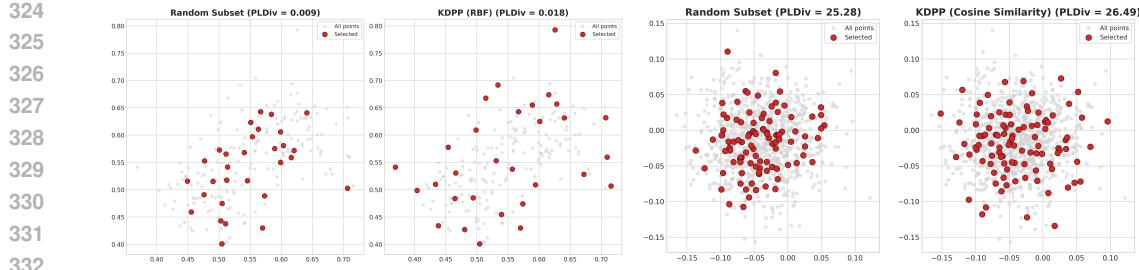


Figure 3: k-DPP selects a k -diverse subset from the entire dataset. The two plots on the left present results from simulated data: the first one shows random sampling, while the second one shows k-DPP. The two plots on the right correspond to the ArXiv dataset, with the first one showing random sampling and the second one showing k-DPP. Data points selected by KDPP are scattered more diversely compared to random sampling. PLDiv can successfully capture these subtle differences.

diversity of the DPP-sampled subset compared to the random one, demonstrating its effectiveness. This suggests that PLDiv effectively captures diversity in the metric space, reflecting even small variations and making it well-suited for comparing data diversity across different datasets.

5.2 CHARACTERIZING GEOMETRY WITH CURVATURE

As a fundamental property in geometry, curvature quantifies the extent to which a manifold deviates from being flat, thereby governing the behavior of distances within that space. Curvature inherently relates to diversity (Limbeck et al., 2024): On positively curved spaces, such as spheres, data points concentrate and the variety of configurations is reduced; while on negatively curved spaces, such as hyperbolic disks, distances spread apart more quickly, creating a greater range of possible arrangements. Being able to recover curvature from point clouds offers a principled way to validate whether a diversity measure is geometry-aware, rather than relying solely on pairwise dissimilarities. This is important because modern representation learning often places data in non-Euclidean spaces, such as spherical or hyperbolic embeddings, where curvature plays a key role in structuring similarity. A diversity measure sensitive to curvature ensures better representation of the data manifold’s geometry.

To this end, we compare PLDiv against several established metrics, including Vendi Score, DCScore, and MAGAREA on the dataset (Turkes et al., 2022), by computing similarity scores from the data and using these scores as features to regress the curvature labels. We employ an SVR (support vector regression) model with an RBF kernel and perform 5-fold cross-validation. For Vendi Score and DCScore, we consider both L1 distance and RBF as similarity functions, whereas MAGAREA uses the default Euclidean distance. Table 1 indicates that the performance of other metrics, such as Vendi Score and DCScore, is highly dependent on the choice of similarity functions, and PLDiv is the strongest predictor for capturing data geometric structure. **The Sparse PLDiv uses the sparse Rips filtration to reduce computation efforts (see Section 5.6).**

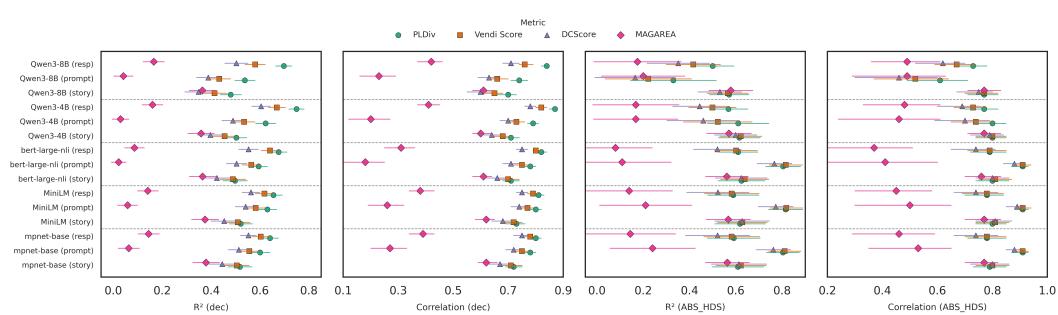
Table 1: PLDiv estimates curvature

Method	MSE (\downarrow)
SVR(Vendi Score, L1 kernel)	0.229 ± 0.042
SVR(Vendi Score, RBF kernel)	0.053 ± 0.004
SVR(DCScore, L1 kernel)	0.134 ± 0.019
SVR(DCScore, RBF kernel)	0.052 ± 0.004
SVR(MAGAREA, Euclidean)	0.120 ± 0.010
SVR(PLDiv)	0.039 ± 0.001
SVR(Sparse PLDiv)	0.040 ± 0.001

5.3 SEMANTIC DIVERSITY IN TEXT EMBEDDINGS

We investigate the utility of PLDiv as a measure of semantic diversity encoded in text embeddings. We use the dataset from Tevet & Berant (2021), which contains 1,000 sets of 10 sentences generated from unique prompts across three distinct tasks: story completion (story), dialogue response generation (resp), and three-word prompt completion (prompt). **For each prompt, 10 candidate outputs were produced by varying the softmax temperature dec , resulting in a dataset comprising 1,000**

378 prompts, each associated with 10 output sentences. Subsequently, human evaluators annotated a
 379 subset of 200 prompts, with 10 responses per prompt, to obtain the mean human evaluation score
 380 (*ABS-HDS*), forming the human dataset. *Dec* demonstrates the trade-off between quality and
 381 diversity in text generation, as lower temperatures increase fidelity by discouraging low-probability
 382 tokens, but at the cost of diversity in sampling. *ABS-HDS* serves as the ground truth reflecting how
 383 humans perceive text diversity. Accordingly, we use linear regression with 5-fold cross-validation
 384 to analyze the relationship between response diversity measurements and temperature settings (as
 385 a proxy for diversity in the *dec* dataset) or the human diversity scores (in the *ABS-HDS* dataset),
 386 assessed using R^2 and MSE. In addition, we compute Pearson’s correlation and perform 1,000
 387 bootstrap iterations to derive confidence intervals. Each response set is embedded using five mod-
 388 els: “bert-large-nli-stsb-mean-tokens”, “all-MiniLM-L12-v2”, and “all-mpnet-base-v2”, “Qwen3-
 389 Embedding-4B”, and “Qwen3-Embedding-8B”.



400 Figure 4: Demonstration that PLDiv achieves superior performance over alternative diversity metrics
 401 in predicting ground-truth diversity across tasks and embedding models. Points with different shapes
 402 denote to mean R^2 and correlation scores, with error bars indicating standard deviations across 5
 403 repeated cross-validation trials. Experiments with *ABS-HDS* exhibit larger error bars due to its
 404 smaller sample size.

405 Fig. 4 visualizes the R^2 and correlation results across all tasks and embedding models. PLDiv
 406 consistently outperforms all other metrics across tasks and embedding models in temperature-based
 407 evaluations. It also demonstrates superior performance in dialogue response generation across all
 408 models, as well as in evaluations on two recent embedding models (Qwen3-4B and Qwen3-8B)
 409 for all tasks assessed by human judgments. Moreover, PLDiv performs comparably to the Vendi
 410 Score in both story completion tasks and prompt tasks for human evaluations, while outperforming
 411 DCScore and MagArea. Detailed MSE results and performance analyses under different distance
 412 matrix settings are provided in Appendix D.4. Overall, these results demonstrate that PLDiv effec-
 413 tively captures the semantic diversity encoded in text embeddings.

415 5.4 DIVERSITY EVALUATION FOR IMAGE EMBEDDINGS

417 To demonstrate PLDiv’s efficacy for image dataset evaluation, we tested it on Colored MNIST
 418 (Deng, 2012). Following the methodology of Ospanov et al. (2024), the number of labels served
 419 as the ground truth for diversity, where a higher label count signifies a more diverse set. Compar-
 420 isons are conducted against Vendi Score, Magnitude, and DCScore, using two embedding models:
 421 Inception V3 and ResNet-18. Starting with a single class, we iteratively add one class at a time based
 422 on the previous data until all 10 classes are included. To facilitate a direct comparison, each metric
 423 was subsequently normalized to the $[0, 1]$ interval (Min–max). This linear transformation preserves
 424 the underlying trends and the correlation of each score against the number of classes present in the
 425 evaluation.

426 In Fig. 5, both PLDiv and MAGAREA exhibit a consistent and reliable correlation with the number
 427 of classes, aligning closely with the diagonal representing perfect correlation. PLDiv, however,
 428 offers faster computation and slightly higher correlation. DCScore follows, showing comparable
 429 performance with one embedding model but greater variance with the other. In contrast, Vendi Score
 430 tends to decrease as the number of classes and data increases. This indicates that the geometry-aware
 431 property of PLDiv makes it particularly well-suited for vision tasks, where embeddings often encode
 the geometric structure of images.

432

433

434

435

436

437

438

439

440

441

Figure 5: PLDiv shows a near-perfect correlation with the amount of the class involved in the dataset and remains consistent across different embedding models. MAGAREA performs next best, followed by DCScore, which exhibits some fluctuations in performance. VS, however, fails to capture the underlying patterns in the data.

442

443

444

445

446

447

5.5 DIVERSITY ASSESSMENT IN SYNTHETIC DATA CLOUDS

448

449

To demonstrate that PLDiv serves as a geometry-aware diversity metric, we simulated eight pairs of two-dimensional point clouds (A, B), each containing about 200 points generated from parameterized geometric functions described in Appendix Table 7. Each pair modifies one specific geometric property by adding or removing loops, bridges, curvature, or hierarchical clustering, while maintaining a comparable overall spatial scale. These controlled scenarios allow a direct comparison of how different metrics respond to structural variation rather than random dispersion.

