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Abstract

Federated learning is a large scale machine learning training paradigm where data is
distributed across clients, and can be highly heterogeneous from one client to another.
To ensure personalization in client models, and at the same time to ensure that the
local models have enough commonality (i.e., prevent “client-drift”), it has been
recently proposed to cast the federated learning problem as a consensus optimization
problem, where local models are trained on local data, but are forced to be similar
via a regularization term. In this paper we propose an improved federated learning
algorithm, where we ensure consensus optimization at the representation part of
each local client, and not on whole local models. This algorithm naturally takes into
account that today’s deep networks are often partitioned into a feature extraction part
(representation) and a prediction part. Our algorithm ensures greater flexibility com-
pared to previous works on exact shared representation in highly heterogeneous set-
tings, as it has been seen that the representation part can differ substantially with data
distribution. We validate its good performance experimentally in standard datasets.

1 Introduction

Federated learning (FL) has attracted much attention from the machine learning community recently
due to rapid development of distributed intelligent devices and the demand of data privacy protection
in large scale learning models. A typical FL framework is a machine learning training paradigm that
includes a central server to aggregate the local information from participating clients to update a global
model. The local data of each client should not be shared with other clients and should ideally be kept
private up to certain degree also from the server Konečnỳ et al. (2016); McMahan et al. (2017); Kairouz
& McMahan (2021). With M clients, a standard FL algorithm usually tries to solve the following
optimization problem:

min
ω

1

M

M∑
i=1

fi(ω) (1)

where ω is a global model updated at the server, fi(ω) is the local objective function at i-th client (the
empirical risk functions at each of the client evaluated at their respective data samples). At each iteration,
a local (stochastic) gradient or the entire local model is sent to the server for global model update.

However, in the context of FL, the data distribution across different clients are usually highly
non-identical and heterogeneous. Thus in many practical applications, a single global model is not
sufficient to satisfy the requirements of all the clients. To tackle this issue, many personalized FL
methods have been proposed to allow each client to maintain a local model. A popular formulation
of the problem is to use the concept of consensus optimization Smith et al. (2017); T Dinh et al. (2020);
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Li et al. (2021), that replaces the optimization problem of eq. (1) with the following:

min
ω0,{ωi}M

i=1

1

M

M∑
i=1

fi(ωi)+
λ

2
∥ωi−ω0∥2 (2)

where ω0 is the global model maintained at the server, ωi is an unique local model at i-th client, and
λ is a hyper-parameter to balance the local training and forced consensus. The local models are not
required to be the exactly same but the regularization forces them to be close to each other, and the
parameter λ provides a flexibility to fit local data distribution.

Recent success of centralized multi-task learning is based on the realization that different tasks have
shared common representation Bengio et al. (2013); Collins et al. (2021). Inspired by this observation,
several studies have tried to exploit shared representation in personalized federated learning to achieve
better local performance Arivazhagan et al. (2019); Collins et al. (2021); Pillutla et al. (2022). In this
setting, at a high level, the local prediction model at each client is divided into two parts, including
a representation part common to all clients. This motivates our first question:

Q1: Can we force the consensus (cf. eq. 2) on the representation level, not the whole model level?

Note that, a regularization at the representation part will include less number of variables, and therefore
potentially is less expensive (e.g., in taking gradients) than a constraint on entire model. Indeed, in
modern machine learning tasks, the model is usually a deep neural network consisting of a feature
extractor and a prediction head. In the personalized FL works mentioned above, the deep neural
network model is partitioned into a feature extractor u and prediction head v. They consider the
following optimization problem across different clients:

min
u,{vi}M

i=1

1

M

M∑
i=1

fi(u,vi) (3)

whereu is a global feature extractor mapping inputs to a low dimensional space, vi is the local prediction
head at i-th client. The server only maintains the global feature extractor u, not the whole model, and
broadcasts it to all the clients at each communication round. This method decouples the representation
part and prediction part and obtains better performance on heterogeneous data Collins et al. (2021);
Pillutla et al. (2022). However, as we will show in the next section, for different data distributions
even the feature extractors can be different across clients. This motivates our second question:

Q2: Can we further allow the feature extractor in one client to be different from others while still
learning information on shared representations from other clients?

