
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GEOMETRY-AWARE METRIC FOR DATASET DIVER-
SITY VIA PERSISTENCE LANDSCAPES

Anonymous authors
Paper under double-blind review

ABSTRACT

Diversity can be broadly defined as the presence of meaningful variation across
elements, which may be viewed from multiple perspectives, including statisti-
cal variation and geometric structural richness in the dataset. Existing diversity
metrics, such as feature-space dispersion and metric-space magnitude, primarily
capture distributional variation or entropy, while largely neglecting the geomet-
ric structure of datasets. To address this gap, we introduce a framework based
on topological data analysis (TDA) and persistence landscapes (PLs) to extract
and quantify geometric features from data. This approach provides a theoretically
grounded means of measuring diversity beyond entropy, capturing the rich geo-
metric and structural properties of datasets. Through extensive experiments across
diverse modalities, we demonstrate that our proposed PLs-based metric (PLDiv)
is powerful, flexible, and interpretable, directly linking data diversity to its under-
lying geometry and offering new insights for dataset construction, augmentation,
and evaluation.

1 INTRODUCTION

Life itself depends on diversity, as an ecosystem may collapse when a few species vanish, yet a
single new species may reshape balance by either enriching resilience or triggering instability. In
machine learning and artificial intelligence, data diversity plays the same essential role. Studying
diversity has long been a central concern at nearly every stage of ML/AI: from data collection
to ensure representational balance, to data and model evaluation for fairness and robustness (Rolf
et al., 2021; Clemmensen & Kjærsgaard, 2022; Kim et al., 2025), to model training where variation
prevents overfitting, and to model generalization, where data diversity reduces the gap between
training distributions and real-world deployment (Liu & Zeldes, 2023; Ortega et al., 2022; Yu et al.,
2022; Bian & Chen, 2021; Wang et al., 2020). It is well known that exposure to a wide range of
data structures, styles, and semantic patterns supports the learning of more abstract, transferable
representations, allowing for more capable and resilient models (Rebuffi et al., 2021; Shorten &
Khoshgoftaar, 2019; Zhang, 2017). Recent work further demonstrates that diversity in training data
influences the weight matrices of neural networks, directly affecting both in-distribution and out-of-
distribution performance (Ba et al., 2024).

Yet beyond performance, a newer—and arguably more urgent—motivation for us to study diver-
sity is the need to confront a growing risk. Today’s generative models are trained on overlapping,
internet-scale corpora, then reused and adapted across countless applications. As these models are
increasingly integrated into real-world writing, content creation, visual and audio materials, and
codes, their outputs feed back into the very data streams that will train the next generation of mod-
els. Recent studies show that alignment-tuned models such as InstructGPT already exhibit signif-
icant reductions in lexical and conceptual diversity (Padmakumar & He, 2023). Unlike traditional
data limitations, this homogenization is self-reinforcing: models trained on uniform outputs further
reinforce uniformity in subsequent models (Bertrand et al., 2023; Alemohammad et al., 2024). The
danger is not limited to text generation, as the same internet-scale sources, standardized pipelines,
and optimization objectives underpin generative models across all data modalities. Combined with
algorithmic feedback loops, platform-driven content shaping, and widespread reuse of foundation
models, these forces may steadily contract the expressiveness and conceptual space of generative AI
at scale.
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At this stage, diversity is no longer just a desirable property; it has become a boundary condition
for innovation, adaptability, and human-centered AI design. Meeting this challenge requires us
to understand what real diversity is and be able to measure it. Reliable measurement allows us
not only to detect the narrowing trajectories of generative models, but also to design interventions
that can preserve and promote diversity. This understanding, in turn, can guide future efforts to-
ward diversity-aware data collection, synthetic data generation, data augmentation strategies, and
dataset–task alignment.

To quantify diversity, metrics such as the Vendi Score (Dan Friedman & Dieng, 2023) have been in-
troduced, drawing inspiration from “community diversity” in ecology and biology (Daly et al., 2018;
Leinster, 2021). Recently, measures based on magnitude (Limbeck et al., 2024) and probability-
distribution views of similarity matrices (Zhu et al., 2025) have also been proposed. These methods
are valuable, but none of them genuinely considers data from a geometric perspective, even when
they claim to capture some geometric information.

We envision a deeper link between the geometric structure of data and its diversity. For instance, as
a fundamental geometric property, curvature is inherently linked to diversity (Limbeck et al., 2024):
positive curvature, as on a sphere, compresses points and restricts possible configurations, while
negative curvature, as in hyperbolic geometry, spreads space out faster, enabling richer variation.
Topological data analysis (TDA) provides tools to capture the shape of data, encoding its structural
geometry. By recognizing the connection between the persistent homology (PH) merging process
(Edelsbrunner et al., 2002; 2008) and agglomerative hierarchical clustering (Murtagh & Contreras,
2012), we employ a vectorized representation of PH called the persistence landscapes (PLs) to es-
timate diversity. We compute the cumulative integral of their tent functions, which is referred to as
persistence landscapes-based diversity (PLDiv), as shown in Fig. 1. PLDiv has a clear intuition,
strong theoretical support, and interpretable results.

Figure 1: Illustration of PLDiv on four synthetic datasets. D1: uniformly scattered points; D2: less
evenly spread distribution; D3: two separated clusters; D4: a single compact cluster with mini-
mal diversity. We extract H0 features via persistent homology, where lifetimes measure how long
clusters persist before merging with their closest neighbors. Persistence landscapes capture these
patterns, and PLDiv, defined as the sum of their integrals, reflects both scale and persistence, align-
ing with the datasets’ decreasing diversity.

Our contributions are summarized as follows:

• We propose a persistence landscape-based diversity measure, PLDiv. The core idea is that
persistence homology encodes geometric information; thus, PLDiv highlights the value of
topological features that play a key role in capturing meaningful structural patterns.

• We establish the theoretical foundations of PLDiv by proving that it satisfies multiple diver-
sity axioms postulated by Leinster & Cobbold (2012), thereby ensuring its interpretability
and principled behavior.

• Through comprehensive experiments across various tasks and data modalities, we demon-
strate that PLDiv captures geometrical and structural diversity more effectively than con-
ventional entropy-based approaches and offers practical advantages in robustness and in-
terpretability.
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To the best of our knowledge, we are the first to apply TDA concepts to measuring data diversity.
Our study provides a novel approach to data diversity measurement and offers both the theoretical
foundation and interpretability for a data geometry-aware diversity measure.

2 RELATED WORK

2.1 DIVERSITY MEASUREMENT

Several reference-based metrics compare generated data with human or gold-standard corpora. The
Fréchet Inception Distance (FID) (Heusel et al., 2017) and related Inception Score were among the
first to use pretrained embeddings to measure alignment between real and synthetic data distribu-
tions. More recently, MAUVE (Pillutla et al., 2021) quantified distributional gaps between model
and human text, while precision–recall metrics (Kynkäänniemi et al., 2019; Bronnec et al., 2024)
provided a decomposition into fidelity (precision) and diversity (recall). Extensions such as density
and coverage metrics (Naeem et al., 2020) improved robustness against outliers and unstable density
estimates. Nevertheless, these methods are fundamentally tied to reference datasets, often entangle
fidelity with diversity, and remain sensitive to embedding choices or manifold approximations.

