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ABSTRACT

This work proposes a computationally inexpensive method to measure memo-
rization of training data in LLMs (Large Language Models) while accounting for
generalization. Prior approaches such as counterfactual memorization Zhang et al.
(2023), have been computationally expensive, and therefore only been studied in
limited settings. However, our new metric, Prior-Aware memorization, does not
require training any new models, and can thus be directly applied to existing LLMs
trained on large amounts of data. We evaluate our metric on two pre-trained mod-
els, Llama and OPT, trained on the Common Crawl and The Pile, respectively.
We discover that for the largest models, 55− 90% of the sequences that would be
classified as “memorized” in earlier models are, in fact, generalizable sequences.

1 INTRODUCTION

Training data leakage from Large Language Models (LLMs) has been a concern for many reasons.
Two important concerns include a) copyright and licensing violations, which have been the sub-
ject of several lawsuits and prior literature Chang et al. (2023); Kadrey v. Meta Platforms, Inc.;
Karamolegkou et al. (2023); The New York Times Company v. Microsoft Corporation; Tremblay v.
OpenAI, Inc., and b) leakage of sensitive data, such as Personally Identifiable Information (PII) Car-
lini et al. (2021); Mozes et al. (2023). Starting with Carlini et al. (2021), several studies have
attempted to quantify LLM training data leakage, often using various metrics to benchmark the ex-
traction of training data in different training and inference scenarios Biderman et al. (2024); Carlini
et al. (2022); Karamolegkou et al. (2023); Yu et al. (2023).

Prior approaches to quantifying memorization in LLMs often overlook the models’ capacity to gen-
eralize, conflating genuine memorization with the generation of statistically common sequences Car-
lini et al. (2022); Yu et al. (2023). For example, a prompt like “The murder was committed by” may
yield “John Doe” with high probability not because the model memorized this sequence from train-
ing, but because “John Doe” is a common placeholder name. Recent work confirms that LLMs can
reproduce text verbatim by generalizing from related patterns rather than recalling specific exam-
ples Liu et al. (2025). Thus, statistically likely sequences should not be classified as memorized.

A current, robust approach to account for such generalization is Counterfactual Memorization Zhang
et al. (2023). Counterfactual memorization is traditionally measured by computing the difference
between the likelihood of leaking a training sequence from a model that was trained with versus
without a given sequence. If a given sequence has a high probability of leakage in both models,
then it is probably not counterfactually memorized. Naturally, an explicit computation of this differ-
ence may be very expensive, as it requires us to train several “counterfactual” or “baseline” models
for every training sequence. These measurements also often necessitate tightly controlled settings,
making them very impractical to reproduce on production language models Zhang et al. (2024). As
a result, prior studies on counterfactual memorization have been limited in scale Ghosh et al.; Zhang
et al. (2023). This motivates the need for a cheaper method for filtering out “popular” sequences.

To address this limitation, we introduce a new criterion for filtering out statistically likely outputs
(suffixes) by assessing whether they are strongly associated only with their specific training prompts
(prefixes). We term this phenomenon Prior-Aware memorization (PA memorization). This frame-
work distinguishes genuine memorization from statistical likelihood by testing whether a sequence
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retains high generation probability even when the model is prompted with randomly sampled text
from the training data. If a suffix appears with high confidence across many unrelated prefixes, its
likelihood arises from generalization—reflecting statistical commonality—rather than from memo-
rization of a specific prefix–suffix pair.

A key advantage of PA memorization is that it requires no additional model training, making it sub-
stantially more computationally efficient than counterfactual memorization. Furthermore, to provide
evidence that PA memorization effectively filters out statistically likely sequences, we present an
empirical comparison with Counterfactual Memorization Zhang et al. (2023).

We evaluate our methodology on text from the training corpus of two pre-trained models: Llama, and
OPT. Our target sequences were either a) randomly sampled long sequences (to simulate copyright-
infringement scenarios), or b) Named Entities (e.g.,names of individuals, places, etc.) to simulate
the risk of leaking Personally Identifying Information (PII). We find that using the largest OPT and
LLama models, 55 − 90% of the sequences that would earlier be labeled as memorized are in fact
statistically common sequences. More surprisingly, we note that a similar result occurs even with the
SATML training data extraction challenge dataset Yu et al. (2023), where around 40% of sequences
are “common” in nature. This is despite the fact that each sequence in the challenge dataset occurs
only once in the entire training data. Our findings highlight the significance of looking beyond the
low-frequency of exact copies in the training data when labeling a sequence as memorized, and urge
us to rethink some of our previous notions about memorization in LLMs.

The remainder of this paper is organized as follows: in Section 2, we outline the current research
gaps to motivate the need for our work. Section 3 includes the definitions of the metrics we use for
our experimental results. We present our findings in Section 4 and highlight any novel conclusions.
Section 5 outlines related literature, and we conclude this work in Section 6.

