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Abstract
Large language models (LLMs) now achieve001
near-human performance on standard math002
word problem benchmarks (e.g., GSM8K), yet003
their true reasoning ability remains disputed.004
A key concern is that models often produce005
confident, yet unfounded, answers to unanswer-006
able problems. We introduce TREECUT, a syn-007
thetic dataset that systematically generates in-008
finite unanswerable math word problems and009
their answerable counterparts, by representing010
each question as a tree and removing chosen011
necessary conditions. Experiments show TREE-012
CUT effectively induce hallucinations in large013
language models, including GPT-4o and o3-014
mini, with rates of 61% and 42% in their re-015
spective worst-case scenarios. Further analysis016
highlights that deeper or more complex trees,017
composite item names, and removing necessary018
condition near the middle of a path all increase019
the likelihood of hallucinations, underscoring020
the persistent challenges LLMs face in identi-021
fying unanswerable math problems.022

1 Introduction023

Mathematical reasoning is a crucial part of human024

intelligence. Recent years have witnessed remark-025

able advancements in the mathematical reason-026

ing capabilities of large language models (LLMs).027

By leveraging techniques such as chain-of-thought028

prompting (Wei et al., 2022), state-of-the-art LLMs029

(e.g., Achiam et al. (2023); Team et al. (2024);030

Dubey et al. (2024)) achieved human-level perfor-031

mance on benchmarks like GSM8K (Cobbe et al.,032

2021). However, it remains controversial whether033

this performance implies reasoning capability be-034

yond pattern matching.035

A substantial body of research highlights the036

capability of Large Language Models in mathemat-037

ical reasoning. Achiam et al. (2023); Team et al.038

(2024); Dubey et al. (2024); Yang et al. (2024),039

among others, achieved over 90% accuracy on040

GSM8K (Cobbe et al., 2021), a dataset consists of041

8K grade school math word problems. Yang et al. 042

(2024); Zhou et al. (2023), among others, achieved 043

over 80% accuracy on the more difficult MATH 044

dataset (Hendrycks et al., 2021), which consists of 045

12.5K high school math competition problems. 046

Meanwhile, there is a line of research question- 047

ing the reasoning ability of LLMs by showing their 048

vulnerability under superficial changes of the input 049

that do not alter the underlying logic. Works like 050

Shi et al. (2023); Jiang et al. (2024) find that LLMs 051

are easily distracted by irrelevant context or token 052

level perturbation that does not change the under- 053

lying logic of the reasoning task. Mirzadeh et al. 054

(2024) further demonstrate that the performance of 055

LLMs declines when numerical values are altered 056

in the questions from the GSM8K dataset. 057

There is yet another line of research that chal- 058

lenges the ability of LLMs to refrain from answer- 059

ing unanswerable problems. Ma et al. (2024); Li 060

et al. (2024); Sun et al. (2024); Zhou et al. (2024a); 061

Saadat et al. (2024) introduce minor modifications 062

to existing math word problems to create unanswer- 063

able variants, and find that LLMs often generate 064

hallucinatory answers for these unanswerable ques- 065

tions, even when they perform well on the original 066

answerable datasets. However, these efforts rely on 067

pre-existing math word problem sources, making 068

them susceptible to training data contamination, 069

limited in scope, and lacking rich structures for 070

extended research. 071

To address these shortcomings, we propose 072

TREECUT, a synthetic dataset capable of systemat- 073

ically generating an infinite number of unanswer- 074

able math word problems and their answerable 075

counterparts. Our unanswerable dataset proves to 076

be challenging even for GPT-4o and o3-mini. In 077

addition, TreeCut allows precise control over the 078

structural components of each problem, enabling 079

detailed investigations into when and why LLMs 080

produce hallucinations. We will release the dataset 081

generation code upon publication. 082
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Question:
A burger costs 14 dollars. 3 scrambled eggs cost 4 dollars less than 2
burgers. 3 pies cost 12 dollars less than 3 burgers. A BLT sandwich costs
13 dollars less than 3 scrambled eggs. Question: how much does a BLT
sandwich cost?

Solution to the answerable problem:
It is given as a fact that a burger costs 14 dollars. Combine with the fact that
3 scrambled eggs cost 4 dollars less than 2 burgers, we get a scrambled egg
costs 8 dollars. Combine with the fact that a BLT sandwich costs 13 dollars
less than 3 scrambled eggs, we get a BLT sandwich costs 11 dollars.

