GEOMETRY-AWARE METRIC FOR DATASET DIVERSITY VIA PERSISTENCE LANDSCAPES

Anonymous authors

Paper under double-blind review

ABSTRACT

Diversity can be broadly defined as the presence of meaningful variation across elements, which may be viewed from multiple perspectives, including statistical variation and geometric structural richness in the dataset. Existing diversity metrics, such as feature-space dispersion and metric-space magnitude, primarily capture distributional variation or entropy, while largely neglecting the geometric structure of datasets. To address this gap, we introduce a framework based on topological data analysis (TDA) and persistence landscapes (PLs) to extract and quantify geometric features from data. This approach provides a theoretically grounded means of measuring diversity beyond entropy, capturing the rich geometric and structural properties of datasets. Through extensive experiments across diverse modalities, we demonstrate that our proposed PLs-based metric (PLDiv) is powerful, flexible, and interpretable, directly linking data diversity to its underlying geometry and offering new insights for dataset construction, augmentation, and evaluation.

1 Introduction

Life itself depends on diversity: ecosystems may collapse when a few species vanish, yet a single new species can reshape balance—enriching resilience or triggering instability. In machine learning and artificial intelligence, diversity plays the same essential role. Studying diversity has long been a central concern at nearly every stage of ML/AI: from data collection to ensure representational balance, to data and model evaluation for fairness and robustness (Rolf et al., 2021; Clemmensen & Kjærsgaard, 2022; Kim et al., 2025), to model training where variation prevents overfitting, and to model generalization, where diversity reduces the gap between training distributions and real-world deployment (Liu & Zeldes, 2023; Ortega et al., 2022; Yu et al., 2022; Bian & Chen, 2021; Wang et al., 2020). It is well known that exposure to a wide range of data structures, styles, and semantic patterns supports the learning of more abstract, transferable representations, allowing for more capable and resilient models (Rebuffi et al., 2021; Shorten & Khoshgoftaar, 2019; Zhang, 2017). Recent work further demonstrates that diversity in training data influences the weight matrices of neural networks, directly affecting both in-distribution and out-of-distribution performance (Ba et al., 2024).

Yet beyond performance, a newer—and arguably more urgent—motivation for us to study diversity is the need to confront a growing risk. Today's generative models are trained on overlapping, internet-scale corpora, then reused and adapted across countless applications. As these models are increasingly integrated into real-world writing, content creation, visual and audio materials, and codes, their outputs feed back into the very data streams that will train the next generation of models. Recent studies show that alignment-tuned models such as InstructGPT already exhibit significant reductions in lexical and conceptual diversity (Padmakumar & He, 2023). Unlike traditional data limitations, this homogenization is self-reinforcing: models trained on uniform outputs reinforce uniformity even further in future generations (Bertrand et al., 2023; Alemohammad et al., 2024). The danger is not limited to text, as the same internet-scale sources, standardized pipelines, and optimization objectives underpin models across all data modalities. Combined with algorithmic feedback loops, platform-driven content shaping, and widespread reuse of foundation models, these forces may steadily contract the expressiveness and conceptual space of generative AI at scale.

At this stage, diversity is no longer just a desirable property; it has become a boundary condition for innovation, adaptability, and human-centered AI design. Meeting this challenge requires us to understand what "real diversity" is and then to be able to measure it. Reliable measurement allows us not only to detect the narrowing trajectories of generative models, but also to design interventions that can preserve and promote diversity. This understanding, in turn, can guide future efforts toward diversity-aware data collection, synthetic data generation, data augmentation strategies, training pipelines, loss functions, evaluation metrics, and dataset—task alignment.

We envision a deep link between the geometric structure of data and its diversity. For instance, as a fundamental geometric property, curvature is inherently linked to diversity (Bubenik et al., 2020): positive curvature, as on a sphere, compresses points and restricts possible configurations, while negative curvature, as in hyperbolic geometry, spreads space out faster, enabling richer variation. To quantify diversity, metrics such as the Vendi Score (Dan Friedman & Dieng, 2023) have been introduced, drawing inspiration from "community diversity" in ecology and biology (Daly et al., 2018; Leinster, 2021). Recently, measures based on magnitude (Limbeck et al., 2024) and probability-distribution views of similarity matrices (Zhu et al., 2025) have also been proposed. These methods are valuable, but none of them genuinely considers data from a geometric perspective, even when they claim to capture some geometric information.

Topological data analysis (TDA) provides tools to capture the shape of data, encoding its structural geometry. By recognizing the connection between the persistent homology (PH) merging process (Edelsbrunner et al., 2002; 2008) and agglomerative hierarchical clustering (Murtagh & Contreras, 2012), we employ a vectorized representation of PH called the persistence landscapes (PLs) to estimate diversity. We compute the cumulative integral of their tent functions, which is referred to as persistence landscapes-based diversity (PLDiv). As shown in Fig. 1, PLDiv has a clear intuition, strong theoretical support, and interpretable results.

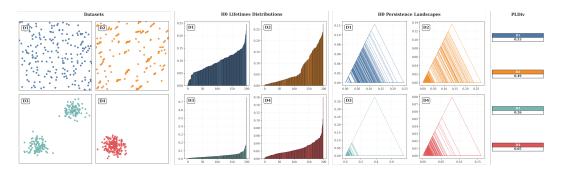


Figure 1: Illustration of PLDiv on four synthetic datasets. D1: uniformly scattered points; D2: less evenly spread distribution; D3: two separated clusters; D4: a single compact cluster with minimal diversity. We extract H_0 features via persistent homology, where lifetimes measure how long clusters persist before merging with their closest neighbors. Persistence landscapes capture these patterns, and PLDiv, defined as the sum of their integrals, reflects both scale and persistence, aligning with the datasets' decreasing diversity.

Our contributions are summarized as follows:

- We propose a persistence landscape-based diversity measure (PLDiv). The core idea is that persistence homology encodes geometric information, highlighting the value of topological data features that play a key role in capturing meaningful structural patterns.
- We establish the theoretical foundations of PLDiv by proving that it satisfies multiple diversity axioms introduced by Leinster & Cobbold (2012), ensuring interpretability and principled behavior.
- Through comprehensive experiments across various tasks and data modalities, we demonstrate the advantages that PLDiv can capture geometrical and structural diversity more effectively than conventional entropy-based approaches, and offer practical advantages in robustness and interpretability.

To the best of our knowledge, we are the first to apply topological data analysis (TDA) concepts to measuring data diversity. Our study provides a novel application of TDA and offers both the theoretical foundation and interpretability for a geometry-aware data diversity measure.

2 RELATED WORK

2.1 DIVERSITY MEASUREMENT

Several reference-based metrics compare generated data with human or gold-standard corpora. The Fréchet Inception Distance (FID) (Heusel et al., 2017) and related Inception Score were among the first to use pretrained embeddings to measure alignment between real and synthetic data distributions. More recently, MAUVE (Pillutla et al., 2021) quantified distributional gaps between model and human text, while precision–recall metrics (Kynkäänniemi et al., 2019; Bronnec et al., 2024) provided a decomposition into fidelity (precision) and diversity (recall). Extensions such as density and coverage metrics (Naeem et al., 2020) improved robustness against outliers and unstable density estimates. Nevertheless, these methods are fundamentally tied to reference datasets, often entangle fidelity with diversity, and remain sensitive to embedding choices or manifold approximations.