Motivated by the two questions, in this work we propose a consensus optimization problem at the
representation level. The local models are trained with its own data, and with a regularization term
to force consensus on representation between local feature extractor and global feature extractor. In
this work the global feature extractor is still trained via FedAvg-like method, i.e., from the average
of the local feature extractors in all the participating clients. Thus we can write our problem as:

min
{ui}M

i=0,{vi}M
i=1

1

M

M∑
i=1

fi(ui,vi)+
1

M

M∑
i=1

fi(u0,v0,i)+
λ

2

1

M

M∑
i=1

Hi(ui,u0) (4)

where ui and vi are the local feature extractor and local prediction head at i-th client, i= 1,...,M,
respectively, u0 is a global feature extractor maintained at the server. v0,i is the local prediction head
at i-th client so that only the feature extractor is aggregated at the server. Hi(ui,u0) is a regularization
term to force the representation of the ith client ui, which is defined on local dataset, and u0 to be
close. In this formulation the local feature extractors are no longer exactly same for each client, which
provides more flexibility to fit highly heterogeneous data. The local models are almost trained locally
except that their intermediate representations are forced to be close to each other. The local parameters
are not covered by the global parameters in the training process, retaining more local knowledge.
Fig. 1 displays an overview of our proposed framework. One point that we would like to stress: our
regularization of the representation part is data-driven (compare with the regularization term in eq. 2).

For this formulation of the problem, we propose a new federated learning algorithm (detailed in
Algorithm 3.1 and outlined in Fig. 1) based on distributed stochastic gradient descent. A limitation
of this formulation is that the global feature extractor u0 is still obtained by the average of the local
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feature extractors, so that each client needs to send part of the local model to the server, which still
remains privacy issues. We aim to train the global feature extractor without knowing the exact model
parameters to reduce privacy risk.

Figure 1: An overview of FedReCo.

2 Motivation and Problem Statement

2.1 Representation similarity across clients in different layers

The FedAvg-like algorithms suffer from this “client drift”, which makes the local model far from global
model within one communication round. In what follows, we will show the influence of client drift
on the representations of different layers in one neural network model. We conduct an experiment on
CIFAR10 dataset with a small 5-layer CNN model and ResNet18 He et al. (2016). There are 10 clients,
each with 2 classes of data in the CIFAR10 dataset. We train the models via the FedAvg algorithm Li
et al. (2020) and after local iterations within one communication round t, we measure the similarity
between the representations of local model ωt

i and global model ωt before aggregation. We use the
centered kernel alignment (CKA) measurement Kornblith et al. (2019); Nguyen et al. (2021); Li et al.
(2023) to quantify the similarity of representations.
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Figure 2: CKA Similarity for different layers.

Fig. 2 display the CKA similarity of representations after 1 round and 10 rounds of training,
respectively. After only 1 round local training, the similarity decreases with deeper layers for both
models. When training continues, the similarity between local model and global model increases for
all the layers. After 10 rounds of training, the first four layers of 5-layer CNN model become close
to global model, while the similarity of last (classifier) layer is still low. It shows that the FedAvg can
learn a shared representation before the final classifier layer. However, even the previous layers are
slightly dissimilar (similarity strictly less than 1). It is more obvious for larger ResNet18 model. Even
after many rounds of training, the similarity decreases with deeper layers. The same phenomena has
also been observed in Li et al. (2023) for a VGG model.

This observation motivates our work to consider a framework to allow different feature extractors in
different clients while still learning the shared representations. The classifier layer or prediction head
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has the largest difference between local model and global model, thus we wish to train it completely
locally. For the feature extractor, we train it locally, but with a regularization term to force it to learn
representations from a global model.

2.2 Representation consensus optimization problem

Let us know formally formulate our problem. Consider a federated learning system with M clients,
each client i with N samples {xij ∈Rdx ,yij ∈Rdy}Nj=1,i=1,...,M . For a designed neural network,
the model is partitioned into a feature extractor u and a prediction head v. For i-th client, it maintains
its own local model ui and vi. And the server maintains a global feature extractor u0. If we are to
mandate that the representations of local data to be the same for local feature extractor and global
feature extractor, then the representation consensus optimization problem would be,

min
u0,{ui,vi}M

i=1

1

M

M∑
i=1

fi(ui,vi)+
1

M

M∑
i=1

fi(u0,v0,i) s.t. hij(ui)=hij(u0), i=1,2,...,M, j=1,2,...,N

where fi(ui, vi) =
1
N

∑N
j=1 fi(ui, vi|xij , yij) is the empirical loss function with N samples, and

hij(u) ≜ hij(xij |u) is the mapping function Rdx → Rp that maps input xij to a intermediate
representation with dimension p.

However we do not need the representations to be the exactly same for local feature extractor and
global feature extractor. Thus we only put a ℓ2-norm regularization term to constrain the local training:

min
u0,{ui,vi}M

i=1

F (u0,{ui,vi}Mi=1)≜
1

M

M∑
i=1

fi(ui,vi)+
1

M

M∑
i=1

fi(u0,v0,i)+
λ

2

1

M

M∑
i=1

Hi(ui,u0) (5)

whereHi(ui,u0)=
1
N

∑N
j=1∥hij(ui)−hij(u0)∥2 is the regularization term to force the representations

of all the local data samples to be close for local feature extractors and global feature extractor.