Solution to the unanswerable problem:
All we know about the prices of BLT sandwich and scrambled egg is: a
BLT sandwich costs 13 dollars less than 3 scrambled eggs. There are 2
variables but only 1 linear formula, so we cannot calculate the price of a
BLT sandwich.

Figure 1: The left and middle panels depict the tree structures corresponding to the answerable and unanswerable
questions, respectively. In the right panel, the strike-through sentence represents the formula removed by the cut.
The variable mappings to items are as follows: x1 represents a burger, x2 represents a scrambled egg, x3 represents
a BLT sandwich, and x4 represents a pie.

2 Related Work083

Math Word Problem Benchmark Numerous084

math word problem datasets of different difficulty085

have been proposed in previous research, most no-086

table examples including GSM8K (Cobbe et al.,087

2021) and MATH (Hendrycks et al., 2021).088

Many benchmarks have been developed to mea-089

sure the robustness of mathematical reasoning. (Li090

et al., 2024; Zhou et al., 2024b; Yu et al., 2023;091

Shi et al., 2023) perturb or rewrite math word092

problems to measure the robustness of mathemat-093

ical reasoning. Mirzadeh et al. (2024) developed094

GSM-Symbolic, a new benchmark derived from095

the GSM8K dataset by modifying numerical values,096

entity names, and question complexity.097

Recently, Opedal et al. (2024) introduced Math-098

GAP, a framework for evaluating LLMs using syn-099

thetic math word problems with controllable proof100

tree characteristics. In contrast to their approach,101

the tree structure in our problem-generation pro-102

cedure is fundamentally different. In our work,103

each node represents a variable, and the questioned104

variable appears as a leaf. In their work, however,105

each node represents a logical statement, with the106

answer represented by the root. More importantly,107

we focus on unanswerable math word problems, an108

aspect that their study did not address.109

Unanswerable Math Problems Yin et al. (2023)110

introduced SelfAware, consisting of unanswerable111

questions from five diverse categories. It includes112

less than 300 unanswerable mathematical problems.113

Li et al. (2024) and Zhou et al. (2024a) generate114

unanswerable questions by prompting GPT4 to115

eliminate a necessary condition from the original116

problem, an then the modified questions are fur-117

ther checked or refined by human annotators. Sun 118

et al. (2024) task human annotators to modify orig- 119

inal questions in existing MWP datasets to make 120

them unanswerable, creating a dataset composed 121

of 2,600 answerable questions and 2,600 unanswer- 122

able questions. Ma et al. (2024) prompt GPT4 123

to modify problems from GSM8K, generating the 124

Unreasonable Math Problem benchmark. 125

3 TREECUT: a Synthetic (Un)answerable 126

Math Word Problem Dataset 127

For the purpose of our investigation, we aim to have 128

full control over the various aspects that determine 129

the underlying structure of a math word problem: 130

the name of the entities, the numeric values, and 131

the complexity of the problem. Furthermore, we 132

seek to reliably generate unanswerable problems by 133

precisely removing specific necessary conditions 134

of our choosing. 135

To this end, we start with a special kind of an- 136

swerable math word problem that can be repre- 137

sented as a tree, as illustrated in Figure 1. Within 138

such a tree, each non-root node represents a vari- 139

able, while the root is a uniquely reserved node. 140

An edge from root gives value to a variable, while 141

an edge between two variables represents a linear 142

formula of the two neighboring nodes. Given such 143

a tree, any variable can be calculated following the 144

unique path from the root to the node that repre- 145

sents the variable. Such a solving procedure does 146

not require solving a linear equation system, as the 147

solution only consists of carrying out basic arith- 148

metic operations along the path. To guarantee that 149

the arithmetic operations are well within the capac- 150

ity of current frontier LLMs,we further restrict the 151
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ansDepth Llama-8B Llama-70B Qwen-7B Qwen-72B GPT-4o o3-mini

2 79% 22% 85% 61% 14% 42%
4 84% 35% 89% 86% 19% 23%
6 84% 63% 95% 89% 45% 18%
8 84% 63% 93% 84% 61% 23%