450

451

452

453

454

455

We computed PLDiv, Vendi Score, DCScore, and MagArea on Euclidean distance matrices for each dataset. A metric is considered consistent if it assigns a higher diversity value to the configuration exhibiting richer geometric organization. PLDiv meets this criterion across all eight cases, while Vendi Score and MagArea do so in seven and DCScore in only three. Moreover, PLDiv produces sharper and directionally coherent contrasts between paired clouds. For instance, *Ring vs Disk* and *Nested vs Gaussian* exhibit strong PLDiv separation that quantitatively reflects the presence or loss of loops, whereas the other metrics change only slightly. The difference arises from what each measure encodes: Vendi Score and DCScore emphasize global similarity spectra or density separation, and MagArea summarizes scale magnitude but not connectivity. PLDiv, by integrating the persistence of topological features across filtrations, captures differences that are geometrically meaningful and also visually intuitive, as illustrated in Fig. 6.

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

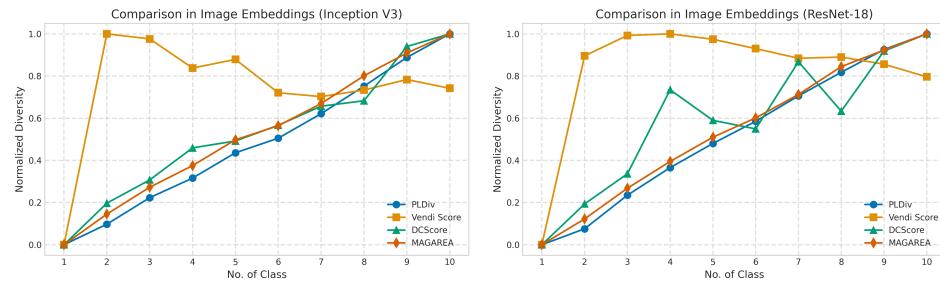
483

484

485

6 CONCLUSION

Understanding data diversity requires moving beyond traditional notions of variation or entropy to account for the intricate geometric and topological structures inherent in complex datasets. We propose a geometry-aware data diversity measure based on persistence landscapes, a tool from topolog-



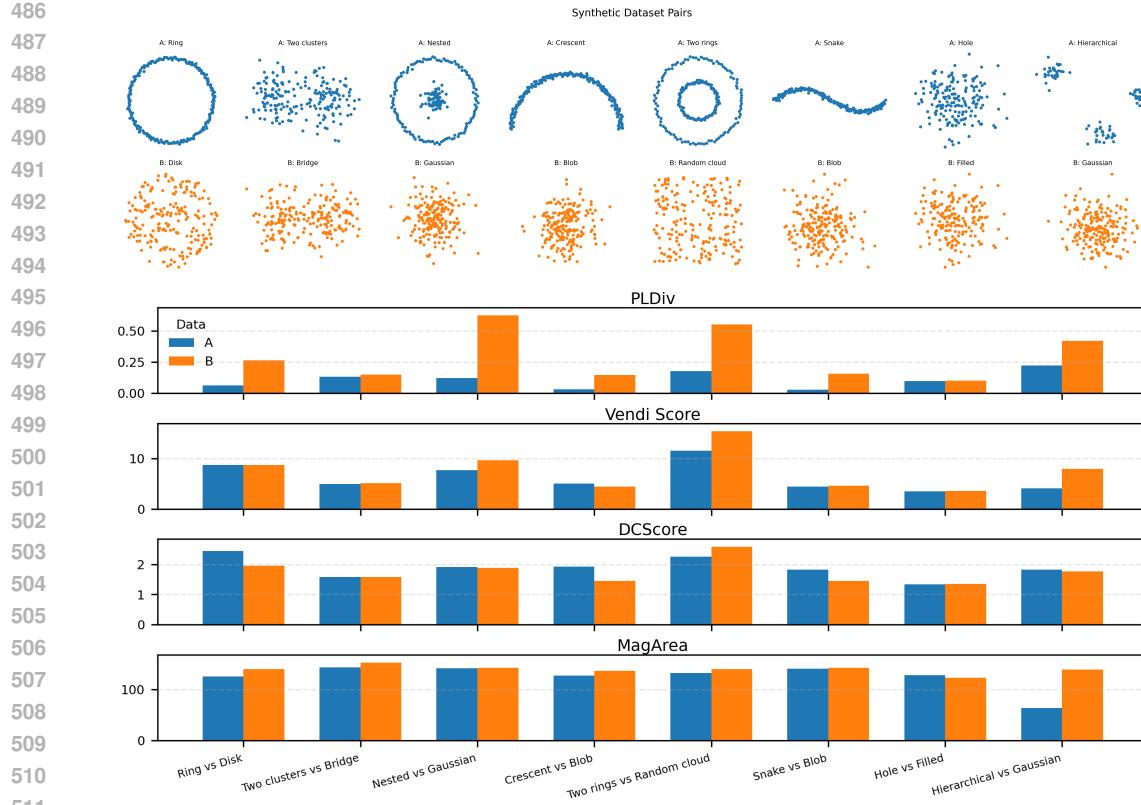


Figure 6: **Synthetic dataset comparison.** *Upper:* eight dataset pairs (A vs. B), each with 200 points, generated to introduce or remove loops, bridges, or hierarchical clusters. *Lower:* diversity scores across metrics. PLDiv yields sharper and more coherent distinctions that reflect the true geometric differences between datasets, while Vendi Score, DCScore, and MagArea respond mainly to overall spread and fail to capture these structural changes in most cases.

Table 2: Computation time comparison with varying sample sizes on ImageNet-1K. Embeddings are extracted using ResNet-50 and computed based on cosine similarity/distance. Values are reported in seconds.

Method	Sample size (ImageNet-1K)				
	5k	10k	20k	30k	40k
Vendi Score	1.60 \pm 0.83	10.82 \pm 2.73	183.80 \pm 12.88	746.51 \pm 30.74	1786.11 \pm 184.64
DCScore	0.03 \pm 0.02	0.13 \pm 0.01	0.46 \pm 0.01	1.00 \pm 0.01	1.80 \pm 0.05
MAGAREA	164.91 \pm 29.55	716.14 \pm 31.23	—	—	—
PLDiv	5.43 \pm 0.02	24.33 \pm 0.09	105.62 \pm 0.35	236.23 \pm 0.76	462.75 \pm 0.56
Sparse PLDiv ($\epsilon = 0.95$)	3.97 \pm 0.03	16.80 \pm 0.37	68.55 \pm 2.21	147.48 \pm 6.50	273.86 \pm 14.35
Sparse PLDiv ($\epsilon = 10$)	2.61 \pm 0.00	9.87 \pm 0.05	33.74 \pm 0.01	68.15 \pm 0.76	115.54 \pm 0.24

Table 3: Sparse PLDiv values demonstrating its reliable computation

Method	Sample size				
	5k	10k	20k	30k	40k
PLDiv	46.51	78.01	133.55	184.93	232.89
Sp. PLDiv ($\epsilon = 0.95$)	46.52	78.03	133.58	184.92	232.89
Sp. PLDiv ($\epsilon = 10$)	47.32	79.70	136.86	190.23	240.04

ical data analysis that provides a stable and expressive representation of hidden structural patterns. Our metric, PLDiv, offers a richer and more nuanced quantification of diversity. Through extensive experiments across multiple domains and modalities, we demonstrate PLDiv’s ability to characterize structural properties in data clouds (e.g., curvature data) and in vector embeddings (e.g., text and image data). These results suggest that PLDiv provides a principled foundation for analyzing geometric diversity, with potential applications in dataset construction, augmentation, model evaluation, and robustness analysis. Looking forward, integrating topological perspectives into automated dataset design, generative modeling, and adaptive learning systems has the potential to fundamentally reshape how diversity is understood, measured, and leveraged in artificial intelligence.

540 REFERENCES
541

542 Sina Alemohammad, Josue Casco-Rodriguez, Lorenzo Luzi, Ahmed Intiaz Humayun, Hossein
543 Babaei, Daniel LeJeune, Ali Siahkoohi, and Richard G Baraniuk. Self-consuming generative
544 models go mad. International Conference on Learning Representations (ICLR), 2024.

545 Miguel A Aragón-Calvo, Rien Van De Weygaert, and Bernard JT Jones. Multiscale phenomenology
546 of the cosmic web. *Monthly Notices of the Royal Astronomical Society*, 408(4):2163–2187, 2010.

547 Yang Ba, Michelle V Mancenido, and Rong Pan. How does data diversity shape the weight land-
548 scape of neural networks? *arXiv preprint arXiv:2410.14602*, 2024.

549

550 Paul Bendich, James S Marron, Ezra Miller, Alex Pieloch, and Sean Skwerer. Persistent homology
551 analysis of brain artery trees. *The annals of applied statistics*, 10(1):198, 2016.

552

553 Quentin Bertrand, Avishek Joey Bose, Alexandre Duplessis, Marco Jiralerspong, and Gauthier
554 Gidel. On the stability of iterative retraining of generative models on their own data. *arXiv
555 preprint arXiv:2310.00429*, 2023.

556 Yijun Bian and Huanhuan Chen. When does diversity help generalization in classification ensem-
557 bles? *IEEE Transactions on Cybernetics*, 52(9):9059–9075, 2021.

