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Abstract

Machine learning models based on temporal point processes are the state of the
art in a wide variety of applications involving discrete events in continuous time.
However, these models lack the ability to answer counterfactual questions, which
are increasingly relevant as these models are being used to inform targeted interven-
tions. In this work, our goal is to fill this gap. To this end, we first develop a causal
model of thinning for temporal point processes that builds upon the Gumbel-Max
structural causal model. This model satisfies a desirable counterfactual monotonic-
ity condition, which is sufficient to identify counterfactual dynamics in the process
of thinning. Then, given an observed realization of a temporal point process with
a given intensity function, we develop a sampling algorithm that uses the above
causal model of thinning and the superposition theorem to simulate counterfactual
realizations of the temporal point process under a given alternative intensity func-
tion. Simulation experiments using synthetic and real epidemiological data show
that the counterfactual realizations provided by our algorithm may give valuable
insights to enhance targeted interventions.

1 Introduction
In recent years, machine learning models based on temporal point processes have become increasingly
popular for modeling discrete event data in continuous time [1, 2]. This type of data is ubiquitous in a
wide range of application domains, from social and information networks to finance or epidemiology.
For example, in social and information networks, events may represent users’ posts, clicks or
likes [3, 4]; in finance, they may represent buying and selling orders [5]; or, in epidemiology, they
may represent when an individual gets infected or recovers [6]. In many of these domains, these
models have become state of the art at predicting future events given a sequence of past events [7].

Building upon the above models, a recent line of work [8–11] has developed machine learning methods
to automate online, adaptive targeted interventions using reinforcement learning and stochastic
optimal control. While this line of work has shown early promise, particularly in personalized
teaching and viral marketing, there are many high-stakes application in which targeted interventions
are unlikely to be automated. For example, in epidemiology, fine-grained interventions that are
targeted at particular sites or individuals (e.g., hygienic measures at work places, closures of schools,
or contact tracing) are likely to be decided by governments, policy makers and health authorities, at
least in the foreseeable future. In this work, our goal is to develop machine learning methods that,
given the outcome of an intervention implemented in the past, are able to assist decision makers at
implementing better interventions in these high-stakes applications.

More specifically, we focus on facilitating counterfactual thinking, a type of thinking that has been
argued to help humans correct and improve behavior that has been unsuccessful in the past [12, 13].
In counterfactual thinking, given a history of past events that have already occurred, one asks what
past events would have instead occurred if certain intervention had been in place. For example,
in epidemiology, assume that, during a pandemic, a government decides to implement business
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restrictions every time the weekly incidence—the (relative) number of new cases—is larger than
certain threshold but unfortunately the incidence nevertheless spirals out of control. In this case,
counterfactual thinking would help the government understand retrospectively to what extent the
incidence would have grown had a lower threshold been implemented2.

Our contributions. Our starting point is Lewis’ thinning algorithm [20], one of the most popular
techniques for sampling in temporal point processes. Lewis’ thinning algorithm first samples a
sequence of potential events from a temporal point process with a constant intensity that upper bounds
the intensity of the temporal point process of interest. Then, it accepts each of these events with pro-
bability proportional to the ratio between the intensity of the temporal point process of interest at the
time of the sampled event and the constant intensity. In our work, the key idea is to augment the above
thinning process using a particular class of structural equation models (SCMs)—the Gumbel-Max
SCM [21]. This causal model satisfies a desirable monotonicity condition and, given a sequence of
accepted and rejected events, it allows us to reliably estimate what events would have been accepted
and rejected under an alternative intensity. Put differently, it can be used to answer counterfactual
questions about a set of previously accepted and rejected events by the thinning algorithm.

Unfortunately, the above causal model on its own is not sufficient to answer counterfactual questions
about observed sequence of real events. This is because, in general, real event data is not generated
by a thinning process and, as a consequence, it does not include rejected events. However, we are able
to overcome this limitation by using the superposition theorem [22] to sample plausible sequences of
events that the thinning process would have rejected if it had accepted the observed sequence of real
events. Then, these generated sequences of rejected events, together with the observed events, can
be fed into the above causal model of thinning to sample counterfactual events given an alternative
intensity. Importantly, while our causal model of thinning only allows for inhomogeneous Poisson
processes (i.e., it requires the intensities of interest to be deterministic), we can still use it to sample
counterfactual events from linear Hawkes processes [23], a popular type of temporal point processes
with stochastic self-exciting intensities, by exploiting their branching process interpretation [24].
Finally, we evaluate our sampling algorithm using both synthetic and real epidemiological data and
show that the counterfactual events provided by our algorithm can give valuable insights to enhance
targeted interventions3.