A different line of work has explored representation-level measures that aim to be reference-free.
Early proposals such as diversity, density, and homogeneity Lai et al. (2020) assessed dispersion
in embedding spaces, but they remained limited to simple distributional statistics. More principled
approaches emerged with entropy- or kernel-based methods: the Vendi Score (Dan Friedman &
Dieng, 2023) measures diversity as the exponential of Shannon entropy derived from the similarity
spectrum, while Renyi Kernel Entropy (RKE) and its variant RRKE (Jalali et al., 2023) extend this
perspective using quantum information theory. However, such approaches often require expensive
eigenvalue or singular-value decompositions, limiting their scalability to large datasets. Building on
efficiency and separability, DCScore (Zhu et al., 2025) reframes diversity measurement as a clas-
sification problem, avoiding eigenvalue computations and yielding faster, more scalable estimates.
Complementary to this, magnitude-based methods (Limbeck et al., 2024) quantify effective dataset
size across scales, offering metrics such as MAGAREA (reference-free) and MAGDIFF (reference-
based). While these methods provide multi-scale summaries, they depend on tuning scale parameters
and still abstract away the geometric or topological structures that can differentiate datasets with the
same dispersion.

2.2 PERSISTENT HOMOLOGY

Persistent Homology (PH) (Edelsbrunner et al., 2002; 2008) is a central tool in TDA for uncovering
the underlying shape of data, typically represented as point clouds. By constructing nested simpli-
cial complexes across scales and applying homology, PH tracks the birth and death of topological
features such as connected components, loops, and voids. The result is a multi-scale summary, often
visualized as barcodes or persistence diagrams, which distinguishes significant long-lived features
from noise and is provably stable to perturbations.

Building on these foundations, subsequent efforts have explored scalar invariants and geometric
inference from persistence. Govc & Hepworth (2021) introduced persistent magnitude, a signed,
exponentially weighted sum over barcode intervals that refines classical magnitude theory. This ap-
proach provides interpretable scalar summaries encoding geometric complexity, including curvature,
but it compresses the full topological signature into a single number, limiting its ability to capture
heterogeneity or higher-order organization. In parallel, Bubenik et al. (2020) demonstrated that per-
sistence can recover curvature information from sampled manifolds by combining diagrams with
persistence landscapes, showing that even short-lived features carry meaningful geometric signals.
While powerful, this line of work primarily targets smooth continuous geometry rather than irregu-
lar or combinatorial variation common in real-world datasets. Together, these directions underscore
the expressive capacity of PH, yet also highlight an open gap: existing uses either oversimplify per-
sistence or focus narrowly on geometric inference, leaving the systematic role of PH in quantifying
dataset diversity underexplored.
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Figure 2: Illustration of the PLDiv pipeline. Using a data cloud or its distance matrix, we build a
filtration of simplicial complexes and track the birth and death of H0 components by persistent ho-
mology. The resulting persistence diagram is then used to calculate persistence landscapes. Lastly,
PLDiv is obtained by integrating these landscapes and provides a metric for the dataset diversity.

3 PRELIMINARIES

3.1 PERSISTENCE DIAGRAMS

PH provides a multiscale description of the topological structure of data. Starting from a point cloud
X = {x1, . . . , xn}, it builds a nested sequence of simplicial complexes (a filtration), such as the
Vietoris–Rips filtration. This filtration can be understood as growing balls (or “bubbles”) of radius r
around each data point and increasing r gradually. As the radius grows, the bubbles begin to overlap,
creating higher-dimensional simplices (see Fig. 2). In this process, new topological features such
as connected components, loops, and voids appear and eventually vanish when the bubbles merge
or fill in. This viewpoint highlights that persistent homology captures how the topology of the data
evolves across scales of the underlying radius parameter.

Formally, each topological feature is associated with a birth time bi, the smallest radius at which it
appears, and a death time di, the radius at which it disappears (for instance, when two connected
components merge or when a loop becomes filled). The difference ℓi = di − bi is called the lifetime
(or persistence) of the feature and quantifies its robustness across scales.

The output of persistent homology is summarized in a persistence diagram, defined as the multiset

D = {(bi, di)}mi=1, bi < di,

where each point (bi, di) represents the birth and death scales of a feature. The diagram is typically
plotted in the plane R2, with each feature as a point above the diagonal b = d. Features with long
lifetimes (points far from the diagonal) are often interpreted as meaningful structural signals in the
data, while short-lived features (points near the diagonal) are commonly attributed to noise. Per-
sistence diagrams thus provide a compact and interpretable summary of the multiscale topological
properties of the dataset.

3.2 PERSISTENCE LANDSCAPES

Although persistence diagrams provide a geometric summary of topological features, they are mul-
tisets, represented by points on a plane, which makes it challenging to apply classical statistical and
machine learning techniques directly. To address this problem, Bubenik et al. (2015) introduced
persistence landscapes, a functional summary of persistent homology that embeds the information
of a persistence diagram into a Banach space, enabling the use of standard statistical tools.

Given a persistence diagram D = {(bi, di)}mi=1, we first associate each birth-death pair (bi, di) with
a piecewise linear “tent” function.

λ(b,d)(t) =


t− b, b ≤ t ≤ b+d

2 ,

d− t, b+d
2 < t ≤ d,

0, otherwise.
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This function attains its maximum value, di−bi
2 , at the midpoint of the interval. The persistence

landscape is then defined as the sequence of functions

λk(t) = k-th largest value among {λ(bi,di)(t)}
m
i=1, k = 1, 2, . . .

for each t ∈ R. Thus, λ1 records the largest “tent” value at each t, λ2 records the second largest,
and so forth. Collectively, the functions {λk}k≥1 constitute the persistence landscape.

Persistence landscapes inherit stability from persistence diagrams and have the advantage of lying
in the Lp function space. The persistence landscape is a vectorized form of a persistence diagram,
equivalent to a 45° rotation that preserves all information, with X = (d + b)/2 and Y = (d − b)/2
(see Fig. 2).

4 METHODOLOGY

4.1 DIVERSITY MEASURE VIA PERSISTENCE LANDSCAPES

Definition 4.1. Let X = {x1, . . . , xn} be a dataset and let Λ(X ) = {λk}k≥1 denote its persistence
landscape obtained from persistent homology. The persistence landscapes based diversity score,
PLDiv(X ), is defined as

PLDiv(X ) =

∞∑
k=1

∫
R
λk(t) dt. (1)

The summation is typically finite, as only a finite number of λk terms are actually non-zero.
PLDiv(X ) measures the cumulative “area under the triangles” of the persistence landscape and
quantifies the richness of topological features across all scales.

Proposition 4.2. A closed form of PLDiv can be derived. Let D = {(bi, di)}mi=1 be the set of
birth–death pairs produced by persistence homology, then

PLDiv(X ) =

∞∑
k=1

∫
R
λk(t) dt =

m∑
i=1

∫
R
λ(bi,di)(t) dt =

1

4

m∑
i=1

(di − bi)
2.

Proof. Each tent function with its supports on the interval [bi, di] is a symmetric isosceles triangle
of base length di − bi and height (di − bi)/2, hence its area is∫

R
λ(bi,di)(t) dt = 1

2 · (di − bi) · di−bi
2 =

(di − bi)
2

4
.

Summing them yields the closed form above. We provide a detailed proof in Appendix C.

Remark 4.3. The area under λk measures both the scale and the persistence of topological features,
representing how long and how strongly features persist across scales. Summing across k aggregates
contributions across all topological structures, capturing both local fluctuations (short lifetimes) and
global connectivity (long lifetimes).