558

559 Florian Le Bronnec, Alexandre Verine, Benjamin Negrevergne, Yann Chevaleyre, and Alexandre
560 Allauzen. Exploring precision and recall to assess the quality and diversity of llms. *arXiv preprint
561 arXiv:2402.10693*, 2024.

562 Peter Bubenik, Michael Hull, Dhruv Patel, and Benjamin Whittle. Persistent homology detects
563 curvature. *Inverse Problems*, 36(2):025008, 2020.

564

565 Peter Bubenik et al. Statistical topological data analysis using persistence landscapes. *J. Mach.
566 Learn. Res.*, 16(1):77–102, 2015.

567 Nicholas J Cavanna, Mahmoodreza Jahanseir, and Donald R Sheehy. A geometric perspective on
568 sparse filtrations. *arXiv preprint arXiv:1506.03797*, 2015.

569

570 Line H Clemmensen and Rune D Kjærsgaard. Data representativity for machine learning and ai
571 systems. *arXiv preprint arXiv:2203.04706*, 2022.

572

573 Aisling J Daly, Jan M Baetens, and Bernard De Baets. Ecological diversity: measuring the unmea-
574 surable. *Mathematics*, 6(7):119, 2018.

575

576 Dan Dan Friedman and Adji Bousso Dieng. The vendi score: A diversity evaluation metric for
577 machine learning. *Transactions on machine learning research*, 2023.

578

579 Li Deng. The mnist database of handwritten digit images for machine learning research [best of the
580 web]. *IEEE signal processing magazine*, 29(6):141–142, 2012.

581

582 Wenchao Du and Alan W Black. Boosting dialog response generation. In *Proceedings of the 57th
583 Annual Meeting of the Association for Computational Linguistics*, 2019.

584

585 Edelsbrunner, Letscher, and Zomorodian. Topological persistence and simplification. *Discrete &
586 computational geometry*, 28(4):511–533, 2002.

587

588 Herbert Edelsbrunner, John Harer, et al. Persistent homology-a survey. *Contemporary mathematics*,
589 453(26):257–282, 2008.

590

591 Ashkan Farhangi, Ning Sui, Nan Hua, Haiyan Bai, Arthur Huang, and Zhishan Guo. Protoformer:
592 Embedding prototypes for transformers. In *Advances in Knowledge Discovery and Data Mining:
593 26th Pacific-Asia Conference, PAKDD 2022, Chengdu, China, May 16–19, 2022, Proceedings,
594 Part I*, pp. 447–458, 2022.

595

596 Marcio Gameiro, Yasuaki Hiraoka, Shunsuke Izumi, Miroslav Kramar, Konstantin Mischaikow, and
597 Vudit Nanda. A topological measurement of protein compressibility. *Japan Journal of Industrial
598 and Applied Mathematics*, 32(1):1–17, 2015.

594 Marian Gidea and Yuri Katz. Topological data analysis of financial time series: Landscapes of
 595 crashes. *Physica A: Statistical mechanics and its applications*, 491:820–834, 2018.
 596

597 Dejan Govc and Richard Hepworth. Persistent magnitude. *Journal of Pure and Applied Algebra*,
 598 225(3):106517, 2021.

599 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 600 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in
 601 neural information processing systems*, 30, 2017.

602

603 Yasuaki Hiraoka, Takenobu Nakamura, Akihiko Hirata, Emerson G Escobar, Kaname Matsue, and
 604 Yasumasa Nishiura. Hierarchical structures of amorphous solids characterized by persistent ho-
 605 mology. *Proceedings of the National Academy of Sciences*, 113(26):7035–7040, 2016.

606 Mohammad Jalali, Cheuk Ting Li, and Farzan Farnia. An information-theoretic evaluation of gen-
 607 erative models in learning multi-modal distributions. *Advances in Neural Information Processing
 608 Systems*, 36:9931–9943, 2023.

609

610 Beomjun Kim, Jaehwan Kim, Kangyeon Kim, Sunwoo Kim, and Heejin Ahn. A computation-
 611 efficient method of measuring dataset quality based on the coverage of the dataset. In Yingzhen
 612 Li, Stephan Mandt, Shipra Agrawal, and Emtiyaz Khan (eds.), *Proceedings of The 28th In-
 613 ternational Conference on Artificial Intelligence and Statistics*, volume 258 of *Proceedings
 614 of Machine Learning Research*, pp. 4744–4752. PMLR, 03–05 May 2025. URL <https://proceedings.mlr.press/v258/kim25f.html>.

615

616 Violeta Kovacev-Nikolic, Peter Bubenik, Dragan Nikolić, and Giseon Heo. Using persistent homol-
 617 ogy and dynamical distances to analyze protein binding. *Statistical applications in genetics and
 618 molecular biology*, 15(1):19–38, 2016.

619

620 Alex Kulesza and Ben Taskar. k-dpps: Fixed-size determinantal point processes. In *Proceedings of
 621 the 28th International Conference on Machine Learning (ICML-11)*, pp. 1193–1200, 2011.

621

622 Alex Kulesza, Ben Taskar, et al. Determinantal point processes for machine learning. *Foundations
 623 and Trends® in Machine Learning*, 5(2–3):123–286, 2012.

624

625 Tuomas Kynkänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
 626 precision and recall metric for assessing generative models. *Advances in neural information
 627 processing systems*, 32, 2019.

628

629 Yi-An Lai, Xuan Zhu, Yi Zhang, and Mona Diab. Diversity, density, and homogeneity: Quantitative
 630 characteristic metrics for text collections. *arXiv preprint arXiv:2003.08529*, 2020.

631

632 Tom Leinster. *Entropy and diversity: the axiomatic approach*. Cambridge university press, 2021.

633

634 Tom Leinster and Christina A Cobbold. Measuring diversity: the importance of species similarity.
 635 *Ecology*, 93(3):477–489, 2012.

636

637 Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
 638 Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation of language
 639 models. *arXiv preprint arXiv:2211.09110*, 2022.

640

641 Katharina Limbeck, Rayna Andreeva, Rik Sarkar, and Bastian Rieck. Metric space magnitude for
 642 evaluating the diversity of latent representations. *Advances in Neural Information Processing
 643 Systems*, 37:123911–123953, 2024.

644

645 Yang Janet Liu and Amir Zeldes. Why can't discourse parsing generalize? a thorough investigation
 646 of the impact of data diversity. *arXiv preprint arXiv:2302.06488*, 2023.

647

648 Swaroop Mishra, Anjana Arunkumar, Bhavdeep Sachdeva, Chris Bryan, and Chitta Baral. Dqi:
 649 Measuring data quality in nlp. *arXiv preprint arXiv:2005.00816*, 2020.

650

651 Fionn Murtagh and Pedro Contreras. Algorithms for hierarchical clustering: an overview. *Wiley
 652 interdisciplinary reviews: data mining and knowledge discovery*, 2(1):86–97, 2012.

648 Muhammad Ferjad Naeem, Seong Joon Oh, Youngjung Uh, Yunjey Choi, and Jaejun Yoo. Reliable
 649 fidelity and diversity metrics for generative models. In *International conference on machine*
 650 *learning*, pp. 7176–7185. PMLR, 2020.

651 Luis A Ortega, Rafael Cabañas, and Andres Masegosa. Diversity and generalization in neural net-
 652 work ensembles. In *International Conference on Artificial Intelligence and Statistics*, pp. 11720–
 653 11743. PMLR, 2022.

654 Azim Ospanov, Jingwei Zhang, Mohammad Jalali, Xuenan Cao, Andrej Bogdanov, and Farzan
 655 Farnia. Towards a scalable reference-free evaluation of generative models. *Advances in Neural*
 656 *Information Processing Systems*, 37:120892–120927, 2024.

657 Vishakh Padmakumar and He He. Does writing with language models reduce content diversity?
 658 *arXiv preprint arXiv:2309.05196*, 2023.

659 Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin Choi,
 660 and Zaid Harchaoui. Mauve: Measuring the gap between neural text and human text using diver-
 661 gence frontiers. *Advances in Neural Information Processing Systems*, 34:4816–4828, 2021.

662 Chi Seng Pun, Si Xian Lee, and Kelin Xia. Persistent-homology-based machine learning: a survey
 663 and a comparative study. *Artificial Intelligence Review*, 55(7):5169–5213, 2022.

664 Sylvestre-Alvise Rebuffi, Sven Gowal, Dan Andrei Calian, Florian Stimberg, Olivia Wiles,
 665 and Timothy A Mann. Data augmentation can improve robustness. In M. Ranzato,
 666 A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), *Advances in Neu-*
 667 *ral Information Processing Systems*, volume 34, pp. 29935–29948. Curran Associates, Inc.,
 668 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/fb4c48608ce8825b558ccf07169a3421-Paper.pdf.

669 Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. Beyond accuracy: Be-
 670 havioral testing of nlp models with checklist. *arXiv preprint arXiv:2005.04118*, 2020.

671 Esther Rolf, Theodora T Worledge, Benjamin Recht, and Michael Jordan. Representation matters:
 672 Assessing the importance of subgroup allocations in training data. In *International Conference*
 673 *on Machine Learning*, pp. 9040–9051. PMLR, 2021.

674 Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep learning.
 675 *Journal of big data*, 6(1):1–48, 2019.

676 Raphael Shu, Hideki Nakayama, and Kyunghyun Cho. Generating diverse translations with sentence
 677 codes. In *Proceedings of the 57th annual meeting of the association for computational linguistics*,
 678 pp. 1823–1827, 2019.

679 Feifan Song, Bowen Yu, Hao Lang, Haiyang Yu, Fei Huang, Houfeng Wang, and Yongbin Li.
 680 Scaling data diversity for fine-tuning language models in human alignment. *arXiv preprint*
 681 *arXiv:2403.11124*, 2024.