Further related work. The literature on temporal point processes related to causal inference has
mostly focused on measuring causal influence by means of, e.g., Granger causality [25–28], integrated
cumulants [29, 30] or Wold processes [31, 32], and on predicting quantities related to an interventional
distribution of interest [33–35] (e.g., conditional average treatment effect (CATE)). However, there
exist a few notable exceptions, which have focused on counterfactual reasoning [36–38]. The work
by Schulam and Saria [36] focuses on reasoning about the counterfactual distributions of the marks
in a marked temporal point process, rather than reasoning about the counterfactual intensities of the
events as we do. The works by Ryalen et al. [37] and Roysland [38] focus on survival analysis, i.e.,
temporal point processes that terminate after one event, and are very different to ours at a technical
level. In contrast, we focus on temporal point processes with multiple events4.

More broadly, the literature on causal inference has a long and rich history [40]. However, most of
this literature has used counterfactual reasoning to predict quantities related to the interventional
distribution of interest such as, e.g., the conditional average treatment effect (CATE). A few recent
notable exceptions are by Oberst and Sontag [21] and Tsirtsis et al. [41], which have used the Gumbel-
Max SCM to reason about counterfactual distributions in Markov decision processes (MDPs), and by
Buesing et al. [42] and Pitis et al. [43], which have used counterfactuals to improve the training of
reinforcement learning agents. However, to the best of our knowledge, the Gumbel-Max SCM has
not been used previously to reason about counterfactual events in temporal point processes.

2 Preliminaries
In this section, we first briefly revisit the frameworks of temporal point processes [44] and structural
causal models [45].

2Note that existing epidemiological models [14], including those developed in the context of COVID-19 [15–19], are unable to answer such
counterfactual questions—they can only predict what the (average) future would look like under certain interventions given the past.

3To facilitate research in this area, we release an open-source implementation of our algorithms and data at https://github.com/Networks-
Learning/counterfactual-ttp.

4The work by Zhang et al. [39] is contemporary to ours and presents a methods to estimate individual treatment effects (ITE) on the intensity
of a temporal point process.
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Temporal point processes. A temporal point process is a stochastic process whose realization consists
of a sequence of discrete events localized in continuous time, H = {ti ∈ R+ | i ∈ N+, ti < ti+1}. A
temporal point process can be equivalently represented as a counting process, N(t), which records
the number of events before time t. Moreover, in an infinitesimally small time window dt around
time t, it is assumed that only one event can happen, i.e., dN(t) ∈ {0, 1}.

A temporal point process is typically characterized via its intensity function λ(t) ≥ 0, which
determines the probability of observing an event in [t, t+ dt), i.e.,

λ(t)dt = P{dN(t) = 1} = E[dN(t)]. (1)

In general, the intensity λ(t) may depend on the history H(t) = {ti ∈ H | ti < t} up to time t and
its functional form is often chosen to capture the phenomena of interest. Throughout the paper, we
will consider inhomogeneous Poisson processes, i.e., λ(t) = g(t), where g(t) ≥ 0 is a time-varying
function, and linear Hawkes processes, i.e.,

λ(t) = µ+ α
∑

ti∈H(t)

g(t− ti), (2)

where µ ≥ 0 and the second term, with α ≥ 0, g(t) ≥ 0 and g(t) = 0 for all t < 0, denotes the
influence of previous events on the current intensity5.

Structural causal models. Given a set of random variables X = {X1, . . . , Xn}, a structural causal
model (SCM) C defines a complete data-generating process via a collection of assignments

Xi := fi(PAi, Ui), (3)

where PAi ⊆ X\Xi are the direct causes of Xi, U = {U1, . . . , Un} are noise variables, and
P (U) denotes the (prior) distribution of the noise variables. Here, note that, given an observational
distribution P (X1, . . . , Xn), there always exists a distribution for the noise variables and functions
fi so that P = P C , where P C is the distribution entailed by C. In general, the noise variables U may
not be jointly independent if there are unmeasured confounders6. However, in our work, we will
assume there are no unmeasured confounders and U are jointly independent.