A different line of work has explored representation-level measures that aim to be reference-free. Early proposals such as diversity, density, and homogeneity Lai et al. (2020) assessed dispersion in embedding spaces, but they remained limited to simple distributional statistics. More principled approaches emerged with entropy- or kernel-based methods: the Vendi Score (Dan Friedman & Dieng, 2023) measures diversity as the exponential of Shannon entropy derived from the similarity spectrum, while Renyi Kernel Entropy (RKE) and its variant RRKE (Jalali et al., 2023) extend this perspective using quantum information theory. However, such approaches often require expensive eigenvalue or singular-value decompositions, limiting their scalability to large datasets. Building on efficiency and separability, DCScore (Zhu et al., 2025) reframes diversity measurement as a classification problem, avoiding eigenvalue computations and yielding faster, more scalable estimates. Complementary to this, magnitude-based methods (Limbeck et al., 2024) quantify effective dataset size across scales, offering metrics such as MAGAREA (reference-free) and MAGDIFF (reference-based). While these methods provide multi-scale summaries, they depend on tuning scale parameters and still abstract away the geometric or topological structures that can differentiate datasets with the same dispersion.

2.2 Persistent Homology in Metric Space

Persistent Homology (PH) (Edelsbrunner et al., 2002; 2008) is a central tool in Topological Data Analysis (TDA) for uncovering the underlying shape of data, typically represented as point clouds. By constructing nested simplicial complexes across scales and applying homology, PH tracks the birth and death of topological features such as connected components, loops, and voids. The result is a multi-scale summary, often visualized as barcodes or persistence diagrams, which distinguishes significant long-lived features from noise and is provably stable to perturbations.

Building on these foundations, subsequent efforts have explored scalar invariants and geometric inference from persistence. Govc & Hepworth (2021) introduced persistent magnitude, a signed, exponentially weighted sum over barcode intervals that refines classical magnitude theory. This approach provides interpretable scalar summaries encoding geometric complexity, including curvature, but it compresses the full topological signature into a single number, limiting its ability to capture heterogeneity or higher-order organization. In parallel, Bubenik et al. (2020) demonstrated that persistence can recover curvature information from sampled manifolds by combining diagrams with persistence landscapes, showing that even short-lived features carry meaningful geometric signals. While powerful, this line of work primarily targets smooth continuous geometry rather than irregular or combinatorial variation common in real-world datasets. Together, these directions underscore the expressive capacity of PH, yet also highlight an open gap: existing uses either oversimplify persistence or focus narrowly on geometric inference, leaving the systematic role of PH in quantifying dataset diversity underexplored.

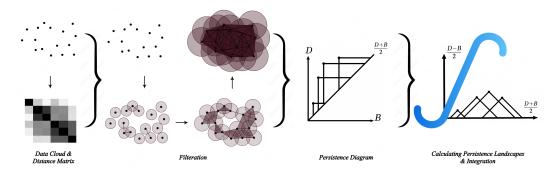


Figure 2: Illustration of the PLDiv pipeline. Using a data cloud or its distance matrix, we build a filtration of simplicial complexes and track the birth and death of H_0 components by persistent homology. The resulting persistence diagram is then used to calculate persistence landscapes. Lastly, PLDiv is obtained by integrating these landscapes and provides a metric for the dataset diversity.

3 PRELIMINARIES

3.1 Persistent Homology and Persistence Diagrams

Persistent homology provides a multiscale description of the topological structure of data. Starting from a point cloud $\mathcal{X} = \{x_1, \dots, x_n\}$, it builds a nested sequence of simplicial complexes (a filtration), such as the Vietoris–Rips filtration. This filtration can be understood as growing balls (or "bubbles") of radius ϵ around each data point and increasing ϵ gradually. As the radius grows, the bubbles begin to overlap, creating higher-dimensional simplices (see Fig. 2). In this process, new topological features such as connected components, loops, and voids appear and eventually vanish when the bubbles merge or fill in. This viewpoint highlights that persistent homology captures how the topology of the data evolves across scales of the underlying radius parameter.

Formally, each topological feature is associated with a birth time b_i , the smallest radius at which it appears, and a death time d_i , the radius at which it disappears (for instance, when two connected components merge or when a loop becomes filled). The difference $\ell_i = d_i - b_i$ is called the *lifetime* (or persistence) of the feature and quantifies its robustness across scales.

The output of persistent homology is summarized in a persistence diagram, defined as the multiset

$$\mathcal{D} = \{ (b_i, d_i) \}_{i=1}^m, \quad b_i < d_i,$$

where each point (b_i, d_i) represents the birth and death scales of a feature. The diagram is typically plotted in the plane \mathbb{R}^2 , with each feature as a point above the diagonal b=d. Features with long lifetimes (points far from the diagonal) are often interpreted as meaningful structural signals in the data, while short-lived features (points near the diagonal) are commonly attributed to noise. Persistence diagrams thus provide a compact and interpretable summary of the multiscale topological properties of the dataset.

3.2 Persistence Landscapes

Although persistence diagrams provide a geometric summary of topological features, they are multisets, represented by points on a plane, which makes it challenging to apply classical statistical and machine learning techniques directly. To address this problem, Bubenik et al. (2015) introduced *persistence landscapes*, a functional summary of persistent homology that embeds the information of a persistence diagram into a Banach space, enabling the use of standard statistical tools.

Given a persistence diagram $\mathcal{D} = \{(b_i, d_i)\}_{i=1}^m$, we first associate with each birth-death pair (b_i, d_i) a piecewise linear "tent" function.

$$\lambda_{(b,d)}(t) = \begin{cases} t - b, & b \le t \le \frac{b+d}{2}, \\ d - t, & \frac{b+d}{2} < t \le d, \\ 0, & \text{otherwise.} \end{cases}$$

This function attains its maximum value $\frac{d_i - b_i}{2}$ at the midpoint of the interval and encodes the lifetime of the feature. The persistence landscape is then defined as the sequence of functions

$$\lambda_k(t) = k$$
-th largest value among $\{\lambda_{(b_i,d_i)}(t)\}_{i=1}^m$, $k = 1, 2, ...$

for each $t \in \mathbb{R}$. Thus, λ_1 records the largest "tent" value at each t, λ_2 records the second largest, and so forth. Collectively, the functions $\{\lambda_k\}_{k\geq 1}$ constitute the persistence landscape.

Persistence landscapes inherit stability from persistence diagrams and have the advantage of lying in the L^p function space. The persistence landscape is a vectorized form of a persistence diagram, equivalent to a 45° rotation that preserves all information, with X = (d+b)/2 and Y = (d-b)/2 (see Fig. 2).

4 METHODOLOGY

4.1 DIVERSITY MEASURE VIA PERSISTENCE LANDSCAPES

Definition 3.1. Let $\mathcal{X} = \{x_1, \dots, x_n\}$ be a dataset and let $\Lambda(\mathcal{X}) = \{\lambda_k\}_{k \geq 1}$ denote its persistence landscape obtained from persistent homology. The *persistence landscapes based diversity* score, PLDiv(\mathcal{X}), is defined as

$$PLDiv(\mathcal{X}) = \sum_{k=1}^{\infty} \int_{\mathbb{R}} \lambda_k(t) dt.$$
 (1)

The summation is finite, as only a finite number of λ_k terms are actually non-zero. PLDiv(\mathcal{X}) measures the cumulative "area under the triangles" of the persistence landscape and quantifies the richness of topological features across all scales.

Proposition 3.2. A closed form of PLDiv can be derived. Let $\mathcal{D} = \{(b_i, d_i)\}_{i=1}^m$ be the set of birth–death pairs produced by persistence homology, then

$$PLDiv(\mathcal{X}) = \sum_{k=1}^{\infty} \int_{\mathbb{R}} \lambda_k(t) dt = \sum_{i=1}^{m} \int_{\mathbb{R}} \lambda_{(b_i, d_i)}(t) dt = \frac{1}{4} \sum_{i=1}^{m} (d_i - b_i)^2.$$

Proof. Each tent function with its supports on the interval $[b_i, d_i]$ is a symmetric isosceles triangle of base length $d_i - b_i$ and height $(d_i - b_i)/2$, hence its area is

$$\int_{\mathbb{D}} \lambda_{(b_i,d_i)}(t) dt = \frac{1}{2} \cdot (d_i - b_i) \cdot \frac{d_i - b_i}{2} = \frac{(d_i - b_i)^2}{4}.$$

Summing them yields the closed form above. We provide a detailed proof in Appendix C.

