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ABSTRACT

Pairwise ranking models have been widely used to address various problems, such
as recommendation. The basic idea is to learn the rank of users’ preferred items
through separating items into positive samples if user-item interactions exist, and
negative samples otherwise. Due to the limited number of observed interactions,
pairwise ranking models face serious class-imbalance issue. Our theoretical anal-
ysis shows that current sampling-based methods cause the vertex-level imbalance
problem, which makes the norm of learned item embeddings towards infinite after
a certain training iterations, and consequently results in vanishing gradient and
affects the model performance. To this end, we propose VINS, an efficient Vital
Negative Sampler, to alleviate the class-imbalance issue for pairwise ranking mod-
els optimized by gradient methods. The core of VINS is a bias sampler with reject
probability that will tend to accept a negative candidate with a larger popularity
than the given positive item. Evaluation results on several real datasets demon-
strate that the proposed sampling method speeds up the training procedure 30%
to 50% for ranking models ranging from shallow to deep, while maintaining and
even improving the quality of ranking results in top-N item recommendation.

1 INTRODUCTION

Offering personalized service to users is outstanding as an important task, for example, ranking the
top-N items that a user may like. Solutions to such kind of problems are usually designed on a
bipartite graph G = (V,E), where vertex set V = U ∪ I contains user set U and item set I, and
E denotes the edge set. Each edge eui ∈ E denotes an observed interaction between user u and
item i. Users’ preference on items is modeled by pairwise loss functions with the assumption that
items with interactions from a user are of more interest to this user than those without interactions.
The loss function thus involves pairwise comparison between an observed (positive) edge eui ∈ E
and an unobserved (negative) edge euj /∈ E. The optimization process thus suffers from the class-
imbalance issue ,because in practical scenario, the number of observed (positive) edges are always
much less than the unobserved (negative) ones. The imbalance between eui ∈ E and euj /∈ E can
be regarded as the edge-level imbalance issue.

Pioneering works dealing with the class-imbalance problem can be categorized into two main fam-
ilies: using stationary sampling or using dynamic sampling. Approaches in the former family usu-
ally start from the edge-level class-imbalance issue through under-sampling negative edges from a
pre-defined stationary distribution (Rendle et al., 2009; Rendle and Freudenthaler, 2014), or over-
sampling positive edges by creating instances through the social connection (Chen et al., 2019).
However, they ignore that class-imbalance issue also exists in vertex side because each vertex can
appear in both positive and negative edges. Through some basic statistical analysis, we acquire
some interesting findings, that is, the vertex degree has positive impact on vertex-level imbalance
problem. If we sample negative instances from a stationary distribution, those popularity vertexes
with degree greater than average vertex degree are under-sampled as negative samples, while “cold-
start” vertexes with degree less than average degree are over-sampled. Moreover, they can’t capture
the dynamics of relative ranking order between positive and negative samples, as shown in Figure
1(a) and 1(b). From Figure 1(a) we can see that it’s easy to find an order-violated item for pairwise
loss optimization at the initial state, because there are many negative items ranking higher than the
positive item. However, as the learning process moves forward, massive number of negative items
are distinguished well from the positive item, shown in Figure 1(b). At this time, a large portion of
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Figure 1: Illustration of finding useful negative items for pairwise loss optimization: (a) is the initial
stage of optimization when it’s easy to get one negative item; (b) shows that useful negative items
are more difficult to get as the learning process moves forwards; (c) sampling negative items from
uniform distribution equals to do unbiased random walk on fully connected item-item graph; (d)
presents an alternative solution depending on a bias random walk.

the negative items are useless for pairwise loss optimization, because they already rank lower than
the positive item.

Recently dynamic sampling approaches (Weston et al., 2011; Yuan et al., 2016; Wang et al., 2020)
have shown their significant contribution to negative instances selection by considering the hardness
of sampling a negative sample. However, existing dynamic methods have several drawbacks: 1) they
lack systematically understanding their connection to class-imbalance issue, leading to only sam-
pling candidate from uniform distribution; 2) they have to find a violated negative sample through
searching massive candidates, causing high computation complexity (over ten times higher than
sampling from stationary distribution).

In this work, we aim at finding clues that can help to design a faster dynamic negative sampler
for the personalized ranking task. We find that sampling from uniform distribution can be regarded
as a random walk with a transition probability matrix P for arbitrary node pair in a fully connected
item-item graph, which is presented in Figure 1(c). Intuitively, nodes (items) are different in their
nature (e.g., degree, betweenness). A biased transition matrix P∗ might be more helpful on finding
the desired negative items, than a uniform random P , as shown in Figure 1(d). Through theo-
retical analysis, we find that one of the potential solutions to decode the biased transition process
and walking with a biased transition matrix P∗ is to tackle the class-imbalance issue. To achieve
this goal, it is essential to first dissect the impact of class-imbalance issue. More specifically, we
mainly investigate the three questions: Q1) how the class-imbalance problem is reflected in current
sampling-based pairwise ranking approaches? Q2) what is the impact of the imbalance problem on
learning optimal pairwise ranking model? Q3) how can we resolve the class-imbalance issue and
design a faster dynamic sampling approach to boost ranking quality? We answer the above ques-
tions with theoretical analysis in Section 3. The brief summary is, to Q1, if negative instances are
sampled from a uniform distribution (e.g., in (Rendle et al., 2009)), vertexes with high degrees are
under-sampled as negative samples, while “cold-start” vertexes with low degrees are over-sampled.
To Q2, we theoretically show that the class-imbalance issue will result in frequency gathering phe-
nomenon where the learned embeddings of items with close popularity will gather together, and
cause gradient vanishment at the output loss. Based on the above insights, for Q3, we propose
an efficient Vital Negative Sampler (VINS), which explicitly considers both edge- and vertex-level
class-imbalance issue. In summary, our contributions of this work are as follows:

• We indicate out edge- and vertex-level imbalance problem raised in pairwise learning loss, and
provide theoretical analysis that the imbalance issue could lead to frequency gathering phe-
nomenon and vanishing gradient at the output loss.

• To address the class-imbalance and vanishing gradient problem, we design an adaptive negative
sampling method with a reject probability based on items’ degree differences.

• Thoroughly experimental results demonstrate that the proposed method can speed up the training
procedure 30% to 50% for shallow and deep ranking models, compared with the state-of-the-art
dynamic sampling methods.
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2 RELATED WORK

Pairwise comparison usually happens between an observed (positive) and an unobserved (negative)
edge, when the interactions between users and items are represented as a bipartite graph. Such an
idea results in a serious class-imbalance issue due to the pairwise comparison between a small set
of interacted items (positive as minority class) and a very large set of all remaining items (negative
as majority class). Pioneering work proposed in (Rendle et al., 2009) presented an under-sampling
approach via uniformly sampling a negative edge for a given positive edge. Following the idea
in (Rendle et al., 2009), (Zhao et al., 2014) proposed an over-sampling method by employing social
theory to create synthetic positive instances. (Ding et al., 2019) augmented pairwise samples with
view data. However, these sampling strategies discard a fact that each item has its own properties,
e.g., degree, betweenness. (Rendle and Freudenthaler, 2014) considered vertex properties and pro-
posed to sample a negative instance from an exponential function over the order of vertex degree.
Despite of the effectiveness and efficiency of sampling from a stationary distribution (e.g., uniform,
or power function over vertex popularity), they ignore the impact of relative order between positive
and negative samples during the learning processes, as shown in Figure 1(a) and 1(b).