Given a SCM C, we can express (atomic) interventions I using the do-operator, e.g., I = do(Xi = x)
corresponds to replacing the causal mechanism fi(PAi, Ui) with x. The intervened SCM is typically
denoted as CI and the interventional distribution entailed by the intervened SCM as P C ; I . Moreover,
given a SCM C and an observed realization of assignments X = x, we can define a counterfactual
SCM CX=x where the noise U variables are distributed according to the posterior distribution
P (U |X = x) and not necessarily jointly independent anymore. Counterfactual statements can now
be seen as interventions in a counterfactual SCM CX=x and, given an intervention I, we denote the
interventional counterfactual distribution entailed by CI

X=x as P C |X=x ; I . However, the posterior
distribution of the noise variables may be non-identifiable without further assumptions. This is
because there may be several noise distributions and functions gi consistent with the observational
distribution but result in different counterfactual distributions.

In the context of binary random variables, monotonicity is an assumption that avoids the above
mentioned non-identifiability issues—it restricts the class of possible SCMs to those which all yield
equivalent counterfactual distributions over a binary variable of interest [46, 21]. More specifically,
a SCM C of a binary variable Y is monotonic with respect to a binary variable T if and only if the
condition

P C ; do(T=t)(Y = y) ≥ P C ; do(T=t′)(Y = y)

implies that P C |Y=y, T=t′ ; do(T=t)(Y = y′) = 0, where y′ ̸= y.

3 A Causal Model of Thinning
In this section, we first revisit Lewis’ thinning algorithm [20], one of the most popular techniques
to simulate event data from inhomogeneous Poisson processes. Then, we augment this classical
algorithm using a particular class of SCMs satisfying the monotonicity assumption, the Gumbel-Max
SCMs [21]. Finally, we demonstrate that the resulting algorithm can be used to answer counterfactual
questions about a set of previously simulated events.

5The function g(t) is often called triggering kernel.
6An unmeasured confounder is an unobserved variable that is a direct cause of two (observed) variables Xi and Xj .
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Algorithm 1 It samples a counterfactual sequence of accepted events given a sequence of accepted
and rejected events provided by Lewis’ thinning algorithm
1: Input: λm(t), λm′(t),Hm,Hmax, λmax.
2: Initialize: Hm′ = ∅.

3: function ACC(λm(t), λm′(t),Hm,Hmax, λmax)
4: Hm′ ← ∅
5: for ti ∈ Hmax do
6: xi ← 1[ti ∈ Hm]

7: x′
i ∼ P C |Xi=xi,Λi=λm(ti) ; do(Λi=λm′ (ti))(X)

8: if x′
i = 1 then

9: Hm′ ← Hm′ ∪ {ti}
10: end if
11: end for
12: returnHm′

13: end function

Let M be a set of inhomogeneous Poisson processes of interest and, for each m ∈ M, assume its
corresponding intensity function λm(t) ≤ λmax for all t ∈ R+. To sample a sequence of events Hm

from any process m ∈ M, Lewis’ thinning algorithm first samples a sequence of potential events
Hmax from a homogenous Poisson process with intensity λmax. Then, for each event ti ∈ Hmax, it
additionally samples a Bernoulli random variable Xi with parameter p = p(λm(ti)) = λm(ti)/λmax.
Finally, it accepts all the events ti such that Xi = 1. i.e., Hm = {ti ∈ Hmax |Xi = 1}. Here,
note that the specific choice of λmax does not affect the distribution of accepted events as long as
λmax ≥ λm(t) for all m ∈ M and t ∈ R+.7 Algorithm 4 in Appendix B.1 summarizes the overall
procedure, where the parameter p is often called the thinning probability.