3 FedReCo Algorithm

3.1 Algorithm Description

Since Hi(ui,u0) is based on the local data samples, we can apply stochastic gradient descent (SGD)
to solve the problem 5. We first update global model u0,v0,i, and then update the local model ui and
vi with the global feature extractor u0. When updating ui,vi, we can exploit the same batch of data
samples to calculate the stochastic gradients of fi(ui,vi) and Hi(ui,u0) simultaneously, just passing
the same batch of samples twice to model {ui,vi} and feature extractor u0, respectively. Similarly,
when updating u0, We can exploit the same batch of data samples to calculate the stochastic gradients
of fi(u0,v0,i) and Hi(ui,u0) simultaneously. To reduce the communication burden, we can perform
multiple local SGD steps before transmitting the stochastic gradient. And due to the decoupling of
feature extractor and prediction head, we can apply different learning rates and numbers of local steps
to the two parts, respectively. In the following we use symbol ∇̃ to represent stochastic gradient.

Specifically, our proposed FedReCo (Representation Consensus) algorithm is as follows: At each
communication round t, the server broadcasts the ut

0 to all the clients. When updating u0 and v0,i,
the i-th client first updates the prediction head v0,i via Kv SGD local steps with learning rate ηv , then
fixs v0,i and updates u0,i from ut

0 via Ku local steps with learning rate ηu. When updating ui,vi, each
client first updates the local prediction head vi via Kv SGD local steps with learning rate ηv. Then
the client fixes vi and updates local feature extractor ui via Ku local steps with learning rate ηu. After
local training, the client sends u0,i to server. The server aggregates the u0,i and averages them to
update u0. The details of FedReCo algorithm are described in Algorithm 3.1.

For local training in FedReCo, each client needs to pass the same batch of samples to two models
and calculate the stochastic gradients. Although the global feature extractor enlarges the demand of
local computation and memory, the local computation power is not usually the bottleneck in the whole
system. For the communication stage, each client needs to send u0,i to the server, which only includes
a part of the model parameters, less than the whole model.
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Algorithm 1 FedReCo Algorithm
Input: Step size ηu,ηv,η0, penalty parameter λ
Initialize: Initialize u0

0 for server, initialize ui and vi for i-th client
1: for t=0,1,...,T−1 do
2: Server:
3: Broadcast ut

0 to all the clients
4: Receive ut+1

0,i from all the clients
5: Update u0: ut+1

0 = 1
M

∑M
i=1u

t+1
0,i

6: client i:
7: Receive ut

0 from server, let ut,0
i =ut

i
8: for k=0,1,...,Kv−1 do
9: Randomly select one batch of samples, pass the samples to the model {ut

0,v
t,k
0,i} and calculate

stochastic gradient ∇̃v0,ifi(v
t,k
0,i ,u

t
0)

10: Update vt,k+1
0,i =vt,k0,i−ηv∇̃v0,ifi(v

t,k
0,i ,u

t
0)

11: end for
12: Let vt+1

0,i =vt,Kv

0,i

13: Let ut,0
0,i=ut

0

14: for k=0,1,...,Ku−1 do
15: Randomly select one batch of samples, pass the samples to model {ut,k

0,i ,v
t+1
0,i } and calculate

stochastic gradients ∇̃u0,i
fi(v

t+1
0,i ,ut,k

0,i), pass the same batch of samples to feature extractor
ut,k
0,i and calculate stochastic gradient ∇̃u0,iHi(u

t
i,u

t,k
0,i)

16: Update ut,k+1
0,i =ut,k

0,i−ηu

(
∇̃u0,i

fi(v
t+1
0,i ,ut,k

0,i)+
λ
2 ∇̃u0,i

Hi(u
t,k
0,i ,u

t
i)
)

17: end for
18: Let ut+1

0,i =ut,Ku

0,i

19: Send ut+1
0,i to the server

20: end for
21: for k=0,1,...,Kv−1 do
22: Randomly select one batch of samples, pass the samples to the model {ut

i,v
t,k
i } and calculate

stochastic gradient ∇̃vifi(v
t,k
i ,ut

i)

23: Update vt,k+1
i =vt,ki −ηv∇̃vifi(v

t,k
i ,ut

i)
24: end for
25: Let vt+1

i =vt,Kv

i
26: for k=0,1,...,Ku−1 do
27: Randomly select one batch of samples, pass the samples to model {ut,k

i ,vt+1
i } and calculate

stochastic gradients ∇̃uifi(v
t+1
i ,ut,k

i ), pass the same batch of t samples to feature extractor
ut
0 and calculate stochastic gradient ∇̃uiHi(u

t,k
i ,ut

0)