Recently dynamic sampling approaches (Weston et al., 2011; Yuan et al., 2016; Chen et al., 2018)
aiming at estimating the rank order of positive samples have shown significant contribution of select-
ing vital negative instances. As a pioneering work, (Weston et al., 2011) proposed the WARP loss
aiming at playing less attention to well-learned positives, but more emphasis on the low-rank ones.
However, along with the growing of iterations, sampling a violated negative items become very dif-
ficult (Hsiao et al., 2014). WARP inspires lots of recent works to estimate rank-aware weight from
a uniform distribution As the state-of-the-art variant of WARP loss, LFM-W (Yuan et al., 2016)
advances WARP with a normalization term. However, estimating the rank-aware weight from a
uniform distribution makes LFM-W need lots of steps to find a violated sample. Moreover, LFM-
W might find sub-optimal negative sample without considering the class-imbalance issue. Besides
considering ranking order, (Wang et al., 2019) regarded dynamic sampling as a minmax game.
VINS also inherits the basic ideas from WARP but modifies the target distribution and proposes
to estimate it through an importance sampling method after theoretically investigating the existing
class-imbalance issue and its potential influence. LFM-W can be regarded as a special case of the
proposed VINS with a proper setting.

3 CLASS IMBALANCED ANALYSIS

Let’s use G = (V,E) to represent a user-item interaction graph, where vertex set V = U ∪ I
contains users U and items I, and eui ∈ E denotes an observed interaction (e.g. click, purchase
behaviors) between user u and item i. The relationship between user u and item i can be measured
by a factorization focused method, known as xui = Pu · Pi, where Pu = f(u|θu) ∈ Rd and
Pi = g(i|θi) ∈ Rd are the representation of user u and item i generated by deep neural network
f(·) and g(·) with parameters θu and θi, respectively. To learn vertex representation that can be
used to accurately infer users’ preferences on items, pairwise ranking approaches usually regard the
observed edges eui as positive pairs, and all the other combinations euj ∈ (U × I \ E) as negative
ones. Then a set of triplets D = {(u, i, j)|eui ∈ E, euj ∈ (U × I \ E)} can be constructed base on
a general assumption that the induced relevance of an observed user-item pair should be larger than
the unobserved one, that is, xui > xuj . To model such contrastive relation, one popular solution is
to induce pairwise loss function as follows:

L(G) =
∑

(u,i,j)∈D

wui · `uij(xui, xuj), (1)

where `uij(·) can be hinge, logistic or cross entropy function that raises an effective loss for any triplet
with incorrect prediction (i.e. xuj > xui) that violates the pairwise assumption. wui is the a weight
factor which shows the complexity to discriminate the given comparison sample. The optimization
of Equation (1) involves an extreme class-imbalance issue, because in practical scenario, the number
of unobserved interactions euj /∈ E (negative) is usually extremely larger than the observed eui ∈ E
(positive). The imbalance between eui ∈ E and euj /∈ E in pairwise loss can be regarded as the
edge-level imbalance issue. Since the class-imbalance problem is caused by the majority of negative
edges, under-sampling majority is a practical solution for it (Rendle et al., 2009; Mikolov et al.,
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2013). Let’s take the most popular strategy of under-sampling negative edges as an example. For a
given positive edge eui ∈ E, we can sample a negative edge by fixing user u ∈ U , then sample one
item j ∈ I, euj /∈ E with replacement from a static distribution π = {π(i), i ∈ I}, where π(i) =

dβi , β ∈ [0, 1] denotes a weight function of item degree di. Then we can optimize the objective
function in Equation (1) with the constructed pairwise samples D̃ ∈ D. In most of pairwise
ranking models, how to select effective pairwise comparison samples plays an indispensable
role in boosting the ranking performance. In the following, we’d like to present the challenges
raised by the class-imbalance issue on selecting pairwise comparison samples, and how to address
these challenges with an adaptive sampling method.

3.1 VERTEX-LEVEL IMBALANCE FROM SAMPLING (Q1)

Under-sampling approach can well solve the edge-level imbalance issue. However, it will introduce
vertex-level imbalance issue, which has not been aware of, and initiates our study.

Definition 3.1 (Vertex-level Imbalance). A vertex can appear in either positive or negative edges.
In our case, item i appears as a positive one for user u, but can be a negative one for other users.
Vertex-level imbalance happens when the number of times that a vertex appears in observed edges
is extremely smaller or larger than that in the unobserved ones.

Assuming that in each iteration of optimizing Equation (1), we will sample one negative edge for
each observed edge eui. With a given graph G with |E| observed edges, item i can only appear in di
edges as positive samples. In other words, item i could appear as negative in the other |E|−di edges
with probability p(i) when sampling with a static distribution π defined as p(i) = π(i)/

∑
j∈I π(j).

Then, the expected number of times that the item i acts as a negative sample is p(i) · (|E| − di). Af-

terwards, we define the imbalance value (IV ) of item i as: IV (i) = di
p(i)·(|E|−di) =

d1−βi ·
∑
j∈I π(j)

|E|−di .

Through theoretical analysis, we find that imbalance value is positively correlated to item degree.

Theorem 3.1. By sampling negative items with a static distribution π = {π(i) = dβi |β ∈ [0, 1], i ∈
I}, for two items with di > dj , the imbalance value of item i is larger than item j.

The complete proof for theorem 3.1 can be found in Appendix A.
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Figure 2: Maximum (solid line)
and minimum (dash line) imbal-
ance value along with different de-
cay parameter β on Yelp and Ama-
zon Movies&Tv datasets.

The above analysis shows that the degree of the most popular
and long-tailed item will determine the upper and lower bound
of item imbalance value for a given graph G. As a special
case, if β = 0, we have IV (i) = di·|I|

|E|−di . Let’s set IV (i) = 1,

we can see that di = |E|
|I|+1 ≈

|E|
|I| , which is exact the aver-

age item degree. If an item’s degree is larger than the average
degree, it will have an imbalance value larger than 1, while
for those item with degree lower than average degree, their
imbalance value will be smaller than 1. This implies that pop-
ular vertexes are under-sampled as negative samples, while
“cold-start” vertexes are over-sampled. For different setting
of β, the situation will be different. We illustrate the maxi-
mum and minimum imbalance value in Figure 2, obtained by
the empirically calculated IV (i) from two real datasets with
different decay factor β. We can see that a proper choice of
decay factor β can reduce the maximum imbalance, mean-
while increase the minimum value.