682 Katherine Stasaski and Marti A Hearst. Semantic diversity in dialogue with natural language infer-
 683 ence. *arXiv preprint arXiv:2205.01497*, 2022.

684 Terence Tao. *An introduction to measure theory*, volume 126. American Mathematical Soc., 2011.

685 Guy Tevet and Jonathan Berant. Evaluating the evaluation of diversity in natural language genera-
 686 tion. In Paola Merlo, Jorg Tiedemann, and Reut Tsarfaty (eds.), *Proceedings of the 16th Confer-*
 687 *ence of the European Chapter of the Association for Computational Linguistics: Main Volume*,
 688 pp. 326–346, Online, April 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.eacl-main.25. URL <https://aclanthology.org/2021.eacl-main.25/>.

689 Renata Turkes, Guido F Montufar, and Nina Otter. On the effectiveness of persistent homology.
 690 *Advances in Neural Information Processing Systems*, 35:35432–35448, 2022.

691 Yuhei Umeda. Time series classification via topological data analysis. *Information and Media*
 692 *Technologies*, 12:228–239, 2017.

702 Kaixin Wang, Bingyi Kang, Jie Shao, and Jiashi Feng. Improving generalization in reinforcement
 703 learning with mixture regularization. *Advances in Neural Information Processing Systems*, 33:
 704 7968–7978, 2020.

705 Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
 706 Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
 707 *arXiv preprint arXiv:2212.10560*, 2022.

708 Kelin Xia and Guo-Wei Wei. Multidimensional persistence in biomolecular data. *Journal of com-
 709 putational chemistry*, 36(20):1502–1520, 2015.

710 Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial nets
 711 with policy gradient. In *Proceedings of the AAAI conference on artificial intelligence*, volume 31,
 712 2017.

713 Yu Yu, Shahram Khadivi, and Jia Xu. Can data diversity enhance learning generalization? In
 714 *Proceedings of the 29th international conference on computational linguistics*, pp. 4933–4945,
 715 2022.

716 Hongyi Zhang. mixup: Beyond empirical risk minimization. *arXiv preprint arXiv:1710.09412*,
 717 2017.

718 Qi Zhao and Yusu Wang. Learning metrics for persistence-based summaries and applications for
 719 graph classification. *Advances in neural information processing systems*, 32, 2019.

720 Yuchang Zhu, Huizhe Zhang, Bingzhe Wu, Jintang Li, Zibin Zheng, Peilin Zhao, Liang Chen, and
 721 Yatao Bian. Measuring diversity in synthetic datasets. *arXiv preprint arXiv:2502.08512*, 2025.

722 Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. In *Proceedings of the
 723 twentieth annual symposium on Computational geometry*, pp. 347–356, 2004.

724

725 A ADDITIONAL ITERATURE REVIEW

726 A.1 DIVERSITY MEASUREMENT

727 Evaluating diversity has long been a challenge in machine learning and generative modeling, partly
 728 because it is not always formalized under a single definition but manifests across different dimen-
 729 sions. For example, holistic evaluations of language models highlight variation in task coverage,
 730 domain shifts, linguistic and dialectal richness, input perturbations, and social context, all of which
 731 directly connect to the broader notion of data diversity (Liang et al., 2022).

732 Some works emphasize that inducing or controlling diversity can be as important as measuring
 733 it. Behavioral frameworks such as CheckList (Ribeiro et al., 2020) systematically probe models
 734 through templating, lexical substitutions, and perturbations, showing that diverse inputs are essential
 735 for revealing hidden model failures, even though diversity itself is not explicitly quantified.

736 Diversity is not always treated only as an evaluation objective, but also as a design principle at the
 737 training level. For instance, Du and Black (Du & Black, 2019) mitigate mode collapse in dialogue
 738 generation by iteratively boosting models to promote semantic and lexical variation. Although ef-
 739 fective in practice, these approaches underscore the need for principled evaluation frameworks that
 740 can verify whether training-time interventions truly enhance diversity across settings.

741 To address semantic variation more directly, semantic diversity methods examine conceptual dis-
 742 tinctions between outputs. Stasaski and Hearst (Stasaski & Hearst, 2022) use Natural Language
 743 Inference models to identify entailment, contradiction, and neutrality among generated texts, treat-
 744 ing contradiction as a marker of diversity and entailment as redundancy. Although intuitive and
 745 fine-grained, this relational approach is inherently limited to pairwise comparisons and does not
 746 capture global structural diversity across datasets.

747 A large class of methods focuses on surface-level variation, particularly in text. N-gram-based
 748 metrics such as distinct-n (Song et al., 2024), self-BLEU (Shu et al., 2019), and ROUGE-L (Wang
 749 et al., 2022; Padmakumar & He, 2023) capture token-level dispersion across samples (Yu et al.,

756 2017). Similarly, the Data Quality Index (DQI) (Mishra et al., 2020) aggregates vocabulary richness,
 757 entropy, and syntactic variation to assess dataset quality. While easy to compute, these approaches
 758 provide only a narrow view of diversity, often missing deeper semantic or structural patterns.
 759

760 A.2 PERSISTENT HOMOLOGY IN METRIC SPACE 761

762 The formal algebraic foundations were established by Zomorodian & Carlsson (2004), who intro-
 763 duced persistence modules, provided algorithms for computing persistence, and proved the barcode
 764 decomposition theorem as a complete invariant over fields. This work grounded PH in computability
 765 and algebraic classification, laying the basis for its adoption across domains (Zhao & Wang, 2019;
 766 Hiraoka et al., 2016; Pun et al., 2022). However, these foundational contributions primarily empha-
 767 size topology extraction and stability, without directly connecting persistence to data-level diversity
 768 or representational richness.

769 Beyond its theoretical foundations, TDA and persistent homology have shown practical utility across
 770 diverse domains. In neuroscience, PH captures vascular structures linked to disease (Bendich et al.,
 771 2016); in materials science, it characterizes microstructures and force chains in amorphous solids
 772 (Hiraoka et al., 2016); and in biology and chemistry, it reveals topological signatures of protein
 773 folding, molecular stability, and binding sites (Xia & Wei, 2015; Kovacev-Nikolic et al., 2016;
 774 Gameiro et al., 2015). These examples highlight PH’s ability to extract robust, multi-scale features
 775 from high-dimensional and noisy data.

776 PH has also been applied to both temporal and spatial systems. Persistence landscapes have been
 777 used to track transitions in dynamical systems and classify time-series data (Gidea & Katz, 2018;
 778 Umeda, 2017), while in astrophysics, PH captures the multiscale filamentary structure of the cosmic
 779 web from cosmological simulations (Aragón-Calvo et al., 2010). Collectively, these applications
 780 highlight PH’s versatility as a modality-agnostic framework for extracting global, nonlinear structure
 781 that often remains inaccessible to conventional statistical or machine learning methods.

782 B DESCRIPTION OF DIVERSITY SCORES IN COMPARISONS 783

784 Vendi Score (VS) (Dan Friedman & Dieng, 2023), derived from a set of samples and their pairwise
 785 similarity functions, quantifies the similarities among the data in a dataset. Mathematically, VS is
 786 given by the exponential of the Shannon entropy, which is obtained from the eigenvalues of the
 787 scaled similarity matrix $X^\top X$:

$$788 VS = \exp \left(- \sum_{i=1}^n \lambda_i \log \lambda_i \right)$$

789 where λ_i are the eigenvalues of scaled $X^\top X$.
 790

791 Limbeck et al. (2024) introduces several *magnitude-based* diversity measures that leverage the no-
 792 tion of the effective size of a metric space across scales. The core idea is to compute the *magnitude*
 793 *function*, $\text{Mag}_X(t)$, which tracks how the effective number of points in a space changes as pairwise
 794 distances are rescaled. To summarise this behaviour, the authors propose two derived metrics: the
 795 area under the magnitude function (MAGAREA) as a reference-free measure of intrinsic diversity,
 796 and the difference between magnitude functions (MAGDIFF) as a reference-based measure:
 797

$$800 \text{MAGAREA} = \int_{t_0}^{t_{\text{cut}}} \text{Mag}_X(t) dt, \quad \text{MAGDIFF} = \int_{t_0}^{t_{\text{cut}}} (\text{Mag}_X(t) - \text{Mag}_Y(t)) dt,$$

801 where $\text{Mag}_X(t)$ is the magnitude function of X at scale t and t_{cut} denotes the convergence scale
 802 used for evaluation. These measures provide robust multi-scale summaries of diversity and have
 803 been shown to detect phenomena such as curvature, mode collapse, and mode dropping in text,
 804 image, and graph representations.

