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ABSTRACT

Recent advances have shown that statistical tests for the rank of cross-covariance
matrices play an important role in causal discovery. These rank tests include
partial correlation tests as special cases and provide further graphical information
about latent variables. Existing rank tests typically assume that all the continuous
variables can be perfectly measured, and yet, in practice many variables can
only be measured after discretization. For example, in psychometric studies,
the continuous level of certain personality dimensions of a person can only be
measured after being discretized into order-preserving options such as disagree,
neutral, and agree. Motivated by this, we propose Mixed data Permutation-based
Rank Test (MPRT), which properly controls the statistical errors even when some
or all variables are discretized. Theoretically, we establish the exchangeability
and estimate the asymptotic null distribution by permutations; as a consequence,
MPRT can effectively control the Type I error in the presence of discretization
while previous methods cannot. Empirically, our method is validated by extensive
experiments on synthetic data and real-world data to demonstrate its effectiveness
as well as applicability in causal discovery (our code will be available).

1 INTRODUCTION AND RELATED WORK

Recent advances have shown that the rank of a cross-covariance matrix and its statistical test play
essential roles in multiple fields of statistics especially in causal discovery (Sullivant et al., 2010;
Spirtes, 2013). From one perspective, Independence and Conditional Independence (CI) are crucial
concepts in causal discovery and Bayesian network learning (Pearl et al., 2000; Spirtes et al., 2000;
Koller & Friedman, 2009) due to its relation to d-separations (Pearl, 1988), and it has been shown
that rank tests take those linear CI tests as special cases (Sullivant et al., 2010; Di, 2009; Dong et al.,
2024). From another point of view, rank of a cross-covariance matrix corresponds to t-separations
in a graph (Sullivant et al., 2010), which contain graphical information that can be used to identify
latent variables (Huang et al., 2022; Dong et al., 2024). A more detailed discussion about related
work can be found in Appendix D.

Existing statistical rank tests (Anderson, 1984) are often built upon Canonical Correlation Analysis
(CCA) (Jordan, 1875; Hotelling, 1992), with a likelihood ratio based test statistics. Despite their
effectiveness, existing methods rely on the strong assumption that all the variables concerned can be
perfectly measured. However, in many fields, it is often the case that the best available data are just
discretized approximations of some underlying continuous variable (formally defined in Eq. 1). For
example, in mental health, anxiety levels are often categorized into levels such as mild, moderate,
or severe, according to some latent thresholds (Johnson et al., 2019). Examples can be found in
multiple fields such as finance (Changsheng & Yongfeng, 2012), psychology (Lord & Novick, 2008),
biometrics (Finney, 1952) and econometrics (Nerlove & Press, 1973), where continuous variables are
often assumed to be observed as discretized values.

When discretization is present, existing rank tests can hardly work. The main reason lies is that
the discretized values only reflect the order of the data, leading to cross-covariance estimates that
may differ significantly from the underlying cross-covariance matrix (also illustrated in Figure 1).
Furthermore, even though the true underlying cross-covariance matrix can be estimated by maximum
likelihood-based methods such as polychoric and polyserial correlations (Olsson et al., 1982; Olsson,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1979), they cannot be directly plugged into existing rank tests. This is because the involved discretiza-
tion and maximum likelihood processes change the distribution of test statistics to a considerable
extent and thus the p-values cannot be correctly calculated. As a consequence, Type I errors of
existing methods cannot be effectively controlled. Both of these points are elaborated in Section 2.2.

To properly address the issue of discretization, in this paper, we propose a novel statistic rank test
based on permutation, i.e., Mixed data Permutation-based Rank Test (MPRT) that can accommodate
continuous, partially discretized, or fully discretized observations. Specifically, in the presence of
discretization, the underlying cross-covariance can be estimated by maximum likelihood estimator,
but the information loss resulting from discretization and the additional estimation steps make the
derivation of the null distribution highly non-trivial. To this end, we start with the continuous case and
establish exchangeability of linear projections of concerned variables (captured by Theorem 4), based
on which the null distribution can be empirically estimated by permutations. When some observations
are discretized, the exchangeability still holds but we do not have direct access to permutable data.
Fortunately, we show that the concerned statistic distribution can still be consistently estimated by
properly using permuted discretized observations (captured by Theorem 5). We summarize our major
contributions as follows.

• To our best knowledge, we propose the first statistic rank test i.e., Mixed data Permutation-based
Rank Test (MPRT), that properly deals with the problem of discretization. Rank test takes partial
correlation CI test as a special case and thus the problem is crucial to many scientific fields such as
psychology, biometrics, and econometrics, where discretizations are ubiquitous.

• Theoretically, we estimate the asymptotic null distribution by effectively making use of data
permutations, and thus properly controls the Type I error. The setting considered is rather general:
for the test of rank(ΣX,Y), both X and Y are allowed to be either fully continuous, partially
discretized, or fully discretized. Therefore, our method also includes the fully-continuous rank test
as a special case.

• Empirically, we validate our novel rank test under multiple synthetic settings where our method is
shown to control Type I error properly and Type II error effectively, while existing methods cannot.
We also use a real-world dataset to show the practicability of the proposed rank test and illustrate
its application in causal discovery.

2 PRELIMINARIES

2.1 PROBLEM SETTING

Suppose that we have a set of M observed random variables V = {Vj}Mj=1 that are jointly Gaussian.
However, for some of these variables, direct observations are unavailable. We use CV and DV to
denote the index set of those variables in V that we have direct observations and that of those we
only have order-preserving discretized observations, respectively. Assume that we have N i.i.d.,
observations of these variables. The underlying true data matrix is D ∈ RN×M , while we only have
access to D̃, where some columns are discretized. Specifically, for j ∈ CV, D̃:,j = D:,j , while for
those j ∈ DV, the observations are discretized in the following fashion:

D̃i,j = t, if T j
t < Di,j ≤ T j

t+1, for i ∈ {1, ..., N}, t ∈ {1, ..., Cj}, (1)

where Cj is the cardinality of the domain of the discretized observation of Vj , T j
t refers to the t-th

threshold for variable Vj , T j
1 ≜ −∞, and T j

Cj+1 ≜∞.