Table 1: Percentage of hallucination of various LLMs at different ansDepth values for unanswerable problems

ansDepth Llama-8B Llama-70B Qwen-7B Qwen-72B GPT-4o o3-mini

2 68% (14%) 95% (1%) 87% (2%) 95% (1%) 99% (1%) 100% (0%)
4 28% (12%) 82% (6%) 31% (6%) 86% (6%) 94% (0%) 100% (0%)
6 17% (16%) 83% (3%) 12% (9%) 80% (7%) 85% (3%) 100% (0%)
8 5% (12%) 76% (7%) 7% (10%) 68% (8%) 84% (2%) 100% (0%)

Table 2: Accuracy of various LLMs at different ansDepth levels for answerable problems. The percentage in parentheses
represents the proportion of answerable questions incorrectly identified as unanswerable.

unit price of each food item to be an integer be-152

tween 5 and 15, and the coefficients of each linear153

equation taking non-zero integer values between154

-3 and 3. Finally, variables are randomly mapped155

to items, and then the formulas are translated to156

natural language using templates.157

From an answerable math word problem de-158

scribed above, we generate an unanswerable prob-159

lem by removing an edge along the path from the160

root to the questioned variable. In Figure 1, x3 is161

the questioned variable. Along the path to the root,162

we remove the edge between x1 and x2 (denoted163

by a cut), rendering x2 and x3 undetermined, thus164

making the question unanswerable, as all we know165

about x2 and x3 is one single linear equation. A166

key benefit of such a generation procedure is that167

the distance from the questioned variable to the168

cut is also fully controlled, as we will see that this169

factor plays an important role in triggering LLM170

hallucination.171

In summary, we can control the structure of prob-172

lems via the following parameters:173

- numVars: total number of variables,174

- ansDepth: distance from the root to the ques-175

tioned variable,176

- compositeName: boolean, whether the items177

in the question have composite names (e.g. “a178

burger at Bistro Nice” versus “a burger”),179

- cutDepth: distance from the questioned vari-180

able to the cut, if an unanswerable problem is181

to be generated.182

Appendix A contains the detailed problem genera-183

tion algorithm.184

4 Experiments185

We evaluate several state-of-the-art LLMs using186

TREECUT. Additionally, we analyze the halluci-187

nation rate of GPT-4o on unanswerable problems 188

generated under different parameter configurations 189

of TREECUT. 190

4.1 Experimental Setup 191

For each set of generation parameters, we randomly 192

generate 100 problems. During evaluation, we em- 193

ploy a zero-shot prompting template that explic- 194

itly directs the model to indicate when a question 195

is unanswerable due to insufficient conditions. A 196

chain-of-thought system message is incorporated 197

for all models except o3-mini1. 198

4.2 Evaluating LLMs 199

In the first set of experiments, we generate unan- 200

swerable math word problems of varying difficulty 201

to evaluate the following LLMs: Llama 3.1 In- 202

struct with 8B and 70B parameters(Dubey et al., 203

2024), Qwen2.5 Instruct with 7B and 72B param- 204

eters(Yang et al., 2024), GPT-4o(Achiam et al., 205

2023), and o3-mini(OpenAI, 2025). 206

Table 1 summarizes the results. None of the 207

LLMs gives satisfactory results. Llama 3.1 8B, 208

Qwen2.5 7B and 72B barely have any success iden- 209

tifying unanswerable problems. Llama 3.1 70B 210

and GPT-4o struggle with more complex problems 211

(ansDepth = 6, 8). o3-mini has the lowest hallu- 212

cination for ansDepth = 6, 8. However, for the 213

easiest case where ansDepth = 2 (in this setting, 214

only 4 variables are mentioned in each problem), 215

o3-mini displays a bias of making hallucinatory 216

assumptions (see Appendix C.2 for examples). 217

To investigate whether the unsatisfactory accu- 218

racy of identifying unanswerable problems comes 219

from the incapability of the necessary mathematical 220

1Following OpenAI’s guidelines of reasoning models.
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operations, we evaluate the LLMs on the answer-221

able counterparts of the unanswerable questions222

using the same prompting template. We observe223

that almost every model displays a significant gap224

between its ability of solving answerable problems225

and identifying unanswerable problems. For in-226

stance, GPT-4o correctly solves 84% of answerable227

problems for ansDepth = 8, but only correctly rec-228

ognizes 39% of unanswerable problems.229

4.3 Unanswerable Problem Structure and230

Hallucination231

For a more fine-grained investigation of LLM’s232

hallucination behavior under different structures233

of unanswerable problems, we analyze GPT-4o’s234

hallucination rate on unanswerable problems gener-235

ated under different parameter choices of numVars,236

ansDepth, compositeName and cutDepth.237

Figure 2: Hallucination percentage under different config-
urations of unanswerable problems, plotted against varying
ansDepth.

