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ABSTRACT

Recently, deep reinforcement learning (DRL) has been prevailing for solving mul-
tiobjective combinatorial optimization problems (MOCOPs). Most DRL methods
are based on the "Learn to Construct" paradigm, where the trained model(s) can
directly generate a set of approximate Pareto optimal solutions. However, these
methods still suffer from insufficient proximity and poor diversity towards the true
Pareto front. In this paper, following the "Learn to Improve" (L2I) paradigm, we
propose weight-related policy network (WRPN), a learning-based improvement
method for solving MOCOPs. WRPN is incorporated into multiobjective evolu-
tionary algorithm (MOEA) frameworks to effectively guide the search direction. A
shared baseline for proximal policy optimization is presented to reduce variance in
model training. A quality enhancement mechanism is designed to further improve
the Pareto set in model inference. Computational experiments conducted on two
classic MOCOPs, i.e., multiobjective traveling salesman problem and multiobjec-
tive vehicle routing problem, indicate that our method achieves state-of-the-art
results. Notably, our WRPN module can be easily integrated into various MOEA
frameworks such as NSGA-II, MOEA/D and MOGLS.

1 INTRODUCTION

Multiobjective combinatorial optimization problems (MOCOPs) (Ehrgott and Gandibleux, 2000)
have wide applications in various fields, such as communication routing, investment planning, vehicle
routing, logistics scheduling, etc. Solving such kind of problems requires taking into account different
roles’ preferences corresponding to different objectives, which may often conflict with each other. In
principle, the goal of MOCOPs is to find the best compromise solutions (known as Pareto optimal
solutions) rather than a single optimal solution. The decision maker can eventually choose a particular
Pareto optimal solution according to his knowledge for practical usage.

MOCOPs have been extensively studied in computational intelligence communities in past decades.
Seeking a set of Pareto optimal solutions for an MOCOP is extremely challenging, even its scalarized
single-objective subproblem is generally NP-hard. In real-world applications, heuristic methods,
mostly based on evolutionary algorithms, are commonly introduced to cope with MOCOPs. They can
generate a set of approximately efficient solutions in reasonable time. However, traditional heuristics
methods adopt simple rules or complex operations relied on experts’ experience and knowledge for a
specific problem, which may be limited to providing high-quality solutions for general MOCOPs.

Over the past few years, neural learning methods, especially deep reinforcement learning (DRL)
methods, have made great achievements in solving single-objective combinatorial optimization
problems (COPs) (Bengio et al., 2021; Mazyavkina et al., 2021; Wang and Tang, 2021). By capturing
implicit patterns from a large number of problem instances, these methods can obtain better solutions
than traditional heuristic methods in many scenarios.

In more recent years, there are several attempts trying to tackle MOCOPs via DRL. Most approaches
(Li et al., 2020; Zhang et al., 2021; Lin et al., 2022; Zhang et al., 2022) follow the “Learn to Construct"
(L2C) paradigm by using end-to-end learning models. Roughly speaking, they first decompose an
MOCOP into multiple subproblems by different weight vectors, and then employ well-trained models
to rapidly construct Pareto optimal solutions in the inference stage.
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Despite some success of L2C methods has been achieved for MOCOPs, they still have their down-
sides. On the one hand, L2C methods heavily rely on the quality of end-to-end models for solving
decomposed subproblems. Till now, even the state-of-the-art models (Kool et al., 2019; Kwon et al.,
2020) still have substantial solution gaps for solving single-objective COPs, thereby resulting in the
convergence (or proximity) problem. On the other hand, L2C methods directly construct a solution
for a corresponding subproblem. It brings about the diversity problem due to the inadequate search
for potential Pareto solutions in the neighborhood of each subproblem.

In order to address the above issues, we propose weight-related policy network (WRPN) based
on another learning paradiam, named "Learn to Improve" (L2I) for solving MOCOPs. WRPN
is embedded into typical multiobjective evolutionary algorithms (MOEAs) to perform potential
improving operations in parallel for individual solutions in the population. It iteratively updates the
current population and gradually approximates to the Pareto optimal solutions.