805 Zhu et al. (2025) proposes **DCScore**, which departs from entropy or scale-based approaches by
 806 reframing diversity measurement as a *classification problem*. Instead of relying on eigenvalue de-
 807 composition or scale-sensitive geometric measures, DCScore evaluates how well each individual
 808 sample in a dataset can be distinguished from all others. Specifically, each sample is treated as its

810 own class, and pairwise similarities are converted into classification probabilities through a softmax
 811 function. The last score is then defined as the trace of the resulting probability matrix:
 812

$$813 \quad \text{DCScore}(D) = \text{tr}(P) = \sum_{i=1}^n P[i, i], \quad P[i, j] = \frac{\exp\left(\frac{K[i, j]}{\tau}\right)}{\sum_{k=1}^n \exp\left(\frac{K[i, k]}{\tau}\right)},$$

817 where $K[i, j]$ denotes the similarity between samples i and j , and τ is a temperature parameter
 818 that controls the classification sharpness. This formulation is principled and efficient, emphasizing
 819 sample separability without considering the geometric or topological structure of the dataset, which
 820 can also be important for characterizing diversity.
 821

822 C MATHEMATICAL PROOFS

824 C.1 PLDIV CLOSED FORM

826 Let $\mathcal{D} = \{(b_i, d_i)\}_{i=1}^m$ be a finite multiset of persistence birth–death pairs and let $\lambda_{(b_i, d_i)} : \mathbb{R} \rightarrow$
 827 $[0, \infty)$ denote the usual persistence “tent” function associated to the interval (b_i, d_i) . Let $\{\lambda_k(t)\}_{k \geq 1}$
 828 be the persistence landscape functions obtained by ordering the values $\{\lambda_{(b_i, d_i)}(t)\}_{i=1}^m$ at each fixed
 829 t in nonincreasing order (with $\lambda_k(t) = 0$ for all $k > m$). Then
 830

$$832 \quad \text{PLDiv}(\mathcal{X}) = \sum_{k=1}^{\infty} \int_{\mathbb{R}} \lambda_k(t) dt = \sum_{i=1}^m \int_{\mathbb{R}} \lambda_{(b_i, d_i)}(t) dt = \frac{1}{4} \sum_{i=1}^m (d_i - b_i)^2.$$

835 *Proof.* By definition $\lambda_k(t)$ are the order statistics (at each fixed t) of the family $\{\lambda_{(b_i, d_i)}(t)\}_{i=1}^m$. For
 836 any finite collection of nonnegative functions $f_i(t)$,
 837

$$839 \quad \sum_{k=1}^{\infty} \text{k-th largest of } \{f_i(t)\} = \sum_{i=1}^m f_i(t),$$

841 Applying this pointwise gives

$$844 \quad \sum_{k=1}^{\infty} \lambda_k(t) = \sum_{i=1}^m \lambda_{(b_i, d_i)}(t).$$

846 Each $\lambda_{(b_i, d_i)}$ is continuous with compact support $[b_i, d_i]$, hence measurable and integrable. By
 847 Tonelli’s theorem (Tao, 2011),
 848

$$849 \quad \sum_{k=1}^{\infty} \int_{\mathbb{R}} \lambda_k(t) dt = \int_{\mathbb{R}} \sum_{k=1}^{\infty} \lambda_k(t) dt = \int_{\mathbb{R}} \sum_{i=1}^m \lambda_{(b_i, d_i)}(t) dt = \sum_{i=1}^m \int_{\mathbb{R}} \lambda_{(b_i, d_i)}(t) dt.$$

853 Finally, each tent function supported on the interval $[b_i, d_i]$ is a symmetric isosceles triangle of base
 854 length $d_i - b_i$ and height $(d_i - b_i)/2$, hence its area is
 855

$$856 \quad \int_{\mathbb{R}} \lambda_{(b_i, d_i)}(t) dt = \frac{1}{2} \cdot (d_i - b_i) \cdot \frac{d_i - b_i}{2} = \frac{(d_i - b_i)^2}{4},$$

858 Summing over $i = 1, \dots, m$ gives the final identity
 859

$$860 \quad \sum_{i=1}^m \int_{\mathbb{R}} \lambda_{(b_i, d_i)}(t) dt = \frac{1}{4} \sum_{i=1}^m (d_i - b_i)^2.$$

863 \square

864 C.2 PROOF OF AXIOMATIC PROPERTIES OF DIVERSITY
865

866 A diversity measure derived from Persistence Landscapes (PLs) is defined as a summary statistic
867 of the persistence lifetimes generated from a dataset’s Vietoris–Rips filtration. We prove that such a
868 measure satisfies the key principles of effective size, monotonicity, the twin property, and symmetry.
869

- 870 • **Effective size.** For a fixed number of points, $\text{PLDiv}(\mathcal{X})$ increases when data points are
871 well-separated and decreases as they cluster, reaching a maximum when all points are dis-
872 tinct and a minimum when all are identical.

873 *Proof. Minimum PLDiv:* The minimum value of PLDiv is achieved when all points in the
874 cloud \mathcal{X} are identical. Let all n points in the cloud be the same, so $x_1 = x_2 = \dots = x_n$.
875 The distance between any two points is zero:

$$876 \quad 877 \quad d(x_i, x_j) = 0 \quad \text{for all } i, j.$$

878 Every point is born at $\varepsilon = 0$ and immediately merges with every other point at $\varepsilon = 0$, all
879 persistence lifetimes are zero. That is,

$$880 \quad 881 \quad b_i = 0, \quad d_i = 0 \quad \text{for all features.}$$

882 Therefore,

$$883 \quad 884 \quad \min \text{PLDiv}(\mathcal{X}) = \frac{1}{4} \sum_i (d_i - b_i)^2 = \frac{1}{4} \sum_i (0 - 0)^2 = 0.$$

885 *Maximum PLDiv:* The maximum value of PLDiv is achieved when the points are “well-
886 separated.” Let $\mathcal{X} = \{x_1, \dots, x_n\}$ be a point cloud in a metric space (\mathcal{M}, d) such that all
887 points are distinct and equidistant:

$$888 \quad d(x_i, x_j) = c > 0 \quad \text{for all } i \neq j.$$

889 Then, the H_0 persistence lifetimes are all equal to c , except for the last surviving com-
890 ponent. Let $c = \max_{i \neq j} d(x_i, x_j)$. In the Vietoris–Rips filtration, at $\varepsilon = 0$, each point
891 forms a separate connected component. Thus, there are n components born at $b_i = 0$. For
892 $0 < \varepsilon < c$, no edges appear because all pairwise distances are c . Hence, no components
893 merge in this interval. At $\varepsilon = c$, all pairwise edges appear simultaneously, and the n com-
894 ponents merge into a single connected component. Thus, $n - 1$ components die at $d_i = c$,
895 while the last component persists indefinitely.

896 By Proposition 3.2, the corresponding PLDiv is

$$897 \quad \max \text{PLDiv}(\mathcal{X}) = \frac{n-1}{4} c^2.$$

900 \square

901 • **Monotonicity**

902 Fix n and let \mathcal{X} be a point cloud in a metric space. If all pairwise distances in \mathcal{X} are scaled
903 by a factor $\alpha > 1$ (i.e. replace the metric $d(\cdot, \cdot)$ by $\alpha d(\cdot, \cdot)$), then

$$904 \quad \text{PLDiv}(\alpha \mathcal{X}) \begin{cases} \leq \alpha^2 \text{PLDiv}(\mathcal{X}), & \alpha > 1, \\ \geq \alpha^2 \text{PLDiv}(\mathcal{X}), & 0 < \alpha < 1. \end{cases}$$

905 *Proof.* Fix n and let \mathcal{X} be a point cloud in a metric space. If all pairwise distances in \mathcal{X}
906 are scaled by a factor $\alpha > 1$ (i.e. replace the metric $d(\cdot, \cdot)$ by $\alpha d(\cdot, \cdot)$), then every lifetime
907 $d_i - b_i$ is multiplied by α . By Proposition 3.2,

$$912 \quad 913 \quad \text{PLDiv}(\alpha \mathcal{X}) = \frac{1}{4} \sum_i (\alpha(d_i - b_i))^2 = \alpha^2 \cdot \frac{1}{4} \sum_i (d_i - b_i)^2 = \alpha^2 \text{PLDiv}(\mathcal{X}).$$

914 Hence, spreading the same set of points apart (uniform dilation) strictly increases PLDiv
915 (for $\alpha > 1$). More generally, moving points so as to increase lifetimes of the dominant fea-
916 tures increases PLDiv ; conversely, clustering points tends to shorten lifetimes and reduce
917 PLDiv . \square

918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971

- **Twin property.** Adding an exact duplicate of a point does not change $\text{PLDiv}(\mathcal{X})$. Let \mathcal{X} be a dataset and let $x_i \in \mathcal{X}$. For the set $\mathcal{X}' = \mathcal{X} \cup \{x_n\}$ where $x_n = x_i$, the diversity is unchanged:

$$\text{PLDiv}(\mathcal{X}') = \text{PLDiv}(\mathcal{X}).$$

Proof. A duplicate point at exactly the same coordinates is at zero distance from its twin. In the usual filtrations built from pairwise distances (e.g., Vietoris–Rips), the duplicate component is born at radius 0 and immediately merges with its twin also at radius 0. Hence the corresponding birth–death pair is $(0, 0)$ and has lifetime 0, contributing $(d - b)^2/4 = 0$ to the PLDiv sum. All other birth–death pairs are unchanged as well. Therefore PLDiv is unchanged. \square

- **Symmetry.** PLDiv is invariant to the ordering of data points (permutation invariance). Since persistent homology depends only on the metric structure of \mathcal{X} and $\text{PLDiv}(\mathcal{X})$ is computed from the multiset of intervals $\{(b_i, d_i)\}$, relabeling or reordering points does not affect the value of the score. Let $\mathcal{X} = (x_1, \dots, x_n)$ be an ordered sequence of points and let π be any permutation of $\{1, \dots, n\}$. For the permuted sequence $\mathcal{X}_\pi = (x_{\pi(1)}, \dots, x_{\pi(n)})$, we have

$$\text{PLDiv}(\mathcal{X}_\pi) = \text{PLDiv}(\mathcal{X}).$$

Proof. The PH pipeline begins with the pairwise distance matrix D , where $D_{ij} = d(x_i, x_j)$. Let \mathcal{X}_π be the reordered dataset. The distance matrix D_π for the permuted data has entries $(D_\pi)_{ij} = d(x_{\pi(i)}, x_{\pi(j)})$. Importantly, the set of all unique pairwise distances

$$\{d(x_i, x_j)\}_{1 \leq i < j \leq n}$$

is unchanged for both \mathcal{X} and \mathcal{X}_π . The construction of the Vietoris–Rips filtration depends only on these distances. Hence, the persistence diagrams and lifetimes $\{l_i\}$ are identical. Therefore, any diversity measure computed from these lifetimes is invariant under permutation of the data and PLDiv is symmetry. \square