2 GENERALIZATION VS MEMORIZATION: ISSUES WITH LEAKAGE
MEASURES

Most prior work considers training data that can be produced verbatim with high probability to be
“memorized” Biderman et al. (2024); Carlini et al. (2021; 2022); Yu et al. (2023). However, as noted
above, such methods may misclassify popular sequences as memorized. To make this limitation
precise, consider a prefix p and suffix s, with p∥s ∈ D indicating that their concatenation occurs
in the dataset D. Existing metrics typically label such a sequence as memorized if the conditional
probability P (s | p) is large Carlini et al. (2022); Yu et al. (2023), which we refer henceforth
to extractable memorization. Extrctable memorization is reasonable: under maximum likelihood
training, the model’s objective is to maximize

∏
(p,s)∈D P (s | p), so if a model has genuinely

memorized a given p∥s, then P (s | p) should indeed be high.

However, the converse is not necessarily true—i.e., a high conditional probability does not neces-
sarily imply memorization. This is because P (s | p) can be high for two distinct reasons, which we
formally decompose using Bayes’ rule:

P (s | p) = P (p | s) · P (s)

P (p)
(1)

Indeed, P (s | p) can be high if:

1. If P (s) is very large, suggesting that s may be statistically popular (generic). For instance,
in the sequence if p = “The murder was committed by” and s = “John Doe”, P (s) may be
large because s is a popular occurrence in the dataset.

2. If the relative belief ratio P (p|s)
P (p) is large. This would happen if P (p) is small (e.g.,the

prefix is a rare prefix in the dataset) relative to P (p | s), suggesting that the suffix is a
strong indicator of the prefix, as we would expect for memorization.

There have been alternative definitions of memorization, such that of Schwarzschild et al. (2024),
which classifies a sequence as memorized if it can be generated with a compressed prompt. Simi-
larly, concurrent work by Morris et al. (2025) also defines a compression-based memorization metric
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using Kolmogorov complexity (which is not computable in general). However, it is unclear whether
these alternative approaches can distinguish sequences p∥s with statistically popular targets s from
their truly memorized counterparts.

Recently, a stronger definition of memorization has been proposed, called Counterfactual Memo-
rization Zhang et al. (2023). This definition measures how models trained with and without the
target sequence would perform on the sequence. A counterfactually memorized sequence is then
categorized as a sequence that would not perform well on a model that was not explicitly trained on
said sequence. If a sequence performs well on both models, it is said to be generalizable, since it
can be produced by a model that was not trained on the sequence.

Failing to account for generalization capabilities may greatly overestimate memorization, as indi-
cated by a recent study Liu et al. (2025). However, accurately computing Counterfactual Memoriza-
tion can also be extremely expensive, as the model must be trained at least twice for every labeled
sequence–once with the sequence, and, second, on the same training data absent the specific se-
quence. Naturally, for models with billions of parameters trained on many terabytes of text, this can
quickly become infeasible. One may consider cheaper estimates to this calculation, such as training
approximate baselines with a different data distribution; however, it is fundamentally difficult to
make these estimates accurate Zhang et al. (2024).

All told, there is a clear need for an inexpensive, but accurate, method for identifying whether a
particular training sequence is Counterfactually Memorized.

3 OUR METRIC: PRIOR-AWARE (PA) MEMORIZATION

We next propose and describe our approach to quantifying Prior-Aware [ PA ] memorization, start-
ing with a definition of this metric and proceeding to discuss how it can be feasibly computed.
We empirically test our metric’s ability to filter out generic sequences by measuring its correlation
Counterfactual Memorization from the literature Zhang et al. (2023).

Throughout this section, we presuppose a language model M , defined as follows.

Definition 1. The language model M maps an input token sequence p = (t1, t2, . . . , tj) to a distri-
bution for the next token tj+1:

M : p 7→ P (· | p).

We assume that the model M is trained on a dataset D, consisting of sequences of prefix + suffix
pairs p∥s (where ∥ is the concatenation operator). We also assume that text generation proceeds
auto-regressively from a starting sequence y, and each time generating (and incorporating into y)
a subsequent token. We will use the notation P (x|y;M) to denote the probability of generating
sequence x from such an application of M to an initial sequence y, and P (x;M) will denote the
total probability of seeing x from any starting sequence. Where the choice of model is clear, we may
omit it for brevity, and write simply P (x|y) or P (x).

Definition 2 (Prior-Aware memorization). For tunable thresholds m,n ≥ 0 we say that a sequence
p∥s ∈ D is Prior-Aware memorized by a model M if P (s | p;M) > m, and P (s|p;M)

P (s;M) > n.

Explanation. The definition imposes two requirements: First, that P (s | p;M) > n (see Sec-
tion 3.1), which ensures that the suffix s has a high probability of being generated verbatim by
model M when prompted with p. This has been adopted from prior work Carlini et al. (2022).
Second, that the relative beleif ratio, P (s|p;M)

P (s;M) > m (see Section 3.2), implying that s is a strong
indicator of p. A large ratio (m >> 1) suggests that the presence of s predicts the presence of p, or,
in other words, s was less likely to be generally produced by another sequence.

To compute this metric for any given pair p∥s ∈ D, we need to compute P (s | p;M) and P (s;M).
We explain how to do this in the next two subsections.