The contributions of our work can be summarized as follows.

• We propose WRPN, which is the first generic L2I method for MOCOPs. It can automatically
provide efficient improvement operators for a batch of individual solutions, guided by a
policy network that is designed to simultaneously extract the weight and solution features.

• We design a shared baseline, which is computed by a group of heterogeneous offsprings
generated through evolution to realize low variance and mitigate the issue of local optima.

• We devise a quality enhancement mechanism. Based on instance augmentation techniques,
it further utilizes the external population of MOEAs and the Pareto dominance of solutions,
thereby improving the proximity and diversity of the Pareto set.

• We show that WRPN outperforms the existing state-of-the-art methods on classic MOCOPs.
It is even superior to the excellent LKH solver (Tinós et al., 2018) under the weighted-
sum decomposition for multiobjective traveling salesman problem (MOTSP). Notably, our
WRPN module can be easily integrated into various MOEA approaches such as NSGA-
II (Deb et al., 2002), MOEA/D (Zhang and Li, 2007) and MOGLS (Jaszkiewicz, 2002).

2 RELATED WORKS

Exact and Heuristics Methods for MOCOPs. Exact (Florios and Mavrotas, 2014) and heuris-
tic (Herzel et al., 2021) algorithms are two groups of methods to solve MOCOPs in past decades. The
former can find all the Pareto-optimal solutions for only very small-scale problems, while the latter,
commonly used in practical applications, can find the approximate Pareto-optimal solutions within
reasonable time. Multiobjective evolutionary algorithms are typical representatives of heuristic algo-
rithms, including NSGA-II (Deb et al., 2002), MOEA/D (Zhang and Li, 2007), MOGLS (Jaszkiewicz,
2002), PLS (Angel et al., 2004), and PPLS/D-C (Shi et al., 2022).

DRL methods for COPs. In literature, some end-to-end DRL construction methods are developed
for solving single-objective COPs. The pioneering works (Bello et al., 2017; Nazari et al., 2018)
train a pointer network to construct a near-optimal solution for COPs. Kool et al. (2019) propose
an Attention Model (AM) based on the Transformer architecture. A representative work is policy
optimization with multiple optima (POMO) (Kwon et al., 2020), which exploits the symmetry of
solutions to further improve the performance of end-to-end models. Distinguished from construction
methods, improvement methods, another important class of DRL methods, iteratively improve the
current solution, assisted by learning techniques. They generally achieve superior results compared
with construction methods although longer running time may be taken. Typical works include Wu
et al. (2021); Chen and Tian (2019); Lu et al. (2019); Ma et al. (2021) for vehicle routing problems.

DRL methods for MOCOPs. There are relatively few works using DRL to solve MOCOPs. Most
of them are construction methods based on decomposition (Zhang and Li, 2007). Their basic idea
is to decompose MOCOPs into multiple subproblems according to prescribed weight vectors, and
then train a single model or multiple models to solve these subproblems. For example, Li et al.
(2020); Zhang et al. (2021) train multiple models collaboratively through a transfer learning strategy.
Preference-conditioned multi-objective combinatorial optimization (PMOCO) (Lin et al., 2022) trains
a hypernetwork-based model, which can generate the decoder parameters according to weight vectors
for solving subproblems. Meta-Learning-based DRL (MLDRL) (Zhang et al., 2022) first trains a
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meta-model and then quickly fine-tunes the meta-model based on weight vectors to solve subproblems.
To our best knowledge, PMOCO and MLDRL are two competitive DRL methods for MOCOPs.

3 PRELIMINARIES

MOCOP. The definition of an MOCOP can be described by min
x∈X

F (x) = (f1(x), · · · , fM (x)),

where X ∈ RN is the feasible domain of N decision variables, F (x) is an M -dimensional objective
vector and fi(x) represents the i-th objective function. Since the objectives are usually in conflict
with each other, a set of trade-off solutions is sought. The concept of Pareto optimality is introduced.