Remark 4.4. A large PLDiv(X ) indicates that features such as clusters or loops are well-separated
and persist across scales, reflecting high structural diversity. Conversely, a smaller value corresponds
to a dataset where data points collapse quickly into clusters, eliminating persistent features. In par-
ticular, by Proposition 4.2, PLDiv (X ) coincides with the second moment of lifetimes of topological
features, up to scaling.

Remark 4.5. Since the persistence landscape lies in Lp(R), the integral
∫
R λk(t) dt can be inter-

preted as the “expected persistence” of the k-th most prominent feature across random scales t.
From the probabilistic perspective, PLDiv(X ) represents the total expected persistence across all
topological features, analogous to computing an energy functional over the data manifold.

PLDiv(X ) should be understood as a holistic measure of dataset complexity. Unlike conventional
approaches in topological data analysis that treat short-lived features as noise, this measure incorpo-
rates the full spectrum of topological features, emphasizing that both long- and short-lived structures
contribute to the geometry of the data (follows the insights in Turkes et al. (2022)). In this sense,
PLDiv(X ) provides a unified framework that balances mathematical rigor with interpretability.
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In practice, there are many choices for the filtration and the degree of persistent homology. For most
tasks, 0-dimensional persistent homology is sufficient, because it efficiently captures the connectiv-
ity structure of the dataset while keeping computational costs low. Therefore, our metric (PLDiv) is
computed based on H0 features in the following experiments.

4.2 AXIOMATIC PROPERTIES OF DIVERSITY

Among core diversity axiomatic properties provided by Leinster & Cobbold (2012) and Leinster
(2021), our proposed diversity measure, PLDiv, satisfies four fundamental axioms: effective size,
monotonicity, twin property, and symmetry. These axioms provide a foundation for reasonable and
robust diversity evaluation. A description of these axioms is provided below, while the formal proofs
of these properties on PLDiv are presented in Appendix C.

• Effective size. For a fixed number of points, PLDiv(X ) increases when data points are
well-separated and decreases as they cluster, reaching a maximum when all points are dis-
tinct and a minimum when all are identical.

• Monotonicity. Decreasing similarity increases diversity. Fix n and let X be a point cloud
in a metric space. If all pairwise distances in X are scaled by a factor α > 1 (i.e. replace
the metric d(·, ·) by αd(·, ·)), then

PLDiv(αX ) > α2 PLDiv(X ) if α > 1, and vice versa.

• Twin property. Adding an exact duplicate of a point does not change PLDiv(X ). The
duplicate induces a trivial birth–death pair (0, 0), contributing zero to the diversity score.
Let X be a dataset and let xi ∈ X . For the set X ′ = X ∪{xn} where xn = xi, the diversity
is unchanged:

PLDiv(X ′) = PLDiv(X ).

• Symmetry. PLDiv is invariant to the ordering of data points (permutation invariance).
Since persistent homology depends only on the metric structure of X and PLDiv(X ) is
computed from the multiset of intervals {(bi, di)}, relabeling or reordering points does not
affect the value of the score. Let X = (x1, . . . , xn) be an ordered sequence of points and let
π be any permutation of {1, . . . , n}. For the permuted sequence Xπ = (xπ(1), . . . , xπ(n)),
we have

PLDiv(Xπ) = PLDiv(X ).

5 EXPERIMENT & ANALYSIS

5.1 CAPTURING DIVERSITY IN SUBSET SELECTION

A long-standing challenge in diversity measurement is the absence of ground truth labels. The
issue is especially significant for complex data modalities such as text, where objective evaluation is
difficult. To validate our diversity measure, we use outputs of a Determinantal Point Process (DPP)
(Kulesza et al., 2012), a probabilistic model that favors selecting diverse subsets from a larger set.
Instead of treating all subsets equally, DPP picks those where the elements are dissimilar to one
another. Specifically, it works by first measuring the similarity between every pair of points in the
dataset using a kernel. Subsets that contain points that are very similar to each other are less likely
to be chosen, while subsets with points that are more distinct are more likely. This guarantees that
DPP produces a diverse subset, making it particularly effective as ground truth for evaluating data
diversity.

We apply k-DPP (Kulesza & Taskar, 2011) (selecting k diverse samples from the entire set) to both a
simulation and the ArXiv-10 dataset (Farhangi et al., 2022). In the simulation, we construct a dataset
of 200 points arranged into two adjacent clusters, with 100 points per cluster, from which 30 data
points are selected. Additionally, we sample 100 data points from the first 1,000 instances of the
ArXiv dataset and vectorize them using the text embedding model “all-MiniLM-L6-v2”. In both ex-
periments, we use both uniform random sampling and k-DPP for comparison, using the Radial Basis
Function (RBF) kernel for the simulation and cosine similarity for the similarity matrix construction
in DPP for the ArXiv dataset. As shown in Fig. 3, our metric PLDiv effectively quantifies the higher
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Figure 3: k-DPP selects a k-diverse subset from the entire dataset. The two plots on the left present
results from simulated data: the first one shows random sampling, while the second one shows k-
DPP. The two plots on the right correspond to the ArXiv dataset, with the first one showing random
sampling and the second one showing k-DPP. Data points selected by KDPP are scattered more
diversely compared to random sampling. PLDiv can successfully capture these subtle differences.

diversity of the DPP-sampled subset compared to the random one, demonstrating its effectiveness.
This suggests that PLDiv effectively captures diversity in the metric space, reflecting even small
variations and making it well-suited for comparing data diversity across different datasets.

5.2 CHARACTERIZING GEOMETRY WITH CURVATURE

As a fundamental property in geometry, curvature quantifies the extent to which a manifold deviates
from being flat, thereby governing the behavior of distances within that space. Curvature inherently
relates to diversity (Limbeck et al., 2024): On positively curved spaces, such as spheres, data points
concentrate and the variety of configurations is reduced; while on negatively curved spaces, such as
hyperbolic disks, distances spread apart more quickly, creating a greater range of possible arrange-
ments. Being able to recover curvature from point clouds offers a principled way to validate whether
a diversity measure is geometry-aware, rather than relying solely on pairwise dissimilarities. This is
important because modern representation learning often places data in non-Euclidean spaces, such as
spherical or hyperbolic embeddings, where curvature plays a key role in structuring similarity. A di-
versity measure sensitive to curvature ensures better representation of the data manifold’s geometry.

Table 1: PLDiv estimates curvature

Method MSE (↓)

SVR(Vendi Score, L1 kernel) 0.229 ± 0.042
SVR(Vendi Score, RBF kernel) 0.053 ± 0.004
SVR(DCScore, L1 kernel) 0.134 ± 0.019
SVR(DCScore, RBF kernel) 0.052 ± 0.004
SVR(MAGAREA, Euclidean) 0.120 ± 0.010

SVR(PLDiv) 0.039 ± 0.001
SVR(Sparse PLDiv) 0.040 ± 0.001

To this end, we compare PLDiv against sev-
eral established metrics, including Vendi Score,
DCScore, and MAGAREA on the dataset
(Turkes et al., 2022), by computing similarity
scores from the data and using these scores as
features to regress the curvature labels. We em-
ploy an SVR (support vector regression) model
with an RBF kernel and perform 5-fold cross-
validation. For Vendi Score and DCScore, we
consider both L1 distance and RBF as similar-
ity functions, whereas MAGAREA uses the de-
fault Euclidean distance. Table 1 indicates that
the performance of other metrics, such as Vendi
Score and DCScore, is highly dependent on the choice of similarity functions, and PLDiv is the
strongest predictor for capturing data geometric structure. The Sparse PLDiv uses the sparse Rips
filtration to reduce computation efforts (see Section 5.6).