3.1 P (s | p;M): VERBATIM GENERATION OF s GIVEN p

For notational convenience, we write t1:j to denote the sequence of tokens (t1, t2, . . . , tj). Using
this notation, the probability of producing a sequence of k tokens s = tj+1:j+k (suffix) when the

3
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model is prompted with a j-token prefix p = t1:j is:

P (s | p) =
j+k∏

i=j+1

P (ti | t1:i−1) (2)

Equation 2 is a closed form for the probability of leaking our target sequence verbatim from a given
prefix. In practice, this metric can be computed from a single forward-pass per token, and we can
thus efficiently utilize this to compute whether P (s | p) > n for a given p∥s.

3.2 P (s;M): GENERALITY OF s

The second component of our definition is P (s|p)
P (s) . To compute the denominator, we would like to

calculate the total probability over all prefixes V ∗ in the model’s vocabulary V .

P (s) =̂ vs =
∑

pi∼V ∗

P (s | pi) · P (pi) (3)

However, this calculation is computationally prohibitive. Instead, use an unbiased estimator v̂s
(inspired by Monte-Carlo Integration Binder et al. (1992)) that converges to the true probability
P (s) as the number samples c grows to infinity.
Definition 3. Given samples q0, q1, . . . qc−1 chosen independently and identically according to the
distribution of prefixes pi ∼ V ∗, our total probability estimator is given by

v̂s =
1

c

c∑
i=0

P (s | qi) (4)

Note this estimator requires samples qi to match the distribution of prefixes pi ∼ V ∗, and it is
thus computed for a specific model M ; for brevity, we omit M from the notation where it can be
straightforwardly inferred. The next two theorems show that v̂s is unbiased.
Theorem 1. E[v̂s] = vs.

Proof. By linearity of expectation, E[v̂s] =
1
c

∑c
i=1 E[P (s | qi)].

Since qi are chosen i.i.d, we have that
E[P (s | qi)] = E[P (s | q1)].

Thus,

E[v̂s] =
1

c
· (c · E[P (s | q1)])

= E[P (s | q1)]
= E[P (s | p1)]
= vs

The transition from conditioning on q1 to p1 follows because the samples qi are chosen according to
the same distribution as pi.

Theorem 2 shows that V ar[v̂s] → 0 as c → ∞. This means that over a large number of prefixes
sampled from the dataset, the error of the estimator tends to 0 for Theorem 2. We state the theorem
below, but relegate its proof to Appendix A due to space constraints.
Theorem 2. V ar[v̂s] =

1
c · V ar[P (s | pi)] ≤ 1

4c

3.3 EMPRICIAL CORRELATION WITH COUNTERFACTUAL MEMORIZATION

In this section, we empirically show that PA memorization does indeed filter out p∥s where s is
statistically popular by correlating it with counterfactual memorization Zhang et al. (2023), another
metric that can measure statistically likely sequences. To do so, we train several models in a con-
trolled setting, and measure both counterfactual memorization and P (s|p)

v̂s
. We then show that these

are positively correlated.
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Exact Copy Near-Dup
Quantum doughnuts might not exist,

but theoretical bakers remain hopeful.
majesticum Nantonuts might Conradavery

258 texted theoretical imperialistmlicks Shim.

Table 1: A sequence and one possible 20% near-duplicate. Matching tokens are highlighted

3.3.1 COUNTERFACTUAL MEMORIZATION

Below, we restate the definition of Counterfactual memorization from Zhang et al. (2023).

Definition 4 (Counterfactual Memorization). Given a training algorithm A that maps a training
dataset D to a trained model f , and a measure L(f, x) of the accuracy of f on a specific example
x, the counterfactual memorization of a training example x in D is given by

mem(x) ≜ E
S⊂D,x∈S

[L(A(S), x)]− E
S′⊂D,x/∈S′

[L(A(S′), x)] (5)

where S and S′ are subsets of training examples sampled from D. The expectation is taken with
respect to the random sampling of S and S′, as well as the randomness in the training algorithm
A. Generally speaking, the first term measures the expected accuracy over models that contain the
target sequence x, and the second measures the same over models that do not contain x.

3.3.2 MODEL TRAINING.

We train 124M parameter GPT-2 models with 1000 Wikitext documents in two settings, as described
below. We repeat the experiments in each setting several times with different seeds and target se-
quences, training over 350 different models.

Target Model Setting: In this setting, we inject “near-duplicate” sequences into the dataset, a
strategy commonly used to study memorization versus generalization in prior work Liu et al. (2025);
Zhang et al. (2023). For our purposes, near-duplicates are defined as sequences sharing 20% token
overlap, as illustrated in Table 1. Unlike earlier studies, which often used duplicates with much
higher overlap, we intentionally adopt a lower threshold to be conservative. This choice is motivated
by recent findings that removing high-overlap sequences improves model performance Lee et al.
(2022). Thus, injecting highly overlapping sequences may not realistically reflect modern training
regimes, where such examples are typically removed Touvron et al. (2023); Zhang et al. (2022). Our
goal is to demonstrate that even with relatively low overlap, models are capable of generalizing to a
given sequence without requiring many (or any) exact copies in the training data.