Given a process of interest with intensity λm(t), Lewis’ thinning algorithm is helpful to make
predictions about future events. For example, it can be used to compute Monte Carlo estimates of
the average number of events E[N(t)] at a time t in the future. However, it is not sufficient to make
counterfactual predictions, e.g., given the sequences of events Hmax and Hm, we cannot know what
would have happened if, at time ti, the intensity had been λm′(ti), with m ̸= m′, instead of λm(ti).
To overcome this limitation, we will now augment the above thinning algorithm using a Gumbel-Max
SCM. More specifically, let C be a SCM defined by the assignments:

Xi = argmax
x∈{0,1}

g(x,Λi,Ui) and Λi = λ(ti), (4)

where
g(x,Λi,Ui) = log p(Xi = x |Λi) + Ui,x,

with p(Xi = x |Λi) = x p(Λi)+(1−x) (1−p(Λi)), p(Λi) = Λi/λmax, Ui,x ∼ Gumbel(0, 1), and
ti ∼ λmax. Then, the thinning probabilities in Lewis’ thinning algorithm are given by the following
interventional distributions over C8:

P C ; do(Λi=λ(ti))(Xi = 1) = p(λ(ti)) =
λ(ti)

λmax
. (5)

Under this view, given a sequence of accepted events Hm and rejected events Hmax\Hm under an
intensity λm(t), as determined by the binary samples {xi}, we can estimate the posterior distribution
P C |Xi=xi,Λi=λm(ti) ; do(Λi=λm′ (ti))(Ui,x) of each Gumbel noise variable Ui,x using an efficient
procedure [48] (refer to Appendix B.3). Then, we can use these noise posteriors to compute an
unbiased finite sample Monte-Carlo estimate of the counterfactual thinning probability, i.e.,

P C|Xi=xi,Λi=λm(ti) ; do(Λi=λm′ (ti))(Xi = x) = EUi|Xi=xi,Λi=λm(ti)[1[x = argmax
x′∈{0,1}

g(x′, λm′(ti),Ui)]],

where we drop do(·) because Ui and λm(ti) are independent in the counterfactual SCM. Importantly,
the above counterfactual thinning probability allows us to make counterfactual predictions, e.g., given

7In this context, note that, rather than using an homogeneous Poisson process with intensity λmax, one could use any process with
(time-varying) intensity λ′(t) ≥ λm(t) for all m ∈ M and t ∈ R+, as shown in Theorem 1 in Lewis and Shedler [20].

8This equality follows immediately from the Gumbel-Max trick [47]
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Algorithm 2 It samples a counterfactual sequence of events given a sequence of observed events
from an inhomogeneous Poisson process.
1: Input: λm(t), λm′(t),Hm, λmax, T .
2: Initialize: Hm′ = ∅.

3: function CF(λm(t), λm′(t),Hm, λmax, T )
4: Hmax, ← LEWIS(λmax − λm(t), λmax, T )
5: Hmax ← Hmax ∪Hm

6: Hm′ ← ACC(λm(t), λm′(t),Hm,Hmax, λmax)
7: returnHm′

8: end function

a sequence of accepted events Hm and rejected events H\Hm under intensity λm(t), we can use
the counterfactual thinning probability to predict which events, among those in H, would have been
accepted if the intensity had been λm′(t) instead of λm(t). Algorithm 1 summarizes the algorithm.
Here, it is important to note that the specific choice of λmax does not affect the distribution of
counterfactual events as long as λmax ≥ λm(t) for all m ∈ M and t ∈ R+, similarly as in standard
thinning (refer to Appendix A.1 for a proof).

Finally, it is important to note that, by using Gumbel-Max SCMs, our causal model of thinning
satisfies the monotonicity assumption [46, 21], discussed in Section 2, and thus the counterfactual
thinning probability does not suffer from non-identifiability issues. More formally, we have the
following proposition (proven in Appendix A.2):

Proposition 1 Let M = {λm(t), λm′(t)} and C be the corresponding causal model of thinning.
Then, if λm(ti) ≥ λm′(ti), it holds that P C |Xi=0,Λi=λm(ti) ; do(Λi=λm′ (ti))(Xi = 1) = 0. Con-
versely, if λm(ti) ≤ λm′(ti), it holds that P C |Xi=1,Λi=λm(ti) ; do(Λi=λm′ (ti))(Xi = 0) = 0.

The above result directly implies that, if a potential event ti ∈ Hmax was rejected under λm(t), i.e.,
ti /∈ Hm, then in a counterfactual scenario, if λm′(t) ≤ λm(t), it is impossible that the event is
accepted under λm′(t), i.e., ti ∈ Hm′ . Conversely, if a potential event ti ∈ Hmax was accepted under
λm(t), i.e., ti ∈ Hm, then in a counterfactual scenario, if λm′(t) ≥ λm(t), it is impossible that the
event is rejected under λm′(t), i.e., ti /∈ Hm′ .