Tree Structure and Item Names To investigate238

the effect of (i) a deeper tree structure, (ii) a more239

complex tree structure, and (iii) composite item240

names, we consider the following parameter con-241

figurations:242

• ansDepth∈ {4, 5, 6, 7, 8}, which controls the243

depth of the questioned variable,244

• cutDepth = ⌊ansDepth/2⌋245

• numVars = ansDepth + 2 (generates a246

more complex tree structure) or numVars =247

ansDepth (the tree structure degenerates into248

a single path),249

• compositeName: true or false.250

There are 5 × 2 × 2 = 20 configurations in total.251

We randomly generate 100 unanswerable problems252

for each configuration, and summarize GPT-4o’s253

hallucination rate in Figure 2. In the figure,254

⋆ Orange line represents complex tree structure,255

⋆ blue line represents simple tree structure, 256

- Solid line stands for composite item names, 257

- Dashed line stands for simple item names. 258

Examining each line individually, we observe 259

that the hallucination rate increases as the depth of 260

the questioned variable grows. Comparing solid 261

and dashed lines of the same color, a more complex 262

tree structure consistently results in a higher like- 263

lihood of hallucination across different ansDepth 264

values. Comparing orange and blue lines of the 265

same linestyle, composite item names consistently 266

lead to a higher likelihood of hallucination com- 267

pared to simple item names. 268

Figure 3: Hallucination percentage versus cutDepth. Left
panel has ansDepth = 7. Right panel has ansDepth = 8.

Location of the Cut For each unanswerable prob- 269

lem, the cut always happens along the path from 270

the root to the questioned variable. Does the loca- 271

tion of the cut change hallucination ratio? We vary 272

cutDepth from 1 to 7 while keeping ansDepth = 273

8 and other parameters fixed. In the right panel 274

of Figure 3, we see that cutDepth = 3, 4, 5, 6 275

all trigger over 60% hallucination for GPT-4o 276

(with cutDepth = 5 triggering over 70%), but 277

a cutDepth = 1, 2, 7 only triggers less than 50% 278

of hallucination, which means that GPT-4o is more 279

confused when the cut happens around the middle 280

point along the path, comparing to that happens 281

near the root or the questioned variable. 282

4.4 Conclusion of Experiments 283

Our findings indicate that the unanswerable math 284

word problems generated by TREECUT effectively 285

induce hallucinations in large language models, in- 286

cluding GPT-4o and o3-mini, with rates of 61% and 287

42% in their respective worst-case scenarios. Fo- 288

cusing on GPT-4o, we further observe that halluci- 289

nations are more likely to occur when the problem 290

exhibits (i) a deeper tree structure, (ii) a more com- 291

plex tree structure, (iii) composite item names, or 292

(iv) a cut positioned around the middle of the path. 293

These results underscore the challenges LLMs face 294

in handling unanswerable math problems. 295
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5 Limitations296

Our synthetic dataset is specifically designed for297

math word problems, representing only a small sub-298

set of the broader field of mathematics. Addition-299

ally, our evaluations are based solely on zero-shot300

chain-of-thought prompting. We do not explore al-301

ternative prompting techniques commonly used in302

LLM-based mathematical reasoning studies, which303

may impact performance comparisons.304
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A Generation of the Math Word Problems 416

Algorithm 1 Generating Math Word Problem using Random Tree

Require: numVars ≥ ansDepth ≥ 2
Require: unanswerable ∈ {true, false}, order ∈ {"forward", "backward", "random"}
Require: cutDepth: int

1: if unanswerable = true then
Require: cutDepth: int, satisfying 1 ≤ cutDepth < ansDepth

2: end if
▷ (i) Sample a dictionary of variable values

3: varDict← {}
4: for i← 1 to numVars do
5: Sample an integer v ∈ [5, 15]
6: varDict[xi]← v
7: end for

▷ (ii) Build the random tree
8: Assign root as the parent of x1
9: for i← 2 to ansDepth do

10: Assign xi−1 as the parent of xi
11: end for ▷ Finish building the path from the root to the questioned variable