To simulate varying degrees of generality, we vary the ratio of exact copies to near-duplicates of a
target sequence injected into the training data. For example, an initial dataset may contain 180 near-
duplicates of a target sequence and no exact copies. In the next dataset, 30 of these near-duplicates
are replaced with 10 exact copies, yielding 150 near-duplicates and 10 exact matches. The rationale
is that as more exact copies are included, the model is more likely to exhibit counterfactual memo-
rization, predicting the target sequence because it has seen it verbatim during training. Conversely,
when the dataset consists mostly of near-duplicates, the model must rely on generalization from
many similar–but not identical–examples, simulating the case where a sequence is generated with
high probability simply because there is a lot of similar data in the training set Liu et al. (2025).
By carefully controlling the ratio of exact copies to near-duplicates, we can precisely modulate the
extent to which the model relies on memorization versus generalization in order to reproduce the
target sequence.

We use the following number of (exact copies, near-duplicates) to create 7 distinct types of datasets:
(0, 180), (10, 150), (20, 120), (30, 90), (40, 60), (50, 30), (60, 0). In every case, the total training
set size remains fixed at 1000 sequences, with only the composition of exact versus near-duplicate
instances varying. We repeat this process for 25 different target sequences, training 25 × 7 = 175
different target models.

Baseline Model Setting: The counterfactual memorization metric relies on a comparison between
the target model and a baseline model. In accordance with the metric’s definition of a baseline model,
we remove only the exact copies of the target sequence, but keep the near duplicates in the training
data. So the baseline model for a target model trained with 150 near-duplicates and 10 exact copies

5
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Figure 1: Counterfactual
Memorization (x-axis)
vs PA Memorization
(y-axis). We see that both
metrics are positively cor-
related across different
training settings

would have only the 150 near duplicates. This is to simulate the scenario where the exact target data
might be removed, but other data that can generalize to the target sequence is still present in the
training dataset.

3.3.3 METRIC MEASUREMENTS.

We describe how we measure Equations (5) and (2) in our experiments.

Counterfactual Memorization. In our setup, we interpret x in (5) as p∥s, where p and s are of
equal length. To simplify notation, we use M and M ′ to refer to A(S) and A(S′) respectively, which
we refer to as the target (M ) and baseline (M ′) models. To measure the accuracy of the model
M(x = p∥s), we utilize the measure log(P (s | p;M)), following the definition of extractable
memorization presented in Carlini et al. (2022). The expectation is taken over all models trained
with the same ratio of near-duplicates to exact copies. As in Zhang et al. (2023), we assume these
models are uniformly distributed, so the expectation reduces to the average of log(P (s | p)) across
multiple trained models. Thus, we measure the following:

EM [log(P (s | p;M))]− EM ′[log(P (s | p;M ′))] (6)

PA Memorization. To keep PA memorization comparable with counterfactual memorization, in-
stead of measuring EM [P (s|p;M)

v̂s;M
], we measure its log, like so:

EM [log(
P (s | p;M)

v̂s
)] = EM [log(P (s | p;M))]− EM [log(v̂s;M )] (7)

Note that PA memorization only relies on M , thus obviating the need for training baseline models
M ′ like with counterfactual memorization.

3.3.4 RESULTS

Positive Correlation Figure 1 shows the counterfactual memorization metric (Equation 6) on the x-
axis, and the component of PA memorization that measures the commonality of s (Equation 7) on the
y-axis. Each data point represents the average over 25 different models trained. Figure 1 illustrates
that as the target sequence becomes less generic due to fewer near-duplicates, the counterfactual
memorization metric (Equation (5)) increases correspondingly. As hypothesized, we also observe
a strong correlation between PA memorization and counterfactual memorization, suggesting that
our metric indeed measures generalization from similar data. One interesting observation is the
difference in the scale of the two metrics, a limitation that we discuss in more detail in Section 4.7.

4 EVALUATION

4.1 EVALUATION MODELS

We evaluate these metrics on various sizes 2 recent generative models with open source datasets:
Llama Touvron et al. (2023) and OPT Zhang et al. (2022), which were pre-trained on the Common
Crawl (Llama), or The Pile (OPT). We experiment with all available sizes of the models, namely
3B, 7B, and 13B for Llama, and 125M, 350M, 1.3B, 2.7B, 6.7B and 13B for OPT. Unless otherwise
stated, the default model size for which results are displayed is OPT 6.7B and Llama 7B.

6
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4.2 TARGET SEQUENCES FOR EXTRACTION

To compute P (s) for each sequence we test, we prompt the model with 5000 randomly sampled
sequences from their respective datasets and measure the likelihood of generating s in each case.
We repeat this for 5 trials. Our evaluation is performed in 3 different settings:

Named Entities. Following Lukas et al. (2023), we randomly sample ≈ 5000 − 8000 sequences
that contain Named Entities (NEs) from each of the datasets. We do this since NEs can simulate
sensitive data that might be targets for extraction since they are typically names of individuals,
organizations, places, etc. We must note that this is simply to emulate a realistic use-case; in reality,
model developers would repeat the measurements with sequences that they consider sensitive. For
consistency, each of our sequences consists of a prefix of 50 tokens followed by a 4-token long
Named Entity. While we experiment with longer prefix lengths of upto 400 tokens, unless otherwise
stated, the default prefix length is 50 tokens.