3.2 IMPACT OF CLASS-IMBALANCE (Q2)

We next move to the question “what is the impact of the class-imbalance problem on pairwise
loss function optimization?”. Before answering this question, we first introduce an imbalanced
item theorem inspired by the Popular Item Theorem (Lee and Lin, 2016), which proves that the norm
of latent vector of the popular items will be towards infinite after a certain number of iterations. We
extend the theorem as follows (with complete proof presented in the Appendix B):
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Theorem 3.2. [Imbalanced Item Theorem] Suppose there exists an imbalanced item i with IV (i)�
1, such that for all neighbor users u ∈ Ni, xui ≥ xuj for all other observed item j of user u.
Furthermore, after certain iterations τ , the representation Pu, u ∈ Ni converges to certain extent.
That is, there exists a vector P̂ t in all iteration t > τ , inner-product (P̂ t, P τu ) > 0. Then the norm
of Pi of the imbalanced item i will tend to grow to infinity if

∂`uij
∂xui

> 0 for all i with xui > xuj .

Frequency gathering phenomenon. The Imbalanced Item Theorem implies that the learned
embeddings of items will appear a certain pattern that is closely related to item’s imbalance value.
To confirm that, we optimize logistic pairwise loss function by sampling negative samples from a
uniform distribution and also by using the proposed method VINS on the experimental data. Since
there’s no vertex-level imbalance problem in the user side, the learned user embeddings are inde-
pendent on the degree information. From Figure 3, we can see that the learned embeddings of items
by the uniform sampling approach appear clear frequency gathering phenomenon, where items with
similar degree values gather together. The more popular items tend to have larger embedding norms,
which matches the statement in the Imbalanced Item Theorem. We further study the embeddings
learned by the proposed approach VINS that explicitly considers vertex-level class-imbalance, and
find that those bottom items tend to spread across the frequency margins. We also explore a special
case β = 1 for sampling from a static distribution π, with which the vertex-level imbalance can be
perfectly mitigated. However, comparing with the setting β = 0, it can significantly downgrade the
prediction performance, because the learned item embeddings can’t keep their structure role and
proximity very well. It suggests that controlling the class-imbalance problem might help to improve
the ranking performance, but still need to achieve a trade-off between keeping the graph structures
and alleviating the negative impact of class-imbalance problem.
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Figure 3: Visualizing the projection of learned embeddings with the classical uniform sampling and
the proposed sampler VINS by the T-SNE algorithm into two-dimensional space (colored by vertex
degree levels, red–top 25%, blue–bottom 25%, green–the rest).
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Figure 4: Illustration to show the connection be-
tween class-imbalance and gradient vanishment.
The rank index stands for the ranking position of
imbalance value (IV) in ascending order. We use
average gradient magnitude λ as the y-axis.

Gradient Vanishment. Besides the frequency
gathering phenomenon, another issue caused
by the infinite norm is the gradient vanishment
in pairwise loss optimization. Following the
under-sampling method described in Section 3,
gradient update for model parameters can be
carried out for a given pairwise sample (u, i, j).
After t > τ iterations, the model parameters
θi can be updated with stochastic gradient de-
scent method: θt+1

i = θti + η · λuij · ∂xui∂θi
,

where λuij =
∂`uij
∂xui

, and η denotes the learning
rate, and ∂xui

∂θi
represents a gradient backprop-

agation operation according to the chain rule.
The value of λuij depends on the type of loss function. If we use logistic loss as an instance,
`uij(xui, xuj) = lnσ(xui−xuj), where σ(x) is the sigmoid function and λuij = (1−σ(xui−xuj)).
According the Imbalanced Item Theorem, the norm of learned embeddings of those imbalanced
items will become extremely large. Let’s fold out xui = Pu · Pi = ||Pu|| · ||Pi|| · cos(Pu, Pi). If
positive item i suffers from imbalanced issue and has a large norm, i.e., ||Pi|| � ||Pj ||, the relevance
prediction for user u will be dominated by the norm of item i’s embedding. Then, the induced hinge
loss will be very close to zero. While popular items take up a large portion of the observed edges,
most of the training samples will have λuij → 0 according to Theorem 3.1 and Theorem 3.2. It sug-
gests that massive number of pairwise samples are meaningless for updating the model, and
only a small number of them are valuable. Following the idea in pioneering work (Rendle and
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Freudenthaler, 2014), we conduct an empirical study on two experimental data to show the connec-
tion between gradient vanishment and item class-imbalance issue. From the results shown in Figure
4, we have the same observation as (Rendle and Freudenthaler, 2014) that gradient magnitude of
most of training cases tend to be close to zero, meanwhile we find that items with larger imbalance
value tend to have smaller gradient magnitude on average. Connecting to the Theorem 3.1 and The-
orem 3.2, we can see that the reason why popular items tend to have smaller gradient magnitude has
positive relation to the class-imbalance issue.

4 VITAL NEGATIVE SAMPLER

In this section, we will introduce the proposed method, namely Vital Negative Sampler (VINS). We
first introduce RejectSampler which is the key component of VINS, then present VINS.

4.1 SAMPLING WITH REJECT PROBABILITY (REJECTSAMPLER)

Combining Theorem 3.1 and the frequency gathering phenomenon, we find that there exists a
positive connection between item degree and the learned embeddings. We thus design a negative
sampling approach which tends to sample a negative item j with a larger degree than the positive
item i, rather than a negative item with a smaller degree than item i. With such strategy, it’s helpful
to control the class-imbalance issue by reducing the imbalance value of popular items, but increase
the imbalance value of long-tailed items. More specifically, for a given positive sample eui, we
sample a negative item j with reject probability 1 - min{π(j)π(i) , 1}. With this reject probability,
we can increase the chances of popular items exposed as negative samples while downgrading the
chances of long-tailed items. We can see that the RejectSampler actually equals to a biased random
walk as shown in Figure 1(d) to choose the next step with a given transition matrix P ∗, where

P ∗ij =

{
min{π(j)π(i) , 1} if i 6= j

1−
∑
v 6=i P∗iv if i = j

. In fact, RejectSampler can adapt beyond the item degree

information to define the reject probability, resulting a different transition matrix P∗. The detail of
RejectSampler is illustrated in Algorithm 2 of Appendix C.