Remark 3.3. The area under λ_k measures both the *scale* and the *persistence* of features, representing how long and how strongly features persist across scales. Summing across k aggregates contributions across all topological structures, capturing both *local fluctuations* (short lifetimes) and *global connectivity* (long lifetimes).

Remark 3.4. A large $PLDiv(\mathcal{X})$ indicates that features such as clusters or loops are well-separated and persist across scales, reflecting high structural diversity. Conversely, a smaller value corresponds to a dataset where data points collapse quickly into clusters, eliminating persistent features. In particular, by Proposition 3.2, $PLDiv(\mathcal{X})$ coincides with the second moment of lifetimes of topological features, up to scaling.

Remark 3.5. Since the persistence landscape lies in $L^p(\mathbb{R})$, the integral $\int_{\mathbb{R}} \lambda_k(t) dt$ can be interpreted as the "expected persistence" of the k-th most prominent feature across random scales t. From the probabilistic perspective, $PLDiv(\mathcal{X})$ represents the total expected persistence across all topological features, analogous to computing an energy functional over the data manifold.

 $PLDiv(\mathcal{X})$ should be understood as a holistic measure of dataset complexity. Unlike conventional approaches in topological data analysis that treat short-lived features as noise, this measure incorporates the full spectrum of topological features, emphasizing that both long- and short-lived structures contribute to the geometry of the data (follows the insights in Turkes et al. (2022)). In this sense, $PLDiv(\mathcal{X})$ provides a unified framework that balances mathematical rigor with interpretability.

In practice, there are many choices for the filtration and the degree of persistent homology. For most tasks, 0-dimensional persistent homology is sufficient, because it efficiently captures the connectivity structure of the dataset while keeping computational costs low. Therefore, our metric (PLDiv) is computed based on H_0 features in the following experiments.

4.2 AXIOMATIC PROPERTIES OF DIVERSITY

Among core diversity axiomatic properties provided by Leinster & Cobbold (2012) and Leinster (2021), our proposed diversity measure, PLDiv, satisfies four fundamental axioms: effective size, monotonicity, twin property, and symmetry. These axioms provide a foundation for reasonable and robust diversity evaluation. A description of these axioms is provided below, while the formal proofs of these properties on PLDiv are presented in Appendix C.

- **Effective size.** For a fixed number of points, PLDiv(\mathcal{X}) increases when data points are well-separated and decreases as they cluster, reaching a maximum when all points are distinct and a minimum when all are identical.
- Monotonicity. Decreasing similarity increases diversity. Fix n and let \mathcal{X} be a point cloud in a metric space. If all pairwise distances in \mathcal{X} are scaled by a factor $\alpha > 1$ (i.e. replace the metric $d(\cdot, \cdot)$ by $\alpha d(\cdot, \cdot)$), then

$$PLDiv(\alpha X) > \alpha^2 PLDiv(X)$$
 if $\alpha > 1$, and vice versa.

• Twin property. Adding an exact duplicate of a point does not change $PLDiv(\mathcal{X})$. The duplicate induces a trivial birth-death pair (0,0), contributing zero to the diversity score. Let \mathcal{X} be a dataset and let $x_i \in \mathcal{X}$. For the set $\mathcal{X}' = \mathcal{X} \cup \{x_n\}$ where $x_n = x_i$, the diversity is unchanged:

$$PLDiv(\mathcal{X}') = PLDiv(\mathcal{X}).$$

• Symmetry. PLDiv is invariant to the ordering of data points (permutation invariance). Since persistent homology depends only on the metric structure of $\mathcal X$ and PLDiv $(\mathcal X)$ is computed from the multiset of intervals $\{(b_i,d_i)\}$, relabeling or reordering points does not affect the value of the score. Let $\mathcal X=(x_1,\ldots,x_n)$ be an ordered sequence of points and let π be any permutation of $\{1,\ldots,n\}$. For the permuted sequence $\mathcal X_\pi=(x_{\pi(1)},\ldots,x_{\pi(n)})$, we have

$$PLDiv(\mathcal{X}_{\pi}) = PLDiv(\mathcal{X}).$$

5 EXPERIMENT & ANALYSIS

5.1 CAPTURING DIVERSITY IN SUBSET SELECTION

A long-standing challenge in diversity measurement is the absence of ground truth labels. The issue is especially significant for complex data modalities such as text, where objective evaluation is difficult. To validate our diversity measure, we use outputs of a Determinantal Point Process (DPP), a probabilistic model that favors selecting diverse subsets from a larger set. Instead of treating all subsets equally, DPP picks those where the elements are dissimilar to one another. Specifically, it works by first measuring the similarity between every pair of points in the dataset using a kernel. Subsets that contain points that are very similar to each other are less likely to be chosen, while subsets with points that are more distinct are more likely. This guarantees that DPP produces a diverse subset, making it particularly effective as ground truth for evaluating data diversity.

We apply KDPP (selecting k diverse samples from the entire set) to both a simulation and the ArXiv-10 dataset (Farhangi et al., 2022). In the simulation, we construct a dataset of 200 points arranged into two adjacent clusters, with 100 points per cluster, from which 30 data points are selected. Additionally, we sample 100 data points from the first 1,000 instances of the ArXiv dataset and vectorize them using the text embedding model "all-MiniLM-L6-v2". In both experiments, we use both uniform random sampling and KDPP for comparison, using the Radial Basis Function (RBF) kernel for the simulation and cosine similarity for the similarity matrix construction in DPP for the ArXiv dataset. As shown in Fig. 3, our metric PLDiv effectively quantifies the higher diversity of the DPP-sampled subset compared to the random one, demonstrating its effectiveness. This suggests that PLDiv effectively captures diversity in the metric space, reflecting even small variations and making it well-suited for comparing data diversity across different datasets.

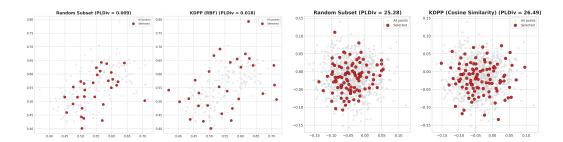


Figure 3: KDPP selects a *k*-diverse subset from the entire dataset. The two plots on the left present results from simulated data: the left shows random sampling, while the right shows KDPP. The two plots on the right correspond to the ArXiv dataset, with the left showing random sampling and the right showing KDPP. Data points selected by KDPP are scattered more diversely compared to random sampling. PLDiv successfully captures these subtle differences.

5.2 Characterizing Geometry with Curvature

As a fundamental property in geometry, curvature quantifies the extent to which a manifold deviates from being flat, thereby governing the behavior of distances within that space. Curvature inherently relates to diversity (Bubenik et al., 2020): On positively curved spaces, such as spheres, data points concentrate and the variety of configurations is reduced; while on negatively curved spaces, such as hyperbolic disks, distances spread apart more quickly, creating a greater range of possible arrangements. Being able to recover curvature from point clouds offers a principled way to validate whether a diversity measure is geometry-aware, rather than relying solely on pairwise dissimilarities. This is important because modern representation learning often places data in non-Euclidean spaces, such as spherical or hyperbolic embeddings, where curvature plays a key role in structuring similarity. A diversity measure sensitive to curvature ensures better representation of the data manifold's geometry.