Long Sequences. We also simulate extraction of longer sequences, which could be useful to mea-
sure the risk of leaking copyrighted data. For this, we randomly sample 5000 sequences with 50-
token prefixes and 50-token suffixes from each dataset, similar to prior work Biderman et al. (2024);
Carlini et al. (2022). Here too, we experiment with longer prefix lengths of upto 400 tokens, but
unless otherwise stated, the default prefix length is 50 tokens.

SATML Challenge. Lastly, we also perform a smaller-scale, additional analysis on the dataset in Yu
et al. (2023), which consists of 1-eidetic sequences (sequences where each p∥s is known to occur
only once in The Pile). This dataset was released for the 2023 SATML training data extraction
challenge and consists of 15, 000 sequences, each with a prefix of 50 tokens followed by a suffix of
50 tokens. We present results on 1000 of the 15, 000 sequences.

4.3 HYPER-PARAMETERS

The only parameters that need to be tuned in Definition 2 are m and n:

mmm, threshold for P (s|p)P (s|p)P (s|p): This parameter allows us to pick which p∥s have a high risk of leakage,
and thus can be adjusted based on the risk tolerance. Since m is a threshold for P (s|p), 1

m indicates,
on average, the number of times a user would need to prompt the model with p to leak the target s.
We set m = 0.01 for 4-token s, and m = 0.0001 for 50-token s. We deliberately pick small values
of m to be conservative in our estimation of memorization.

nnn, threshold for P (s|p)
v̂s

P (s|p)
v̂s

P (s|p)
v̂s

: The second parameter, n, allows us to differentiate p∥s where s has a

large prior from those that do not. To estimate this, we compute P (s|p)
v̂s

over s that are known to be

easy-to-predict for LLMs (examples provided in B). We set n to be the average of P (s|p)
v̂s

over these

sequences. Note that since P (s|p)
v̂s

is a model specific quantity, the threshold is recomputed for each
model tested.

4.4 EFFECT OF MODEL SIZE ON PA MEMORIZATION

In Figures 2 and 4a, we plot both the number of extractably memorized (simply high P (s | p),
as defined by Carlini et al. (2022) and in Section 2) and PA memorized sequences as a function of
model size. We also plot PA memorized sequences as a proportion of the total extractably memorized
sequences. There are two interesting observations to be made:

Gap in extractable and PA memorized sequences. Consistent with prior work Carlini et al. (2022);
Hayes et al. (2024); Schwarzschild et al. (2024), both extractable and PA memorization increase as
the model size increases. However, there is a difference between number of extractably memorized
and PA memorized sequences. Notably, this difference is quite large when the target suffixes are 4
token Named Entities, where as few as 10% of extractable memorized samples are PA memorized
in the largest models. This suggests that most of the suffixes of extractably memorized sequences
are indeed statistically popular rather than truly memorized. As shown in Table 2, many of these s
are indeed popular entities such as politicians, celebrities, countries, etc. More surprisingly, we note
a similar result in the SATML challenge dataset in Figure 4a, where around 40% of sequences are
“common” in nature. This is despite the fact that each sequence in the challenge dataset occurs only
once in the entire training data.

7
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Figure 2: The primary y-axis reports the number of extractable and PA memorized sequences as
a function of model size for 4- and 50-token suffixes. The thicker lines denote the proportion of
extractable-memorized sequences that are also PA memorized, with their scale indicated on the
secondary y-axis.
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Figure 3: Number of a) Extractable, and b) PA Memorized Sequences as a function of model prefix
length for two types of suffixes.

Decreasing proportion of PA memorized sequences. Secondly, Figures 2 and 4a show that as
model size increases, the proportion of PA memorized sequences generally decreases. This sug-
gests that larger models are increasingly able to reproduce verbatim text by generalizing from com-
mon or near-duplicate data, rather than through true memorization—a finding consistent with recent
work Liu et al. (2025).

4.5 EFFECT OF PREFIX LENGTH ON DISCOVERING PA MEMORIZATION

In Figure 3 we plot the number of samples labeled as PA memorized and extractable memorized as
a function of the length of prompt p provided to the model. Unsurprisingly, we observe that longer
p’s can discover more PA memorized sequences. However, note that the PA memorized of 4 token
Named Entity suffixes does not benefit as much from longer prefixes as the 50 token suffixes. Again,
this is likely due to the fact that many of these Named Entities (e.g.,United States of America) are
popular occurrences in web-text, and likely do not need specific prompts to be produced correctly.

4.6 QUALITATIVE ANALYSIS

Table 2 shows a few sequences with 4-token Named Entity suffixes that have high and low PA mem-
orization scores (i.e., P (s|p)

P (s) ). We present more such examples in Appendix C. We note that all of
the sequences with low scores have suffixes that are places, political figures, etc. We also attempt to
verify how “rare” the high-scoring sequences are. While it is infeasible to determine rarity precisely
within a dataset with trillions of tokens, we perform a web-search and note that the high-scoring
sequences have very few search results. In fact, the highest scoring sequence in Table 2 has just a
single search result, which is precisely the sequence that is included in the dataset. We also note that
high-scoring suffixes do appear to be more “artifact-like” than their low-scoring counterparts, which
appear to be more natural text. This is more apparent in longer sequences, such as the examples
presented in Appendix C.