Definition 1 (Pareto dominance). Let u, v ∈ X , u is said to dominate v, i.e., u ≺ v, if: 1)
∀i ∈ {1, · · · ,M}, fi(u) ≤ fi(v), and 2) ∃j ∈ {1, · · · ,M}, fj(u) < fj(v).

Definition 2 (Pareto optimality). A solution x∗ ∈ X is called a Pareto optimal solution if x∗ is not
dominated by any other solutions, i.e., /∃x′ ∈ X : x′ ≺ x∗. All the Pareto optimal solutions can be
defined as P := {x∗ ∈ X|/∃x′ ∈ X : x′ ≺ x∗}, which is the Pareto set (PS). All the Pareto optimal
objective vectors constitute the Pareto front (PF).

Utility Function. A utility (or aggregated) function can map each point in the objective space
into a scalar according to an M -dimensional weight vector satisfying

∑M
i=1 λi = 1 and λi ≥ 0.

Weighted-Sum (WS) and Weighted-Tchebycheff are commonly used utility functions (Miettinen,
2012). As the simplest representative, WS can be defined by min

x∈X
f(x|λ) =

∑M
i=1 λifi(x),

Key Components of MOEA. The process of a generic MOEA involves initialization, parent selection,
recombination, improvement and population update (Verma et al., 2021). For MOCOPs, improvement
is a key process to enhance the PF quality. This motivates us to devise an learning-based improvement
component in place of traditional one to seek high-quality individuals within the population.

4 METHODOLOGY

The L2I framework collaboratively performs efficient local improvements and replaces the traditional
problem-specific heuristics. It contains a policy network that generates a node pair of local operations
to potentially improving a batch of individual solutions. In what follows, we take MOTSP as an
example to elaborate the details of L2I. It is not difficult to generalize to other MOCOPs.

4.1 DRL FORMALUTION

L2I learns an improvement policy with respect to a given weight vector so as to approximate the
entire PF. The improvement process can be deemed as a Markov decision process (MDP) as follows.

State. For an MOTSP instance with N nodes at iteration t, the state st includes the features of
instance v, current solution, represented as a sequence xt with length N , and weight vector λ, i.e.,
st = {v1, · · · , vN , x1

t , · · · , xN
t , λ}, where vi is the coordinate of node i and xi

t is the i-th visited
node in sequence xt.

Action. The action at = (i, j) is denoted as the node pair (i, j) of a pair-wise local search operator
to be conducted. In MOTSP, we adopt an ensemble operator, i.e., the combination of three classic
operators relocate, exchange, 2-opt (see Appendix C for details).

Transition. The next state st+1 is obtained by performing action at = (i, j) on xt, i.e., selecting the
best solution from relocate(i, j), exchange(i, j) and 2-opt(i, j).

Reward. The reward function is defined by rt = f(x∗
t |λ)−min{f(xt+1|λ), f(x∗

t |λ)}, where x∗
t is

the best solution found till iteration t and rt > 0 if an improved solution is found at iteration t.

4.2 WEIGHT-RELATED POLICY NETWORK

The design of WRPN is based on the encoder-decoder architecture, as illustrated in Figure 1. More
details about the network architecture is presented in Appendix B. The policy network first encodes
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Figure 1: The weight-related policy network (WRPN).

the state into a hidden embedding, and then feeds it into the decoder to compute the action probability
matrix. The sampling and greedy decoding strategy are adopted in training and inference, respectively.

The raw features of each solution in the solution population are mapped into two sets of embeddings,
including node embeddings and positional embeddings, while the associated weight vector is mapped
into weight embeddings.