To this end, we compare PLDiv against several established metrics, including Vendi Score, DCScore, and MAGAREA on the dataset (Turkes et al., 2022), by computing similarity scores from the data and using these scores as features to regress the curvature labels. We employ an SVM model with an RBF kernel and perform 5-fold cross-validation. For Vendi Score and DCScore, we consider both L1 distance and RBF as similarity functions, whereas MAGAREA uses the default Euclidean distance. Table 1 indicates that the performance of other metrics, such as Vendi Score and DCScore, is highly dependent on the choice of similarity functions, while highlighting PLDiv's strong ability to capture geometric structure.

Table 1: PLDiv estimates curvature

Method	MSE (↓)
SVR(Vendi Score, L1 kernel)	0.229 ± 0.042
SVR(Vendi Score, RBF kernel)	0.053 ± 0.004
SVR(DCScore, L1 kernel)	0.134 ± 0.019
SVR(DCScore, RBF kernel)	0.052 ± 0.004
SVR(MAGAREA, Euclidean)	0.120 ± 0.010
SVR(PLDiv) SVR(Sparse PLDiv)	$\begin{array}{c} \textbf{0.039} \pm \textbf{0.001} \\ \textbf{0.040} \pm \textbf{0.001} \end{array}$

5.3 SEMANTIC DIVERSITY IN TEXT EMBEDDINGS

We investigate the utility of PLDiv as a measure of semantic diversity encoded in text embeddings. We use the dataset from Tevet & Berant (2021), which contains 1,000 sets of 10 sentences generated from unique prompts across three distinct tasks: story completion (story), dialogue response generation (resp), and three-word prompt completion (prompt). For each prompt, 10 responses were

generated by manipulating a single decoding parameter, the softmax temperature (dec). This parameter governs the trade-off between quality and diversity in text generation, as lower temperatures increase fidelity by discouraging low-probability tokens, but at the cost of diversity in sampling. Accordingly, we employ Spearman's correlation to examine the relationship between diversity among 10 responses and their temperature dec, and perform 1,000 bootstrap iterations to obtain confidence intervals. Each response set is embedded using three sentence transformer models: "all-mpnet-base-v2", "all-MiniLM-L12-v2" and "bert-large-nli-stsb-mean-tokens".

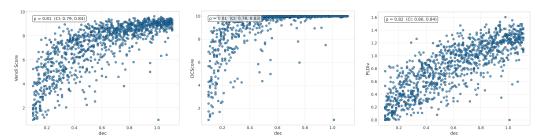


Figure 4: Correlation for prompt tasks using the MiniLM embedding model. The x-axis denotes dec and the y-axis represents diversity scores computed using different approaches. The left chart shows the results for Vendi Score, the middle chart for DCScore, and the right chart for PLDiv. Vendi Score and DCScore exhibit a non-linear relationship with dec, but DCScore shows minimal sensitivity to changes when the temperature exceeds 0.3. PLDiv exhibits a linear correlation with dec, suggesting that it can effectively capture semantic information. Correlation figures for the response and story tasks across different embedding models are provided in Appendix D.

Fig. 4 visualizes the prompt tasks using MiniLM embeddings. PLDiv demonstrates a clear linear correlation with dec, indicating that our metric effectively captures underlying semantic information. In contrast, Vendi Score exhibits non-linear and suboptimal relationships with dec, and DCScore fails to capture the diversity as dec increases, performing even worse in BERT embeddings (Fig. 6). Among these tasks, PLDiv shows a clear advantage over Vendi Score and DCScore on prompt and response tasks, while showing slightly lower performance on the story task. Overall, these results demonstrate that PLDiv effectively captures the semantic diversity encoded in text embeddings.

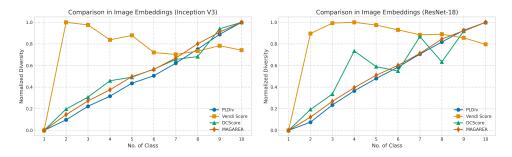


Figure 5: PLDiv shows a near-perfect correlation with the amount of the class involved in the dataset and remains consistent across different embedding models. MAGAREA performs next best, followed by DCScore, which exhibits some fluctuations in performance. VS, however, fails to capture the underlying patterns in the data.

5.4 DIVERSITY EVALUATION FOR IMAGE EMBEDDINGS

To demonstrate PLDiv's efficacy for image dataset evaluation, we tested it on Colored MNIST Deng (2012). Following the methodology of Ospanov et al. (2024), the number of labels served as the ground truth for diversity, where a higher label count signifies a more diverse set. Comparisons are conducted against Vendi Score, Magnitude, and DCScore, using two embedding models: Inception V3 and ResNet-18. Starting with a single class, we iteratively add one class at a time based on the previous data until all 10 classes are included. To facilitate a direct comparison, each metric

was subsequently normalized to the [0, 1] interval (Min–max). This linear transformation preserves the underlying trends and the correlation of each score against the number of classes present in the evaluation.

In Fig. 5, both PLDiv and MAGAREA exhibit a consistent and reliable correlation with the number of classes, aligning closely with the diagonal representing perfect correlation. PLDiv, however, offers faster computation and slightly higher correlation. DCScore follows, showing comparable performance with one embedding model but greater variance with the other. In contrast, Vendi Score tends to decrease as the number of classes and data increases. This indicates that the geometry-aware property of PLDiv makes it particularly well-suited for vision tasks, where embeddings often encode the geometric structure of images.

5.5 COMPUTATION COMPLEXITY

In this section, we analyze the computational demand of our proposed metric in comparison with existing approaches. As shown in Table 2, MAGAREA achieves results comparable to ours on the image embeddings task (Fig. 5); however, they are computationally expensive and fail to converge in text embedding evaluation tasks due to missing implementation details. On the other hand, while Vendi Score and DCScore produce results more quickly, both exhibit inconsistent and unreliable behaviors on text and image embedding tasks. Utilizing sparse estimation can accelerate PLDiv computation without compromising its results, as shown in Tables 1 and 3. We apply the sparsification method in GUDHI (Maria et al., 2014), as presented in (Sheehy, 2012; Buchet et al., 2016), which retains a fraction of edges based on a sparse rate ϵ . This sparse Rips complex typically introduces only a small approximation error in practice. To summarize, sparse PLDiv strikes a balance between computational efficiency and reliable performance.

Table 2: Computation time comparison. (the value scale is second)

Method	Curvature	Colored MNIST
Vendi Score	21.9	5.8
DCScore	2.3	1.3
MAGAREA	644.5	218.8
PLDiv	135.2	114.3
Sparse PLDiv	48.0	49.0

Table 3: Sparse estimation results vs. full matrix results

Subset	Sparse PLDiv $(\epsilon = 0.3)$	Full Matrix
1	0.45	0.45
2	0.77	0.77
3	1.17	1.17
4	1.48	1.48
5	1.86	1.86
6	2.09	2.09
7	2.46	2.46
8	2.88	2.88
9	3.32	3.33
10	3.69	3.69

6 Conclusion

Understanding data diversity requires moving beyond traditional notions of variation or entropy to account for the intricate geometric and topological structures inherent in complex datasets. We propose a geometry-aware data diversity measure based on persistence landscapes, a tool from topological data analysis that provides a stable and expressive representation of hidden structural patterns. Our metric, PLDiv, offers a richer and more nuanced quantification of diversity. Through extensive experiments across multiple domains and modalities, we demonstrate PLDiv's ability to characterize structural properties in data clouds (e.g., curvature data) and in vector embeddings (e.g., text and image data). These results establish PLDiv as a versatile tool for dataset construction, augmentation, model evaluation, and robustness analysis. Looking forward, integrating topological perspectives into automated dataset design, generative modeling, and adaptive learning systems has the potential to fundamentally reshape how diversity is understood, measured, and leveraged in artificial intelligence.