We are interested in the rank of the population cross-covariance matrix over certain combinations of
variables, e.g., ΣX,Y, where X ⊆ V and Y ⊆ V (X and Y are not necessarily disjoint). The rank
information is crucial to causal discovery (Spirtes et al., 2000) and will be detailed in Section 2.2.
Ideally, we would expect that we have infinite datapoints and there is no discretization; in this case,
the sample covariance Σ̂X,Y would be exactly the same as the population covariance, and the rank
can be easily calculated by linear algebra. However, in practice we only have finite datapoints and
for some of the variables we only have discretized observations. Thus, it is crucial to consider the
following problem: in the finite sample case and in the presence of discretization, we only have
access to D̃ instead of D, how to build a valid statistic test that properly controls the Type I error for
testing the rank of a cross-covariance matrix ΣX,Y?

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.2 WHY THIS PROBLEM IS IMPORTANT?

In this section we will briefly discuss why rank test is important in the context of causal discovery as
well as why it is crucial to deal with discretization.

(i) Rank Test Takses Linear CI Test as a Special Case

In causal discovery, we aim to find the underlying causal graph among variables given observational
data. The most classical approach is to use conditional independence (CI) relationships to identify
d-separations in a graph; see, e.g., the PC algorithm (Spirtes et al., 2000). This idea is captured by the
following theorem.
Theorem 1 (Conditional Independence and D-separation (Pearl, 1988)). Under the Markov and
faithfulness assumption, for disjoint sets of variables A, B and C, C d-separates A and B in graph
G, iff A ⊥⊥ B|C holds for every distribution in the graphical model associated to G.

In practice, we often consider linear causal models where the CI test can be done by e.g., Fisher-Z
(Fisher et al., 1921). It has been shown that, for linear causal models, d-separations between variables
can also be uncovered by rank tests, which is summarized in the following theorem.
Theorem 2 (D-separation by Rank Test (Dong et al., 2024)). Suppose a linear causal model with
graph G and assume rank faithfulness (Spirtes, 2013). For disjoint variable sets A, B, and C, we
have C d-separates A and B in graph G, if and only if rank(ΣA∪C,B∪C) = |C|.

The above Theorem 2 says that d-separations can also be inferred from rank of a cross-covariance
matrix, and thus for causal discovery of linear causal models, partial correlation test / linear CI test
can be substituted by rank test.

(ii) Rank Relates to T-separation that Indicates Latent Variables

Next, we show that rank of cross-covariance informs something beyond d-separations. Specifically,
t-separations (Sullivant et al., 2010) can be inferred from rank, and t-separations can be used to
identify latent variables. The relation between rank and t-separations is given as follows.
Theorem 3 (Rank and T-separation (Sullivant et al., 2010)). Given two sets of variables A and B
from a linear model with graph G and assume rank faithfulness. We have:

rank(ΣA,B) = min{|CA|+ |CB| : (CA,CB) t-separates A from B in G}, (2)

where ΣA,B is the cross-covariance over A and B.

The left-hand side of Equation 2 is about properties of the observational distribution, while the right-
hand side describes properties of the graph. An example highlighting the greater informativeness of
rank compared to CI is as follows. Consider the graph G in Figure 5, where {X1,X2} and {X3,X4}
are d-separated by L1, but we can never infer that from any CI test, i.e., we can never check whether
{X1,X2} ⊥⊥ {X3,X4}|L1 holds, as L1 is not observed. In contrast, using rank information, we can
infer that rank(Σ{X1X2},{X3X4}) = 1, which implies {X1,X2} and {X3,X4} are t-separated by one
latent variable. The rationale behind is that the t-separation of two set of variables A, B by (CA,CB)
can be inferred through rank information, without actually observing any element in (CA,CB). A
more detailed discussion can be found in (Dong et al., 2024).

(iii) Discretization is Ubiquitous and Needs to be Handled

Discretization is ubiquitous in many scientific fields. For instance, it is common to come across
concepts that cannot be measured directly, such as depression, anxiety, attitude, and the observations
of such variables are often the result of coarse-grained measurement of the underlying continuous
ones. More examples can be found in fields like psychology (Lord & Novick, 2008), biometrics
(Finney, 1952) and econometrics (Nerlove & Press, 1973), where it is widely accepted to assume a
continuous variable underlies a dichotomous or polychotomous observed one.

In the context of rank test, what should we do to deal with such a ubiquitous discretization problem?
One naive way is to just treat these ordinal values as continuous ones and test the rank of a cross-
covariance matrix as usual, and yet it cannot work. The reason lies in that the observed values of
these discretized variables just represent the ordering and the values can be rather arbitrary. For
example, assume that the original continuous observations are discretized into three levels represented
by {1, 2, 3} respectively; one can alternatively uses {1, 2, 2.1} or {1, 2, 1016} to represent the three
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(a) Population cross-covariance ma-
trix over continuous variables.

(b) Cross-covariance matrix using
discretized data with N → ∞.

(c) Distributions of p-values of
CCART-C and CCART-DE.