The node embedding (NE) hi with dimension dh is obtained by the linear projection of its node
features. The positional embedding (PE) gi with dimension dg is initialized by the cyclic positional
encoding (Ma et al., 2021) as follows.

g
(d)
i =

{
sin(ωd · (z(i)mod 4π

ωd
)− 2π

ωd
), if d is even

cos(ωd · (z(i) mod 4π
ωd

)− 2π
ωd

), if d is odd (1)

z(i) =
i− 1

N

2π

ωd

⌈
N + 1

2π/ωd

⌉
(2)

ωd =

{
3⌊d/3⌋

dg
(N −N

1

⌊dg/2⌋ ) +N
1

⌊dg/2⌋ , if d < ⌊dg/2⌋
N, otherwise

(3)

Here, g(d)i (i = 1, . . . , N, d = 1, . . . , dg) is the d-th dimension of gi, z(i) is a pattern to make N
nodes linearly spaced, and ωd is the angular frequency. The weight embedding (WE) with dimension
dw is obtained by the corresponding weight features through a linear projection.

Since a weight vector is applied to guide the search direction, the enhanced node embedding (ENE)
ĥ is obtained by fusing WE and NE through a feature-wise linear modulation (FiLM) (Brockschmidt,
2020). Similarly, the enhanced positional embedding (EPE) ĝ is obtained by the fusion of WE and
PE. Such design can better represent the node features and solution features under a weight vector.

4.2.1 ENCODER

There are L (L = 3) Transformer-style stacked encoders. For better readability, we omit the
superscript l for the l-th stacked encoder. Instead, we use ĥ and ĝ to indicate the l-th input embeddings,
and use h̃ and g̃ to indicate the l-th output embeddings, which are also equivalent to the (l + 1)-th
input embeddings.

In each stacked encoder, ĥ and ĝ are fed into a Dual-Aspect Collaborative Attention (DAC-Att)
layer (Ma et al., 2021), followed by the batch normalization, and two separate feed-forward network
(FFN) sub-layers, respectively. Because ĥ and ĝ are originated from two sources, DAC-Att model
exhibits good performance compared with the vanilla attention model (Kool et al., 2019).

DAC-Att layer. Based on the trainable matrices WQg
m ∈ Rdĝ×dq , WKg

m ∈ Rdĝ×dq , WQh
m ∈ Rdĥ×dk

and WKh
m ∈ Rdĥ×dk (dq = dk = dĥ/m = dĝ/m, m = 4 is the number of attention heads), the
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DAC-Att layer computes the node attention score αh
i,j,m and the positional attention score αg

i,j,m for
each head m, which are given by Eq. (4).

αh
i,j,m =

1√
dk

(ĥiW
Qh
m )(ĥjW

Kh
m )T , αg

i,j,m =
1√
dk

(ĝiW
Qg
m )(ĝjW

Kg
m )T , (4)

The αh
i,j,m and αg

i,j,m of each head are concatenated into αh
i,j and αg

i,j , then further normalized to
α̃h
i,j and α̃g

i,j via Softmax. Finally, the output embedding h̃i and g̃i are computed by Eq. (5–6) with
trainable matrix WVh ,WVg ,WRh ,WRg ∈ Rdh̃×dv and WOh ,WOg ∈ R2dh̃×dv (dv = dh̃).

h̃i = concat[

N∑
j=1

α̃h
i,j(ĥjW

Vh),

N∑
j=1

α̃g
i,j(ĥjW

Rh)]WOh (5)

g̃i = concat[

N∑
j=1

α̃g
i,j(ĝjW

Vg ),

N∑
j=1

α̃h
i,j(ĝjW

Rg )]WOg (6)

FFN. It consists of two linear layers and one 64-dimensional hidden sub-layer with the ReLU
activation function.

4.2.2 DECODER

In the decoder, the max-pooling and multi-head attention (MHA) modules are applied to indepen-
dently generate the node-pair selection proposals for h̃ and g̃, after which the respective outputs are
aggregated by a multi-layer perception (MLP).

Max-pooling. Two independent max-pooling sub-layers are adopted to aggregate the global feature
representation for h̃ and g̃, respectively.