REFERENCES

Sina Alemohammad, Josue Casco-Rodriguez, Lorenzo Luzi, Ahmed Imtiaz Humayun, Hossein Babaei, Daniel LeJeune, Ali Siahkoohi, and Richard G Baraniuk. Self-consuming generative models go mad. International Conference on Learning Representations (ICLR), 2024.

- Miguel A Aragón-Calvo, Rien Van De Weygaert, and Bernard JT Jones. Multiscale phenomenology of the cosmic web. *Monthly Notices of the Royal Astronomical Society*, 408(4):2163–2187, 2010.
- Yang Ba, Michelle V Mancenido, and Rong Pan. How does data diversity shape the weight land-scape of neural networks? *arXiv preprint arXiv:2410.14602*, 2024.
 - Paul Bendich, James S Marron, Ezra Miller, Alex Pieloch, and Sean Skwerer. Persistent homology analysis of brain artery trees. *The annals of applied statistics*, 10(1):198, 2016.
 - Quentin Bertrand, Avishek Joey Bose, Alexandre Duplessis, Marco Jiralerspong, and Gauthier Gidel. On the stability of iterative retraining of generative models on their own data. *arXiv* preprint arXiv:2310.00429, 2023.
 - Yijun Bian and Huanhuan Chen. When does diversity help generalization in classification ensembles? *IEEE Transactions on Cybernetics*, 52(9):9059–9075, 2021.
 - Florian Le Bronnec, Alexandre Verine, Benjamin Negrevergne, Yann Chevaleyre, and Alexandre Allauzen. Exploring precision and recall to assess the quality and diversity of llms. *arXiv* preprint *arXiv*:2402.10693, 2024.
 - Peter Bubenik, Michael Hull, Dhruv Patel, and Benjamin Whittle. Persistent homology detects curvature. *Inverse Problems*, 36(2):025008, 2020.
 - Peter Bubenik et al. Statistical topological data analysis using persistence landscapes. *J. Mach. Learn. Res.*, 16(1):77–102, 2015.
 - Mickaël Buchet, Frédéric Chazal, Steve Y Oudot, and Donald R Sheehy. Efficient and robust persistent homology for measures. *Computational Geometry*, 58:70–96, 2016.
 - Line H Clemmensen and Rune D Kjærsgaard. Data representativity for machine learning and ai systems. *arXiv preprint arXiv:2203.04706*, 2022.
 - Aisling J Daly, Jan M Baetens, and Bernard De Baets. Ecological diversity: measuring the unmeasurable. *Mathematics*, 6(7):119, 2018.
 - Dan Dan Friedman and Adji Bousso Dieng. The vendi score: A diversity evaluation metric for machine learning. *Transactions on machine learning research*, 2023.
 - Li Deng. The mnist database of handwritten digit images for machine learning research [best of the web]. *IEEE signal processing magazine*, 29(6):141–142, 2012.
 - Wenchao Du and Alan W Black. Boosting dialog response generation. In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, 2019.
 - Edelsbrunner, Letscher, and Zomorodian. Topological persistence and simplification. *Discrete & computational geometry*, 28(4):511–533, 2002.
 - Herbert Edelsbrunner, John Harer, et al. Persistent homology-a survey. *Contemporary mathematics*, 453(26):257–282, 2008.
 - Ashkan Farhangi, Ning Sui, Nan Hua, Haiyan Bai, Arthur Huang, and Zhishan Guo. Protoformer: Embedding prototypes for transformers. In *Advances in Knowledge Discovery and Data Mining:* 26th Pacific-Asia Conference, PAKDD 2022, Chengdu, China, May 16–19, 2022, Proceedings, Part I, pp. 447–458, 2022.
 - Marcio Gameiro, Yasuaki Hiraoka, Shunsuke Izumi, Miroslav Kramar, Konstantin Mischaikow, and Vidit Nanda. A topological measurement of protein compressibility. *Japan Journal of Industrial and Applied Mathematics*, 32(1):1–17, 2015.
 - Marian Gidea and Yuri Katz. Topological data analysis of financial time series: Landscapes of crashes. *Physica A: Statistical mechanics and its applications*, 491:820–834, 2018.
 - Dejan Govc and Richard Hepworth. Persistent magnitude. *Journal of Pure and Applied Algebra*, 225(3):106517, 2021.

- Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in neural information processing systems*, 30, 2017.
 - Yasuaki Hiraoka, Takenobu Nakamura, Akihiko Hirata, Emerson G Escolar, Kaname Matsue, and Yasumasa Nishiura. Hierarchical structures of amorphous solids characterized by persistent homology. *Proceedings of the National Academy of Sciences*, 113(26):7035–7040, 2016.
 - Mohammad Jalali, Cheuk Ting Li, and Farzan Farnia. An information-theoretic evaluation of generative models in learning multi-modal distributions. *Advances in Neural Information Processing Systems*, 36:9931–9943, 2023.
 - Beomjun Kim, Jaehwan Kim, Kangyeon Kim, Sunwoo Kim, and Heejin Ahn. A computation-efficient method of measuring dataset quality based on the coverage of the dataset. In Yingzhen Li, Stephan Mandt, Shipra Agrawal, and Emtiyaz Khan (eds.), *Proceedings of The 28th International Conference on Artificial Intelligence and Statistics*, volume 258 of *Proceedings of Machine Learning Research*, pp. 4744–4752. PMLR, 03–05 May 2025. URL https://proceedings.mlr.press/v258/kim25f.html.
 - Violeta Kovacev-Nikolic, Peter Bubenik, Dragan Nikolić, and Giseon Heo. Using persistent homology and dynamical distances to analyze protein binding. *Statistical applications in genetics and molecular biology*, 15(1):19–38, 2016.
 - Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved precision and recall metric for assessing generative models. *Advances in neural information processing systems*, 32, 2019.
 - Yi-An Lai, Xuan Zhu, Yi Zhang, and Mona Diab. Diversity, density, and homogeneity: Quantitative characteristic metrics for text collections. *arXiv preprint arXiv:2003.08529*, 2020.
 - Tom Leinster. Entropy and diversity: the axiomatic approach. Cambridge university press, 2021.
- Tom Leinster and Christina A Cobbold. Measuring diversity: the importance of species similarity. *Ecology*, 93(3):477–489, 2012.
- Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation of language models. *arXiv preprint arXiv:2211.09110*, 2022.
- Katharina Limbeck, Rayna Andreeva, Rik Sarkar, and Bastian Rieck. Metric space magnitude for evaluating the diversity of latent representations. *Advances in Neural Information Processing Systems*, 37:123911–123953, 2024.
- Yang Janet Liu and Amir Zeldes. Why can't discourse parsing generalize? a thorough investigation of the impact of data diversity. *arXiv preprint arXiv:2302.06488*, 2023.
- Clément Maria, Jean-Daniel Boissonnat, Marc Glisse, and Mariette Yvinec. The gudhi library: Simplicial complexes and persistent homology. In *International congress on mathematical software*, pp. 167–174. Springer, 2014.
- Swaroop Mishra, Anjana Arunkumar, Bhavdeep Sachdeva, Chris Bryan, and Chitta Baral. Dqi: Measuring data quality in nlp. *arXiv preprint arXiv:2005.00816*, 2020.
- Fionn Murtagh and Pedro Contreras. Algorithms for hierarchical clustering: an overview. *Wiley interdisciplinary reviews: data mining and knowledge discovery*, 2(1):86–97, 2012.
- Muhammad Ferjad Naeem, Seong Joon Oh, Youngjung Uh, Yunjey Choi, and Jaejun Yoo. Reliable fidelity and diversity metrics for generative models. In *International conference on machine learning*, pp. 7176–7185. PMLR, 2020.
- Luis A Ortega, Rafael Cabañas, and Andres Masegosa. Diversity and generalization in neural network ensembles. In *International Conference on Artificial Intelligence and Statistics*, pp. 11720–11743. PMLR, 2022.