4.7 LIMITATIONS

One limitation of PA memorization compared to counterfactual memorization is that P (s;M) can be
large due to either many near-duplicates or even due to many exact copies of p∥s. This is illustrated
in Section 3.3, where we attempt to reduce the statistical likelihood of s by replacing near-duplicates
with fewer exact copies. However, as shown in Figure 4b, both P (s;M) and P (s | p;M) increase

8
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Score
(Low) Sequence (p∥s) Score

(High) Sequence (p∥s)

2.9 . . . and is a tributary to Saginaw Bay 4052 . . . t1=“Sea Zone” t2=“ South Atlantic Sea Zone
3.0 . . . special prosecutor Leon Jaworski 3358 . . . misguided members of the Autonomie Club
3.7 . . . Jack Germond and Jules Witcover 2544 . . . I’m watching Gore’s Warmista-Fest
4.0 . . . Hospital had received Hill-Burton 1560 . . . PLUS Gold certification.- Corsair Gold AX850

Table 2: Examples of low and high scoring p∥s. s in each sequence is in bold text.

when exact copies are added, even though near-duplicates are removed to lower the commonality of
s. As a result, P (s|p;M)

P (s) increases very slowly as more exact copies are added (y-axis in Figure 1), in-
dicating our metric may be less effective than counterfactual memorization at distinguishing whether
a high P (s) arises from near-duplicates or from exact copies.
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(a) Memorization as a function of model size for 1K se-
quences from the SATML challenge dataset.
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(b) P (s | p) and P (s) as a function of the number
of exact copies of p∥s in the training dataset.

Figure 4: Results on the SATML Challenge Dataset (a), and P (s | p) and P (s) from Section 3.3

5 RELATED WORK

Carlini et al. (2019) was one of the first works to examine memorization in LLMs, and did so by
introducing canaries during training and measuring their perplexity compared to random data during
inference. Carlini et al. (2021; 2022) measured leakage of training data and examined memorization
scaling laws in LLMs. Yu et al. (2023) provide new methods to be able to increase leakage of training
data from LLMs. Hayes et al. (2024) explores probabilistic metrics for quantifying memorization.
Lukas et al. (2023) study leakage of PII in LLMs. Kassem et al. (2024) leverage one LLM for
prompt-optimization to leak data from another LLM. Biderman et al. (2024) attempt to predict which
sequences will be memorized by an LLM using lower-compute trial runs. Kim et al. (2024) introduce
the notion of sequence-likelihood, the metric that we use for our analysis. Tirumala et al. (2022)
explore scaling laws and examine memorization dynamics throughout training. Lu et al. (2024)
study scaling laws for “fact memorization” within LLMs. Huang et al. (2022) study trends in both
memorization, and association of PII, where the latter involves leakage through prompts that are
not verbatim training sequences. Feldman (2020) introduces the idea of the “long-tail”, where they
show that models have a tendency to memorize rare, out-of-distribution samples. Maini et al. (2023)
explore whether memorization can be localized to certain parts of the model. Ippolito et al. (2023)
argue that focusing solely on verbatim memorization provides an incomplete picture of privacy
risks. Hartmann et al. (2023) provides a systematic overview of the work done in the memorization
space. Morris et al. (2025); Schwarzschild et al. (2024) use compression-based techniques in order
to estimate if sequences are memorized. In particular Cohen et al. (2024); Morris et al. (2025) aim to
also disentangle memorization from generalization, however, their method relies on having a model
that embodies the true distribution of data, and it is unclear if this is practical in the large-scale
settings we see today.

6 CONCLUSION

In this work, we propose a novel method to identify whether a sequence is counterfactually mem-
orized without having to train different baseline models. Our method shows that at worst 90% of
sequences labeled as memorized by prior metrics, are in fact, statistically likely sequences that could
be produced without specifically training on the exact sequences. This highlights how traditional
metrics may overstate memorization in LLMs by labeling generic sequences as memorized.

9
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A PROOF FOR THEOREM 2

Theorem 2 V ar[v̂s] =
1
c · V ar[P (s | pi)] ≤ 1

4c

Proof. Since pi are independent, we can reduce:

V ar[v̂s] = V ar[
1

c

c∑
i=1

P (s | qi)]

=
1

c2
V ar[

c∑
i=1

P (s | qi)]

=
1

c2

c∑
i=1

V ar[P (s | qi)]

=
1

c2
· c · V ar[P (s | q1)]

=
1

c
· V ar[P (s | pi)]

From Popoviciu’s inequality on variances,

V ar[v̂s] =
1

c
· V ar[P (s | pi)] ≤

1

4c

As in Theorem 1, the transition from conditioning on q1 to p1 follows from the equality of their
distributions.