MHA. The MHA layer effectively represents the attention correlations for each node pair. Given the
state embeddings (h̃, g̃), the correlations score matrices Y h, Y g ∈ RN×N are computed as the dot
product of the query and key matrices similarly to Kool et al. (2019). Thereafter, the infeasible node
pairs are masked as −∞ before Softmax.

MLP. We adopt a four-layer MLP with structure (2m × 32 × 32 × 1) to aggregate two node-pair
selection proposals from h̃ and g̃.

4.3 A SHARED BASELINE FOR PROXIMAL POLICY OPTIMIZATION

We use n-step proximal policy optimization (PPO) (Savelsbergh, 1990) to train the policy network
and further design a shared baseline to reduce the variance of the training. The overall training
process is presented in Algorithm 1.

The training process involves a total of E epochs and B batches per epoch. For each batch, a set of
training instances D is randomly generated (line 3) and a population of weight vectors is randomly
sampled from the uniform distribution (line 4). The curriculum learning (CL) strategy (Bengio
et al., 2009) is used to derive the initial state for better sample efficiency (lines 6–8). The n-step
return estimation is then exploited to achieve a trade-off between effective reward propagation and
bias-variance following the original design of n-step PPO (lines 14–18).

We design a shared baseline bsharet′ (lines 16–17), rather than directly use a baseline obtained by
greedy rollout or an extra critic network. The shared baseline and reinforcement learning loss are
given in Eq. (7) and Eq. (8), respectively.

bsharet′ =
1

P

P∑
p=1

Rp
t′ (7)

▽θJ (θ) = 1
n|D|

∑
D
∑t+n

t′=t min{ πθ(at′ |st′ )
πold(at′ |st′ )

At′ ,

clip[ πθ(at′ |st′ )
πold(at′ |st′ )

, 1− ε, 1 + ε]At′}
(8)

where P is population size, Rp
t′ is the cumulative reward of offspring p after iteration t′ steps and At′

is the advantage compared to bsharet′ . Such a shared baseline exploiting all solutions of the population
can induce less variance due to the zero-mean advantage, and also can be computed more efficiently.
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Algorithm 1 The training process of WRPN.

Input: Initial policy network πθ, clipping threshold ε, population size P , weight vector distribution
Λ; learning rate ηθ, learning rate decay β, mini-batch κ, training steps Ttrain, CL scalar ρCL.

Output: Trained policy network πθ.
1: for e← 1 : E do
2: for b← 1 : B do
3: Randomly generate training instances D;
4: λp ← SampleWeight(Λ), ∀p ∈ {1, · · · , P};
5: δp ← InitialSolutions(D) , ∀p ∈ {1, · · · , P};
6: Improve δp via {(πθ, λp)} for T = e/ρCL steps;
7: s0← InitialState(δp, λp), ∀p ∈ {1, · · · , P}; t← 0;
8: while t < Ttrain do
9: Get {(st′ , at′ , rt′)}t+n

t′=t where at′ ∼ πθ(at′ |st′);
10: t← t+ n, πold ← πθ;
11: for z ← 1 : κ do
12: Rt+1 = 0;
13: for t′ ∈ {t, t− 1, · · · , t− n} do
14: Rt′ ← rt(λ) + γRt′+1;
15: Compute baseline bsharet′ using Eq. (7);
16: At′ ← Rt′ − bsharet′ ;
17: end for
18: Compute RL loss J (θ) using Eq. (8);
19: θ ← θ + ηθ ▽θ J (θ);
20: end for
21: end while
22: end for
23: ηθ ← βηθ
24: end for
Note: The superscipt p of sp, ap, Ap, rp and Rp for individual p is omitted from lines 7 to 16 for
readability.

4.4 QUALITY ENHANCEMENT

To further enhance the proximity and diversity of the Pareto set, we propose a quality enhancement
mechanism based on instance augmentation (Lin et al., 2022). Specifically, an instance of MOCOPs
still retains the equivalent optimal solution after multiple transformations, such as spatial rotations
and reflections. These instances are then solved by an MOEA with the trained WRPN to further
promote exploration. The final external population is obtained by aggregating all the non-dominated
solutions during search with respect to different transformed instances. More details of the algorithm
implementation can be found in Appendix G.