▷ Assign the remaining nodes
12: for i← ansDepth+ 1 to numVars do
13: Randomly select a node xp in the tree
14: Assign xp as the parent of xi
15: end for

▷ (iii) Get the list of all edges via a breadth-first traversal
16: edgeList← the list of edges collected by a breadth-first traversal (see Algorithm 2)

▷ (iv) For unanswerable problems, create the cut
17: if unanswerable = true then
18: Remove (xansDepth-cutDepth-1, xansDepth-cutDepth) from edgeList
19: end if

▷ (v) Generate a formula for each edge, and store in forumlaList
20: formulaList← [ ]
21: for edge (xi, xj) in edgeList do
22: Sample a, b ∈ {−3,−2,−1, 1, 2, 3}
23: Define formula← a · xi + b · xj = a · varDict[xi] + b · varDict[xj ]
24: Append formula to formulaList ▷ So that formulaList has the same order as edgeList
25: end for

▷ (vi) Adjust the ordering of formulaList according to order
26: if order = "backward" then
27: Reverse formulaList
28: end if
29: if order = "random" then
30: Random Shuffle formulaList
31: end if

return formulaList ▷ Formulas serving as conditions of the problem.

Algorithm 1 generates formulaList, which contains the formulas that will serve as the conditions 417

of the problem. To translate that into natural language, item names will be sampled according to the 418

compositeName option. Then, formulaList can be translated to natural language using pre-defined 419

templates. The question sentence will simply be “what is the price of {item name of the questioned 420
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variable}”.421

We want to point out that although all the variables are assigned a value in varDict, this is purely for422

the sake of (i) subsequently generating the random formulas (ii) guaranteeing that all calculable variables423

will have values between 5 and 15. When unanswerable = true, the cut will guarantee that the problem424

is unanswerable.425

In the following, we also detail the simple breadth-first traversal algorithm for getting all the edges426

from the tree, which enables us to control the order of the conditions in the problem.

Algorithm 2 Breadth-First Traversal to Get Edges

Require: root: the root of a tree
▷ Get the list of all edges via a breadth-first traversal

1: edgeList← [ ], q← a queue containing root
2: while q is not empty do
3: node← q.dequeue()
4: for child ∈ node.children do
5: Add (node, child) to edgeList
6: Add child to q
7: end for
8: end while

return edgeList

427

B Details of Experiments428

B.1 Prompt Template429

Below is the prompt template used for evaluation, which is a 0-shot prompting template with chain-of-430

thought system message. For reasoning models like o3-mini, we do not use the chain-of-thought system431

message.432

Evaluation Prompt Template

// system message (for non-reasoning models)
As an expert problem solver, solve step by step the following mathematical
questions.

// user message
Please solve the following math question, and then answer in the form ’Answer:
x’. If the known conditions are not sufficient to answer the question, please
answer in the form ’Answer: unknown.’.

Question: {{question}}

Your solution:
433

B.2 Evaluation434

For all the models other than o3-mini, we set {max_tokens=4000, temperature=0}. o3-mini does not al-435

low setting temperature, and we set {max_completion_tokens=32000, reasoning_effort=“high”}.436

GPT-4o and o3-mini are evaluated via calling OpenAI API.437

When evaluating model’s answer to an unanswerable problem, we change the response to all lower438

case, and if “unknown” is mentioned after the last occurrence of the trigger word “answer”, it is counted439

as a correct answer.440
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C Examples of Hallucinatory Answers 441

C.1 GPT-4o 442

Example 1: A BLT sandwich at Urban Plate costs 13 dollars. 3 burgers at Taste Good Cuisine cost 6 443

dollars more than 3 fruit tarts at Taste Good Cuisine. A BLT sandwich at Taste Good Cuisine costs 5 444

dollars. A fruit tart at Taste Good Cuisine costs 9 dollars less than 3 burgers at Urban Plate. 2 burgers at 445

Taste Good Cuisine cost 8 dollars more than a fruit tart at Urban Plate. Question: how much does a burger 446

at Taste Good Cuisine cost? 447

Model answer: 448

To solve this problem, we need to set up equations based on the information given and solve for the unknowns. 449
450

Let's define the variables: 451
- Let \( B_T \) be the cost of a burger at Taste Good Cuisine. 452
- Let \( F_T \) be the cost of a fruit tart at Taste Good Cuisine. 453
- Let \( B_U \) be the cost of a burger at Urban Plate. 454
- Let \( F_U \) be the cost of a fruit tart at Urban Plate. 455