4 Sampling Counterfactual Events
In this section, we develop a sampling algorithm that, given an observed realization from a temporal
point process with a given intensity function, it uses Algorithm 1 and the superposition theorem [22] to
generate counterfactual realizations of the temporal point process under a given alternative intensity
function. To ease the exposition, we first focus on inhomogeneous Poisson processes and then
generalize our algorithm to linear Hawkes processes.

Inhomogenous Poisson processes. Assume we have observed a sequence of real events Hm and this
sequence can be accurately characterized, observationally, using an inhomogeneous Poisson process
with intensity λm(t) = g(t), where g(t) ≥ 0 is a time-varying function. In reality, this sequence of
events has not been generated by Lewis’ thinning algorithm but by a natural phenomena of interest.
As a result, we cannot directly apply Algorithm 1 since it requires both a sequence of accepted and
rejected events. However, we can find plausible sequences of events that Lewis’ thinning algorithm
would have rejected if it had accepted the observed sequence of events.

By construction, the intensity of accepted and rejected events λaccepted(t) and λrejected(t) provided by
Lewis’ thinning algorithm should satisfy that λmax = λaccepted(t)+λrejected(t). Then, if λaccepted(t) =
λm(t), λmax ≥ maxt λm(t) and Haccepted = Hm, by the superposition theorem, we can find
plausible sequences of events that Lewis’ algorithm would have rejected just by sampling from
the intensity λrejected(t) = λmax − λm(t). Then, these generated sequences of rejected events,
together with the sequence of observed events, can be fed into Algorithm 1 to sample sequences of
counterfactual events given an alternative intensity λm′(t). Algorithm 2 summarizes the algorithm,
where LEWIS(·) samples a sequence of events using Algorithm 4 in Appendix B.1 and ACC(·)
samples a counterfactual sequence of accepted events using Algorithm 1.

Linear Hawkes processes. Assume we have observed a sequence of real events Hm and it can
be accurately characterized, observationally, using a linear Hawkes process with an intensity λm(t)
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Algorithm 3 It samples a counterfactual sequence of events given a sequence of observed events
from a Hawkes process.
1: Input: µm, αm, gm(t), µm′ , αm′ , gm′(t),Hm, λmax, T .
2: Initialize: Hm′ = ∅.

3: {Hm,j} ← ASSIGN(Hm, λm(t))
4: Hm′,0 ← CF(γm,0(t), γm′,0(t),Hm,0, λmax, T )
5: Hm′ ← Hm′ ∪Hm′,0

6: for tj ∈ Hm do
7: if tj ∈ Hm′ then
8: Hm′,j ← CF(γm,j(t), γm′,j(t), Hm,j , λmax, T )
9: Hm′ ← Hm′ ∪Hm′,j

10: end if
11: end for

12: H ← Hm′\Hm

13: while |H| > 0 do
14: tk ← mint∈H t
15: Hm,k, ← LEWIS(γm′,k(t), λmax, T )
16: H ← Hm,k ∪H\{tk}
17: Hm′ ← Hm′ ∪Hm,k

18: end while
19: returnHm′

parameterized by µm, αm and gm(·), as defined in Eq. 2. If our goal is to sample sequences of
counterfactual events Hm′ given an alternative Hawkes intensity λm′(t) parameterized by µm′ , αm′

and gm′(·), we cannot proceed similarly as in the case of inhomogeneous Poisson processes. This is
because, to sample plausible rejected events within Algorithm 2, we need to pick a value of λmax

that upper bounds both λm(t) and λm′(t), otherwise, Algorithm 1 might break because the thinning
probabilities p used by the causal model of thinning could be greater than 1. Unfortunately, since
λm′(t) depends on the counterfactual history Hm′ we aim to sample, we cannot know its maximum
value at the time we sample the rejected events. However, we can overcome this challenge by
resorting to the branching process interpretation of Hawkes processes [24].