4.2 ADAPTIVE NEGATIVE SAMPLING

The RejectSampler can help to alleviate the class-imbalance issue. We next introduce the full VINS
approach, which considers the dynamic relative rank position of positive and negative items for
finding more informative negative samples avoiding λuij → 0 as much as possible, which is very
important for dealing with the mentioned gradient vanishment issue in Section 3.2. Algorithm 3 in
Appendix C presents VINS in details. Specifically, to generate a negative sample, RejectSampler is
firstly used to sample an item that is not connected to user u (line 5 to 7 in the algorithm). Note
that item j sampled from RejectSampler is not guaranteed to be negative for user i. Therefore
RejectSampler is re-called if j is connected to u (euj ∈ E). The next step is to evaluate if the
sampled item j is a violated one, which satisfies ε + xuj ≥ xui, where ε is a margin (line 8 to 13
in the algorithm). In fact, there can be a set of violated negative samples, noted as Vui = {j|ε +
xuj ≥ xui, euj /∈ E}. The hardness of searching a violated negative sample increases when the
positive item i is ranked higher. This hardness is reflected as the weight factor wui in Equation
(1). For the positive item i with a relative high rank position, we should generate a small weight
wui, while give large weights to those lower-ranked ones. We thus define the weight as wui(ri),
where ri =

∑
j∈V ui

π(j)I(ε + xuj ≥ xui) is the rank-aware variable of item i. I(x) is an indicator
function. From the definition of ri, we can see that the smaller ri is, the high-rank position of item
i is. Previous work (Weston et al., 2011) takes a truncated Harmonic Series function to generate the
weight wui(ri) =

∑ri
s=1

1
s . We can see that Harmonic Series weighting method needs calculate the

summation term for each given estimated rank position, which has the worst complexity O(|I|) for
each sample. Inspired by the lower bound of truncated Harmonic Series (shown in Lemma 4.1), we
derive a efficient way to calculate the wui(ri) with complexity O(1).

Lemma 4.1. For a given k ∈ N, truncated Harmonic Series
∑2k

s=1
1
s ≥ 1 + k

2 . When k = 0, the
equality holds.
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The complete proof of Lemma 4.1 is described in the Appendix D. According to this lemma, we
divide the rank list into k chunks, each of which has size 2k−1 (growing with the chunk number
k), and is attached with a weight (i.e. 0.5). For the rank variable ri, we can derive the chunk
number based on the Geometric progression formulation, which leads to d∗elog2(ri + 1). Since
first chunk has weight 1, we subtract 1 in the definition. More specifically, we define wui(ri) as
follows: wui(ri) = 1+0.5·(d∗elog2(ri+1)−1)

1+0.5·(d∗elog2(Z+1)−1) , where 0.5 is the weight for each chunk with size 2k−1,
and Z =

∑
i∈I π(i). However, ri =

∑
j∈V ui

π(j) is difficult to attain. We use an item buffer
bufferui with size κ to store every sampled negative candidate j. Then, ri can be approximated as
ri ≈ b Z

min(K,κ)c, where K is the number of steps to find item j. The final informative negative item
j to update model parameters will be selected from the top of the sorted bufferui in descending
order based on xuj , as shown in Algorithm 1 of Appendix C. With the selected negative item j by
VINS, we can construct pairwise sample (u, i, j) to train the ranking model. The employment of
RejectSampler in VINS has two benefits. First, it considers the class-imbalance issue and tends to
select the useful negative items than doing randomly, given the fact that items with large imbalance
values usually have large norm that makes them difficult to be distinguished from positive items.
Second, it reduces the size of negative item candidate set to explore through selecting the useful
negative samples to the buffer. More discussion about the characteristics of the proposed method
and its connection to previous methods can be found in Appendix E.

5 EXPERIMENTS

In this section, we conduct extensive experiments to answer three research questions: [RQ1] How
will the item imbalance value evolve when using different sampling strategies? [RQ2] What are the
advantages of VINS, comparing with the state-of-the-art baselines? [RQ3] How VINS can improve
the computationally expensive models by sampling the most useful training data?

5.1 EXPERIMENTAL SETTINGS

Datasets and Evaluation Metrics. To validate the proposed sampling method, we use four publicly
available datasets, from Yelp Challenge (13th round) 1, Amazon 2 and Steam (Kang and McAuley,
2018). The detailed information about the datasets and the way to obtain the training/testing dataset
are reported in Appendix F1. We evaluate all of algorithms by top-N ranking metrics including
F1 (Karypis, 2001), NDCG (Weimer et al., 2008).

Recommenders. In this work, we mainly study the state-of-the-art sampling methods in terms
of their effectiveness and efficiency. To uncover the features of different samplers, we consider
representative factorization models (MF (Rendle et al., 2009) and FPMC (Rendle et al., 2010))
and one state-of-the-art deep model (MARank (Yu et al., 2019)) which can capture users’ temporal
dynamic preferences. The details of these recommendation models are described in Appendix F2.

Baselines/Negative Samplers & Pairwise Loss. The baselines include Uni (Rendle et al., 2009)
sampling a negative item from uniform distribution, POP (Mikolov et al., 2013) sampling nega-
tive items from a given distribution π, relative-order sampling methods, Dynamic Negative Sam-
pling (DNS) (Zhang et al., 2013), LFM-D (Yuan et al., 2016) and LFM-W (Yuan et al., 2016),
AOBPR (Rendle and Freudenthaler, 2014), CML (Hsieh et al., 2017), adversarial-like methods
(SA) (Sun et al., 2019), PRIS (Lian et al., 2020), and IRGAN (Wang et al., 2017). Since the sam-
plers are independent of the specific recommenders to work with, we take MF as the base model to
study their features, then switch to more complicated models (i.e., FPMC, MARank). To keep
the consistency of experimental setting for different baselines except IRGAN, we instantiate ranking
objective `(·) as pairwise ranking loss (Rendle et al., 2009) for all baselines used in this work. The
implementation detail of each method can be found in Appendix F3.

5.2 ITEM IMBALANCE VALUE EVALUATION (RQ1)

To evaluate the item imbalance value when applying different sampling methods, we count the num-
ber of appearance in positive and negative samples for each item. Then we track the evolution of

1https://www.yelp.com/dataset/challenge
2http://jmcauley.ucsd.edu/data/amazon/
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Figure 5: Evolution of maximum/minimum imbalance value of different sampling methods.
Table 1: Ranking performance when using different sampling methods with MF as the recommender
for top-10 recommendation. The best is marked with underline, the second best is marked by *.