Figure 1: Subfigures (a) and (b) together show that we cannot directly take the discrete values for the
calculation of rank of the covariance matrix. Subfigure (c) shows that directly plugging an estimated
cross-covariance matrix into a rank test does not work as Type I cannot be controlled.

levels. If we directly use the ordinal values, the resulting cross-covariance matrix can be very different
from the ground truth one, leading to meaningless results. An example can be found in Figure 1,
where (a) shows the population cross-covariance and (b) shows the counterpart calculated by using
discretized observations. Even with infinite samples, the two matrices are totally different, and the
rank of the matrix in (a) is 1 while rank of that in (b) is 3. Next, we will show that, even if we can use
maximum likelihood to estimate the correlation first, the problem is still highly non-trivial.

2.3 CLASSICAL RANK TEST WITH ESTIMATED CORRELATION

We have shown that the naive solution of directly using the ordinal values cannot work. Thus, one
may wonder another straightforward one - estimate the correlations first (which can be done by
maximizing likelihood, detailed in Section 3.3), and then plug the estimated correlations into a
standard CCA rank test. In this section we will show that this straightforward solution cannot work
either; more specifically, the Type-I errors cannot be effectively controlled.

We start with a brief introduction to the classical rank test, which is based on Canonical Correlation
Analysis (CCA) (Jordan, 1875; Hotelling, 1992). The key design of a test typically is to find a suitable
statistic and to derive its distribution under the null hypothesis. As for rank test of cross-covariance
ΣX,Y, statistics based on CCA scores between X and Y are found to be very effective. For |X| = P ,
|Y| = Q, and K = min(P,Q), the CCA problem is as follows:

max
A∈RP×K ,B∈RQ×K

tr(AT Σ̂X,YB), s.t., AT Σ̂XA = BT Σ̂YB = I. (3)

Assume that the solution to Eq. 3 leads to CCA scores between X and Y as {ri}Ki=1. With the null
hypothesis that rank(ΣX,Y) ≤ k, referred to asHk

0 , we would expect that the top-k CCA scores are
non-zero and the rest ones are all zero. This leads to a likelihood-ratio-based test statistics (Anderson,
1984) underHk

0 as follows.

λk = −
(
N − P +Q+ 3

2

)
ln(ΠK

i=k+1(1− r2i )), (4)

which has been shown to approximately follow a chi-square distribution with degree of freedom
(P − k + 1)(Q − k + 1). To perform the rank test, one only has to calculate λk and the related
chi-square distribution to get the p-value.

In Eq 3, Σ̂X,Y refers to the sample covariance DXT
DY

N−1 . In the presence of discretization, we only
have access to D̃X and D̃Y, but we can still estimate the cross-correlation by maximizing the
likelihood (detailed in Section 3.3), and take the estimation into Eq. 3 to calculate the CCA scores
and thus the test statistics. However, due to the information loss introduced by discretization and the
additional maximum likelihood steps, the distribution of the statistics is changed to a considerable
extent. An example is shown in Figure 1 (c), where CCART-C refers to CCA rank test using
the original continuous observations and CCART-DE refers to first estimating the correlations by
maximum likelihood using discrete data and then plugging it into the CCA rank test. As shown, the
p-values of CCART-C are uniformly distributed while the p-values of CCART-DE are clearly not;
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most of them are near to zero and thus the test tends to reject everything, leading to unacceptably
large Type I errors (also validated in Section 4.2 and Figure 2).

Ideally, we would expect to derive the updated distribution of the statistics, and yet the involved
likelihood maximization steps make it very difficult. Therefore, we aim to solve this problem by
estimating the empirical cdf of the null distribution using permutations, detailed in what follows.

3 MIXED DATA PERMUTATION-BASED RANK TEST

In this section, we propose our novel Mixed data Permutation-based Rank Test (MPRT). We start
with the all continuous case.

3.1 ALL CONTINUOUS CASE

Assume that we are interested in the rank of ΣX,Y, where |X| = P and |Y| = Q and their
corresponding data matrices are D̃X ∈ RN×P and D̃Y ∈ RN×Q respectively. The first crucial step
is to solve the CCA problem defined in Eq 3, by Singular Value Decomposition (SVD) as follows.

USV = Σ̂
− 1

2

X Σ̂X,YΣ̂
− 1

2

Y , (5)

A = Σ̂
− 1

2T

X U and B = Σ̂
− 1

2T

Y V T , (6)

where A and B are two linear projection matrices and the two CCA variables are CX = ATX and
CY = BTY. CX and CY have two good properties: (i) Σ̂CX

= Σ̂CY
= I , and Σ̂CX,CY

is a
diagonal matrix; (ii) under null hypothesis Hk

0 : rank(ΣX,Y) ≤ k, only the top-k diagonal entries
of ΣCX,CY

are nonzero and the rest of the diagonal entries should be zero. Taking these two into
consideration, we have the exchangeability between CXk: and CYk:, which is formalized in the
following Theorem 4 (proof of which can be found in Appendix).

Theorem 4 (Exchangeability of CXk: and CYk:). Given a set of variables V that are jointly
gaussian, under null hypothesis Hk

0 : rank(ΣX,Y) ≤ k, where X,Y ⊆ V, random vectors CXk:

and CYk: are asymptotically independent with each other.

Based on the exchangeability between CXk: and CYk:, we can permute the data matrix of CXk: and
CYk: in order to get resampling of CXk: and CYk:. Specifically, given a random permutation matrix
P , PD̃CX

:,k: and D̃CY

:,k: together serve as N i.i.d. resamplings from the joint distribution of CXk: and
CYk:. Further, the statistics in Eq. 4 only depends on the k-th to K-th CCA scores between X and
Y, which can be equivalently calculated by the first to (K − k)-th CCA scores between CXk: and
CYk:, formally captured by the following Lemma 1.