5.3 SEMANTIC DIVERSITY IN TEXT EMBEDDINGS

We investigate the utility of PLDiv as a measure of semantic diversity encoded in text embeddings.
We use the dataset from Tevet & Berant (2021), which contains 1,000 sets of 10 sentences gener-
ated from unique prompts across three distinct tasks: story completion (story), dialogue response
generation (resp), and three-word prompt completion (prompt). For each prompt, 10 candidate out-
puts were produced by varying the softmax temperature dec, resulting in a dataset comprising 1,000
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prompts, each associated with 10 output sentences. Subsequently, human evaluators annotated a
subset of 200 prompts, with 10 responses per prompt, to obtain the mean human evaluation score
(ABS-HDS), forming the human dataset. Dec demonstrates the trade-off between quality and di-
versity in text generation, as lower temperatures increase fidelity by discouraging low-probability
tokens, but at the cost of diversity in sampling. ABS-HDS serves as the ground truth reflecting how
humans perceive text diversity. Accordingly, we use linear regression with 5-fold cross-validation
to analyze the relationship between response diversity measurements and temperature settings (as
a proxy for diversity in the dec dataset) or the human diversity scores (in the ABS-HDS dataset),
assessed using R2 and MSE. In addition, we compute Pearson’s correlation and perform 1,000
bootstrap iterations to derive confidence intervals. Each response set is embedded using five mod-
els: “bert-large-nli-stsb-mean-tokens”, “all-MiniLM-L12-v2”, and “all-mpnet-base-v2”, “Qwen3-
Embedding-4B”, and “Qwen3-Embedding-8B”.

Figure 4: Demonstration that PLDiv achieves superior performance over alternative diversity metrics
in predicting ground-truth diversity across tasks and embedding models. Points with different shapes
denote to mean R2 and correlation scores, with error bars indicating standard deviations across 5
repeated cross-validation trials. Experiments with ABS-HDS exhibit larger error bars due to its
smaller sample size.

Fig. 4 visualizes the R2 and correlation results across all tasks and embedding models. PLDiv
consistently outperforms all other metrics across tasks and embedding models in temperature-based
evaluations. It also demonstrates superior performance in dialogue response generation across all
models, as well as in evaluations on two recent embedding models (Qwen3-4B and Qwen3-8B)
for all tasks assessed by human judgments. Moreover, PLDiv performs comparably to the Vendi
Score in both story completion tasks and prompt tasks for human evaluations, while outperforming
DCScore and MagArea. Detailed MSE results and performance analyses under different distance
matrix settings are provided in Appendix D.4. Overall, these results demonstrate that PLDiv effec-
tively captures the semantic diversity encoded in text embeddings.

5.4 DIVERSITY EVALUATION FOR IMAGE EMBEDDINGS

To demonstrate PLDiv’s efficacy for image dataset evaluation, we tested it on Colored MNIST
(Deng, 2012). Following the methodology of Ospanov et al. (2024), the number of labels served
as the ground truth for diversity, where a higher label count signifies a more diverse set. Compar-
isons are conducted against Vendi Score, Magnitude, and DCScore, using two embedding models:
Inception V3 and ResNet-18. Starting with a single class, we iteratively add one class at a time based
on the previous data until all 10 classes are included. To facilitate a direct comparison, each metric
was subsequently normalized to the [0, 1] interval (Min–max). This linear transformation preserves
the underlying trends and the correlation of each score against the number of classes present in the
evaluation.

In Fig. 5, both PLDiv and MAGAREA exhibit a consistent and reliable correlation with the number
of classes, aligning closely with the diagonal representing perfect correlation. PLDiv, however,
offers faster computation and slightly higher correlation. DCScore follows, showing comparable
performance with one embedding model but greater variance with the other. In contrast, Vendi Score
tends to decrease as the number of classes and data increases. This indicates that the geometry-aware
property of PLDiv makes it particularly well-suited for vision tasks, where embeddings often encode
the geometric structure of images.
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Figure 5: PLDiv shows a near-perfect correlation with the amount of the class involved in the dataset
and remains consistent across different embedding models. MAGAREA performs next best, fol-
lowed by DCScore, which exhibits some fluctuations in performance. VS, however, fails to capture
the underlying patterns in the data.

5.5 DIVERSITY ASSESSMENT IN SYNTHETIC DATA CLOUDS

To demonstrate that PLDiv serves as a geometry-aware diversity metric, we simulated eight pairs of
two-dimensional point clouds (A, B), each containing about 200 points generated from parameter-
ized geometric functions described in Appendix Table 7. Each pair modifies one specific geometric
property by adding or removing loops, bridges, curvature, or hierarchical clustering, while main-
taining a comparable overall spatial scale. These controlled scenarios allow a direct comparison of
how different metrics respond to structural variation rather than random dispersion.

We computed PLDiv, Vendi Score, DCScore, and MagArea on Euclidean distance matrices for each
dataset. A metric is considered consistent if it assigns a higher diversity value to the configuration
exhibiting richer geometric organization. PLDiv meets this criterion across all eight cases, while
Vendi Score and MagArea do so in seven and DCScore in only three. Moreover, PLDiv produces
sharper and directionally coherent contrasts between paired clouds. For instance, Ring vs Disk
and Nested vs Gaussian exhibit strong PLDiv separation that quantitatively reflects the presence
or loss of loops, whereas the other metrics change only slightly. The difference arises from what
each measure encodes: Vendi Score and DCScore emphasize global similarity spectra or density
separation, and MagArea summarizes scale magnitude but not connectivity. PLDiv, by integrating
the persistence of topological features across filtrations, captures differences that are geometrically
meaningful and also visually intuitive, as illustrated in Fig. 6.

5.6 COMPUTATION COMPLEXITY

In this section, we analyze the computational cost of our proposed metric compared with existing
approaches. When the input is a point cloud X ∈ Rn×d, computing all pairwise distances requires
O(n2d) time, whereas utilizing a precomputed distance matrix sets the baseline at O(n2). While
standard persistent homology and PLDiv computation scale quadratically with n due to the num-
ber of edges, their effective cost can be substantially reduced via sparsification. Specifically, the
sparse Rips filtration (Cavanna et al., 2015) utilizes a tolerance parameter ϵ to construct a (1 + ϵ)-
approximation of the metric space. This method prunes the graph to a linear size O(C(ϵ)n); since
C(ϵ) scales inversely with ϵ, larger tolerances significantly accelerate computation with negligible
accuracy loss (see Table 3). We then compute PLDiv using the Minimum Spanning Tree (MST) of
the sparse Rips graph, a strategy that reduces the standard O(n2) time and memory complexity of
dense methods to near-linear time and linear O(n) memory. Finally, PLDiv can be computed via a
closed-form expression in O(Nd) time, outperforming the Vendi Score on large-scale benchmarks
(see Table 2).

6 CONCLUSION

Understanding data diversity requires moving beyond traditional notions of variation or entropy to
account for the intricate geometric and topological structures inherent in complex datasets. We pro-
pose a geometry-aware data diversity measure based on persistence landscapes, a tool from topolog-
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Figure 6: Synthetic dataset comparison. Upper: eight dataset pairs (A vs. B), each with 200 points,
generated to introduce or remove loops, bridges, or hierarchical clusters. Lower: diversity scores
across metrics. PLDiv yields sharper and more coherent distinctions that reflect the true geometric
differences between datasets, while Vendi Score, DCScore, and MagArea respond mainly to overall
spread and fail to capture these structural changes in most cases.