D DETAILED EXPERIMENT DESCRIPTIONS

D.1 SYNTHETIC TOY EXAMPLES

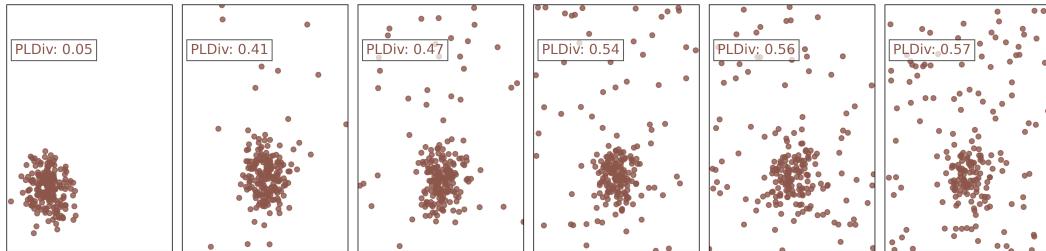
Our toy example in Figure 1 utilizes the examples from Limbeck et al. (2024). Specifically, we simulated four synthetic datasets with varying diversity levels. D1 (Poisson Process): 200 points uniformly sampled in the square $[0, 2]^2$, representing a spatially random distribution. D2 (Hawkes Process): a clustered dataset generated via a self-exciting point process with base intensity $\lambda = 91$ and excitation parameter $\alpha = 0.6$. D3 (Two Gaussians): 200 samples drawn from two Gaussian clusters centered at $(0.5, 0.5)$ and $(1.5, 1.5)$ with covariance $0.02I$. D4 (One Gaussian): 200 samples drawn from a single Gaussian centered at $(0.5, 0.5)$ with the same covariance. These datasets progressively transition from highly diverse and dispersed (D1) to concentrated and homogeneous (D4). Table 4 represents diversity scores calculated by four metrics. (Vendi Score and DCScore are based on RBF kernel)

Table 4: Performance comparison of subset selection

Task	PLDiv (\uparrow)	Vendi Score (rbf) (\uparrow)	DCScore (\uparrow)	MagArea (\uparrow)
D1	0.53	136.98	2.67	141.23
D2	0.49	79.96	2.63	108.83
D3	0.26	40.40	2.48	81.93
D4	0.05	23.66	2.32	58.53

972 D.1.1 IMBALANCED SYNTHETIC DATA
973

974 To explore how PLDiv performs on imbalanced data, we generated a series of small long-tail
975 datasets. First, we utilized D4 in synthetic toy examples, which form a single cluster with 200
976 data points. To simulate long-tail effects, outlier points were added uniformly within a square re-
977 gion in varying amounts of 20, 40, 60, 80, and 100 samples, while keeping the cluster size at 200 -
978 n_{outliers} . Each variant thus exhibits increasing imbalance between the dense Gaussian core and sparse
979 tail regions. Figure 7 demonstrates that PLDiv effectively handles the imbalanced dataset.
980



981
982
983
984
985
986
987
988
989 Figure 7: PLDiv can reliably predict diversity in imbalanced data, where diversity increases mono-
990 tonically.
991
992

993 D.2 IMPLEMENTATION OF k -DPP SAMPLING
994

995 To select a diverse subset of k instances, we implemented a k -Determinantal Point Process (k -DPP)
996 (Kulesza & Taskar, 2011). Two Gaussian clusters were generated and combined to form the dataset.
997 Each cluster consisted of 100 points drawn from a Gaussian distribution with means 0.5 and 0.6,
998 and a standard deviation of 0.05. An RBF kernel was computed using the median pairwise distance
as the bandwidth parameter:
999

$$1000 k_{ij} = \exp\left(-\frac{\|x_i - x_j\|^2}{2\sigma^2}\right)$$

1001 The kernel matrix was eigendecomposed, and the top- k eigenvectors corresponding to the largest
1002 eigenvalues were retained. Points were then iteratively sampled with probabilities proportional to
1003 the squared norms of these eigenvectors. After each selection, the eigenbasis was orthogonalized to
1004 maintain diversity. This procedure yielded k representative and diverse samples from the original
1005 dataset. Similarly, we applied the same approach to the ArXiv dataset to create the k-DPP sub-
1006 set. Table 5 presents the results of the diversity measures, illustrating how they capture the subtle
1007 differences between random selection and k-DPP selection.
1008

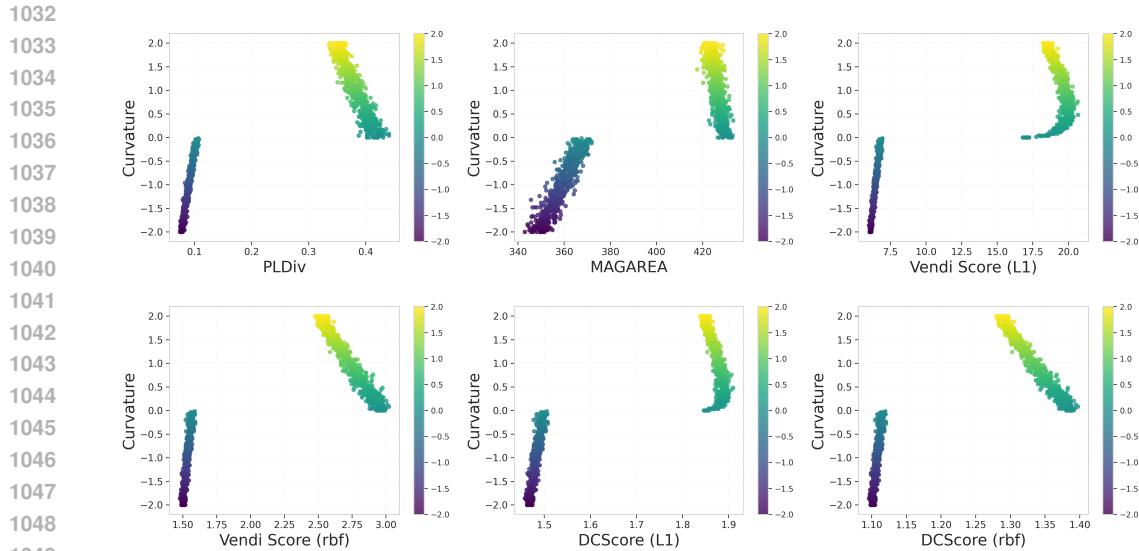
1009 Table 5: Performance comparison of subset selection
1010

1011 Task	1012 PLDiv	1013 Vendi Score	1014 DCScore	1015 MagArea
1012 simulation (random)	0.009	1.051	1.007	19.645
1013 simulation (KDPP)	0.018	1.099	1.016	23.340
1014 ArXiv (random)	25.392	39.729	2.132	40.507
1015 ArXiv (KDPP)	26.620	43.175	2.185	41.422

1016 D.3 IMPLEMENTATION OF CURVATURE EXPERIMENT
1017

1018 In Section 5.2, we evaluate PLDiv along with alternative diversity metrics on the curvature dataset
1019 (Turkes et al., 2022). The dataset consists of two-dimensional point clouds sampled from smooth
1020 surfaces with varying degrees of curvature. Each sample represents a set of points $\{x_i\}_{i=1}^n \subset \mathbb{R}^d$
1021 labeled by the curvature of the underlying manifold, either as discrete curvature classes or con-
1022 tinuous curvature values, ranging from -2 to 2. The task is to predict this curvature from the sampled
1023 points, assessing how well diversity measures capture geometric information such as local bending
1024 and shape variation. This setup allows controlled evaluation of geometric sensitivity, robustness to
1025 noise, and invariance under isometric transformations.
1026

1026 We employ a Support Vector Regression (SVR) model with a radial basis function (RBF) kernel,
 1027 using the parameters $C = 1.0$ and $\epsilon = 0.1$. This configuration is applied to all metrics (PLDiv,
 1028 Vendi Score, DCScore, and MagArea). MagArea uses Euclidean distance, while Vendi Score and
 1029 DCScore are evaluated with both RBF and Laplacian kernels. In contrast, PLDiv takes the curvature
 1030 data cloud as input and internally computes pairwise Euclidean distances. Table 1 and Figure 8
 1031 demonstrate that PLDiv exhibits a truly geometry-aware property.



1050 Figure 8: Visualizations of the diversity measures against the curvature labels show that PLDiv
 1051 achieves the best separation between positive and negative curvatures, providing clear evidence of
 1052 why it performs best in Section 5.2.

1054 D.4 IMPLEMENTATION OF TEXT EMBEDDINGS

1056 We evaluate PLDiv as a metric of semantic diversity using the dataset from Tevet & Berant (2021),
 1057 comprising 1,000 prompts from three tasks. Ten outputs per prompt were generated by varying
 1058 the softmax temperature (dec), and a subset of 200 prompts was human-annotated to obtain mean
 1059 diversity scores (*ABS-HDS*). Text embedding models we used are listed below:

- 1061 • all-MiniLM-L12-v2: general text embedding model, dimension 384
- 1062 • all-mpnet-base-v2: general text embedding model, dimension 768
- 1063 • bert-large-nli-stsb-mean-tokens: general text embedding model, dimension 1024
- 1064 • Qwen3-Embedding-4B: advanced LLM-based embedding models, dimension 2560
- 1065 • Qwen3-Embedding-8B: advanced LLM-based embedding models, dimension 4096

1068 Figure 9 represents Mean Squared Error (MSE) for linear regression that indicates the predictive ca-
 1069 pability for diversity metrics on softmax temperature dec and mean human annotated diversity score
 1070 (*ABD-HDS*). PLDiv achieves the lowest MSE in the temperature (dec) tasks across all embedding
 1071 models and remains among the lowest when evaluated on human-annotated scores.