Lemma 1 (Alternative Way to Calculate Statistic in Eq. 4). Let the CCA score between CXk: and
CYk: be {r̂i}K−k

1 . Then the statistic defined in Eq. 4 can also be formulated as:

λk = −
(
N − P +Q+ 3

2

)
ln(ΠK−k

i=1 (1− r̂2i )). (7)

By Lemma 1, we know that the test statistics only depends on CXk: and CYk:. Further, CXk: and
CYk: can be resampled by permutations. Taking these two into consideration, we can make use
of permutation to estimate the empirical CDF of the null distribution, and thus correctly calculate
the p-value. Below we give a detailed description of the procedure to do the permutation and
consequently calculate the p-value. Given A and B, we have the observed data matrix of the two
canonical variables as D̃CX = D̃XA and D̃CY = D̃YB (where D̃CX , D̃CY ∈ RN×K ). For each
random N ×N permutation matrix P , we use PD̃CX

:,k: and D̃CY

:,k: to calculate the test statistics under
permutation P as λP

k following Eq. 7, and the p-value is obtained as:

pk = E 1[λP
k ≥λk], (8)

where the expectation is taken over random permutations.

5
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3.2 MIXED CASE - IN THE PRESENCE OF DISCRETIZATION

Here we discuss the case where some columns of the data matrices D̃X and D̃Y are discretized.
Under such a scenario, one can still estimate Σ̂X, Σ̂X,Y, and Σ̂Y by maximizing likelihood, which
will be detailed in Section 3.3. After that, A and B can still be estimated following Eq. 5 and Eq. 6,
and the exchangeability between CXk: and CYk: still holds.

However, to get the resampling of CXk: and CYk: by permutation, one has to apply linear trans-
formation A and B to get D̃CX = D̃XA and D̃CY = D̃YB, respectively. In the all continuous
case, it is straightforward, but in the presence of discretization, it makes no sense to apply a linear
transformation A to D̃X, when some columns of D̃X are just ordinal values. As a consequence, we
cannot make use of Lemma 4 to get a resampling of CXk: and CYk: to calculate the statistic λk and
estimate the p-value anymore.

Fortunately, it can be shown that to calculate λP
k , one does not have to really get the exact resampling

from CXk: and CYk:. Instead, for each random permutation P , we can get a consistent estimation
of {r̂i}K−k

1 and consequently calculate λP
k . This is formalized by the following Theorem 5.

Theorem 5 (Consistent Estimation of {r̂i}K−k
1 under Permutation P ). Under permutation P ,

the empirical CCA scores between CXk: and CYk:, i.e., {r̂i}K−k
1 , are the singular values of

Σ̂
− 1

2

CXk:
Σ̂CXk:,CYk:

Σ̂
− 1

2

CYk:
, which can be consistently estimated by:

((AT Σ̂XA)k:,k:)
− 1

2

(
(AT DXT

P TDY

N − 1
B)k:,k:

)
((BT Σ̂YB)k:,k:)

− 1
2 , (9)

where DXT
PTDY

N−1 can be consistently estimated by using D̃X and P T D̃Y and assuming unit
variance of variables.
Remark 1 (Remark on Theorem 5). Theorem 5 implies that we can consistently estimate λP

k by
making use of randomly permuted data D̃X and P T D̃Y. Note that although here the transpose
of permutation applies to D̃Y, the correctness of the process still relies on the exchangeability
between CXk: and CYk:, and does not need the exchangeability between X and Y. In words, doing
permutation on D̃XA will meet the problem of applying linear transformation to data that might
contain ordinal values, and Theorem 5 provides a way to bypass the problem by permuting D̃Y

instead.

Till now, the remaining problem is how to consistently estimate cross-covariance matrices in the
presence of discretization, and it will be detailed in what follows.

3.3 CORRELATION ESTIMATION IN THE PRESENCE OF DISCRETIZATION

Assume that we concern the rank of ΣX,Y, where some of the variables are discretized and X and
Y are not necessarily disjoint. As mentioned, for those variables that we only have discretized
observations, their variance can never be determined. Further, the rank of a cross-covariance matrix
is equivalent to the rank of the corresponding cross-correlation matrix. Without loss of generality, we
can assume all variables to have unit variance and zero mean. Thus, we sometimes use correlation
and covariance interchangeably. The remaining crucial step is to estimate the correlation matrix for
V = X ∪Y, i.e., R̂, by data D̃ ∈ RN×|V |. As some elements of V are discrete, we use CV and
DV to denote the index set of continuous variables and discrete variables in V respectively.

We first introduce the overall objective function for correlation estimation as follows.

R̂ = argminR∈RM×M L(D̃,R), (10)

L(D̃,R) = −
∑

1≤i<j≤M

log pij(D̃:,ij ;Ri,j), (11)

where the optimization objective is minimizing pair-wise negative log-likelihood, also referred to as
pseudo likelihood, instead of the real joint log-likelihood over all variables. The reason lies in that
optimizing over the joint log-likelihood is very computationally expensive and the pseudo likelihood
is tractable while also serves as a consistent estimator (Besag, 1974).

6
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Next, we will specify the pair-wise log-likelihood in three different scenarios - between two continuous
variables, between a continuous and a discrete variable, and between two discrete variables.

(i) Likelihood for Two Continuous Variables

If both i ∈ CV and j ∈ CV, the likelihood function is just the joint gaussian pdf parametrized by
Ri,j given as follows:

log pij(D̃:,ij ;Ri,j) = (1/2)

(
tr

([
1,Ri,j

Ri,j , 1

]−1[
1, R̂i,j

R̂i,j , 1

])
+ log det

[
1,Ri,j

Ri,j , 1

])
, (12)

where R̂i,j is the empirical correlation matrix that can be directly calculated from data D̃:,ij .