Table 2: Computation time comparison with varying sam-
ple sizes on ImageNet-1K. Embeddings are extracted us-
ing ResNet-50 and computed based on cosine similar-
ity/distance. Values are reported in seconds.

Method Sample size (ImageNet-1K)

5k 10k 20k 30k 40k

Vendi Score 1.60±0.83 10.82±2.73 183.80±12.88 746.51±30.74 1786.11±184.64

DCScore 0.03±0.02 0.13±0.01 0.46±0.01 1.00±0.01 1.80±0.05

MAGAREA 164.91±29.55 716.14±31.23 – – –

PLDiv 5.43±0.02 24.33±0.09 105.62±0.35 236.23±0.76 462.75±0.56

Sparse PLDiv
(ϵ = 0.95) 3.97±0.03 16.80±0.37 68.55±2.21 147.48±6.50 273.86±14.35

Sparse PLDiv
(ϵ = 10) 2.61±0.00 9.87±0.05 33.74±0.01 68.15±0.76 115.54±0.24

Table 3: Sparse PLDiv values demon-
strating its reliable computation

Method Sample size

5k 10k 20k 30k 40k

PLDiv 46.51 78.01 133.55 184.93 232.89
Sp. PLDiv
(ϵ = 0.95) 46.52 78.03 133.58 184.92 232.89

Sp. PLDiv
(ϵ = 10) 47.32 79.70 136.86 190.23 240.04

ical data analysis that provides a stable and expressive representation of hidden structural patterns.
Our metric, PLDiv, offers a richer and more nuanced quantification of diversity. Through extensive
experiments across multiple domains and modalities, we demonstrate PLDiv’s ability to character-
ize structural properties in data clouds (e.g., curvature data) and in vector embeddings (e.g., text
and image data). These results suggest that PLDiv provides a principled foundation for analyzing
geometric diversity, with potential applications in dataset construction, augmentation, model evalua-
tion, and robustness analysis. Looking forward, integrating topological perspectives into automated
dataset design, generative modeling, and adaptive learning systems has the potential to fundamen-
tally reshape how diversity is understood, measured, and leveraged in artificial intelligence.
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A ADDITIONAL ITERATURE REVIEW

A.1 DIVERSITY MEASUREMENT

Evaluating diversity has long been a challenge in machine learning and generative modeling, partly
because it is not always formalized under a single definition but manifests across different dimen-
sions. For example, holistic evaluations of language models highlight variation in task coverage,
domain shifts, linguistic and dialectal richness, input perturbations, and social context, all of which
directly connect to the broader notion of data diversity (Liang et al., 2022).

Some works emphasize that inducing or controlling diversity can be as important as measuring
it. Behavioral frameworks such as CheckList (Ribeiro et al., 2020) systematically probe models
through templating, lexical substitutions, and perturbations, showing that diverse inputs are essential
for revealing hidden model failures, even though diversity itself is not explicitly quantified.

Diversity is not always treated only as an evaluation objective, but also as a design principle at the
training level. For instance, Du and Black (Du & Black, 2019) mitigate mode collapse in dialogue
generation by iteratively boosting models to promote semantic and lexical variation. Although ef-
fective in practice, these approaches underscore the need for principled evaluation frameworks that
can verify whether training-time interventions truly enhance diversity across settings.

To address semantic variation more directly, semantic diversity methods examine conceptual dis-
tinctions between outputs. Stasaski and Hearst (Stasaski & Hearst, 2022) use Natural Language
Inference models to identify entailment, contradiction, and neutrality among generated texts, treat-
ing contradiction as a marker of diversity and entailment as redundancy. Although intuitive and
fine-grained, this relational approach is inherently limited to pairwise comparisons and does not
capture global structural diversity across datasets.

A large class of methods focuses on surface-level variation, particularly in text. N-gram–based
metrics such as distinct-n (Song et al., 2024), self-BLEU (Shu et al., 2019), and ROUGE-L (Wang
et al., 2022; Padmakumar & He, 2023) capture token-level dispersion across samples (Yu et al.,

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

2017). Similarly, the Data Quality Index (DQI) (Mishra et al., 2020) aggregates vocabulary richness,
entropy, and syntactic variation to assess dataset quality. While easy to compute, these approaches
provide only a narrow view of diversity, often missing deeper semantic or structural patterns.

A.2 PERSISTENT HOMOLOGY IN METRIC SPACE

The formal algebraic foundations were established by Zomorodian & Carlsson (2004), who intro-
duced persistence modules, provided algorithms for computing persistence, and proved the barcode
decomposition theorem as a complete invariant over fields. This work grounded PH in computability
and algebraic classification, laying the basis for its adoption across domains (Zhao & Wang, 2019;
Hiraoka et al., 2016; Pun et al., 2022). However, these foundational contributions primarily empha-
size topology extraction and stability, without directly connecting persistence to data-level diversity
or representational richness.

Beyond its theoretical foundations, TDA and persistent homology have shown practical utility across
diverse domains. In neuroscience, PH captures vascular structures linked to disease (Bendich et al.,
2016); in materials science, it characterizes microstructures and force chains in amorphous solids
(Hiraoka et al., 2016); and in biology and chemistry, it reveals topological signatures of protein
folding, molecular stability, and binding sites (Xia & Wei, 2015; Kovacev-Nikolic et al., 2016;
Gameiro et al., 2015). These examples highlight PH’s ability to extract robust, multi-scale features
from high-dimensional and noisy data.

PH has also been applied to both temporal and spatial systems. Persistence landscapes have been
used to track transitions in dynamical systems and classify time-series data (Gidea & Katz, 2018;
Umeda, 2017), while in astrophysics, PH captures the multiscale filamentary structure of the cosmic
web from cosmological simulations (Aragón-Calvo et al., 2010). Collectively, these applications
highlight PH’s versatility as a modality-agnostic framework for extracting global, nonlinear structure
that often remains inaccessible to conventional statistical or machine learning methods.

B DESCRIPTION OF DIVERSITY SCORES IN COMPARISONS

Vendi Score (VS) (Dan Friedman & Dieng, 2023), derived from a set of samples and their pairwise
similarity functions, quantifies the similarities among the data in a dataset. Mathematically, VS is
given by the exponential of the Shannon entropy, which is obtained from the eigenvalues of the
scaled similarity matrix X⊤X:

V S = exp

(
−

n∑
i=1

λi log λi

)

where λi are the eigenvalues of scaled X⊤X .

Limbeck et al. (2024) introduces several magnitude-based diversity measures that leverage the no-
tion of the effective size of a metric space across scales. The core idea is to compute the magnitude
function, MagX(t), which tracks how the effective number of points in a space changes as pairwise
distances are rescaled. To summarise this behaviour, the authors propose two derived metrics: the
area under the magnitude function (MAGAREA) as a reference-free measure of intrinsic diversity,
and the difference between magnitude functions (MAGDIFF) as a reference-based measure:

MAGAREA =

∫ tcut

t0

MagX(t) dt, MAGDIFF =

∫ tcut

t0

(
MagX(t)− MagY (t)

)
dt,

where MagX(t) is the magnitude function of X at scale t and tcut denotes the convergence scale
used for evaluation. These measures provide robust multi-scale summaries of diversity and have
been shown to detect phenomena such as curvature, mode collapse, and mode dropping in text,
image, and graph representations.