28: Update ut,k+1
i =ut,k

i −ηu

(
∇̃ui

fi(v
t+1
i ,ut,k

i )+ λ
2 ∇̃ui

Hi(u
t,k
i ,ut

0)
)

29: end for
30: Let ut+1

i =ut,Ku

i

4 Experiments

4.1 Performance on Benchmark Datasets

We perform the experiments on FashionMNIST/FMNIST and CIFAR10 datasets with a 5-layer
CNN model, with two convolution layers and three fully connected layers. The first four layers are
considered as the feature extractor and one last classifier layer as the prediction head trained totally
locally. The compared methods include: FedAvg McMahan et al. (2017), FedAvg-FineTuning (FT)
Collins et al. (2022), Ditto Li et al. (2021), FedRep Collins et al. (2021), FedBabu Oh et al. (2022),
FedPAC Xu et al. (2023), FedCR Zhang et al. (2023). There are 50 clients in the network, each with
4 classes of data for FMNIST dataset and 2 classes of data for CIFAR10 dataset, to form a hetegenerous
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data distribution. The results are obtained after 500 rounds of communication, each with local SGD
updates for 2 epochs of local samples, 1 epoch on training local prediction head, 1 epoch on training
local feature extractor. More details of settings and hyper-parameters are provided in Appendix A.

For the relatively simple dataset FMNIST, FedAvg can already get an acceptable accuracy, and other
algorithms obtain similar final accuracy. Note that in this case the FedAvg+fine-tuning is competitive
to other methods, getting the highest accuracy. For the more complex CIFAR10 dataset and more
heterogeneous setting, fine-tuning is still competitive to some personalization methods, with FedReCo
outperforming all compared methods, showing the higher flexibility to more heterogeneous setting.
Fig. 3(a) displays the test accuracy of different algorithms on CIFAR10 dataset. It is seen that Ditto
and FedReCo converge faster than other compared algorithms in this setting.

Table 1: Test Accuracy (%) on benchmark datasets; F: FMNIST, C: CIFAR10

FEDAVG FEDAVG-FT DITTO FEDREP FEDBABU FEDPAC FEDCR FEDRECO
F 85.38 93.85 92.92 93.04 92.85 92.62 92.71 93.42
C 56.17 89.05 90.55 89.12 85.69 88.71 89.21 91.07
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Figure 3: (a) Test accuracy on CIFAR10 dataset. (b) Test accuracy with different λ on CIFAR10 dataset.

We furthur explore the impact of λ in FedReCo. Fig. 3(b) shows that with different values of λ, the
performance of FedReCo is not affected a lot. They nearly achieve the same performance.

5 Conclusions

We have proposed a federated learning algorithm, FedReCo, that enforces the representation part of
local models to be similar in a data-driven manner. FedReCo takes a step to study how layer sensitivity
in neural networks can be fully exploited in federated learning, which hopefully will result in further
interesting works. In fact, the framework of FedReCo can be easily extended to the partition of neural
network at any layer, not limited to last classifier layer, and even to partitioning at different layers
for different clients.
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A Experiment Setup

A.1 Datasets

We use two benchmark datasets in the experiments, FashionMNIST (FMNIST) and CIFAR10, both
consisting of 10 classes of data. The samples are divided into a training set with 70% data, and a
testing set with 30% data. The data samples are distributed to 50 clients. To make the data distribution
heterogeneous, we assign different classes of data to the clients. For FMNIST, each client has the
data from 4 classes, and for CIFAR10, each client only has the data from 2 classes.

Table 2: Detailed information about datasets

DATASET ALL SAMPLES TRAINING SET TEST SET SAMPLES PER CLIENT CLASSES PER CLIENT
FMNIST 70000 49000 21000 1400 4
CIFAR10 60000 42000 18000 1200 2

A.2 Model and Hyper-parameters

The model for both datasets is a 5-layer CNN model, consisting of two convolutional layers, each
followed by a 2 × 2 max pooling layers, and two fully connected layers with 1024 neurons, and finally
a softmax layer as classifier. The first four layers are considered as the feature extractor for FedRep,
FedBabu, FedPAC, FedCR, FedReCo.

For the hyper-parameters in different algorithms, we set the same learning rates as 0.01, and batch
size as 48. In the local training, the standard gradient clipping is used with a maximum norm 10. For
FedReCo, we use the same learning rate for feature extractor and prediction head as 0.01, and 0.001
for the global feature extractor. The λ in the regularization term is 0.01. For Ditto, the λ is set as 0.01.
For FedPAC, the λ is set to 1. For FedCR, the β is set as 0.001.
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