B GENERIC SEQUENCES FOR THRESHOLD CALCULATION

In this section, we provide a list of some short and long simple sequences that we use to calculate
the threshold n in Definition 2. The short sequences are used to calculate the threshold for the
short, 4-token suffixes, while the long sequences are used to calculate the threshold for the longer
50-token suffixes. In each case, each sequence is divided into equal tokens of prefix and suffix used
to calculate P (s|p)

P (s) . Recall that n is simply an average of P (s|p)
P (s)

• Please let me know if you have any questions,

• Thank you for your time and consideration,

• I look forward to hearing from you soon,

• If you have any concerns, please don’t hesitate to contact me,

• Don’t miss out on this limited-time offer,

• Our mission is to provide the best service,

• Learn more about our features and pricing options,

• Thank you for taking the time to read this message. I am writing to provide an update re-
garding our project and to ensure that you have all the information needed to move forward.
At this stage, we have completed the initial steps and are preparing to begin the next phase.
Please review the attached document, which includes a summary of progress, outstanding
tasks, and anticipated challenges. If you have any questions or concerns, feel free to reach
out at your earliest convenience.,

• This email is intended to confirm the details of our upcoming meeting. The session is
scheduled for next week at the agreed time, and we will be covering several important
items on the agenda. Please make sure to review the notes shared earlier so that we can
make efficient use of our time together. If you are unable to attend, kindly let me know as
soon as possible so we can reschedule or provide you with the necessary updates.
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• I hope this message finds you well. I wanted to follow up on the status of the work assigned
last month and check whether everything is on track for completion by the deadline. If you
are facing any obstacles or require additional support, please do not hesitate to reach out.
It is important for us to address any potential challenges early so that the overall timeline
remains achievable.,

• In this article, we will discuss the basics of this topic and explain why it is important to
understand this concept in the broader context of the field. We will begin with a brief
introduction, followed by a step-by-step explanation of the main ideas, and finally provide
some examples to illustrate how these principles can be applied in practice. Whether you
are completely new to this topic or simply looking for a refresher, this guide is designed to
help you gain a clear and practical understanding.,

• The purpose of this guide is to help you get started with the software in a straightforward
and beginner-friendly way. First, we will walk through the installation process and high-
light common issues that may arise during setup. Then we will cover the essential features
you need to know to be productive right away. By the end of this guide, you should have a
working environment and a solid foundation that will allow you to explore more advanced
aspects of the software at your own pace.,

C PA MEMORIZATION EXAMPLES

In this section, we provide examples of p∥s that have statistically likely s and those that do not. Each
sequence is preceeded by it’s value of P (s|p)

P (s) , presented in colored text. The suffix s is presented
in bold text. We note that low-scoring sequences have more natural-appearing english text, which
is common in the training data for both OPT and Llama models. However, high-scoring sequences
tend to have excessive formatting, non-english characters, URLs, are about niche topics, or are
boiler-plate text (e.g., terms and conditions from companies) that appear verbatim several times on
the web.

C.1 LOW
P (s|p)
P (s) SEQUENCES

• 1.48 ining the ship after this crossing.” “That’s not a problem,” said Emma without expla-
nation. The purser still didn’t look convinced. “Can you read and write?” Emma would
like to have told him that she’d won a scholarship to Oxford, but simply said, “Yes, sir.”
Without another word, he pulled open a drawer and extracted a long form, passed
her a fountain pen and said, “Fill this in.” As Emma began

• 1.48 “pageset”: ”S53 476 (Tenn. 1973). Our supreme court stated the rationale for this
rule: This well-settled rule rests on a sound foundation. The trial judge and the jury
see the witnesses face to face, hear their testimony and observe their demeanor on the
stand. Thus the trial judge and jury are

• 1.55 obvious) mistake in being unacceptably slow getting back into the play after the puck
was cleared over his head into the neutral zone. He rather glided through the neutral zone
as Moore passed him by to get in position to collect the loose puck. In a cruel twist, the
Caps would get one back with 2:16 left when – finally – someone was able to collect
a loose puck in close and do something with it. Brooks Laich lifted a backhand over
Halak almost from

• 1.68 “Pay her off easy, easy,” he screamed to the sailors struggling at the wheel, his voice
barely audible over the wind. He squinted into the blinding snow in an attempt to time the
turn in a smooth, a patch of waves smaller than the average. The seas came in groups,
with every seventh to ninth attaining the most prodigious heights. Sometimes these
larger groups merged with a cross sea reared up from the swift tidal currents, or
married together to form a rogue

• 2.05 fluffy, and great). When cooking first sparked my interest in a real way, I decided I
needed to master the biscuit. Not coming from a family of biscuit makers, or from a place
known for excellent biscuits, I wasn’t even sure what made a great biscuit, if we are
being honest. But I was on a quest for perfection.
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• 2.06 The people of Thebes acclaimed Oedipus as their new king. Monster Mash The
Sphinx, the Greeks said, had the head of a woman, the body of a lion, the wings of an
eagle, and the tail of a serpent. In fact, this is how the Greeks dreamed up most of
their mythical creatures: by mixing and matching body parts from real animals, like
a hideous, nightmarish version of Build-A-Bear Workshop. Let’s take