More specifically, we can view any linear Hawkes process as a superposition of several temporal
point processes, i.e., a process with constant intensity γ0(t) = µ and, for each event ti ∈ H, a
process with intensity γi(t) = αg(t − ti). Under this view, we can naturally derive the following
thinning algorithm to sample from linear Hawkes processes [49]. First, we sample a sequence of
events ti from the process with intensity γ0(t). Then, for each sampled event ti, we create a process
with intensity γi(t) and sample a sequence of events tj independently from each of them using
Algorithm 4 in Appendix B.1. Further, for each of these sampled events tj , we again create another
set of processes with intensity γj(t) and sample from them independently, and continue recursively.
By the superposition theorem, it readily follows that the overall sequence of sampled events is a valid
realization of the original Hawkes process. Algorithm 5 in Appendix B.2 summarizes the algorithm.

Importantly, all the intensities γj(t) we sample from are bounded by max{µ,maxt αg(t)}. As a
result, given two intensities of interest λm(t) and λm′(t), we can sample sequences of counterfactual
events by running Algorithm 2 independently for each of the above processes with

λmax ≥ max{µm, µm′ ,max
t

αmgm(t),max
t

αm′gm′(t)}.

However, to do so, we also need to assign each observed event ti ∈ Hm to one of the above
processes with probability γm,j(ti)/

∑
k<i γm,k(ti), which is the probability that the process has

caused the event [50]. Algorithm 3 summarizes the resulting algorithm, where ASSIGN(·) returns the
observed events Hm,j assigned to each process j, CF(·) samples a counterfactual sequence of events
using Algorithm 2, and LEWIS(·) samples a sequence of events using Algorithm 4 in Appendix B.1.
Within the algorithm, it is also worth noting that lines 6-11 need to go through the observed events
tj in chronological order and, for each tj , the algorithm only accepts counterfactual events from
the corresponding process with intensity γm′,j(t) if the event tj has been previously accepted in
the counterfactual realization. Moreover, lines 12-18 sample a sequence of events for each of the
processes triggered by the counterfactual events that did not exist in the observed sequence of events.
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(c) Medium # of events
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Figure 1: Effect of interventions in two inhomogeneous Poisson processes. Panel (a) shows the
intensities of the original and the intervened processes (in blue and green, respectively) and a window
of interest (dashed vertical lines). Panels (b-d) show the difference in average number of events over
time between the counterfactual and the original realizations, where each row corresponds to one
process and we group the original realizations in three quantiles according to their overall number
of events in the time window of interest. Positive (negative) differences are shown in green (red).
In each experiment, we sample 1,000 realizations from the original process and, for each of these
realizations, we sample 100 counterfactual realizations from the intervened process.

5 Experiments on Synthetic Data
In this section, we feed Algorithms 2 and 3 with realizations of synthetic inhomogeneous Poisson
processes and linear Hawkes processes and investigate to what extent the counterfactual realizations
under alternative intensity functions differ from the original realizations fed to them9.

Experimental setup. We consider the family of inhomogeneous Poisson processes M(ϕ,α, τ ) para-
meterized by weighted combinations of RBF kernels, i.e., λ(t) =

∑
j ϕj exp (−αj(t− τj)) , t ≥ 0,

where ϕj , αj , τj ≥ 0, and the family of linear Hawkes processes M(µ, α, ω) defined in Eq. 2, with
exponential triggering kernels g(t) = exp(−ωt). Moreover, we experiment with simple interventions
under which, for inhomogeneous Poisson processes, one of the RBF kernels, picked at random,
change its amplitude, i.e., ϕm′,i = max(ϕm,i + ϵ, 0), and, for Hawkes processes, the parameter α
change its value, i.e., αm′ = max(αm + ϵ, 0), where ϵ ∼ N(0, σ).

In each experiment, we first sample 1,000 realizations from a process with one set of parameters
using Algorithm 4 (or Algorithm 5). Then, we carry out the above mentioned intervention and, for
each of the sampled realizations, we use Algorithm 2 (or Algorithm 3) to sample 100 counterfactual
realizations under the resulting alternative set of parameters. Finally, we partition the original
realizations in three quantiles according to their overall number of events in a time window of
interest and, for each quantile, we look at the number of events in the corresponding counterfactual
realizations in the same window of interest. In all experiments, Algorithms 1—3 use 100 samples
from the posterior distribution P C |Xi=x,Λi=λ(ti) ; do(Λi=λm′ (ti))(Ui) of each Gumbel noise variable
Ui,x to estimate the counterfactual thinning probabilities P C |Xi=x,Λi=λ(ti) ; do(Λi=λm′ (ti))(Xi).