(ii) Likelihood for a Continuous and a Discrete Variable

If i ∈ CV and j ∈ DV, then the log-likelihood (also known as polyserial correlation estimation
(Olsson et al., 1982)) can be factorized as follows.

log pij(D̃:,ij ;Ri,j) =
1

N

N∑
k=1

log p(Vi = D̃k,i)p(Vj = D̃k,j |Vi = D̃k,i,Ri,j), (13)

where p(Vi = D̃k,i) is a standard gaussian pdf. For a specific value of D̃k,j , say, t, we have that:

p(Vj = D̃k,j |Vi = D̃k,i,Ri,j) = p(T j
t < Vj ≤ T j

t+1|Vi = D̃k,i,Ri,j), (14)

= Φ

(
T j
t+1 −Ri,jD̃k,i

(1−R2
i,j)

1/2

)
− Φ

(
T j
t −Ri,jD̃k,i

(1−R2
i,j)

1/2

)
, (15)

where Φ is the standard gaussian cdf. We note that the thresholds T are unknown, thus it could be
taken as free parameters during optimization. In practice, it is more efficient to estimate the thresholds
first by using inverse gaussian cdf as follows:

T̂ j
t+1 = Φ−1

(∑N
k=1 1[D̃k,j≤t]

N

)
. (16)

(iii) Likelihood for Two Discrete Variables

If both i ∈ DV and j ∈ DV, then the log-likelihood is given as follows (also known as polychoric
correlation estimation (Olsson, 1979; Jöreskog, 1994)).

log pij(D̃:,ij ;Ri,j) =
1

N

N∑
k=1

log p(Vi = D̃k,i,Vj = D̃k,j |Ri,j) (17)

=
1

N

N∑
k=1

log(Φ2(T
i
D̃k,i+1

, T j

D̃k,j+1
;Ri,j) + Φ2(T

i
D̃k,i

, T j

D̃k,j
;Ri,j) (18)

− Φ2(T
i
D̃k,i+1

, T j

D̃k,j
;Ri,j)− Φ2(T

i
D̃k,i

, T j

D̃k,j+1
;Ri,j)), (19)

where Φ2(., ., r) is the joint cdf of two standard gaussian variables with correlation r and the
thresholds for each variable can also be estimated by using Eq. 16.

3.4 PARAMETERIZATION TRICK FOR RANK TEST

We note that the optimization problem defined in Eq. 10 does not constrain the space to be a pseudo-
correlation matrix - a matrix that is PSD with unit diagonal elements. If we only care about the
maximum likelihood estimator, the pseudo-correlation requirement might be unnecessary. However,
as we rely on SVD for CCA and rank test, the requirement of being pseudo-correlation matrix is
crucial. A classical way to solve this problem is by projected gradient descent: we project the current
solution to the space of pseudo-correlation matrices after each step of gradient descent. Yet, in
practice we found this solution less effective, due to that the projection itself cannot be analytically
solved and thus an additional optimization step to solve projection is required.

7
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Algorithm 1: MPRT: Mixed data Permutation-based Rank Test

Input :Sample D̃X, D̃Y , indexes of discretized columns, null hypothesis Hk
0 : rank(ΣX,Y) ≤ k, and

significant level α;
Output :True (fail to reject Hk

0 ) or False (reject Hk
0 );

1 P = |X|, Q = |Y|, and K = min(P,Q);
2 Get Σ̂X, Σ̂X,Y , and Σ̂Y as submatrices of R̂ by Eq. 22 (unit variance assumed);
3 Calculate A and B following Eqs. 5 and 6.;
4 Let P = I (no permutation), calculate {r̂i}K−k

1 following Eq. 9 and then the statistic λk following Eq. 7;
5 for each random permutation P do
6 Calculate {r̂i}K−k

1 under P following Eq. 9 and then the statistic under P , i.e., λP
k , following Eq. 4;

7 Calculate p-value pk by Eq. 8;
8 return pk ≥ α

To this end, we directly parameterize the space of pseudo-correlation matrices in a geometric way
following (Rousseeuw & Molenberghs, 1993), given as follows.

R = UTU , (20)

Uj,i =

{
cosθi−j+1,iΠ

i−j
k=1sinθk,i, j ≤ i

0, j > i
, s.t., θi,i = 0, ∀i. (21)

Therefore, we have an alternative way to parameterize the correlation matrix, which gives rise to the
following new formulation of our objective function (instead of Eq. 10):

R̂ = argminθ L(D,R). (22)

We summarize the overall testing procedure of our proposed MPRT in Algorithm 1.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

To empirically validate the proposed Mixed data Permutation-based Rank Test (MPRT), we apply
our method to synthetic data and compare it with the following methods. (i) CCART-C: CCA-based
Rank Test (Anderson, 1984) that use the original continuous observation as input; as it has access
to the original observations, its performance is taken as the best possible performance that we can
achieve. (ii) CCART-D: CCA-based Rank Test with Discrete data; it directly takes the ordinal values
as input. (iii) CCART-DE: CCA-based Rank Test with Discrete data Estimating covariance; it takes
the estimated correlation matrix as input (following Eq. 22).