- Azim Ospanov, Jingwei Zhang, Mohammad Jalali, Xuenan Cao, Andrej Bogdanov, and Farzan Farnia. Towards a scalable reference-free evaluation of generative models. *Advances in Neural Information Processing Systems*, 37:120892–120927, 2024.
- Vishakh Padmakumar and He He. Does writing with language models reduce content diversity? *arXiv preprint arXiv:2309.05196*, 2023.
- Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin Choi, and Zaid Harchaoui. Mauve: Measuring the gap between neural text and human text using divergence frontiers. *Advances in Neural Information Processing Systems*, 34:4816–4828, 2021.
- Chi Seng Pun, Si Xian Lee, and Kelin Xia. Persistent-homology-based machine learning: a survey and a comparative study. *Artificial Intelligence Review*, 55(7):5169–5213, 2022.
- Sylvestre-Alvise Rebuffi, Sven Gowal, Dan Andrei Calian, Florian Stimberg, Olivia Wiles, and Timothy A Mann. Data augmentation can improve robustness. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp. 29935–29948. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/fb4c48608ce8825b558ccf07169a3421-Paper.pdf.
- Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. Beyond accuracy: Behavioral testing of nlp models with checklist. *arXiv preprint arXiv:2005.04118*, 2020.
- Esther Rolf, Theodora T Worledge, Benjamin Recht, and Michael Jordan. Representation matters: Assessing the importance of subgroup allocations in training data. In *International Conference on Machine Learning*, pp. 9040–9051. PMLR, 2021.
- Donald R Sheehy. Linear-size approximations to the vietoris-rips filtration. In *Proceedings of the twenty-eighth annual symposium on Computational geometry*, pp. 239–248, 2012.
- Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep learning. *Journal of big data*, 6(1):1–48, 2019.
- Raphael Shu, Hideki Nakayama, and Kyunghyun Cho. Generating diverse translations with sentence codes. In *Proceedings of the 57th annual meeting of the association for computational linguistics*, pp. 1823–1827, 2019.
- Feifan Song, Bowen Yu, Hao Lang, Haiyang Yu, Fei Huang, Houfeng Wang, and Yongbin Li. Scaling data diversity for fine-tuning language models in human alignment. *arXiv preprint arXiv:2403.11124*, 2024.
- Katherine Stasaski and Marti A Hearst. Semantic diversity in dialogue with natural language inference. *arXiv preprint arXiv:2205.01497*, 2022.
- Terence Tao. An introduction to measure theory, volume 126. American Mathematical Soc., 2011.
- Guy Tevet and Jonathan Berant. Evaluating the evaluation of diversity in natural language generation. In Paola Merlo, Jorg Tiedemann, and Reut Tsarfaty (eds.), *Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume*, pp. 326–346, Online, April 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.eacl-main.25. URL https://aclanthology.org/2021.eacl-main.25/.
- Renata Turkes, Guido F Montufar, and Nina Otter. On the effectiveness of persistent homology. *Advances in Neural Information Processing Systems*, 35:35432–35448, 2022.
- Yuhei Umeda. Time series classification via topological data analysis. *Information and Media Technologies*, 12:228–239, 2017.
- Kaixin Wang, Bingyi Kang, Jie Shao, and Jiashi Feng. Improving generalization in reinforcement learning with mixture regularization. *Advances in Neural Information Processing Systems*, 33: 7968–7978, 2020.

- Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. *arXiv preprint arXiv:2212.10560*, 2022.
- Kelin Xia and Guo-Wei Wei. Multidimensional persistence in biomolecular data. *Journal of computational chemistry*, 36(20):1502–1520, 2015.
- Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Sequence generative adversarial nets with policy gradient. In *Proceedings of the AAAI conference on artificial intelligence*, volume 31, 2017.
- Yu Yu, Shahram Khadivi, and Jia Xu. Can data diversity enhance learning generalization? In Proceedings of the 29th international conference on computational linguistics, pp. 4933–4945, 2022.
- Hongyi Zhang. mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017.
- Qi Zhao and Yusu Wang. Learning metrics for persistence-based summaries and applications for graph classification. *Advances in neural information processing systems*, 32, 2019.
- Yuchang Zhu, Huizhe Zhang, Bingzhe Wu, Jintang Li, Zibin Zheng, Peilin Zhao, Liang Chen, and Yatao Bian. Measuring diversity in synthetic datasets. *arXiv preprint arXiv:2502.08512*, 2025.
- Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. In *Proceedings of the twentieth annual symposium on Computational geometry*, pp. 347–356, 2004.

A ADDITIONAL ITERATURE REVIEW

A.1 DIVERSITY MEASUREMENT

Evaluating diversity has long been a challenge in machine learning and generative modeling, partly because it is not always formalized under a single definition but manifests across different dimensions. For example, holistic evaluations of language models highlight variation in task coverage, domain shifts, linguistic and dialectal richness, input perturbations, and social context, all of which directly connect to the broader notion of data diversity (Liang et al., 2022).

Some works emphasize that inducing or controlling diversity can be as important as measuring it. Behavioral frameworks such as CheckList (Ribeiro et al., 2020) systematically probe models through templating, lexical substitutions, and perturbations, showing that diverse inputs are essential for revealing hidden model failures, even though diversity itself is not explicitly quantified.

Diversity is not always treated only as an evaluation objective, but also as a design principle at the training level. For instance, Du and Black (Du & Black, 2019) mitigate mode collapse in dialogue generation by iteratively boosting models to promote semantic and lexical variation. Although effective in practice, these approaches underscore the need for principled evaluation frameworks that can verify whether training-time interventions truly enhance diversity across settings.

To address semantic variation more directly, semantic diversity methods examine conceptual distinctions between outputs. Stasaski and Hearst (Stasaski & Hearst, 2022) use Natural Language Inference models to identify entailment, contradiction, and neutrality among generated texts, treating contradiction as a marker of diversity and entailment as redundancy. Although intuitive and fine-grained, this relational approach is inherently limited to pairwise comparisons and does not capture global structural diversity across datasets.

A large class of methods focuses on surface-level variation, particularly in text. N-gram-based metrics such as distinct-n (Song et al., 2024), self-BLEU (Shu et al., 2019), and ROUGE-L (Wang et al., 2022; Padmakumar & He, 2023) capture token-level dispersion across samples (Yu et al., 2017). Similarly, the Data Quality Index (DQI) (Mishra et al., 2020) aggregates vocabulary richness, entropy, and syntactic variation to assess dataset quality. While easy to compute, these approaches provide only a narrow view of diversity, often missing deeper semantic or structural patterns.

A.2 PERSISTENT HOMOLOGY IN METRIC SPACE

 The formal algebraic foundations were established by Zomorodian & Carlsson (2004), who introduced persistence modules, provided algorithms for computing persistence, and proved the barcode decomposition theorem as a complete invariant over fields. This work grounded PH in computability and algebraic classification, laying the basis for its adoption across domains (Zhao & Wang, 2019; Hiraoka et al., 2016; Pun et al., 2022). However, these foundational contributions primarily emphasize topology extraction and stability, without directly connecting persistence to data-level diversity or representational richness.