456
We are given the following information: 457

458
1. A BLT sandwich at Urban Plate costs 13 dollars. 459
2. 3 burgers at Taste Good Cuisine cost 6 dollars more than 3 fruit tarts at Taste Good Cuisine. 460

\[ 461
3B_T = 3F_T + 6 462
\] 463

3. A BLT sandwich at Taste Good Cuisine costs 5 dollars. 464
4. A fruit tart at Taste Good Cuisine costs 9 dollars less than 3 burgers at Urban Plate. 465

\[ 466
F_T = 3B_U - 9 467
\] 468

5. 2 burgers at Taste Good Cuisine cost 8 dollars more than a fruit tart at Urban Plate. 469
\[ 470
2B_T = F_U + 8 471
\] 472

473
We need to find the cost of a burger at Taste Good Cuisine, \( B_T \). 474

475
From equation (2), we can express \( F_T \) in terms of \( B_T \): 476
\[ 477
F_T = B_T - 2 478
\] 479

480
Substitute this expression for \( F_T \) into equation (4): 481
\[ 482
B_T - 2 = 3B_U - 9 483
\] 484
\[ 485
B_T = 3B_U - 7 486
\] 487

488
Now, let's substitute \( F_T = B_T - 2 \) into equation (5): 489
\[ 490
2B_T = (B_T - 2) + 8 491
\] 492
\[ 493
2B_T = B_T + 6 494
\] 495
\[ 496
B_T = 6 497
\] 498

499
Thus, the cost of a burger at Taste Good Cuisine is 6 dollars. 500

501
Answer: 6 502

Mistake: When the model did “Now, let’s substitute F_T = B_T - 2 into equation (5)”, it 503

actually confused F_T with F_U in equation (5). 504
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Example 2: 3 Greek salads at Texas BBQ cost 6 dollars less than 3 pieces of cheese cake at Texas BBQ.505

3 burgers at Texas BBQ and 2 pieces of cheese cake at Texas BBQ cost 59 dollars. 3 burgers at Taste506

Good Cuisine and 2 Greek salads at Taste Good Cuisine cost 42 dollars. 2 burgers at Texas BBQ and a507

piece of cheese cake at Taste Good Cuisine cost 32 dollars. 3 burgers at Texas BBQ cost 15 dollars more508

than 3 fruit tarts at Taste Good Cuisine. A burger at Taste Good Cuisine costs 10 dollars. A fruit tart at509

Texas BBQ costs 2 dollars more than a Greek salad at Texas BBQ. Question: how much does a Greek510

salad at Texas BBQ cost?511

Model answer:512

To solve this problem, we need to set up equations based on the information given and solve for the cost of513
a Greek salad at Texas BBQ. Let's define the variables:514

515
- \( G \): Cost of a Greek salad at Texas BBQ516
- \( C \): Cost of a piece of cheesecake at Texas BBQ517
- \( B \): Cost of a burger at Texas BBQ518
- \( F \): Cost of a fruit tart at Taste Good Cuisine519
- \( B_T \): Cost of a burger at Taste Good Cuisine (given as $10)520
- \( F_T \): Cost of a fruit tart at Texas BBQ521

522
Now, let's translate the information into equations:523

524
1. "3 Greek salads at Texas BBQ cost 6 dollars less than 3 pieces of cheesecake at Texas BBQ."525

\[526
3G = 3C - 6527
\]528

529
2. "3 burgers at Texas BBQ and 2 pieces of cheesecake at Texas BBQ cost 59 dollars."530

\[531
3B + 2C = 59532
\]533

534
3. "3 burgers at Taste Good Cuisine and 2 Greek salads at Taste Good Cuisine cost 42 dollars."535

\[536
3B_T + 2G = 42537
\]538
Since \( B_T = 10 \), substitute:539
\[540
3(10) + 2G = 42 \implies 30 + 2G = 42 \implies 2G = 12 \implies G = 6541
\]542

543
4. "2 burgers at Texas BBQ and a piece of cheesecake at Taste Good Cuisine cost 32 dollars."544

\[545
2B + C_T = 32546
\]547
(Note: We don't have enough information about \( C_T \), the cost of cheesecake at Taste Good Cuisine,548
so we can't use this equation directly.)549