Results. Figure 1 summarizes the results for two specific inhomogeneous Poisson processes under-
going one of the above mentioned interventions—we found qualitatively similar results for other
inhomogeneous Poisson processes. In the top row, the results show that, under our model, an inter-
vention that increases the original intensity of the process, by increasing the amplitude of one of the
RFB kernels by approximately an additional half does not have the same effect across realizations. In
realizations with a low (high) number of events, the average number of counterfactual events in the
window of interest increases up to ∼60% (∼40%) over time with respect to the average number of
events in the original realizations. In the bottom row, we find that this is also true for an intervention
that decreases the original intensity of the process, by approximately halving the amplitude of another
of the RBF kernels. However, the difference is smaller in relative terms.

Figures 2 summarizes the results for a specific Hawkes process undergoing two of the above men-
tioned interventions—we found qualitative similar results for other Hawkes processes. We find that,

9All experiments were performed on a machine with 48 Intel(R) Xeon(R) 3.00GHz CPU cores and 1.5TB.
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Figure 2: Effect of interventions in Hawkes processes. Panels summarize the distribution of the
number of events per counterfactual realization corresponding to original realizations with a low
(red; |Hm| ∈ [0, 9], E[|Hm|] = 5.04), medium (blue; |Hm| ∈ [10, 22], E[|Hm|] = 17.17) and high
(green; |Hm| ∈ [25, 59], E[|Hm|] = 36.17) number of events. The horizontal lines within the boxes
indicate average value, the boxes indicate 25% and 75% quantiles, the whiskers indicate 5% and 95%
quantiles and the points are outliers. Here, we sample 1,000 realizations from the original process,
with parameters µm = 1, αm = 1, and ωm = 1, and, for each of these realizations, we sample
100 counterfactual realizations from each of the intervened process. In panel (a), the intervened
process has parameter αm′ = 1.44, in panel (b), it has parameter αm′ = 0.75 and, in both panels, the
remaining parameters µm′ = µm and αm′ = αm. We set the time horizon T = 5.

similarly as in inhomogeneous Poisson processes, the interventions do not have the same effect across
realizations. However, in this case, the difference among them is more stark—while the average
number of counterfactual events (a) increases by 115% and (b) decreases by 11% for realizations
with a low number of events, it (a) increases by 216% and (b) decreases by 21% for realizations with
a high number of events. Moreover, we also find that, there is a high variability across counterfactual
realizations, especially when αm′ > αm. For example, while the original realizations with a low
number of events never contained more than 9 events, there exists counterfactual realizations with
more than 200 events. This is due to the self-exciting property of Hawkes processes by which
counterfactual events may trigger the emergence of additional counterfactual events, shown as yellow
dots in Figure 7 in Appendix C.

6 Experiments on Epidemiological Data
In this section, we run a (simple) variation of Algorithm 3 (refer to Appendix B.4) to quantify
the effect of interventions on a networked Susceptible-Infectious-Recovered (SIR) epidemiological
model [51] fitted using real event data from an Ebola outbreak in West Africa in 2013-2016 [52].

Experimental setup. We build upon the networked Susceptible-Infectious-Recovered (SIR)
epidemiological model introduced by Lorch et al. [51], which is based on temporal point pro-
cesses. Given a contact network G = (V, E), we represent the times when each node gets infected and
recovered using a collection of binary counting processes Y (t) and W (t) and we track the current
state of each node using a collection of state variables X(t) = Y (t) − W (t), where Xi(t) = 1
indicates node i ∈ V is infected at time t and Xi(t) = 0 indicates it is susceptible or recovered. For
each node i ∈ V , we characterize the above counting processes using the following intensities

E[dYi(t) |H(t)] = (1−Xi(t))
∑

j | (i,j)∈E

β Xj(t)dt and E[dWi(t) |H(t)] = δ Xi(t)dt, (6)

where note that the counting process Y (t) can be viewed as a (networked) multidimensional Hawkes
process with stochastic triggering kernels defined by step functions. Refer to Appendix D for more
details on how we set the parameters β and δ and how we generate the contact network G.