Beyond its theoretical foundations, TDA and persistent homology have shown practical utility across diverse domains. In neuroscience, PH captures vascular structures linked to disease (Bendich et al., 2016); in materials science, it characterizes microstructures and force chains in amorphous solids (Hiraoka et al., 2016); and in biology and chemistry, it reveals topological signatures of protein folding, molecular stability, and binding sites (Xia & Wei, 2015; Kovacev-Nikolic et al., 2016; Gameiro et al., 2015). These examples highlight PH's ability to extract robust, multi-scale features from high-dimensional and noisy data.

PH has also been applied to both temporal and spatial systems. Persistence landscapes have been used to track transitions in dynamical systems and classify time-series data (Gidea & Katz, 2018; Umeda, 2017), while in astrophysics, PH captures the multiscale filamentary structure of the cosmic web from cosmological simulations (Aragón-Calvo et al., 2010). Collectively, these applications highlight PH's versatility as a modality-agnostic framework for extracting global, nonlinear structure that often remains inaccessible to conventional statistical or machine learning methods.

B DESCRIPTION OF DIVERSITY SCORES IN COMPARISONS

Vendi Score (VS) (Dan Friedman & Dieng, 2023), derived from a set of samples and their pairwise similarity functions, quantifies the similarities among the data in a dataset. Mathematically, VS is given by the exponential of the Shannon entropy, which is obtained from the eigenvalues of the scaled similarity matrix $X^{\top}X$:

$$VS = \exp\left(-\sum_{i=1}^{n} \lambda_i \log \lambda_i\right)$$

where λ_i are the eigenvalues of scaled $X^{\top}X$.

Limbeck et al. (2024) introduces several magnitude-based diversity measures that leverage the notion of the effective size of a metric space across scales. The core idea is to compute the magnitude function, $\mathrm{Mag}_X(t)$, which tracks how the effective number of points in a space changes as pairwise distances are rescaled. To summarise this behaviour, the authors propose two derived metrics: the area under the magnitude function (MAGAREA) as a reference-free measure of intrinsic diversity, and the difference between magnitude functions (MAGDIFF) as a reference-based measure:

$$\mathsf{MAGAREA} = \int_{t_0}^{t_{\mathsf{cut}}} \mathsf{Mag}_X(t) \, dt, \quad \mathsf{MAGDIFF} = \int_{t_0}^{t_{\mathsf{cut}}} \left(\mathsf{Mag}_X(t) - \mathsf{Mag}_Y(t) \right) dt,$$

where $\mathrm{Mag}_X(t)$ is the magnitude function of X at scale t and t_{cut} denotes the convergence scale used for evaluation. These measures provide robust multi-scale summaries of diversity and have been shown to detect phenomena such as curvature, mode collapse, and mode dropping in text, image, and graph representations.

Zhu et al. (2025) proposes **DCScore**, which departs from entropy or scale-based approaches by reframing diversity measurement as a *classification problem*. Instead of relying on eigenvalue decomposition or scale-sensitive geometric measures, DCScore evaluates how well each individual sample in a dataset can be distinguished from all others. Specifically, each sample is treated as its own class, and pairwise similarities are converted into classification probabilities through a softmax function. The last score is then defined as the trace of the resulting probability matrix:

$$DCScore(D) = tr(P) = \sum_{i=1}^{n} P[i, i], \quad P[i, j] = \frac{\exp\left(\frac{K[i, j]}{\tau}\right)}{\sum_{k=1}^{n} \exp\left(\frac{K[i, k]}{\tau}\right)},$$

where K[i,j] denotes the similarity between samples i and j, and τ is a temperature parameter that controls the classification sharpness. This formulation is principled and efficient, emphasizing sample separability without considering the geometric or topological structure of the dataset, which can also be important for characterizing diversity.

C MATHEMATICAL PROOFS

C.1 PLDIV CLOSED FORM

Let $\mathcal{D} = \{(b_i, d_i)\}_{i=1}^m$ be a finite multiset of persistence birth–death pairs and let $\lambda_{(b_i, d_i)} : \mathbb{R} \to [0, \infty)$ denote the usual persistence "tent" function associated to the interval (b_i, d_i) . Let $\{\lambda_k(t)\}_{k \ge 1}$ be the persistence landscape functions obtained by ordering the values $\{\lambda_{(b_i, d_i)}(t)\}_{i=1}^m$ at each fixed t in nonincreasing order (with $\lambda_k(t) = 0$ for all k > m). Then

$$PLDiv(\mathcal{X}) = \sum_{k=1}^{\infty} \int_{\mathbb{R}} \lambda_k(t) dt = \sum_{i=1}^{m} \int_{\mathbb{R}} \lambda_{(b_i, d_i)}(t) dt = \frac{1}{4} \sum_{i=1}^{m} (d_i - b_i)^2.$$

Proof. By definition $\lambda_k(t)$ are the order statistics (at each fixed t) of the family $\{\lambda_{(b_i,d_i)}(t)\}_{i=1}^m$. For any finite collection of nonnegative functions $f_i(t)$,

$$\sum_{k=1}^{\infty} k\text{-th largest of } \{f_i(t)\} \; = \; \sum_{i=1}^m f_i(t),$$

Applying this pointwise gives

$$\sum_{k=1}^{\infty} \lambda_k(t) = \sum_{i=1}^{m} \lambda_{(b_i, d_i)}(t).$$

Each $\lambda_{(b_i,d_i)}$ is continuous with compact support $[b_i,d_i]$, hence measurable and integrable. By Tonelli's theorem (Tao, 2011),

$$\sum_{k=1}^{\infty} \int_{\mathbb{R}} \lambda_k(t) dt = \int_{\mathbb{R}} \sum_{k=1}^{\infty} \lambda_k(t) dt = \int_{\mathbb{R}} \sum_{i=1}^{m} \lambda_{(b_i,d_i)}(t) dt = \sum_{i=1}^{m} \int_{\mathbb{R}} \lambda_{(b_i,d_i)}(t) dt.$$

Finally, each tent function supported on the interval $[b_i, d_i]$ is a symmetric isosceles triangle of base length $d_i - b_i$ and height $(d_i - b_i)/2$, hence its area is

$$\int_{\mathbb{R}} \lambda_{(b_i,d_i)}(t) dt = \frac{1}{2} \cdot (d_i - b_i) \cdot \frac{d_i - b_i}{2} = \frac{(d_i - b_i)^2}{4},$$

Summing over i = 1, ..., m gives the final identity

$$\sum_{i=1}^{m} \int_{\mathbb{R}} \lambda_{(b_i,d_i)}(t) dt = \frac{1}{4} \sum_{i=1}^{m} (d_i - b_i)^2.$$

C.2 PROOF OF AXIOMATIC PROPERTIES OF DIVERSITY

A diversity measure derived from Persistence Landscapes (PLs) is defined as a summary statistic of the persistence lifetimes generated from a dataset's Vietoris-Rips filtration. We prove that such a measure satisfies the key principles of effective size, monotonicity, the twin property, and symmetry.

Effective size. For a fixed number of points, PLDiv(X) increases when data points are
well-separated and decreases as they cluster, reaching a maximum when all points are distinct and a minimum when all are identical.

Proof. Minimum PLDiv: The minimum value of PLDiv is achieved when all points in the cloud \mathcal{X} are identical. Let all n points in the cloud be the same, so $x_1 = x_2 = \cdots = x_n$. The distance between any two points is zero:

$$d(x_i, x_j) = 0$$
 for all i, j .

Every point is born at $\varepsilon=0$ and immediately merges with every other point at $\varepsilon=0$, all persistence lifetimes are zero. That is,

$$b_i = 0$$
, $d_i = 0$ for all features.