550
5. "3 burgers at Texas BBQ cost 15 dollars more than 3 fruit tarts at Taste Good Cuisine."551

\[552
3B = 3F + 15553
\]554

555
6. "A fruit tart at Texas BBQ costs 2 dollars more than a Greek salad at Texas BBQ."556

\[557
F_T = G + 2558
\]559

560
Now, let's solve the equations:561

562
From equation 3, we found \( G = 6 \).563

564
Let's verify if this value is consistent with other equations:565

566
- From equation 1:567

\[568
3G = 3C - 6 \implies 3(6) = 3C - 6 \implies 18 = 3C - 6 \implies 3C = 24 \implies C = 8569
\]570

571
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- From equation 2: 572
\[ 573
3B + 2C = 59 \implies 3B + 2(8) = 59 \implies 3B + 16 = 59 \implies 3B = 43 \implies B = \frac{43}{3} 574
\] 575
(This value seems unusual, but let's proceed.) 576

577
- From equation 5: 578

\[ 579
3B = 3F + 15 \implies \frac{43}{3} = F + 5 \implies F = \frac{43}{3} - 5 = \frac{43}{3} - \frac{15}{3} = \frac{28}{3}580
\] 581

582
- From equation 6: 583

\[ 584
F_T = G + 2 \implies F_T = 6 + 2 = 8 585
\] 586

587
The calculations are consistent with the given conditions. Therefore, the cost of a Greek salad at Texas BBQ is: 588

589
Answer: 6 590

Mistake: At step 3, model calculated the value of “G”, but from the start of the solution, “G” denotes the 591

“cost of a Greek salad at Texas BBQ”, not the cost of a Greek salad at Taste Good Cuisine. 592

C.2 o3-mini 593

Example 1: A pizza at Taste Good Cuisine and 3 lasagnas at Taste Good Cuisine cost 48 dollars. A 594

lasagna at Urban Plate costs 6 dollars. 3 lasagnas at Urban Plate and 3 pizzas at Urban Plate cost 63 595

dollars. Question: how much does a lasagna at Taste Good Cuisine cost? 596

Model answer: 597

Let p be the price of a pizza at Taste Good Cuisine and l be the price of a lasagna at Taste Good Cuisine. 598
We are given: 599

600
1. p + 3l = 48. (Taste Good Cuisine) 601
2. A lasagna at Urban Plate costs 6 dollars. 602
3. 3 lasagnas at Urban Plate and 3 pizzas at Urban Plate cost 63 dollars. 603

604
From (3), the total cost of 3 lasagnas at Urban Plate is 3 × 6 = 18 dollars. This means that the 3 pizzas at 605
Urban Plate cost 63 - 18 = 45 dollars, so one pizza at Urban Plate costs 45/3 = 15 dollars. 606

607
A common (though unstated) assumption in these puzzles is that dishes with the same name cost the same across 608
restaurants. Thus, we assume that a pizza at Taste Good Cuisine also costs 15 dollars. Substitute p = 15 609
into equation (1): 610

611
15 + 3l = 48 612
3l = 48 - 15 = 33 613
l = 33/3 = 11 614

615
Answer: 11 616

Mistake: The model made an assumption: “A common (though unstated) assumption in these 617

puzzles is that dishes with the same name cost the same across restaurants.” However, 618

this cannot be a mathematically valid assumption because following this assumption, it arrives at the 619

conclusion that the price for lasagna at Urban Plate is not the same as that at Taste Good Cuisine (6 dollars 620

versus 11 dollars). 621

We randomly selected 20 problems from the ansDepth = 2 set that triggered hallucinatory answer 622

from o3-mini and manually checked the model answer, all of them shares this same mistake. Below is a 623

similar example: 624

Example 2: A scrambled egg at Bistro Nice and a piece of cheese cake at Mike’s Place cost 21 dollars. 2 625

scrambled eggs at Bistro Nice cost 6 dollars more than 2 pieces of cheese cake at Bistro Nice. A scrambled 626

egg at Mike’s Place costs 6 dollars. Question: how much does a scrambled egg at Bistro Nice cost? 627

Model answer: 628

Let S_B = price of a scrambled egg at Bistro Nice, 629
C_B = price of a piece of cheesecake at Bistro Nice, 630
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C_M = price of a piece of cheesecake at Mike’s Place.631
632