5 EXPERIMENTS

The experiments are conducted on a server with an Intel E5-2678 v3 CPU @ 2.50GHz and 8 TITAN
Xp GPUs. All the compared methods are implemented in Python using the Pytorch library, except that
LKH (Helsgaun, 2000; Tinós et al., 2018) is in C-style. Our codes will be made publicly available.

5.1 EXPERIMENTAL SETUP

Problems. We introduce two classic MOCOPs, i.e., multiobjective traveling salesman prob-
lem (MOTSP) (Lust and Teghem, 2010) and multiobjective capacitated vehicle routing problem
(MOCVRP) (Jozefowiez et al., 2008). Concretely, we consider bi/tri-objective (Bi/Tri-TSP) and
bi-objective CVRP (Bi-CVRP). For M -objective MOTSP, M groups of coordinates are given to
define M Euclidean travelling costs between a pair of nodes. The objective is to simultaneously
minimize M total costs. For Bi-CVRP, the objective is to minimize the total route lengths, as well as
the length of the longest route. See Appendix A for detailed descriptions of MOTSP and MOCVRP.
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Compared approaches. We compare our WRPN with three kinds of representative approaches.
(1) MOEA approaches: MOEA/D and NSGA-II with 5000 generations and MOGLS with 2000
generations and 50 local improvements; PPLS/D-C (Shi et al., 2022) with 200 generations. All of
them are efficiently implemented in parallel. These MOEAs also use relocate, exchange, and 2-opt
operator for MOTSP and MOCVRP. The population sizes of the former three are set identically
to 100, while the subregion number of PPLS/D-C is set to 10 according to the original paper. (2)
L2C approaches: DRL-MOA (Li et al., 2020), POMO-T (Kwon et al., 2020), PMOCO (Lin
et al., 2022) and MLDRL (Zhang et al., 2022). The former two use decomposition and parameter
migration strategies with Point Network (Vinyals et al., 2015) and POMO (Kwon et al., 2020) as their
single-objective submodels, respectively. The third one is the preference-conditioned multiobjective
combinatorial optimization in which the submodel is also POMO. The last one is the meta-learning
approach with POMO as its model architecture. Note that all the above approaches consider 101
decomposed subproblems. (3) The state-of-the-art single-objective solvers under WS scalarization.
101 decomposed subproblems are considered. Each subproblem is solved by LKH or OR-Tools1 for
MOTSP.

Metrics. We primarily adopt the hypervolume (HV) (Zitzler et al., 2007), the number of non-
dominated solutions (|NDS|) and the inverted generational distance plus (IGD+) (Ishibuchi et al.,
2016) to evaluate the performance of the compared algorithms. In general, the larger the HV is and
the smaller the IGD+ is, the better the corresponding algorithm performs. Our proposed method is
highlighted in italic and the best result and its statistically indifferent results are highlighted in bold.
The second-best result and the one without statistical significance to it are highlighted as underline.
A Wilcoxon rank-sum test with a significance level 1% is applied to compare the experimental results.
Additional details of the above metrics are introduced in Appendix D.

Training details. For MOTSP with different scales, the model is trained with E = 200 epochs. Each
epoch has B = 90 batches with batch size 120. For MOCVRP, we respectively set E = 200/200/100
with batch size 120/100/32 for MOCVRP-20/50/100. The population size P is set to 20 in training.
We set PPO-step n = 4 and Ttrain = 200 for MOTSP, while set n = 5 and Ttrain = 500 for
MOCVRP. The gradient norm is clipped within ε = 0.04/0.2/0.45 for the problems with scale
20/50/100. The reward discount factor is set to γ = 0.999. The Adam optimizer with a learning
rate ηθ = 10−4 is adopted, while decaying with β = 0.985 per epoch. To accelerate convergence,
the pre-trained 50-size model is used to train 100-size model. We also implement GPU parallel
training. For MOTSP-20/50/100, an epoch roughly takes 7/22/40 minutes, respectively. For
MOCVRP-20/50/100, it takes about 17/30/50 minutes, respectively.