• 2.21 up sinks: cold water Washing machine(s) Laundry sinks: cold water Laundry sinks:
hot water Dryers Ironing facilities Food, drink and groceries Fresh bread available at
the camp site Groceries: limited selection Restaurant (with ample choice) Snack bar
Takeaway meals Bar Communal barbecue area Freezing for cooling

C.2 HIGH
P (s|p)
P (s) SEQUENCES

• 10.32 u7684 u6B65 u9AA4u3002 u5FAE u4FE1 u5C0Fu7A0B u5E8F u5BF9
u4E8Eu767B u5F55 u7684 u8BBEu8BA1 uFF0C u66F4 u662Fu7528 u4E4B u4E8E
u65E0u5F62 uFF0C u5728 u6574 u4E2A u7528 u6237 u4F7F u7528 u8FC7 u7A0B
u4E2D u90FD u662F u65E0 u611F u77E5 u7684 uFF0C u4E00 u8FDB u5C0F u7A0B
u5E8F u5176 u5B9E

• 7.47 money, now banks are closed...” “Now I don’t have cash with me...” ”Anto’, how much
have you got?” “Not a single lira, love.” “You see...” “What can we do now?” “Don’t you
worry, it does not matter.” “We’ll do as we have always done.” “Here is a million for
you!” “It’s too much, madam.” “Thanks, madam.” “No, you must take it.” “

• 6.43 /1332) :star: - Learning Simple Algorithms from Examples.
[‘pdf‘](http://proceedings.mlr.press/v48/zaremba16.pdf) - Learning to Trans duce
with Unbounded Memory. [‘arxiv‘](https://arxiv.org/pdf/1506.02516.pdf) - Listen,
Attend and Spell. [‘arxiv‘](https://

• 4.59 be issued to the original card that was used. The refund amount will include only the
amount paid by you after any discount or reward was applied to the returned item(s) and
it will not include any shipping charge paid by you unless you are returning a damaged,
defective, or the wrong item was sent to you. The wedding dress is perhaps the most
carefully chosen dress a woman will ever wear, and an amazing wedding ceremony
could be the most unforgettable moment in a woman’s life.

• 3.99 surface and prevent the possibility of sustaining burns unnecessarily while shaving.
How can I prevent skin burns? Yes, you can. You have to adopt and adhere to the following
best practices to be able to accomplish this particular feat: Shave in the right Direction:
In most instances, this problem arises when the hair is shaved against the direction
of the strands thereof. To avoid this problem, it is advisable that you shave in the
direction of the hair growth. This is

• 3.24 ,006 (u5468u5B50) u3061u3087 u3063 u3068 uFF61— u3069 u3046 u3057 u305F
u306E uFF1F— u3046 u3093 uFF1F—,011 u4F1A u793E u306B u884C u304B u306A
u304D u3083 uFF61 (u5468 u5B50) u3044 u3044 u304B u3052 u3093 u306B u3057
u306A u3055u3044uFF61 u27A1241 00:

• 2.78 s costing to fill the car and get groceries! http://no-apologies-round2.blogspot.com/
AmericanborninCanada lol wolfie. Are you a foghorn like I am? http://
tinyurl.com/wwsotu Wolfie ON my good days! If I went on American Idol, they’d
just pay me the top prize to never come back again! However, my wife is a lovely
singer and

• 2.67 , offices, and hotel). The mine-site and township were heavily polluted with asbestos
and tailings from the mine were distributed around the town (5). These women have been
followed up since 1973 at national and state death and cancer registries as well as frequent
questionnaires to ascertain smoking histories and demographic information. Their
mortality and cancer incidence have been reported elsewhere (6-8). The studies have
ethics approval from the University of Western Australia Human Research Ethics
Committee. A disease cluster is an occurrence

• 2.65 “parent”:“z9iGIu1Pt”,“text”:””, “mid”:“z9iZtx1BP”,“date”:“2012-12-
11 22:35:08”},{“ kids”:[], “uid”:“1927311555”,“parent”:“z9iJ1w3Q7”,
“text”:“”,“mid”:“z9iZjcvK8”,“date”:”2012-
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Under review as a conference paper at ICLR 2026

• 2.52 that $Nˆ{\lambda}=0$ and let $n\in\mathbb{Z}_{>0}
$ be minimal such that $Nˆ{\lambda-n\alpha}\neq 0$. Let $w\in
Nˆ–“lambda -n“alpha ˝$ be a non-zero element. Using the PBW Theorem, we may
write $w=“sum ˙–i=0˝ˆnc˙ifˆi“overline –f˝ˆ“–

• 2.47 , pacing around a long chart unrolled like a hound’s tongue across the floor. ”We’ve
backed away from the pedigrees in the past year.” Spencer’s shoe brushes the edge of the
pedigree chart. It is a long genetic octopus, a family tree with arms and legs that tangle
and cross, as do those of most degenerate families. Spotted throughout are symbols,
keyed on the side. A dark black circle signifies Insane. A hollow

D LLM USAGE

LLMs were used sparingly to polish a few sentences for better grammar and clarity.
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