The problem gives:633
1. S_B + C_M = 21 dollars.634
2. Two scrambled eggs at Bistro Nice cost 6 dollars more than two cheesecakes at Bistro Nice:635

2S_B = 2C_B + 6 → S_B = C_B + 3.636
3. A scrambled egg at Mike’s Place costs 6 dollars (this is extra information).637

638
Without further assumptions the system involves three unknowns (S_B, C_B, C_M) and only two equations.639
However, it is common in these problems to assume that when the same item is mentioned (here “cheesecake”)640
it has a consistent price from one restaurant to the other. That is, we assume C_M = C_B.641

642
Under that assumption the first equation becomes:643

S_B + C_B = 21.644
Then using S_B = C_B + 3 we substitute:645

(C_B + 3) + C_B = 21 → 2C_B + 3 = 21 → 2C_B = 18 → C_B = 9.646
Thus, S_B = 9 + 3 = 12.647

648
Answer: 12649

Mistake: Same as above.650

Example 3: 3 BLT sandwiches at Bistro Nice cost 6 dollars more than 3 pieces of cheese cake at Urban651

Plate. 3 burgers at Urban Plate cost 18 dollars less than 3 pieces of cheese cake at Bistro Nice. 2 BLT652

sandwiches at Urban Plate and 2 scrambled eggs at Urban Plate cost 34 dollars. A BLT sandwich at Urban653

Plate costs 8 dollars. 3 pieces of cheese cake at Bistro Nice cost 12 dollars more than 3 burgers at Bistro654

Nice. 2 burgers at Urban Plate cost 10 dollars less than 2 scrambled eggs at Bistro Nice. 3 pieces of655

cheese cake at Bistro Nice and a piece of cheese cake at Urban Plate cost 54 dollars. Question: how much656

does a piece of cheese cake at Urban Plate cost?657

Model answer:658

Let CC_U be the cost of one piece of cheese cake at Urban Plate.659
660

Step 1. From “3 BLT sandwiches at Bistro Nice cost 6 dollars more than 3 pieces of cheese cake at Urban Plate”:661
3·BLT_B = 3·CC_U + 6 → BLT_B = CC_U + 2 (1)662

663
Step 2. From “3 burgers at Urban Plate cost 18 dollars less than 3 pieces of cheese cake at Bistro Nice”:664

3·BUR_U = 3·CC_B - 18 → With BUR_U determined later, we use this after finding BUR_U.665
666

Step 3. “2 BLT sandwiches at Urban Plate and 2 scrambled eggs at Urban Plate cost 34 dollars”:667
2·BLT_U + 2·Eggs_U = 34 and we are given in Step 4 that BLT_U = 8.668
Thus, 2·8 + 2·Eggs_U = 34 → 16 + 2·Eggs_U = 34 → 2·Eggs_U = 18 → Eggs_U = 9.669

670
Step 4. “A BLT sandwich at Urban Plate costs 8 dollars”:671

BLT_U = 8.672
673

Step 5. “3 pieces of cheese cake at Bistro Nice cost 12 dollars more than 3 burgers at Bistro Nice”:674
3·CC_B = 3·BUR_B + 12 → CC_B = BUR_B + 4 (2)675

676
Step 6. “2 burgers at Urban Plate cost 10 dollars less than 2 scrambled eggs at Urban Plate”:677

2·BUR_U = 2·Eggs_U - 10 → 2·BUR_U = 18 - 10 → 2·BUR_U = 8 → BUR_U = 4.678
679

Step 7. Now return to the burgers at Urban Plate in Step 2:680
3·BUR_U = 3·CC_B - 18 With BUR_U = 4,681
3·4 = 3·CC_B - 18 → 12 = 3·CC_B - 18 → 3·CC_B = 30 → CC_B = 10.682

683
Step 8. “3 pieces of cheese cake at Bistro Nice and a piece of cheese cake at Urban Plate cost 54 dollars”:684

3·CC_B + CC_U = 54 → 3·10 + CC_U = 54 → 30 + CC_U = 54 → CC_U = 24.685
686

The question asks: “how much does a piece of cheese cake at Urban Plate cost?”687
688

Answer: 24689

Mistake: Step 6. “2 burgers at Urban Plate cost 10 dollars less than 2 scrambled eggs690

at Urban Plate”. That is a hallucinatory condition. The actual condition is "2 burgers at Urban Plate691

cost 10 dollars less than 2 scrambled eggs at Bistro Nice".692
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