Method Sampler Yelp Movies&Tv CDs&Vinyl Steam
F1@10 NDCG@10 F1@10 NDCG@10 F1@10 NDCG@10 F1@10 NDCG@10

Item-KNN 0.0153 0.0205 0.0178 0.0258 0.0191 0.0261 0.0296 0.0409

MF

Uni 0.0135 0.0168 0.0146 0.0186 0.0195 0.0249 0.0338 0.0457
POP 0.0129 0.0161 0.0179 0.0232 0.0229 0.0301 0.0333 0.0472

AOBPR 0.0140 0.0173 0.0153 0.0197 0.0211 0.0278 0.0334 0.0463
CML 0.0177 0.0216 0.0133 0.0179 0.0205 0.0276 0.0239 0.0317
PRIS 0.0158 0.0210 0.0184 0.0239 0.0252 0.0331 0.0374 0.0502
SA 0.0161 0.0199 0.0159 0.0206 0.0243 0.0326 0.0347 0.0483

IRGAN 0.0188 0.0235 0.0206 0.0269 0.0263 0.0348 0.0358 0.0512
DNS *0.0197 *0.0247 *0.0211 *0.0276 *0.0275 *0.0366 0.0398 0.0551

LFM-D 0.0187 0.0234 0.0204 0.0267 0.0269 0.0354 *0.0406 *0.0561
LFM-W 0.0202 0.0255 0.0236 0.0313 0.0301 0.0401 0.0414 0.0569

VINS (ours) 0.0222 0.0281 0.0245 0.0326 0.0310 0.0410 0.0429 0.0594

Improvement ours vs best 9.9% 10.2% 3.81% 4.15% 2.99% 2.24% 3.62% 4.39%
ours vs second 12.7% 13.7% 16.1% 18.1% 12.7% 12.0% 5.66% 5.88%

the maximum and minimum imbalance value. Due to the characteristics of adversarial-like methods
themselves such as SA, PRIS, IRGAN, it’s difficult to catch the evolution of items’ imbalance value.
Therefore, we discard them and focus on the other methods. It is expected that non-uniform sam-
pling methods can downgrade the maximum but increase the minimum imbalance value comparing
with the UNI method. From the results shown in Figure 5 (results on other two datsets can be found
in Figure 9 of Appendix F4), we can find that most of baselines reach the expectation. Combining
with the overall performance shown in Table 1, we can see that all of the methods outperform the
UNI method. From this point of view, alleviating the class-imbalance issue has positive effect on
the performance of learned model. It’s also consistent with theoretical analysis in previous sections.
It’s easy to understand that POP method reaches the expectation, because we already have empir-
ical analysis result in Figure 2. However, dynamic sampling methods like DNS, LFM-W did not
have a clear statement on sampling from a non-uniform distribution. If we connect this finding with
the logic relation between class-imbalance issue and imbalanced item theorem, it could provide an
important clue to understand that bias to items with larger prediction value will tend to sample im-
balanced items. The proposed method VINS does not ideally increase the minimum class-imbalance
value in Steam data. However, VINS keeps imbalance value larger than the other methods except
POP, and with the help of adaptive sampling strategy, VINS achieves better performance than the
baselines from the results shown in Table 1. From this point of view, alleviating the class-imbalance
issue has positive effect on the performance of learned model. It’s also consistent with our theoreti-
cal analysis in previous sections.

5.3 RANKING PERFORMANCE (RQ2)

Table 1 summarizes the ranking performance of different sampling methods when applied to opti-
mizing the same objective function. Dynamic sampling methods LFM-W and VINS significantly
outperform the other baselines with a clear margin. While, the proposed sampler VINS is superior
to the state-of-the-art method LFM-W. In terms of negative candidate selection, LFM-W depends on
uniform distribution without any knowledge about the item property, while VINS selects the nega-
tive candidates with reject probability depending on item degree distribution. Ideally VINS can be
more easier to obtain a violated negative sample than LFM-W according to Theorem 3.1 and 3.2.
The experimental results validate the effectiveness of VINS which selects the negative candidates
with reject probability motivated by class-imbalance issue.

5.4 TIME COMPLEXITY ANALYSIS (RQ2)
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Figure 6: Time complexity with the growth of model complexity.

Table 2: Time complexity comparison with different
data scale in terms of average running time per epoch
in minutes and ratio to the simplest method “Uni”.

Sampler Steam (smallest) CDs&Vinyl Movies&Tv Yelp (largest)
Uni 0.07 (1x) 0.1 (1x) 0.16 (1x) 0.47 (1x)
POP 0.09 (1.28x) 0.13 (1.3x) 0.2 (1.25x) 0.58 (1.23x)

AOBPR 0.05 (0.71x) 0.23 (2.3x) 0.32 (2x) 1.98 (4.21x)
CML 0.33 (4.71x) 0.33 (3.3x) 0.5 (3.1x) 1.23 (2.61x)
PRIS 1.12 (16x) 1.38 (13.8x) 2.07 (12.9x) 6.25 (13.3x)
SA 0.48 (6.85x) 0.66 (6.6x) 0.92 (5.75x) 2.76 (5.87x)

IRGAN 3.85 (55x) 4.54 (45.4x) 5.6 (35x) 23.4 (49.8x)
DNS 0.28 (4x) 0.44 (4.4x) 0.72 (4.5x) 2.1 (4.46x)

LFM-D 0.38 (5.42x) 0.49 (4.9x) 1.1 (6.87x) 1.86 (3.95x)
LFM-W 0.35 (5x) 1.58 (15.8x) 1.65 (10.3x) 4.78 (10.1x)
VINS 0.25 (3.57x) 1.08 (10.8x) 1.12 (6.37x) 3.05 (6.48x)

From Table 2, we can see that as the data
scale up in size, all samplers will need more
time. Especially, LFM-W needs over 10x
more time comparing with stationary sam-
pling methods, while VINS is more effi-
cient than LFM-W. The average number of
steps to find a violated negative sample is
the key for the time complexity analysis.
As discussed in Section 1, time complexity
of dynamic sampling approaches like LFM-
W and VINS heavily depends on the search
of a proper negative sample from massive
trials. To further investigate the sampling
process, we use the buffer technology for
both methods to show the connection be-
tween the model performance convergence
and maximum steps to sample a violated item. The original LFM-W did not define a buffer, we set
the maximum of sampling trials for LFM-W to 1024. The results shown in Table 5 of Appendix F4
demonstrate that VINS can converge to stable performance with less trials for each positive sample,
while LFM-W needs a larger buffer with at least 1024 slots. From the results shown in Table 4 of
Appendix F4, we can see that VINS can converge to the better solution than LFM-W, meanwhile
needs only a small number of trials to find a violated item. This leads to over 30% training time
saved comparing to LFM-W, shown in Table 2.

5.5 PERFORMANCE ON COMPUTATIONALLY EXPENSIVE METHODS (RQ3)
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Figure 7: Ranking performance on F1/NDCG
metric of shallow and deep models.

By far, we only apply the dynamic sampling
methods on a linear recommendation model
(MF). It is also interesting to evaluate their per-
formance on more complicated models, for ex-
ample FPMC and MARank, for next-item pre-
diction. From the experimental results shown
in Figure 6 we can find that VINS can save
more training time (from 50% to 60%) than
LFM-W ranging from shallow model FPMC to
deep attentive model MARank, while reaching
the best recommendation performance shown
in Figure 7 and 10 (Appendix F4). This sig-
nificant acceleration of recommendation model
training verifies that VINS is an effective dynamic negative sampling method. Especially for deep
neural models training, VINS is a promising tool to select the most useful negative samples for
achieving both significant reduction of training time and improvement of inference capability.