1072 To explore the impact of the distance/similarity matrix, we applied both cosine distance/similarity
 1073 and Euclidean distance/RBF kernel as inputs in this experiment ihe temperature (dec) tasks. Fig-
 1074 ure 10 demonstrates that PLDiv consistently and reliably outperforms other metrics across various
 1075 embedding models and distance matrices. In contrast, switching from cosine similarity to the RBF
 1076 kernel significantly degrades the performance of alternative metrics, particularly DCScore.

1077 We present the correlation plots for text embedding temperature dec evaluation tasks in Figs. 11,
 1078 12, and 13. Across the three embedding tasks, PLDiv shows the best performance on all three
 1079 tasks: prompt, response, and story, exhibiting a linear relationship, while providing a non-linear
 relationship with softmax temperature dec .

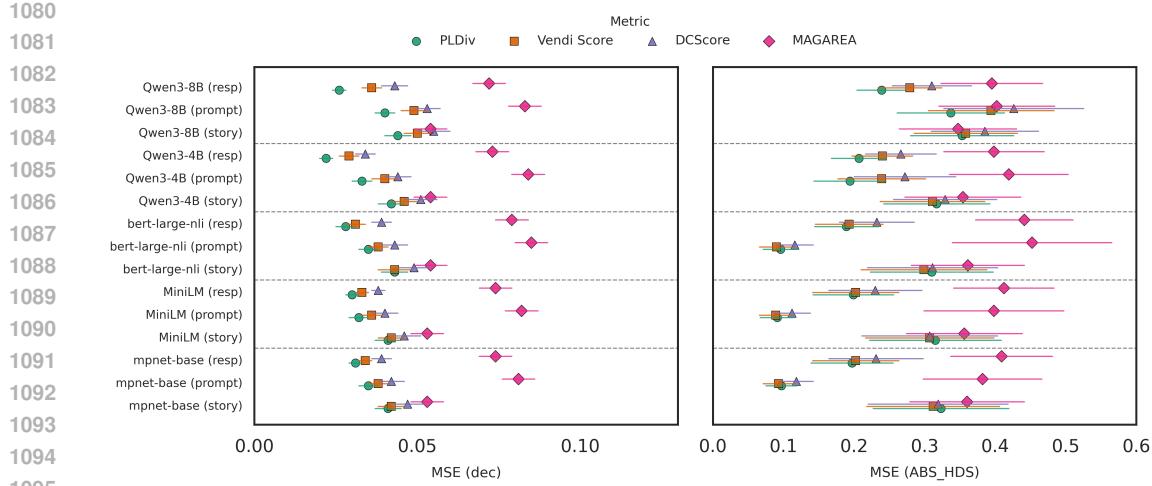


Figure 9: MSE for four metrics on both temperature dec and human diversity score $ABD\text{-}HDS$. PLDiv achieves the lowest MSE in the temperature (dec) tasks across all embedding models and remains among the lowest when evaluated on human-annotated scores.

D.5 IMPLEMENTATION OF IMAGE EMBEDDINGS

In Section 5.4, we evaluated the diversity measure to determine whether it can effectively capture the diversity introduced by the richness of labels. We employed Colored MNIST Deng (2012). Following the methodology of Ospanov et al. (2024), the number of labels served as the ground truth for diversity, where a higher label count signifies a more diverse set. We sampled half of the data from each class. Starting from class 1, we incrementally added samples from one additional class at a time, up to class 10, thereby forming 10 subsets. Comparisons are conducted against Vendi Score, Magnitude, and DCScore, using two embedding models: Inception V3 and ResNet-18. All metrics are tested on cosine distance or cosine similarity. Figure 5 and Table 6 show that PLDiv can effectively capture diversity encoded in image embeddings. PLDiv achieved comparable results with MagArea but is more computationally efficient.

Table 6: Pearson Correlation Comparison among diversity measures

Metric	CLIP Model	Inception Model
PLDiv	0.998	0.998
Vendi Score	0.371	0.222
DCScore	0.901	0.984
MagArea	0.997	0.998

D.6 DIVERSITY ASSESSMENT IN SYNTHETIC DATA CLOUDS DETAILS

We created eight pairs of synthetic scenarios, each containing about 200 points generated from parameterized geometric functions. Each pair modifies one specific geometric property by adding or removing loops, bridges, curvature, or hierarchical clustering, while maintaining a comparable overall spatial scale. Table 7 summarizes the data generation process for the eight synthetic point-cloud pairs used in Sec. 5.4. Each cloud contains approximately 200 points produced by explicit geometric or probabilistic functions (e.g., rings, Gaussian mixtures, sinusoidal manifolds). These datasets complement Table 8, which reports diversity metric values across the same scenarios.

E LIMITATIONS

While PLDiv demonstrates strong theoretical grounding and robust empirical performance across modalities, we acknowledge several limitations and areas for future improvement. First, computational cost is not the primary focus of this work. Although we proposed a sparse computation

1134 Table 7: Synthetic dataset pairs used for geometry-aware diversity evaluation. Each cloud contains
 1135 200 points.
 1136

1137 Pair	1138 A (less varied geometry)	1139 B (more varied geometry)
1140 Ring vs Disk	1141 Uniform points in filled disk	1142 Points on noisy circular rim (loop)
1143 Two Clusters vs Bridge	1144 Two separated Gaussian blobs	1145 Same blobs plus short bridge (connectivity)
Gaussian vs Nested	Single Gaussian	Inner Gaussian + outer ring (hierarchy)
Blob vs Crescent	Isotropic Gaussian cloud	Half-ring manifold (curvature)
Random Cloud vs Two Rings	Uniform on square $[0, 2]^2$	Two concentric noisy rings (multi-loop)
Blob vs Snake	Isotropic Gaussian	Sinusoidal curve with noise (manifold)
Filled vs Hole	Outer Gaussian + center points	Outer Gaussian with inner void (cavity)
Gaussian vs Hierarchical	Single broad Gaussian	Multi-level small clusters (multi-scale)

1146 Table 8: Comparison of diversity metrics across synthetic dataset pairs.
 1147

1148 Scenario	1149 Data	1150 PLDiv	1151 Vendi Score	1152 DCScore	1153 MagArea
1154 Ring vs Disk	A	0.064	8.702	2.437	125.732
1155 Ring vs Disk	B	0.262	8.746	1.957	140.620
1156 Two clusters vs Bridge	A	0.134	4.915	1.578	143.599
1157 Two clusters vs Bridge	B	0.150	5.132	1.585	153.364
1158 Nested vs Gaussian	A	0.123	7.696	1.906	141.750
1159 Nested vs Gaussian	B	0.623	9.641	1.878	142.509
1160 Crescent vs Blob	A	0.030	5.025	1.919	127.702
1161 Crescent vs Blob	B	0.147	4.469	1.450	136.976
1162 Two rings vs Random cloud	A	0.176	11.569	2.257	132.447
1163 Two rings vs Random cloud	B	0.551	15.436	2.583	140.364
1164 Snake vs Blob	A	0.027	4.405	1.827	141.067
1165 Snake vs Blob	B	0.156	4.589	1.455	142.696
1166 Hole vs Filled	A	0.096	3.458	1.342	128.140
1167 Hole vs Filled	B	0.101	3.559	1.352	122.926
1168 Hierarchical vs Gaussian	A	0.222	4.048	1.824	63.258
1169 Hierarchical vs Gaussian	B	0.420	7.972	1.768	139.101

1165 that significantly reduces both time and memory requirements, PLDiv remains computationally in-
 1166 tensive than lightweight alternatives such as DCScore. Our contribution emphasizes accuracy and
 1167 geometric faithfulness rather than speed, and we recognize that there is room for further algorithmic
 1168 optimization.

1169 Second, PLDiv currently employs the Vietoris–Rips filtration as its default topological construction.
 1170 While this choice offers broad applicability and simplicity, alternative filtrations, such as Čech,
 1171 Alpha Complex, etc, may capture structure more effectively in specific domains. Exploring these
 1172 variants could further increase the flexibility of PLDiv.

1173 Third, PLDiv balances fine-grained local feature capture with preservation of global geometric struc-
 1174 ture, governed by the maximum-edge parameter. In our experiments, a single global setting was
 1175 sufficient, though in other specific cases, this parameter may need tuning to balance local sensitivity
 1176 and computational efficiency.

1177 F COMPUTATIONAL ENVIRONMENT

1178 All experiments were conducted on a high-performance computing server equipped with an AMD
 1179 EPYC 7413 24-Core Processor and an NVIDIA A100-80GB GPU. The software environment was
 1180 built using Python 3.11. For text embedding, we utilized Hugging Face Sentence Transformers as
 1181 the embedding model framework.

Table 9: Additional Computation time comparison. (the value scale in seconds)

Method	Curvature (1.1K)	Colored MNIST (10k)
Vendi Score	21.9	5.8
DCScore	2.3	1.3
MAGAREA	644.5	218.8
PLDiv	135.2	114.3
Sparse PLDiv	48.0	49.0
Sparse PLDiv (Closed Form)	8.2	15.7

Table 10: Sparse estimation results vs. full matrix results for the Colored MNIST experiment

Subset	Sparse PLDiv ($\epsilon = 0.3$)	Sparse PLDiv ($\epsilon = 0.8$)	Full Matrix
1	0.45	0.45	0.45
2	0.77	0.77	0.77
3	1.17	1.18	1.17
4	1.48	1.48	1.48
5	1.86	1.86	1.86
6	2.09	2.09	2.09
7	2.46	2.47	2.46
8	2.88	2.89	2.88
9	3.32	3.33	3.33
10	3.69	3.69	3.69

Figure 10: Diversity metric performance is evaluated across different distance/similarity matrices. For Vendi Score and DCScore, the Euclidean setting corresponds to the RBF kernel. PLDiv consistently and reliably outperforms other metrics across various embedding models and distance matrices.