We consider two scenarios: mixed data scenario where data are partially discretized, and all continuous
scenario where all the original observations are available. The first scenario is to illustrate how well
can we handle discretization while the second is to show that our method can serve as a general
rank test method as we also work well when there is no discretization. In terms of performance,
we concern both Type I errors and Type II errors. Specifically, we expect a good test can properly
control the Type I errors given a significance level α, while the Type II errors should be as small as
possible. We consider different sample sizes, and for each comparison, we consider 3000 random
trials. For MPRT, we randomly generated 200 permutations to calculate the p-value. The ground
truth covariance matrices are randomly generated. For the mixed scenario, we uniformly generate
two thresholds from [−1.5, 1.5] for each variable that should be discretized, and use the thresholds
together with −∞ and∞ to discretize the continuous observations into three categories {1, 2, 3}.
We also apply the proposed MPRT method with mixed data to the classical causal discovery method
PC algorithm (Spirtes et al., 2000) and see whether our test method can better test CI relations
compared to the classical Fisher-Z CI test (Fisher et al., 1921), in the presence of discretization.
Fisher-Z is only compared by the result of PC and cannot be not compared in the previous setting,
as linear CI relations can only correspond to a part of the rank information. Finally, we employ a
real-life dataset to illustrate the applicability of the proposed method in real-life scenarios.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) The probability of Type I errors with α = 0.05. (b) Type II errors (effective Type I controlled at 0.05).

Figure 2: The probability of Type I and Type II errors with mixed data, by different rank test methods,
under different sample sizes N = 1000, 2000, 5000.

(a) The probability of Type I errors with α = 0.05. (b) Type II errors (effective Type I controlled at 0.05).

Figure 3: The probability of Type I and Type II errors with continuous data, by different rank test
methods, under different sample sizes N = 50, 100, 1000, 2000.

4.2 ANALYSIS ON TYPE I AND TYPE II ERRORS UNDER DIFFERENT SAMPLE SIZES

In this section we analyze the performance of each method in terms of Type I and Type II errors under
different sample sizes. For the mixed data scenario, the result is shown in Figure 2. Specifically, one
can see that both our proposed MPRT and CCART-C can properly control the Type I errors as the
Type I errors of them are both very close to the significance level α = 0.05; in contrast, CCART-D
and CCART-DE totally failed to control the Type I errors. As for Type II errors, it can be found that
the Type II errors of MPRT are quite small, and decreases with the increase of sample size N , while
CCART-D and CCART-DE cannot benefit from the increase in sample size. We note that it is very
natural that MPRT cannot beat CCART-C as CCART-C takes the original continuous observation as
input while MPRT takes mixed data as input. We show the performance of CCART-C just in order to
show the minimal possible Type II errors that one can achieve in the presence of discretization.

We also show the performance when both CCART-C and MPRT have access to the original continuous
observations, as in Figure 3. Specifically, both methods properly control the Type I errors as in
the subfigure 3(a). For the Type II errors, the performance of CCART-C and MPRT is almost the
same. This is as expected, as in this scenario both methods use exactly the same test statistics except
that CCART-C uses the analytically derived null distribution to get the p-value while MPRT uses
the empirical CDF to calculate the p-value; the two results are expected to be exactly the same
asymptotically.

Taking the performance under these two scenarios together into consideration it can be argued that
MPRT is a very general and valid rank test as it can handle all continous data, partially discretized
data, and all discretized data and the Type I are properly controlled while the power is also good.

4.3 APPLICATION IN CAUSAL DISCOVERY

In this section we validate our test using the PC algorithm (Spirtes et al., 2000). Specifically, we
consider linear causal models with gaussian noises Vi =

∑
Vj∈Pa(Vi)

aijVj + εVi , where the edge

9
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(a) Discovered personality substructure for Openness. (b) Discovered substructure for Neuroticism.

Figure 4: Application of MPRT in causal discovery using real-life Big Five human personality data.

Table 1: F1 score and SHD of the PC algorithm, with different CI test methods (↑ means the bigger
the better while ↓ the smaller the better).

F1 score for skeleton ↑ SHD for skeleton ↓
CI test method N = 500 N = 1000 N = 2000 N = 500 N = 1000 N = 2000

MPRT 0.84 0.9 0.96 0.80 0.60 0.20
Fisher-Z 0.81 0.80 0.78 1.20 1.20 1.40

CCART-D 0.75 0.79 0.77 1.60 1.60 1.80
CCART-DE 0.80 0.85 0.83 1.40 1.30 1.60

coefficients and the variance of the noises are randomly generated. We consider the scenario where
data are partially discretized and compare MPRT with Fisher-Z to see which one works better with
PC. We employ F1 score F1 = 2∗Recall∗Precision

Recall+Precision for skeleton (the bigger the better) and Structural
Hamming Distance (SHD) for skeleton (the smaller the better) to evaluate the performance. As shown
in Table 1, MPRT achieves the best performance in terms of both F1 and SHD, under all sample
sizes. This validates the claim that MPRT can serve as a powerful CI test for causal discovery in the
presence of discretization.

4.4 REAL-WORLD CAUSAL DISCOVERY APPLICATION

In this section, we further validate our proposed MPRT method using a real-world Big Five Person-
ality dataset https://openpsychometrics.org/. It consists of 50 personality indicators
and close to 20,000 data points. Each Big Five personality dimension, namely, Openness, Conscien-
tiousness, Extraversion, Agreeableness, and Neuroticism (O-C-E-A-N), are designed to be measured
with their own 10 indicators and the values of each variable are ordinal: Disagree, slightly disagree,
Neutral, Slightly agree, and Agree. We employ RLCD (Dong et al., 2024), a recently proposed rank
based causal discovery method with our MPRT method. We choose 7 items from openness and 6
items from neuroticism to verify our method.

The results are shown in Figure 4. Specifically, for openness we discovered two latent variables.
L2 corresponds to whether a person has a lot of ideas while L1 corresponds to the general concept
of openness. As for neuroticism, we also discovered two latent variables. L1 relates more to one’s
emotions while L2 relates to one’s stress level. In contrast, if we directly use the ordinal values to
do the rank test, i.e., using CCART-D, all the p-values tend to be very small, and thus we have to
use very small significance level (around 1e-10) in order to have some structures discovered; yet
using such an extremely small alpha value will induce a lot of Type II errors. This result illustrates
the superiority of using MPRT in the presence of discretizations in real-life scenarios, and again
empirically validate the proposed method.