6 CONCLUSIONS

In this work, we systematically study the class-imbalance problem in pairwise ranking optimization
for recommendation tasks. We indicate out the edge- and vertex-level imbalance problem, and show
its connection to sampling a negative item from static distribution. To tackle the challenges raised by
the class-imbalance problem, we propose a two-phase sampling approach to alleviate the imbalance
issue by tending to sample a negative item with a larger degree and close prediction score to the given
positive sample. We conduct thorough experiments to show that the biased sampling method with
reject probability can help to find violated samples more efficiently, meanwhile having a competitive
or even better performance with state-of-the-art methods.
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7 REPRODUCIBILITY STATEMENT

The detailed information about the reproducibility is presented in Appendix F3. The way to obtain
the experimental data can be found in Appendix F1. The pseudo-code of the proposed algorithm
can be found in Appendix C.
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APPENDIX

A. PROOF FOR THEOREM 3.1

Proof. With the given user-item graph G, both
∑
j∈I π(j) and |E| are constant. Let’s define a

function f(x) = x1−β ·c1
c2−x , where c1 =

∑
j∈I π(j) and c2 = |E|. Then we can have first-order

derivative∇f(x) > 0, which means IV (i) > IV (j) if di > dj .

B. PROOF OF THEOREM 3.2

Proof. Given latent space with d dimensions, there exists d - 1 mutually orthogonal vectors
~c2,~c3, · · · ,~cd and ~c1 = P̂ τ . Let ∆+

i (t) =
∑
u∈Ni

∂`uij
∂xui

P tu denote the gradients received when

item i acted as a positive sample, and ∆−i (t) = −
∑
u∈N−i

∂`uij
∂xui

P tu denote the gradients received
when acting as a negative sample. It’s noted that if item i has a large imbalance value, the size of
|Ni| is usually� |N−i |, and vice versa. Then for any iteration n > τ , the embedding of item i is
updated with gradient descent method as:

Pni = P τi + η
∑

n≥t>τ

(∆+
i (t) + ∆−i (t))

Then we can perform coordinate axis transform on P ti and P tu to c1, · · · , cd.

⇒ Pni = α1
i~c1 + · · ·+ αdi~cd

+ η
∑

n≥t>τ

∑
u∈Ni

∂`uij
∂xui

(t)(β1
u~c1 + · · ·+ βdu~cd)

− η
∑

n≥t>τ

∑
u∈N−i

∂`uij
∂xui

(t)(γ1
u~c1 + · · ·+ γdu~cd)

Now we have P τi = α1
i~c1 + · · · + αdi~cd and P tu = β1

u~c1 + · · · + βdu~cd,
∂`uij
∂xui

(t) > 0, β1
u > 0 as

inner-product < P tu,~c1 > = < P tu, P̂
τ
u >, and all other variables ∈ R.

⇒ Pni = α1
i~c1 + · · ·+ αdi~cd +

∑
n≥t>τ

λ1(t)~c1 + · · ·+ λd~cd,

where λk(t) = η
(∑

u∈Ni
∂`uij
∂xui

(t)βku −
∑
u∈N−i

∂`uij
∂xui

(t)γku
)

for k ∈ [1, d]. Since coordinates
~c1,~c2, · · · ,~cd are manually orthogonal.

⇒ lim
n→∞

||Pni ||2 = lim
t→∞

(α1
i +

∑
n≥t>τ

λ1(t))2||~c1||2 + · · ·

+ (αdi +
∑

n≥t>τ

λd(t))
2||~cd||2

≥ lim
n→∞

(α1
i +

∑
n≥t>τ

λ1(t))2||~c1||2

≥ lim
n→∞

(α1
i + (n− τ) ·minn≥t>τλ1(t))2||~c1||2

And we have
λ1(t) = η

( ∑
u∈Ni

∂`uij
∂xui

(t)β1
u −

∑
u∈N−i

∂`uij
∂xui

(t)γ1
u

)
,

where
∂`uij
∂xui

(t)β1
u > 0

For imbalanced items, the value of λ1(t) will be dominated by the size of Ni and N−i . If an
imbalanced item with a very large imbalance value, then we could have λ1(t) > 0 with a relative
high probability. Then we have lim

n→∞
(α1
i + (n− τ) ·minn≥t>τλ1(t))2||~c||2 =∞.
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C. PSEUDOCODE

The detailed implementation of the proposed method VINS and its key component RejectSampler
can be found in Algorithm 1 and 2, respectively.

Algorithm 1: VINS
1 Input: G = (V,E), max step κ, positive pair (u, i), max shot s, margin ε
2 Output: negative item j, and wui(ri)
3 selectedj = −1, maxj = −inf
4 for K ← 1 to κ do
5 do
6 j = RejectSampler(i, s,π)
7 while euj ∈ E;
8 xuji = xuj + ε− xui
9 if xuj > maxj then

10 maxj = xuj
11 selectedj = j

12 if xuji > 0 then
13 break;

14 ri = b Z
min(K,κ)c;

15 return selectedj , wui(ri);

Algorithm 2: REJECTSAMPLER

1 Input: item i, max shot s, weight distribution π
2 Output: selected item j
3 selectedj = -1, maxij = -1
4 for iter ← 1 to s do
5 j = randint(Z);
6 // in case of the extreme popular item i
7 if π(j) > maxi deg then
8 maxij = π(j);
9 selectedj = j;

10 reject ratio = 1 - min {π(j)π(i) , 1};
11 if random.uniform() > reject ratio then
12 selectedj = j;
13 break;

14 return selectedj ;

D. PROOF FOR LEMMA 4.1

Proof.
2k∑
s=1

1

s
= 1 +

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+ · · ·+ 1

2k

≥ 1 +
1

2︸︷︷︸
1

+(
1

4
+

1

4︸ ︷︷ ︸
21

) + (4× 1

8︸ ︷︷ ︸
22

) · · · ( 2k−1

2× 2k−1︸ ︷︷ ︸
2k−1

)

≥ 1 +
k

2
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E. DISCUSSION ON VINS

E1. COMPLEXITY DISCUSSION

The most computationally expensive part of the proposed VINS model is the relative-order sampling
procedure (line 4 to 13 in Algorithm 3). As discussed previously, finding a violated sample needs
iterative comparison of the prediction value between a positive item and a negative item candidate.
For each negative sample, the computation complexity is O(d), where d is the embedding size.
Assume that the average number of steps to obtain a violated negative item is h′ and the maximum
number of chances to reject a sampled item from the RejectSampler is s, then the time complexity of
VINS will beO(|E| ·(d+s) ·h′). Usually, s� d can be a very small number. Therefore, comparing
the proposed approach with the state-of-the-art dynamic sampling method (Yuan et al., 2016), the
time complexity difference will be the average number of steps h′ to find a violated item. From the
experimental analysis, we find that the proposed RejectSampler significantly speeds up searching a
violated sample.