Inference details. During inference, the population size P is set to 100. The number of iterations T is
set to 2000/5000. The number of local operations per iteration is set to 50, except for MOCVRP-100
that is increased to 100 due to its difficulty. All the compared methods are evaluated on the same
test dataset with 200 random instances. We further test the performance of PMOCO and MLDRL
with instance augmentation, in which 8 transformed instances are considered. Similarly, our WRPN
module based on MOGLS is also equipped with quality enhancement using 8 transformed instances.

5.2 RESULTS

MOTSP. For each problem size, the average IGD+, average HV, gap to the best HV, number of
non-dominated solutions, and average (inference) time on 200 random instances are shown in Table
1. Compared with basic MOEA approaches, WRPN incorporated with different MOEAs have
outstanding performance. In particular, MOGLS+WRPN achieves the lowest gap in fewest time for
all problem sizes. The comprehensive metrics, HV and IGD+, both indicate that WRPN is excellent in
proximity and diversity. When quality enhancement mechanism is adopted, MOGLS+WRPN(AUG)
with 5K iterations attains the highest HV for all sizes. It is even better than WS-LKH which is
based on weight decomposition. Moreover, our WRPN achieves larger gaps compared with other
competitors on Tri-TSP, e.g., a 2.94% gap for WS-LKH on Tri-TSP-100, which shows that WRPN is
able to excavate more potential Pareto solutions in the higher-dimensional objective space.

It is worth noting that WRPN may generate more than 100/105 non-dominated solutions. Its HV can
take advantage of the mass number of solutions. In Appendix F.2, we further analyze the effect of the
number of non-dominated solutions on HV.

1https://developers.google.com/optimization/
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Table 1: Comparison results on 200 random MOTSP instances.

Method Bi-TSP-20 Bi-TSP-50 Bi-TSP-100
IGD+ HV GAP |NDS| TIME IGD+ HV GAP |NDS| TIME IGD+ HV GAP |NDS| TIME

WS-LKH 0.23 0.6270 0.44% 15 3s 0.19 0.6415 0.56% 38 30s 0.12 0.7090 0.00% 65 1.8m
WS-ORTools 0.22 0.6256 0.67% 20 2s 0.30 0.6353 1.52% 49 16s 0.40 0.7004 1.21% 66 78s
MOEA/D(T=5K) 0.35 0.6264 0.81% 16 47s 0.56 0.6336 1.78% 56 72s 0.71 0.6951 1.96% 181 2.2m
NSGA-II(T=5K) 0.17 0.6283 0.24% 77 2.3m 1.07 0.6145 4.74% 98 2.3m 2.09 0.6634 6.43% 42 2.6m
MOGLS(T=5K) 0.18 0.6287 0.17% 49 14s 0.48 0.6296 2.40% 88 18s 2.30 0.6506 8.24% 103 31s
PPLS/D-C(T=200) 0.18 0.6256 0.67% 71 68s 0.45 0.6282 2.62% 213 6.4m 1.07 0.6844 3.47% 372 31.2m