Zhu et al. (2025) proposes DCScore, which departs from entropy or scale-based approaches by
reframing diversity measurement as a classification problem. Instead of relying on eigenvalue de-
composition or scale-sensitive geometric measures, DCScore evaluates how well each individual
sample in a dataset can be distinguished from all others. Specifically, each sample is treated as its
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own class, and pairwise similarities are converted into classification probabilities through a softmax
function. The last score is then defined as the trace of the resulting probability matrix:

DCScore(D) = tr(P ) =

n∑
i=1

P [i, i], P [i, j] =
exp

(
K[i,j]

τ

)
∑n

k=1 exp
(

K[i,k]
τ

) ,
where K[i, j] denotes the similarity between samples i and j, and τ is a temperature parameter
that controls the classification sharpness. This formulation is principled and efficient, emphasizing
sample separability without considering the geometric or topological structure of the dataset, which
can also be important for characterizing diversity.

C MATHEMATICAL PROOFS

C.1 PLDIV CLOSED FORM

Let D = {(bi, di)}mi=1 be a finite multiset of persistence birth–death pairs and let λ(bi,di) : R →
[0,∞) denote the usual persistence “tent” function associated to the interval (bi, di). Let {λk(t)}k≥1

be the persistence landscape functions obtained by ordering the values {λ(bi,di)(t)}mi=1 at each fixed
t in nonincreasing order (with λk(t) = 0 for all k > m). Then

PLDiv(X ) =

∞∑
k=1

∫
R
λk(t) dt =

m∑
i=1

∫
R
λ(bi,di)(t) dt =

1

4

m∑
i=1

(di − bi)
2.

Proof. By definition λk(t) are the order statistics (at each fixed t) of the family {λ(bi,di)(t)}mi=1. For
any finite collection of nonnegative functions fi(t),

∞∑
k=1

k-th largest of {fi(t)} =

m∑
i=1

fi(t),

Applying this pointwise gives
∞∑
k=1

λk(t) =

m∑
i=1

λ(bi,di)(t).

Each λ(bi,di) is continuous with compact support [bi, di], hence measurable and integrable. By
Tonelli’s theorem (Tao, 2011),

∞∑
k=1

∫
R
λk(t) dt =

∫
R

∞∑
k=1

λk(t) dt =

∫
R

m∑
i=1

λ(bi,di)(t) dt =

m∑
i=1

∫
R
λ(bi,di)(t) dt.

Finally, each tent function supported on the interval [bi, di] is a symmetric isosceles triangle of base
length di − bi and height (di − bi)/2, hence its area is∫

R
λ(bi,di)(t) dt = 1

2 · (di − bi) · di−bi
2 =

(di − bi)
2

4
,

Summing over i = 1, . . . ,m gives the final identity

m∑
i=1

∫
R
λ(bi,di)(t) dt =

1

4

m∑
i=1

(di − bi)
2.
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C.2 PROOF OF AXIOMATIC PROPERTIES OF DIVERSITY

A diversity measure derived from Persistence Landscapes (PLs) is defined as a summary statistic
of the persistence lifetimes generated from a dataset’s Vietoris-Rips filtration. We prove that such a
measure satisfies the key principles of effective size, monotonicity, the twin property, and symmetry.

• Effective size. For a fixed number of points, PLDiv(X ) increases when data points are
well-separated and decreases as they cluster, reaching a maximum when all points are dis-
tinct and a minimum when all are identical.

Proof. Minimum PLDiv: The minimum value of PLDiv is achieved when all points in the
cloud X are identical. Let all n points in the cloud be the same, so x1 = x2 = · · · = xn.
The distance between any two points is zero:

d(xi, xj) = 0 for all i, j.

Every point is born at ε = 0 and immediately merges with every other point at ε = 0, all
persistence lifetimes are zero. That is,

bi = 0, di = 0 for all features.

Therefore,

minPLDiv(X ) =
1

4

∑
i

(di − bi)
2 =

1

4

∑
i

(0− 0)2 = 0.

Maximum PLDiv: The maximum value of PLDiv is achieved when the points are “well-
separated.” Let X = {x1, . . . , xn} be a point cloud in a metric space (M, d) such that all
points are distinct and equidistant:

d(xi, xj) = c > 0 for all i ̸= j.

Then, the H0 persistence lifetimes are all equal to c, except for the last surviving com-
ponent. Let c = maxi̸=j d(xi, xj). In the Vietoris–Rips filtration, at ε = 0, each point
forms a separate connected component. Thus, there are n components born at bi = 0. For
0 < ε < c, no edges appear because all pairwise distances are c. Hence, no components
merge in this interval. At ε = c, all pairwise edges appear simultaneously, and the n com-
ponents merge into a single connected component. Thus, n− 1 components die at di = c,
while the last component persists indefinitely.
By Proposition 3.2, the corresponding PLDiv is

maxPLDiv(X ) =
n− 1

4
c2.

• Monotonicity
Fix n and let X be a point cloud in a metric space. If all pairwise distances in X are scaled
by a factor α > 1 (i.e. replace the metric d(·, ·) by αd(·, ·)), then

PLDiv(αX )

{
≤ α2 PLDiv(X ), α > 1,

≥ α2 PLDiv(X ), 0 < α < 1.

Proof. Fix n and let X be a point cloud in a metric space. If all pairwise distances in X
are scaled by a factor α > 1 (i.e. replace the metric d(·, ·) by αd(·, ·)), then every lifetime
di − bi is multiplied by α. By Proposition 3.2,

PLDiv(αX ) =
1

4

∑
i

(α(di − bi))
2 = α2 · 1

4

∑
i

(di − bi)
2 = α2PLDiv(X ).

Hence, spreading the same set of points apart (uniform dilation) strictly increases PLDiv
(for α > 1). More generally, moving points so as to increase lifetimes of the dominant fea-
tures increases PLDiv; conversely, clustering points tends to shorten lifetimes and reduce
PLDiv.
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• Twin property. Adding an exact duplicate of a point does not change PLDiv(X ). Let X
be a dataset and let xi ∈ X . For the set X ′ = X ∪ {xn} where xn = xi, the diversity is
unchanged:

PLDiv(X ′) = PLDiv(X ).

Proof. A duplicate point at exactly the same coordinates is at zero distance from its twin.
In the usual filtrations built from pairwise distances (e.g., Vietoris–Rips), the duplicate
component is born at radius 0 and immediately merges with its twin also at radius 0. Hence
the corresponding birth–death pair is (0, 0) and has lifetime 0, contributing (d− b)2/4 = 0
to the PLDiv sum. All other birth–death pairs are unchanged as well. Therefore PLDiv is
unchanged.

• Symmetry. PLDiv is invariant to the ordering of data points (permutation invariance).
Since persistent homology depends only on the metric structure of X and PLDiv(X ) is
computed from the multiset of intervals {(bi, di)}, relabeling or reordering points does not
affect the value of the score. Let X = (x1, . . . , xn) be an ordered sequence of points and let
π be any permutation of {1, . . . , n}. For the permuted sequence Xπ = (xπ(1), . . . , xπ(n)),
we have

PLDiv(Xπ) = PLDiv(X ).