E2. CONNECTION TO EXISTING APPROACHES

Most of negative sampling approaches assume that the negative items follow a pre-defined distribu-
tion Q(j). According to the strategies to obtain a negative item, we can summarize the main kinds
of negative samplers into three categories: user-independent, user-dependent, edge-dependent. The
proposed approach (VINS) can be regarded as a general version of several methods by controlling
the setting of hyper-parameters {κ, β}.

• user-independent: As the representatives, UNI (Rendle et al., 2009) and POP (Mikolov et al.,
2013) initialize the Q(j) as a static distribution π. VINS can actually implement these two meth-
ods by setting κ = 1, β = 0 for UNI, and κ = 1, β ∈ [0, 1] for POP.

• user-dependent: This type of methods usually define a conditional distribution Q(j|u) which can
capture the dynamics of learning procedure to some extent. Sampling from the exact distribu-
tion Q(j|u) will cost massive number of time in large-scale item database. Most of methods
turn to defining a sub-optimal distribution based on a small number of candidate set. For ex-
ample, DNS (Zhang et al., 2013) greedily selects the item with the largest predicted score xuj
from the candidate set. Self-adversarial (SA) (Sun et al., 2019) method first sample candidates
from uniform distribution, then calculate the weight of candidate through a softmax(xuj) distribu-
tion. Similar idea can be found in more recent proposed method PRIS (Lian et al., 2020). While,
PRIS tries to select a negative sample from the distribution Q(j|u) through a importance sam-
pling approach. By borrowing ideas from GAN, IRGAN (Wang et al., 2017) propose a two-agent
minmax games, where generator G aborbs knowledge from discriminator, then selects negative
samples from QG(j|u) = softmax(xuj) to update discriminator. From the view of distribution
alignment, the generator actually attempts to learn distribution from the discriminator by taking
Reinforcement Learning (RL) as the workhorse. However, RL methods usually need lots of train-
ing cases to update their policy, and sampling according to the policy distribution relies on the
exact distribution QG(j|u) over the whole item set, which makes IRGAN become very slow to
converge and difficult to tune the model. Moreover, the generator might have a distribution which
could delay from the discriminator, which can lead to unqualified negative samples produced by
the generator.

• edge-dependent: The methods mentioned above do not consider a fact that the ranking position of
positive item i evolves as the learning procedure move forwards, in other words, the informative
negative item set also changes. The edge-dependent methods aim at selecting informative nega-
tives from distribution Q(j|u, i). As an initial study, Weston et al. (Weston et al., 2011) proposed
the WARP loss by designing a rank-aware distribution ri =

∑
j∈V ui

I(ε + xuj ≥ xui). How-
ever, it’s impossible to get the exact ri for every single training sample (u,i) during the training
stage. Fortunately the negative item j can be obtained through estimating a geometric distribu-
tion P (X = k) parameterized with p = ri

Z . There’re many works that are based on WARP
and all of them follow the same idea as WARP to estimate the P (X = k) from a uniform dis-
tribution. VINS also inherits the basic ideas from WARP but modifies the target distribution as
ri =

∑
j∈V ui

π(j)I(ε + xuj ≥ xui), and proposes to estimate it through an importance sampling
method after theoretically investigating the existing class-imbalance issue and its potential influ-
ence. As the state-of-the-art variant of WARP loss, LFM-W advances WARP with a normalization
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term. However, estimating the geometric distribution from a uniform distribution makes LFM-W
need lots of steps to find a violated sample. Moreover, LFM-W might find sub-optimal negative
sample without considering the class-imbalance issue. LFM-W can be equivalent to VINS by
setting β = 0 and replacing the weight function wui(ri) as a truncated Harmonic Series function,
i.e. wui(ri) =

∑drie
z=1

1
z .

E3. RANK ESTIMATION BIAS DISCUSSION

Let Pr(X = k) = p(1 − p)k−1 denote geometric distribution with parameter p, and
{X1, X2, · · · , Xn|Xi ∈ N} to be the observations. The optimized estimation of p by maximiz-
ing the likelihood function will be p̂ = 1/X , where X =

∑n
i=1Xi/n. Now we can obtain the

expectation over the estimated parameter, i.e. E[p̂] = E[1/X]. When estimating the rank-aware
variable ri, we usually conduct single experiment, that is n = 1. In Lemma 7.1, we demonstrate
that it lead to a biased estimation of the true rank position. Fortunately, we find that the estimation
error will become smaller as the positive sample get better and better ranking position as the learning
procedure move forwards.
Lemma 7.1. For special case n = 1, E[p̂] will be larger than p, which means p̂ is not an unbiased
estimation.

Proof.

E[p̂] = E[1/X1] =

∞∑
k=1

1

k
p(1− p)k−1

= p+

∞∑
k=2

1

k
p(1− p)k−1

(2)

for p ∈ (0, 1) in this case, the above sum term is strictly positive.

Since we can get the estimated rank position as r̂i = p̂i · Z. To save computational cost, we usually
run one time i.e., n = 1 to estimate the mass variable in dynamic sampling approach. Under this
scheme, the estimation expectation E[r̂i] = E[p̂ · Z] = E[Z/X1]. If we fold out this equation, we
can get the following induction:

E[
Z

X1
] = Z

∞∑
k=1

1

k
p(1− p)k−1

= ri +

∞∑
k=2

ri
k

(1− ri
Z

)k−1 > ri

(3)

where ri = Z · p denotes ground truth value. Let h(ri) = ri +
∑∞
k=2

ri
k (1 − ri

Z )k−1 represent a
function of ri. It’s very hard to analyze the gradients of function h(·). However, we need answer
what’s the exact estimation bias as the change of idea ranking ri. To answer this question, we turn
to analyze a ratio function ψ(ri) = (h(ri)− ri)/ri =

∑∞
k=2

1
k (1− ri

Z )k−1. Comparing to directly
analyzing original function h(ri), ψ(ri) is a monotone decreasing function. Based on the feature,
we empirically illustrate the change of estimation bias ratio and the rank variable ri. From Figure 8
we can see that as the item ranks higher, the estimation error will be smaller.

E4. FALSE NEGATIVE ISSUE

With the given partial knowledge, in particular only implicit feedback from users, it’s very difficult to
discriminate false negative and true negative items. It has become a common challenge for designing
a negative sampler (Ding et al., 2020). In this paper, we do not focus on studying how to overcome
the “false negative issue”, but the proposed adaptive strategy could have a mechanism to avoid to
push “false negative” item far away from the users. According to definition of weight wui(ri), the
more difficult to sample a violated negative item, the smaller weight (wui(ri) → 0) it is, which
suggests that the rank position of positive item i is learned well. For this item i, even the sampled
item is a false negative, it will get a very small gradient (almost zero gradient) to move away from
the target user. We’d like to leave this challenge for future work.
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Figure 8: The evolution of estimated rank variable ψ(ri).