5 CONCLUSION

In this paper, we propose a novel permutation-based rank test that works in the presence of discretiza-
tion. It is rather general as it can accommodate fully continuous data, partially discretized data, or
fully discretized data as input, and it can effectively control the Type I errors while the Type II is also
small. Extensive empirical studies validate our method.

10
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A PROOFS

A.1 PROOF OF THEOREM 4

Theorem 4 (Exchangeability of CXk: and CYk:). Given a set of variables V that are jointly
gaussian, under null hypothesis Hk

0 : rank(ΣX,Y) ≤ k, where X,Y ⊆ V, random vectors CXk:

and CYk: are asymptotically independent with each other.

Proof of Theorem 4. Asymptotically Σ̂X, Σ̂Y, and Σ̂X,Y are the same as ΣX, ΣY, and ΣX,Y,
respectively. Under the null hypo thatHk

0 : rank(ΣX,Y) ≤ k, we have that the population covariance
between CXk: and CYk: are all zeros. Given that all variables are jointly gaussian, CXk: and CYk:

are also jointly gaussian. Thus CXk: and CYk: are asymptotically independent.

A.2 PROOF OF LEMMA 1

Lemma 1 (Alternative Way to Calculate Statistic in Eq. 4). Let the CCA score between CXk: and
CYk: be {r̂i}K−k

1 . Then the statistic defined in Eq. 4 can also be formulated as:

λk = −
(
N − P +Q+ 3

2

)
ln(ΠK−k

i=1 (1− r̂2i )). (7)

Proof of Lemma 1. The CCA scores between CXk: and CYk: are just the diagonal entries of their
cross-covariance matrix, which corresponds to the k to K CCA scores between X and Y. Thus we
have r̂i = ri+k for i = {1, ...,K − k}, and thus λk = −(N − P+Q+3

2 ) ln(ΠK
i=k+1(1− r2i )).

A.3 PROOF OF THEOREM 5

Theorem 5 (Consistent Estimation of {r̂i}K−k
1 under Permutation P ). Under permutation P ,

the empirical CCA scores between CXk: and CYk:, i.e., {r̂i}K−k
1 , are the singular values of

Σ̂
− 1

2

CXk:
Σ̂CXk:,CYk:

Σ̂
− 1

2

CYk:
, which can be consistently estimated by:

((AT Σ̂XA)k:,k:)
− 1

2

(
(AT DXT

P TDY

N − 1
B)k:,k:

)
((BT Σ̂YB)k:,k:)

− 1
2 , (9)

where DXT
PTDY

N−1 can be consistently estimated by using D̃X and P T D̃Y and assuming unit
variance of variables.

Proof of Theorem 5. We are interested in Σ̂
− 1

2

CXk:
Σ̂CXk:,CYk:

Σ̂
− 1

2

CYk:
. Assume that we have access to

the original data DX and DY. By the exchangeability, for each random P , we have (PDXA):,k:

and (DYB):,k: are the N samples from joint distribution of CXk: and CYk:. Then the Σ̂
− 1

2

CXk:
,

Σ̂CXk:,CYk:
, and Σ̂

− 1
2

CYk:
are as follows:

Σ̂
− 1

2

CXk:
= (

((PDXA):,k:)
T (PDXA):,k:

N − 1
)−

1
2 , (23)

= (
((PDXA)T (PDXA))k:,k:

N − 1
)−

1
2 , (24)

= (
(ATDXT

DXA)k:,k:
N − 1

)−
1
2 , (25)

= ((AT Σ̂XA)k:,k:)
− 1

2 . (26)
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Figure 5: An illustrative example to show that rank contains more graphical information than CI.
When using CI, we cannot deduce that {X1,X2} and {X3,X4} are d-separated by L1 as L1 is
latent, while by using rank we can.

Σ̂
− 1

2

CYk:
= (

((DYB):,k:)
T (DYB):,k:

N − 1
)−

1
2 , (27)

= (
((DYB)T (DYB))k:,k:

N − 1
)−

1
2 , (28)

= (
(BTDYT

DYB)k:,k:
N − 1

)−
1
2 , (29)

= ((BT Σ̂YB)k:,k:)
− 1

2 . (30)

Σ̂CXk:,CYk:
=

((PDXA):,k:)
T (DYB):,k:

N − 1
, (31)

=
((PDXA)TDYB)k:,k:

N − 1
, (32)

= (
(ATDXT

P TDYB)k:,k:
N − 1

), (33)

= (AT DXT
P TDY

N − 1
B)k:,k:. (34)

Further, D̃X and P T D̃Y can be taken as sampled from the joint distribution of two independent
gaussian random vectors. As each of them are marginally gaussian, they are also jointly gaussian.
Thus, DXT

PTDY

N−1 can be consistently estimated by maximizing likeilhood as in Eq. 22.

B OTHER DEFINITIONS

B.1 T-SEPARATION

The definitions of trek and t-separation are as follows.

Definition 1 (Treks (Sullivant et al., 2010)). In G, a trek from X to Y is an ordered pair of directed
paths (P1, P2) where P1 has a sink X, P2 has a sink Y, and both P1 and P2 have the same source Z.

Definition 2 (T-separation (Sullivant et al., 2010)). Let A, B, CA, and CB be four subsets of VG in
graph G (not necessarilly disjoint). (CA,CB) t-separates A from B if for every trek (P1,P2) from a
vertex in A to a vertex in B, either P1 contains a vertex in CA or P2 contains a vertex in CB.