Proof. The PH pipeline begins with the pairwise distance matrix D, where Dij =
d(xi, xj). Let Xπ be the reordered dataset. The distance matrix Dπ for the permuted data
has entries (Dπ)ij = d(xπ(i), xπ(j)). Importantly, the set of all unique pairwise distances

{d(xi, xj)}1≤i<j≤n

is unchanged for both X and Xπ . The construction of the Vietoris–Rips filtration depends
only on these distances. Hence, the persistence diagrams and lifetimes {li} are identical.
Therefore, any diversity measure computed from these lifetimes is invariant under permu-
tation of the data and PLDiv is symmetry.

D DETAILED EXPERIMENT DESCRIPTIONS

D.1 SYNTHETIC TOY EXAMPLES

Our toy example in Figure 1 utilizes the examples from Limbeck et al. (2024). Specifically, we
simulated four synthetic datasets with varying diversity levels. D1 (Poisson Process): 200 points
uniformly sampled in the square [0, 2]2, representing a spatially random distribution. D2 (Hawkes
Process): a clustered dataset generated via a self-exciting point process with base intensity λ = 91
and excitation parameter α = 0.6. D3 (Two Gaussians): 200 samples drawn from two Gaussian
clusters centered at (0.5, 0.5) and (1.5, 1.5) with covariance 0.02I . D4 (One Gaussian): 200 sam-
ples drawn from a single Gaussian centered at (0.5, 0.5) with the same covariance. These datasets
progressively transition from highly diverse and dispersed (D1) to concentrated and homogeneous
(D4). Table 4 represents diversity scores calculated by four metrics. (Vendi Score and DCScore are
based on RBF kernel)

Table 4: Performance comparison of subset selection

Task PLDiv (↑) Vendi Score (rbf) (↑) DCScore (↑) MagArea (↑)
D1 0.53 136.98 2.67 141.23
D2 0.49 79.96 2.63 108.83
D3 0.26 40.40 2.48 81.93
D4 0.05 23.66 2.32 58.53
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D.1.1 IMBALANCED SYNTHETIC DATA

To explore how PLDiv performs on imbalanced data, we generated a series of small long-tail
datasets. First, we utilized D4 in synthetic toy examples, which form a single cluster with 200
data points. To simulate long-tail effects, outlier points were added uniformly within a square re-
gion in varying amounts of 20, 40, 60, 80, and 100 samples, while keeping the cluster size at 200 -
noutliers. Each variant thus exhibits increasing imbalance between the dense Gaussian core and sparse
tail regions. Figure 7 demonstrates that PLDiv effectively handles the imbalanced dataset.

Figure 7: PLDiv can reliably predict diversity in imbalanced data, where diversity increases mono-
tonically.

D.2 IMPLEMENTATION OF k-DPP SAMPLING

To select a diverse subset of k instances, we implemented a k-Determinantal Point Process (k-DPP)
(Kulesza & Taskar, 2011). Two Gaussian clusters were generated and combined to form the dataset.
Each cluster consisted of 100 points drawn from a Gaussian distribution with means 0.5 and 0.6,
and a standard deviation of 0.05. An RBF kernel was computed using the median pairwise distance
as the bandwidth parameter:

kij = exp

(
−∥xi − xj∥2

2σ2

)
The kernel matrix was eigendecomposed, and the top-k eigenvectors corresponding to the largest
eigenvalues were retained. Points were then iteratively sampled with probabilities proportional to
the squared norms of these eigenvectors. After each selection, the eigenbasis was orthogonalized to
maintain diversity. This procedure yielded k representative and diverse samples from the original
dataset. Similarly, we applied the same approach to the ArXiv dataset to create the k-DPP sub-
set. Table 5 presents the results of the diversity measures, illustrating how they capture the subtle
differences between random selection and k-DPP selection.

Table 5: Performance comparison of subset selection

Task PLDiv Vendi Score DCScore MagArea
simulation (random) 0.009 1.051 1.007 19.645
simulation (KDPP) 0.018 1.099 1.016 23.340

ArXiv (random) 25.392 39.729 2.132 40.507
ArXiv (KDPP) 26.620 43.175 2.185 41.422

D.3 IMPLEMENTATION OF CURVATURE EXPERIMENT

In Section 5.2, we evaluate PLDiv along with alternative diversity metrics on the curvature dataset
(Turkes et al., 2022). The dataset consists of two-dimensional point clouds sampled from smooth
surfaces with varying degrees of curvature. Each sample represents a set of points {xi}ni=1 ⊂ Rd

labeled by the curvature of the underlying manifold, either as discrete curvature classes or contin-
uous curvature values, ranging from -2 to 2. The task is to predict this curvature from the sampled
points, assessing how well diversity measures capture geometric information such as local bending
and shape variation. This setup allows controlled evaluation of geometric sensitivity, robustness to
noise, and invariance under isometric transformations.
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We employ a Support Vector Regression (SVR) model with a radial basis function (RBF) kernel,
using the parameters C = 1.0 and ϵ = 0.1. This configuration is applied to all metrics (PLDiv,
Vendi Score, DCScore, and MagArea). MagArea uses Euclidean distance, while Vendi Score and
DCScore are evaluated with both RBF and Laplacian kernels. In contrast, PLDiv takes the curvature
data cloud as input and internally computes pairwise Euclidean distances. Table 1 and Figure 8
demonstrate that PLDiv exhibits a truly geometry-aware property.

Figure 8: Visualizations of the diversity measures against the curvature labels show that PLDiv
achieves the best separation between positive and negative curvatures, providing clear evidence of
why it performs best in Section 5.2.

D.4 IMPLEMENTATION OF TEXT EMBEDDINGS

We evaluate PLDiv as a metric of semantic diversity using the dataset from Tevet & Berant (2021),
comprising 1,000 prompts from three tasks. Ten outputs per prompt were generated by varying
the softmax temperature (dec), and a subset of 200 prompts was human-annotated to obtain mean
diversity scores (ABS-HDS). Text embedding models we used are listed below:

• all-MiniLM-L12-v2: general text embedding model, dimension 384
• all-mpnet-base-v2: general text embedding model, dimension 768
• bert-large-nli-stsb-mean-tokens: general text embedding model, dimension 1024
• Qwen3-Embedding-4B: advanced LLM-based embedding models, dimension 2560
• Qwen3-Embedding-8B: advanced LLM-based embedding models, dimension 4096

Figure 9 represents Mean Squared Error (MSE) for linear regression that indicates the predictive ca-
pability for diversity metrics on softmax temperature dec and mean human annotated diversity score
(ABD-HDS). PLDiv achieves the lowest MSE in the temperature (dec) tasks across all embedding
models and remains among the lowest when evaluated on human-annotated scores.

To explore the impact of the distance/similarity matrix, we applied both cosine distance/similarity
and Euclidean distance/RBF kernel as inputs in this experiment ihe temperature (dec) tasks. Fig-
ure 10 demonstrates that PLDiv consistently and reliably outperforms other metrics across various
embedding models and distance matrices. In contrast, switching from cosine similarity to the RBF
kernel significantly degrades the performance of alternative metrics, particularly DCScore.

We present the correlation plots for text embedding temperature dec evaluation tasks in Figs. 11,
12, and 13. Across the three embedding tasks, PLDiv shows the best performance on all three
tasks: prompt, response, and story, exhibiting a linear relationship, while providing a non-linear
relationship with softmax temperature dec .
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Figure 9: MSE for four metrics on both temperature dec and human diversity score ABD-HDS.
PLDiv achieves the lowest MSE in the temperature (dec) tasks across all embedding models and
remains among the lowest when evaluated on human-annotated scores.