Table 3: Statistical information of the datasets.
Data #Users #Items #Observation Sparsity
Yelp 113,917 93,850 3,181,432 99.97%

Movies&Tv 40,928 51,509 1,163,413 99.94%
CDs&Vinyl 26,876 66,820 770,188 99.95%

Steam 20,074 12,438 648,202 99.74%

F. EXPERIMENTAL SETTING AND ANALYSIS

F1. DATASETS

The detailed statistics of the employed datasets can be found in Table 3. Following the processing
in (Tang and Wang, 2018; He and McAuley, 2016), we discard inactive users and items with fewer
than 10 feedbacks since cold-start recommendation usually is regarded as a separate issue in the
literature (He and McAuley, 2016; Rendle et al., 2010). For each dataset, we convert star-rating into
binary feedback regardless of the specific rating values since we care more about the applications
without explicit user feedbacks like ratings (He et al., 2017a; 2016). We split all datasets into training
and testing set by holding out the last 20% review behaviors of each user into the testing set, the rest
as the training data.

F2. RECOMMENDERS

• Matrix Factorization (MF) (Rendle et al., 2009): This method uses a basic matrix factorization
model as the scoring function. It can be regarded as a shallow neural network with a single hidden
layer which takes user and item one-hot vector as input (He et al., 2017b).

• Factorizing Personalized Markov Chains (FPMC) (Rendle et al., 2010): It’s a method that
combines the MF and factorized Markov Chain over item sequence for next-item prediction.

• MARank (Yu et al., 2019): It incorporates both individual- and union-level item relation into a
deep multi-order attentive encoder, instead of only using factorized item transition probability.
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F3. REPRODUCIBILITY

All methods are optimized with Adam and implemented in Tensorflow with a GeForce GTX 1080Ti
GPU. We share the parameter setting of the optimizer for all baselines and experiments in this work,
with default learning rate η = 0.001. We use grid search to examine the hyper-parameters, including
the embedding size from {16, 64, 128}, λ from {0.0005, 0.001, 0.005, 0.01}. Different baselines
have their own hyper-parameters. For decay factor β in POP sampler, the search space includes
{0.25, 0.5, 0.75, 1}. Both CML and DNS need a number of negative candidates. In this work, a
small number e.g., 10 or 20 gives good enough results as suggested by the authors (Zhang et al.,
2013; Hsieh et al., 2017). LFM-D needs two hyper-parameters, the number of negative candidates,
and the expected sampling position. For the first one, it is the same as DNS, but usually needs a little
larger number, e.g., 20 in this work. The expected sampling position can be obtained by multiplying
the number of negative candidates with a ratio factor ρ. The search space for ρ was {0.01, 0.05, 0.1,
0.5}, and ρ = 0.1 gives the best results. AOBPR also needs to set the ratio factor ρ, and produces
best results with ρ = 0.1. LFM-W only has a margin parameter ε besides the optimizer parameters
and regularization term. This parameter actually varies as the type of employed optimizer and the
validation model. We search the best choice ε from {1, 2, 3, 4} for both LFM-W and VINS. For
VINS, we need to search the best choice for buffer size κ and decay factor β. In this work, we
find that κ = 64 or 128 is good enough according to the analysis results. In terms of IRGAN, we
implement this method with the published code 3 and suggested setting. In self-adversarial method
(SA) 4, the discriminator and generator are the same prediction model. It creates an adversarial item
by aggregating a number of negative items. In this work, we tried different settings from {64, 128,
256}, and select the best value i.e. 256. We follow the suggested setting by the authors to set up
PRIS (Lian et al., 2020).

0 50 100 150
# of Iterations

5

10

15

20

25

30

M
ax

 Im
ba

la
nc

e 
Va

lu
e

CDs&Vinyl

uni
pop
dns
aobpr
cml
LFM-D
LFM-W
VINS

0 50 100 150
# of Iterations

2.5

5.0

7.5

10.0

12.5

15.0

17.5

M
ax

 Im
ba

la
nc

e 
Va

lu
e

Steam
uni
pop
dns
aobpr
cml
LFM-D
LFM-W
VINS

0 50 100 150
# of Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
in

 Im
ba

la
nc

e 
Va

lu
e

CDs&Vinyl
uni
pop
dns
aobpr
cml
LFM-D
LFM-W
VINS

0 50 100 150
# of Iterations

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

M
in

 Im
ba

la
nc

e 
Va

lu
e

Steam
uni
pop
dns
aobpr
cml
LFM-D
LFM-W
VINS

Figure 9: Evolution of maximum/minimum imbalance value of different sampling methods.

F4. EXPERIMENTAL ANALYSIS

Due to the limited space in the main content, we will present additional experimental analysis re-
sults in this section. More specifically, we can find the changes of maximum/minimum imbalance
value for the other two data in Figure 9. In Table 4 and 5, we can find the the comparison results
between VINS and the best baseline LFM-W to show that the proposed method VINS is superior to
LFM-W in terms of both efficiency and effectiveness. Figure 10 summarizes the additional ranking
performance on the other two datasets.
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Table 4: Time complexity analysis: number of average steps h′ to find a negative sample by LFM-W
and VINS. The term behind ± stands for the standard variance.

Epoch 5 10 20 50 150
Yelp

LFM-W 10.2±26.4 17.0± 52.2 19.8± 59.4 21.5± 63.2 21.7±65.2
VINS 8.7±14.5 11.8± 17.4 14.6± 19.7 16.2±21.0 16.3±21.0

Movies&Tv
LFM-W 3.2±8.0 6.5±24.7 12.0±42.7 18.4±60.9 19.0±62.9

VINS 3.4±7.6 6.2±12.2 9.8±16.1 14.9±20.0 16.2±20.7
CDs&Vinyl

LFM-W 3.5±15.1 10.0±40.6 17.1±58.2 28.5±83.3 29.3±85.5
VINS 3.8±10.1 7.9±14.8 12.8±18.8 21.4±23.2 23.4±23.9

Steam
LFM-W 3.2±5.7 4.1±8.8 5.0±11.1 6.2±16.0 6.3±16.7

VINS 2.8±5.6 3.5±7.0 4.3±8.4 5.4±9.8 5.8±10.6

Table 5: Performances with different buffer size.
Buffer Size 8 16 32 64 128 1024

Yelp-F1@10
LFM-W 0.0138 0.0164 0.0180 0.0189 0.0197 0.0202
VINS 0.0169 0.0185 0.0205 0.0222 0.0225 0.0223
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Movies&Tv-F1@10
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VINS 0.0361 0.0376 0.0397 0.0402 0.041 0.0412

Steam-F1@10
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VINS 0.0408 0.0418 0.0426 0.0429 0.0430 0.0428

Steam-NDCG@10
LFM-W 0.0533 0.0547 0.0552 0.0566 0.0568 0.0569
VINS 0.0567 0.0588 0.0603 0.0601 0.0601 0.0603
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Figure 10: Ranking performance on F1/NDCG metric of shallow and deep models.
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