Example 1. In Figure 5, there are multiple treks. For example, X4 ← L1 → X3 is a trek between
X4 and X3, X4 ← L1 is a trek between X4 and L1, and L1 → X3 is a trek between L1 and X3. As for
t-separations, we have {X1,X2} and {X3,X4} are t-separated by (∅, {L1}).
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Figure 6: An illustration of exchangeability and permutation test. The left figure refer to N i.i.d.
samples from P (X,Y). After random permutation on Y, the permutated data can be considered as
random i.i.d. samples from P (X) and P (Y). If the exchangeability holds, i.e., random vectors X
and Y are independent, then we have P (X,Y) = P (X)P (Y), and thus the permuted data can serve
as another N i.i.d. samples from P (X,Y).

C DISCUSSION

C.1 BRIEF INTRODUCTION TO PERMUTATION TEST

Permutation tests aim to empirically estimate the CDF of the null distribution of a test statistic. The
core of such an CDF estimation is the exchangeability, under which we can make use of permuted
data to serve as additional samples from the same distribution.

Take Figure 6 as an example. The left figure in Figure 6 refer to N i.i.d. samples from P (X,Y).
After random permutation on Y, the permutated data can be considered as random i.i.d. samples from
P (X) and P (Y). If the exchangeability holds under the null hypothesis, i.e., random vectors X and
Y are independent, then we have P (X,Y) = P (X)P (Y), and thus the permuted data can serve as
another N i.i.d. samples from P (X,Y). Now we know how to generate additional N i.i.d. samples.
As a test statistic is just a deterministic function of the N i.i.d., samples. For each randomly permuted
data, we can calculate the value of the test statistic, and thus all these calculated test statistics can
be considered as sampled from the distribution of the test statistic. Given these samples, we can
construct the empirical CDF of the null distribution, and consequently correctly calculate the p-value.

C.2 FOR THE LINEAR NON-GAUSSIAN CASE

If we assume that the underlying continuous variables follow a linear SCM, but the joint distribution
are not necessarily gaussian anymore, the proposed method can still work, as long as the parametric
form is given. To be specific, we only need to modify the likelihood function in Section 3.3 according
to the corresponding parametric form for correlation estimation and the proposed method can still
work. As a comparison, the traditional CCA rank test must assume normality to infer the chi-square
null distribution. On the other hand, if the parametric form is not given, which means we do not have
any information about the shape of the distribution, it may not be possible to consistently recover the
underlying correlation (due to insufficient information), and thus the problem cannot be solved.

C.3 NUMBER OF CATEGORIES AND ANALYSIS OF TYPE-I ERROR AND POWER

The proposed method can handle any level of discretization, as long as it is greater than 1, with Type-I
errors properly controlled. At the same time, more levels are always beneficial, because it leads to
less information loss during the discretization process, and thus the correlation matrix can be more
efficiently estimated for building the test.

Regarding Type-I errors, as we establish the exchangeability even in the discretized scenario, the
asymptotic null distribution can be estimated by random permutations. Consequently, Type-I errors
can be properly controlled at any significance level. At the same time, we do not have theoretical result
on the analysis of the power yet. To be specific, even without considering discretization, the analysis
of power involves tools from advanced random matrix theories and is highly nontrivial. Furthermore,
in our setting with discretized variables, the involved maximum likelihood step makes such an

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

analysis even more challenging. To our best knowledge, there is not any existing result available for
the analytic form of the power in our setting, and we plan to leave it for future exploration.

D RELATED WORK

Conditional independence and rank test. A line of conditional independence tests imposes
simplifying assumptions on the distributions. For instance, when the variables have linear relations
with additive Gaussian noise, the Fisher’s classical z-test based on partial correlations can be used
(Fisher, 1924; Baba et al., 2004). Ramsey (2014) developed an approach that separately regresses X
and Y on Z, and further perform independence test on the corresponding residuals. Fukumizu et al.
(2007) proposed a conditional independence test method based on Hilbert-Schmidt independence
criterion (HSIC) (Gretton et al., 2007). Zhang et al. (2012) further provided a kernel-based conditional
test that yields pointwise asymptotic level control. Shah & Peters (2018) investigated the hardness
of conditional independence test, and developed a method based on kernel-ridge regression and
generalised covariance measure. On the other hand, existing statistical tests for rank of a cross-
covariance matrix (Anderson, 1984) often rely on CCA (Jordan, 1875; Hotelling, 1992), with a
likelihood ratio based test statistics.

Permutation test. Research and applications related to permutation tests have addressed increased
attention in recent years (David, 2008; Pesarin & Salmaso, 2010; Welch, 1990). These tests lead
to valid inferences while requiring weak assumptions that are commonly satisfied, base on the
exchangeability of observations under the null hypothesis. Recently, a permutation-based CI test
was proposed (Doran et al., 2014) and more recently a permutation-based rank test (Winkler et al.,
2020). However, they cannot deal with the discretization problem. In contrast, our MPRT can take all
continuous, partially discretized, or all discretized data as input, and our Type I errors can be properly
controlled.

Constraint-based causal discovery. Constraint-based methods leverage statistical tests, such
as conditional independence tests, to estimate the causal structure. Spirtes & Glymour (1991)
proposed the PC algorithm that estimates the skeleton and orient certain edges to identify the Markov
equivalence class. FCI (Spirtes et al., 1995; Colombo et al., 2012) was developed to allow for latent
and selection variables, while the CCD algorithm (Richardson, 1996) can accommodate cycles.
Furthermore, Huang et al. (2020) developed a constraint-based method that allows for heterogeneity
or non-stationarity in the data distribution, while Silva et al. (2006); Huang et al. (2022); Dong
et al. (2024) proposed algorithms based on rank test that recover the causal structure involving latent
confounders.
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