Therefore.

$$\min \text{PLDiv}(\mathcal{X}) = \frac{1}{4} \sum_{i} (d_i - b_i)^2 = \frac{1}{4} \sum_{i} (0 - 0)^2 = 0.$$

Maximum PLDiv: The maximum value of PLDiv is achieved when the points are "well-separated." Let $\mathcal{X} = \{x_1, \dots, x_n\}$ be a point cloud in a metric space (\mathcal{M}, d) such that all points are distinct and equidistant:

$$d(x_i, x_j) = c > 0$$
 for all $i \neq j$.

Then, the H_0 persistence lifetimes are all equal to c, except for the last surviving component. Let $c = \max_{i \neq j} d(x_i, x_j)$. In the Vietoris–Rips filtration, at $\varepsilon = 0$, each point forms a separate connected component. Thus, there are n components born at $b_i = 0$. For $0 < \varepsilon < c$, no edges appear because all pairwise distances are c. Hence, no components merge in this interval. At $\varepsilon = c$, all pairwise edges appear simultaneously, and the n components merge into a single connected component. Thus, n-1 components die at $d_i = c$, while the last component persists indefinitely.

By Proposition 3.2, the corresponding PLDiv is

$$\max \operatorname{PLDiv}(\mathcal{X}) = \frac{n-1}{4} c^2.$$

Monotonicity

Fix n and let \mathcal{X} be a point cloud in a metric space. If all pairwise distances in \mathcal{X} are scaled by a factor $\alpha > 1$ (i.e. replace the metric $d(\cdot, \cdot)$ by $\alpha d(\cdot, \cdot)$), then

$$\mathrm{PLDiv}(\alpha\mathcal{X}) \begin{cases} \leq \alpha^2 \, \mathrm{PLDiv}(\mathcal{X}), & \alpha > 1, \\ \geq \alpha^2 \, \mathrm{PLDiv}(\mathcal{X}), & 0 < \alpha < 1. \end{cases}$$

Proof. Fix n and let \mathcal{X} be a point cloud in a metric space. If all pairwise distances in \mathcal{X} are scaled by a factor $\alpha > 1$ (i.e. replace the metric $d(\cdot, \cdot)$ by $\alpha d(\cdot, \cdot)$), then every lifetime $d_i - b_i$ is multiplied by α . By Proposition 3.2,

$$\text{PLDiv}(\alpha \mathcal{X}) = \frac{1}{4} \sum_{i} (\alpha (d_i - b_i))^2 = \alpha^2 \cdot \frac{1}{4} \sum_{i} (d_i - b_i)^2 = \alpha^2 \text{PLDiv}(\mathcal{X}).$$

Hence, spreading the same set of points apart (uniform dilation) strictly increases PLDiv (for $\alpha>1$). More generally, moving points so as to increase lifetimes of the dominant features increases PLDiv; conversely, clustering points tends to shorten lifetimes and reduce PLDiv. $\hfill\Box$

• Twin property. Adding an exact duplicate of a point does not change $\operatorname{PLDiv}(\mathcal{X})$. Let \mathcal{X} be a dataset and let $x_i \in \mathcal{X}$. For the set $\mathcal{X}' = \mathcal{X} \cup \{x_n\}$ where $x_n = x_i$, the diversity is unchanged:

$$PLDiv(\mathcal{X}') = PLDiv(\mathcal{X}).$$

Proof. A duplicate point at exactly the same coordinates is at zero distance from its twin. In the usual filtrations built from pairwise distances (e.g., Vietoris–Rips), the duplicate component is born at radius 0 and immediately merges with its twin also at radius 0. Hence the corresponding birth–death pair is (0,0) and has lifetime 0, contributing $(d-b)^2/4=0$ to the PLDiv sum. All other birth–death pairs are unchanged as well. Therefore PLDiv is unchanged.

• Symmetry. PLDiv is invariant to the ordering of data points (permutation invariance). Since persistent homology depends only on the metric structure of $\mathcal X$ and PLDiv $(\mathcal X)$ is computed from the multiset of intervals $\{(b_i,d_i)\}$, relabeling or reordering points does not affect the value of the score. Let $\mathcal X=(x_1,\ldots,x_n)$ be an ordered sequence of points and let π be any permutation of $\{1,\ldots,n\}$. For the permuted sequence $\mathcal X_\pi=(x_{\pi(1)},\ldots,x_{\pi(n)})$, we have

$$PLDiv(\mathcal{X}_{\pi}) = PLDiv(\mathcal{X}).$$

Proof. The PH pipeline begins with the pairwise distance matrix D, where $D_{ij} = d(x_i, x_j)$. Let \mathcal{X}_{π} be the reordered dataset. The distance matrix D_{π} for the permuted data has entries $(D_{\pi})_{ij} = d(x_{\pi(i)}, x_{\pi(j)})$. Importantly, the set of all unique pairwise distances

$$\{d(x_i, x_j)\}_{1 \le i < j \le n}$$

is unchanged for both \mathcal{X} and \mathcal{X}_{π} . The construction of the Vietoris–Rips filtration depends only on these distances. Hence, the persistence diagrams and lifetimes $\{l_i\}$ are identical. Therefore, any diversity measure computed from these lifetimes is invariant under permutation of the data and PLDiv is symmetry.

D More analysis on Semantic Text Embeddings

We present the experimental results for text embedding evaluation tasks in Figs. 6, 7, and 8. Across the three embedding tasks, Vendi Score achieves the highest correlation in story tasks and the second-highest in prompt and response tasks. DCScore performs well only on story tasks with MPNet embeddings. In contrast, PLDiv shows the best performance on prompt and response tasks, exhibiting a linear relationship, while providing a non-linear relationship for story tasks. Overall, these results suggest that Vendi Score and PLDiv generally outperform DCScore.

Figure 6: Correlation results for embeddings model: "bert-large-nli-stsb-mean-tokens" across three tasks: Row 1 shows prompt, Row 2 shows response, and Row 3 shows story. Columns 1–3 represent the results for VS, DCS, and PLDiv, respectively.

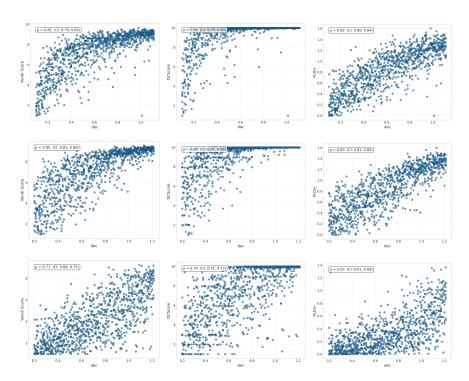


Figure 7: Correlation results for embeddings model: "all-MiniLM-L12-v2" across three tasks: Row 1 shows prompt, Row 2 shows response, and Row 3 shows story. Columns 1–3 represent the results for VS, DCS, and PLDiv, respectively.

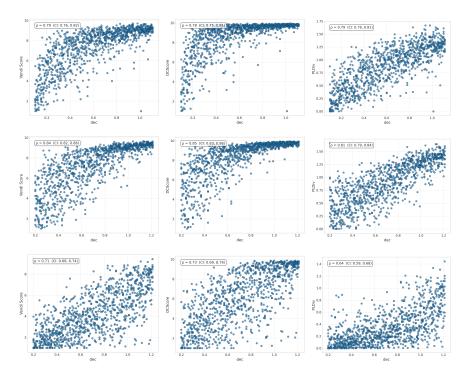


Figure 8: Correlation results for embeddings model: "all-mpnet-base-v2" across three tasks: Row 1 shows prompt, Row 2 shows response, and Row 3 shows story. Columns 1–3 represent the results for VS, DCS, and PLDiv, respectively.