D.5 IMPLEMENTATION OF IMAGE EMBEDDINGS

In Section 5.4, we evaluated the diversity measure to determine whether it can effectively capture
the diversity introduced by the richness of labels. We employed Colored MNIST Deng (2012).
Following the methodology of Ospanov et al. (2024), the number of labels served as the ground
truth for diversity, where a higher label count signifies a more diverse set. We sampled half of the
data from each class. Starting from class 1, we incrementally added samples from one additional
class at a time, up to class 10, thereby forming 10 subsets. Comparisons are conducted against Vendi
Score, Magnitude, and DCScore, using two embedding models: Inception V3 and ResNet-18. All
metrics are tested on cosine distance or cosine similarity. Figure 5 and Table 6 show that PLDiv
can effectively capture diversity encoded in image embeddings. PLDiv achieved comparable results
with MagArea but is more computationally efficient.

Table 6: Pearson Correlation Comparison among diversity measures

Metric CLIP Model Inception Model
PLDiv 0.998 0.998
Vendi Score 0.371 0.222
DCScore 0.901 0.984
MagArea 0.997 0.998

D.6 DIVERSITY ASSESSMENT IN SYNTHETIC DATA CLOUDS DETAILS

We created eight pairs of synthetic scenarios, each containing about 200 points generated from
parameterized geometric functions. Each pair modifies one specific geometric property by adding
or removing loops, bridges, curvature, or hierarchical clustering, while maintaining a comparable
overall spatial scale. Table 7 summarizes the data generation process for the eight synthetic point-
cloud pairs used in Sec. 5.4. Each cloud contains approximately 200 points produced by explicit
geometric or probabilistic functions (e.g., rings, Gaussian mixtures, sinusoidal manifolds). These
datasets complement Table 8, which reports diversity metric values across the same scenarios.

E LIMITATIONS

While PLDiv demonstrates strong theoretical grounding and robust empirical performance across
modalities, we acknowledge several limitations and areas for future improvement. First, compu-
tational cost is not the primary focus of this work. Although we proposed a sparse computation
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Table 7: Synthetic dataset pairs used for geometry-aware diversity evaluation. Each cloud contains
200 points.

Pair A (less varied geometry) B (more varied geometry)
Ring vs Disk Uniform points in filled disk Points on noisy circular rim (loop)
Two Clusters vs Bridge Two separated Gaussian blobs Same blobs plus short bridge (connectivity)
Gaussian vs Nested Single Gaussian Inner Gaussian + outer ring (hierarchy)
Blob vs Crescent Isotropic Gaussian cloud Half-ring manifold (curvature)
Random Cloud vs Two Rings Uniform on square [0, 2]2 Two concentric noisy rings (multi-loop)
Blob vs Snake Isotropic Gaussian Sinusoidal curve with noise (manifold)
Filled vs Hole Outer Gaussian + center points Outer Gaussian with inner void (cavity)
Gaussian vs Hierarchical Single broad Gaussian Multi-level small clusters (multi-scale)

Table 8: Comparison of diversity metrics across synthetic dataset pairs.

Scenario Data PLDiv Vendi Score DCScore MagArea
Ring vs Disk A 0.064 8.702 2.437 125.732
Ring vs Disk B 0.262 8.746 1.957 140.620
Two clusters vs Bridge A 0.134 4.915 1.578 143.599
Two clusters vs Bridge B 0.150 5.132 1.585 153.364
Nested vs Gaussian A 0.123 7.696 1.906 141.750
Nested vs Gaussian B 0.623 9.641 1.878 142.509
Crescent vs Blob A 0.030 5.025 1.919 127.702
Crescent vs Blob B 0.147 4.469 1.450 136.976
Two rings vs Random cloud A 0.176 11.569 2.257 132.447
Two rings vs Random cloud B 0.551 15.436 2.583 140.364
Snake vs Blob A 0.027 4.405 1.827 141.067
Snake vs Blob B 0.156 4.589 1.455 142.696
Hole vs Filled A 0.096 3.458 1.342 128.140
Hole vs Filled B 0.101 3.559 1.352 122.926
Hierarchical vs Gaussian A 0.222 4.048 1.824 63.258
Hierarchical vs Gaussian B 0.420 7.972 1.768 139.101

that significantly reduces both time and memory requirements, PLDiv remains computationally in-
tensive than lightweight alternatives such as DCScore. Our contribution emphasizes accuracy and
geometric faithfulness rather than speed, and we recognize that there is room for further algorithmic
optimization.

Second, PLDiv currently employs the Vietoris–Rips filtration as its default topological construction.
While this choice offers broad applicability and simplicity, alternative filtrations, such as Čech,
Alpha Complex, etc, may capture structure more effectively in specific domains. Exploring these
variants could further increase the flexibility of PLDiv.

Third, PLDiv balances fine-grained local feature capture with preservation of global geometric struc-
ture, governed by the maximum-edge parameter. In our experiments, a single global setting was
sufficient, though in other specific cases, this parameter may need tuning to balance local sensitivity
and computational efficiency.

F COMPUTATIONAL ENVIRONMENT

All experiments were conducted on a high-performance computing server equipped with an AMD
EPYC 7413 24-Core Processor and an NVIDIA A100-80GB GPU. The software environment was
built using Python 3.11. For text embedding, we utilized Hugging Face Sentence Transformers as
the embedding model framework.
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Table 9: Additional Computation time comparison. (the value scale in seconds)

Method Curvature (1.1K) Colored MNIST (10k)

Vendi Score 21.9 5.8
DCScore 2.3 1.3
MAGAREA 644.5 218.8
PLDiv 135.2 114.3
Sparse PLDiv 48.0 49.0
Sparse PLDiv
(Closed Form) 8.2 15.7

Table 10: Sparse estimation results vs. full matrix results for the Colored MNIST experiment

Subset Sparse PLDiv
(ϵ = 0.3)

Sparse PLDiv
(ϵ = 0.8)

Full
Matrix

1 0.45 0.45 0.45
2 0.77 0.77 0.77
3 1.17 1.18 1.17
4 1.48 1.48 1.48
5 1.86 1.86 1.86
6 2.09 2.09 2.09
7 2.46 2.47 2.46
8 2.88 2.89 2.88
9 3.32 3.33 3.33

10 3.69 3.69 3.69
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Figure 10: Diversity metric performance is evaluated across different distance/similarity matrices.
For Vendi Score and DCScore, the Euclidean setting corresponds to the RBF kernel. PLDiv consis-
tently and reliably outperforms other metrics across various embedding models and distance matri-
ces.
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Figure 11: Correlation results for embeddings model: “bert-large-nli-stsb-mean-tokens” across three
tasks: Row 1 shows prompt, Row 2 shows response, and Row 3 shows story. Columns 1–4 represent
the results for PLDiv, VS, DCS, and MagArea, respectively.

Figure 12: Correlation results for embeddings model: “all-MiniLM-L12-v2” across three tasks:
Row 1 shows prompt, Row 2 shows response, and Row 3 shows story. Columns 1–4 represent the
results for PLDiv, VS, DCS, and MagArea, respectively.
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Figure 13: Correlation results for embeddings model: “all-mpnet-base-v2” across three tasks: Row
1 shows prompt, Row 2 shows response, and Row 3 shows story. Columns 1–4 represent the results
for PLDiv, VS, DCS, and MagArea, respectively.
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