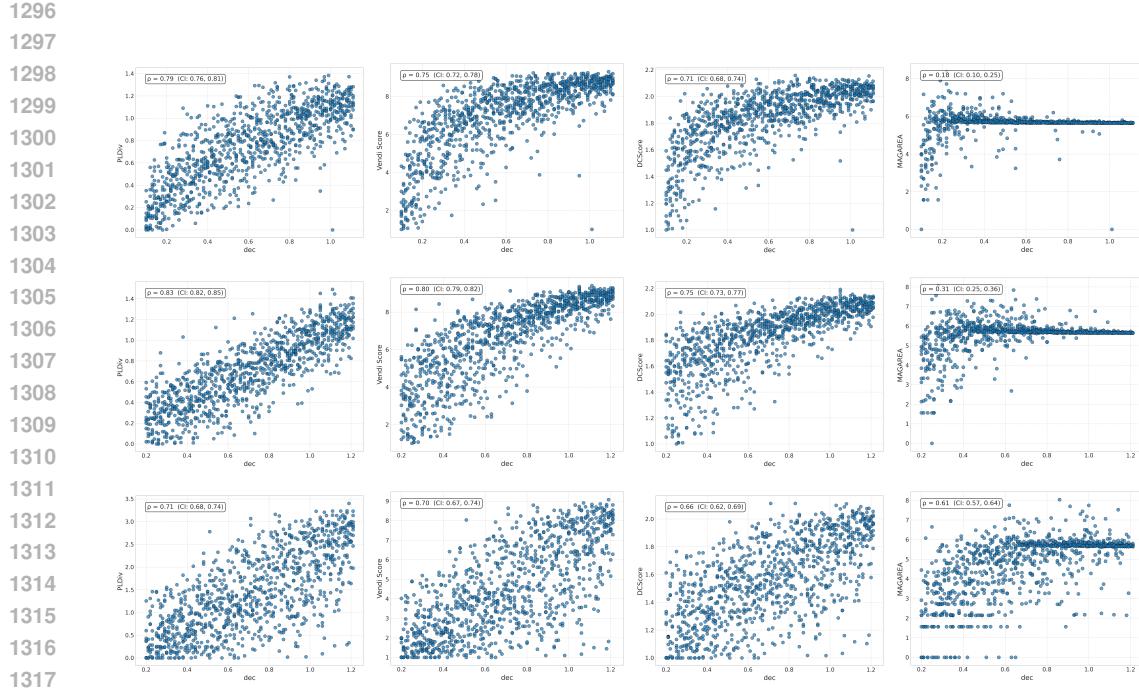


Figure 11: Correlation results for embeddings model: “bert-large-nli-stsb-mean-tokens” across three tasks: Row 1 shows prompt, Row 2 shows response, and Row 3 shows story. Columns 1–4 represent the results for PLDiv, VS, DCS, and MagArea, respectively.

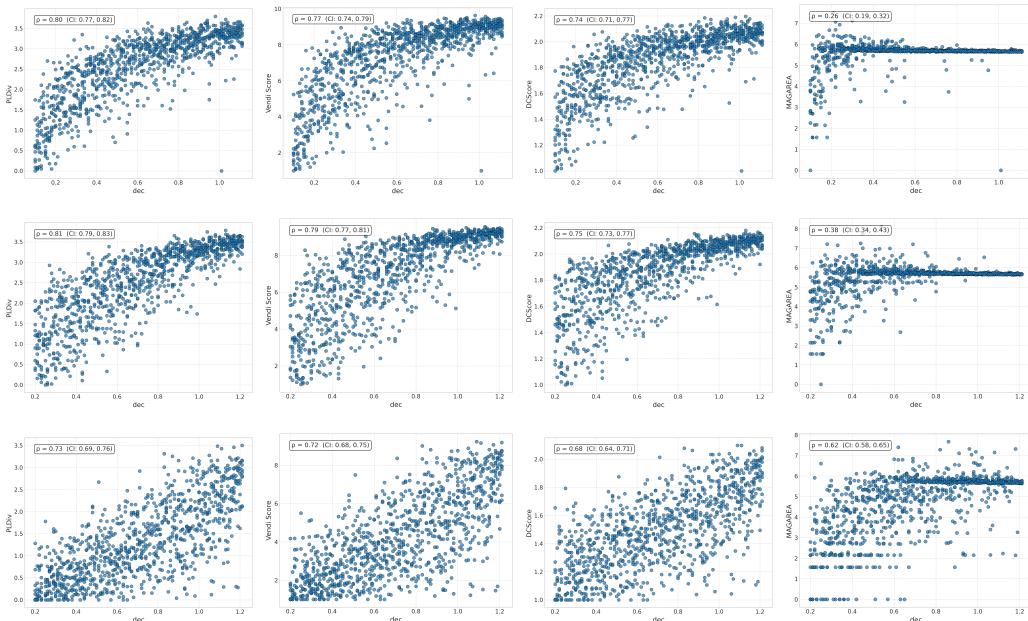


Figure 12: Correlation results for embeddings model: “all-MiniLM-L12-v2” across three tasks: Row 1 shows prompt, Row 2 shows response, and Row 3 shows story. Columns 1–4 represent the results for PLDiv, VS, DCS, and MagArea, respectively.

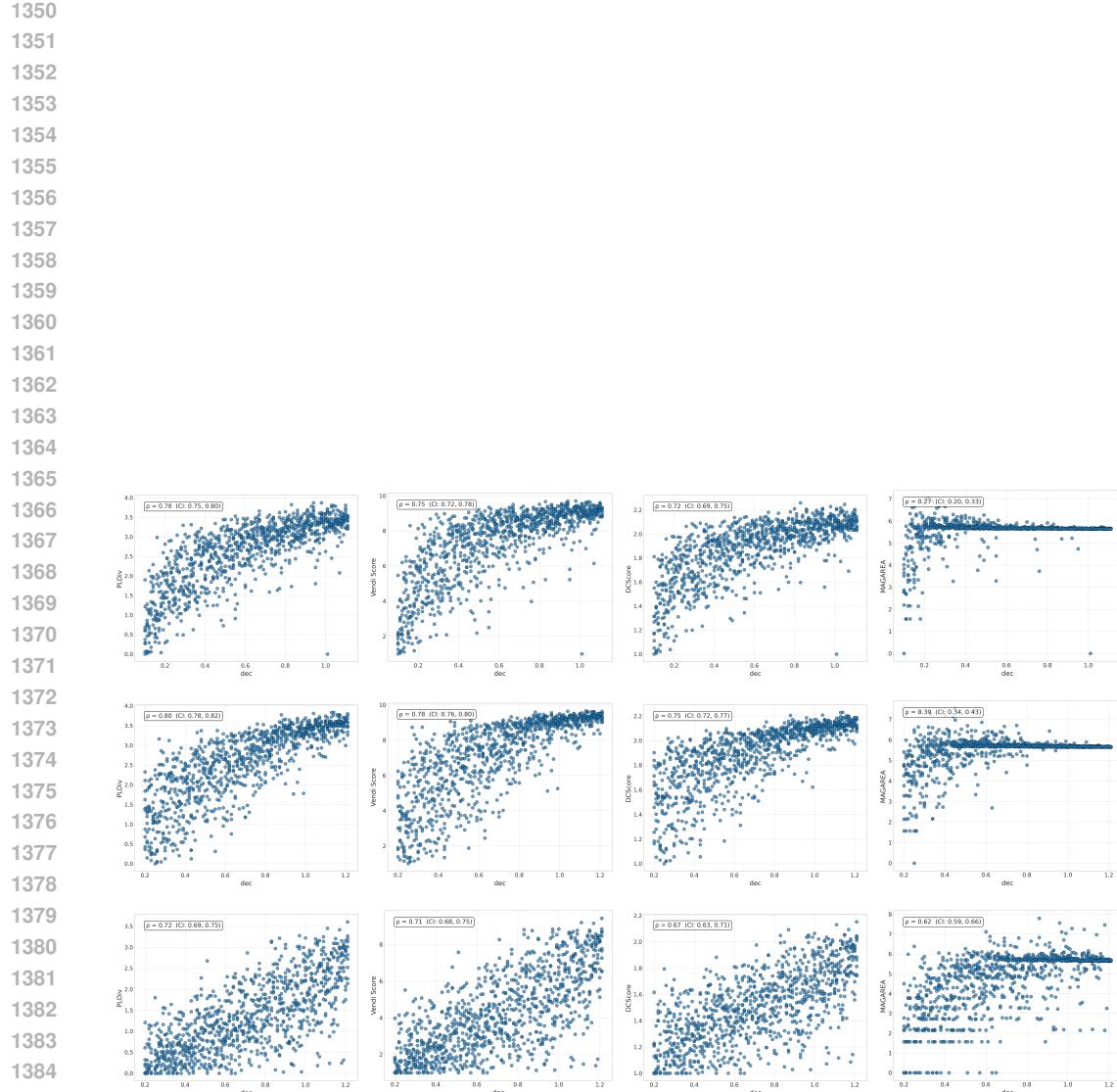


Figure 13: Correlation results for embeddings model: “all-mpnet-base-v2” across three tasks: Row 1 shows prompt, Row 2 shows response, and Row 3 shows story. Columns 1–4 represent the results for PLDiv, VS, DCS, and MagArea, respectively.