In our experiments, we simulate a realistic outbreak by sampling a realization from the above fitted
model. To this end, for each real recorded case up to January 1, 2014 [52], we sample a seed node at
random from the same district as the observed case10. Figure 9 in Appendix D shows the geographical
distribution of seed infections and overall cumulative number of infections in the outbreak. Then,
given this sampled realization, we quantify the effect of two types of interventions by sampling
counterfactual realizations using a variation of Algorithm 3 (refer to Appendix B.4):

10The first real case was recorded on Dec 26, 2013. By January 1, 2014, there were six recorded cases in four different districts.
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(b) Contacts reduction in all districts

Figure 3: Effect of interventions where individuals reduce their contacts after the overall number of
active infections reaches a varying threshold. In all figures, the black line (“Observation”) corresponds
to an outbreak sampled from the fitted SIR model, the remaining lines correspond to counterfactual
realizations for this outbreak under different interventions, and the shaded regions correspond to 95%
confidence intervals. For each threshold and reduction level, we repeat the experiment five times.
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Figure 4: Geographical distribution of the overall cumulative number of infections per district in
counterfactual outbreaks where all individuals reduce their individual contacts by 25% after the
overall number of active infections reaches a certain threshold.

— Reduction of number of contacts: individuals reduce their individual contacts after the overall
number of active infections reaches a certain threshold. In one scenario, only individuals from
the district with the highest incidence reduce their contacts within the district and get isolated
from all other districts and, in another scenario, everyone reduces their individual contacts.

— Vaccination: a percentage of the overall population receives a vaccine with a certain level of
efficacy. Within our model, we measure vaccine efficacy in terms of reduction of the value of
the parameter β, which controls the infection rate between individuals.

In each experiment, to estimate the average and confidence intervals of the outcome of interest (e.g.,
number of cases), we sample 20 counterfactual realizations.

Results. Figures 3–4 summarize the results for the interventions where individuals reduce their
individual contacts after the overall number of active infections reaches a certain threshold. Our
results suggest that, at all threshold levels, reducing the individual contacts across all districts, even by
just 5%, would have been more effective than isolating and reducing the contacts by 50% in the district
with higher incidence. Moreover, we also find that, for lower threshold values, the counterfactual
outbreaks would have spread to fewer districts and the overall number of infections would have been
significantly lower. Figures 5–6 summarize the results for the interventions where a percentage of
the overall population receives a vaccine with a certain level of efficacy. Our results suggest that a
high level of vaccine effectivity would have not been sufficient to reduce the number of infections if
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Figure 5: Effect of interventions where a percentage of the overall population receives a vaccine
with a certain level of efficacy. The figure shows the average reduction in the cumulative number of
infections under each intervention with respect to an outbreak sampled from the fitted SIR model.
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Figure 6: Geographical distribution of the overall cumulative number of infections per district tin
counterfactual outbreaks where a percentage of the population receives a vaccine with a certain level
of efficacy.

the percentage of the population who had received the vaccine was low. For example, if less than
20% of the population had received the vaccine, even a vaccine with a 90% effectivity would have
been unable to reduce the infections by >70%. If >80% of the population had received the vaccine,
a vaccine with just a 60% effectivity would have reduced the infections by >95%. Finally, we find
that, similarly as in the scenario where individuals reduce their individual contacts, the reductions in
the overall number of infections would have also led to lower geographical dispersion.

7 Conclusions, Limitations and Future Work
Since counterfactual reasoning lies within level three in the “ladder of causation” [45], we have been
unable to validate our counterfactual predictions using observational nor interventional experiments.
That being said, we have made an intuitive assumption—monotonicity—about the causal mechanism
of the world—our causal model of thinning—which specifies how changes on the intensity function
of a temporal point process may have lead to particular outcomes while holding “every-thing else”
fixed, similarly as previous work [21, 41]. In this context, it would be worth to understand the
sensitivity of counterfactual realizations to the specific choice of SCM. In our work, we have focused
on temporal point processes, however, some of our ideas can be readily extended to spatial point
processes. Moreover, it would be interesting to extend our methodology to support nonlinear Hawkes
processes and neural Hawkes processes [53, 54]. To this end, the main challenge is that there is no
branching process interpretation for nonlinear or neural Hawkes and thus we would have to find
alternative ways to bound the value of the relevant intensity functions. Finally, it would be important
to carry out a user study in which the counterfactual realizations provided by our algorithm are shared
with domain experts (e.g., epidemiologists) and evaluate our sampling algorithm using other real
datasets from other applications such as climate change, recommendation systems and voting data.
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