DRL-MOA 0.78 0.5973 5.16% 17 2s 1.50 0.5909 8.40% 31 4s 3.40 0.6390 9.87% 38 7s
POMO-T 0.24 0.6257 0.65% 23 2s 0.33 0.6360 1.41% 57 4s 0.60 0.6970 1.69% 70 7s
PMOCO 0.20 0.6259 0.62% 18 2s 0.31 0.6351 1.55% 49 4s 0.54 0.6957 1.88% 71 7s
MLDRL 0.20 0.6271 0.43% 26 2s 0.28 0.6364 1.35% 63 4s 0.56 0.6969 1.71% 73 7s
MOEA/D+WRPN(T=5K) 0.14 0.6297 0.02% 76 95s 0.09 0.6445 0.09% 326 2.5m 0.20 0.7061 0.41% 258 4.6m
NSGA-II+WRPN(T=5K) 0.14 0.6296 0.03% 93 2.8m 0.11 0.6433 0.28% 272 4.4m 0.22 0.7057 0.47% 234 5.8m
MOGLS+WRPN(T=2K) 0.14 0.6296 0.03% 76 15s 0.09 0.6443 0.12% 241 22s 0.22 0.7055 0.49% 192 44s
MOGLS+WRPN(T=5K) 0.14 0.6297 0.02% 84 37s 0.08 0.6446 0.08% 302 55s 0.16 0.7069 0.30% 233 1.8m

PMOCO(AUG) 0.23 0.6271 0.43% 15 2s 0.16 0.6401 0.78% 51 5s 0.33 0.7013 1.09% 77 12s
MLDRL(AUG) 0.23 0.6271 0.43% 16 2s 0.13 0.6408 0.67% 63 5s 0.34 0.7022 0.96% 83 12s
MOGLS+WRPN(AUG)(T=2K) 0.14 0.6298 0.00% 92 27s 0.01 0.6450 0.02% 490 60s 0.10 0.7081 0.13% 324 2.7m
MOGLS+WRPN(AUG)(T=5K) 0.14 0.6298 0.00% 94 66s 0.00 0.6451 0.00% 465 2.7m 0.05 0.7090 0.00% 393 6.9m

Method Tri-TSP-20 Tri-TSP-50 Tri-TSP-100
IGD+ HV GAP |NDS| TIME IGD+ HV GAP |NDS| TIME IGD+ HV GAP |NDS| TIME

WS-LKH 0.24 0.4712 1.34% 61 4s 0.51 0.4440 3.42% 103 33s 0.82 0.5076 2.94% 105 2m
WS-ORTools 0.23 0.4703 1.53% 76 3s 0.71 0.4348 5.42% 102 19s 1.26 0.4947 5.41% 105 83s
MOEA/D(T=5K) 0.23 0.4704 1.51% 104 48s 0.61 0.4376 4.81% 627 78s 2.19 0.4698 10.17% 978 2.3m
NSGA-II(T=5K) 0.37 0.4572 4.27% 527 2.2m 3.55 0.3295 28.32% 624 3.1m 8.48 0.3301 36.88% 588 3.4m
MOGLS(T=2K) 0.16 0.4722 1.13% 242 15s 1.49 0.3958 13.90% 448 21s 5.52 0.3789 27.55% 496 32s
PPLS/D-C(T=200) 0.11 0.4698 1.63% 875 3.4m 0.96 0.4174 9.20% 3723 19.3m 3.02 0.4376 16.33% 8096 1.1h

PMOCO 0.25 0.4693 1.74% 71 2s 0.77 0.4315 6.14% 103 4s 1.57 0.4858 7.11% 105 7s
MLDRL 0.24 0.4701 1.61% 72 2s 0.74 0.4317 6.10% 103 4s 1.57 0.4852 7.23% 104 7s
MOEA/D+WRPN(T=5K) 0.08 0.4734 0.88% 347 95s 0.35 0.4485 2.44% 683 2.6m 0.67 0.5091 2.66% 709 4.3m
NSGA-II+WRPN(T=5K) 0.13 0.4734 0.88% 543 3.8m 0.35 0.4474 2.68% 5033 4.4m 1.44 0.4948 5.39% 7074 7.6m
MOGLS+WRPN(T=2K) 0.08 0.4759 0.36% 486 15s 0.24 0.4528 1.50% 1269 26s 0.55 0.5115 2.20% 1436 49s
MOGLS+WRPN(T=5K) 0.06 0.4766 0.21% 693 40s 0.17 0.4553 0.96% 2190 59s 0.38 0.5159 1.36% 2478 2.2m

PMOCO(AUG) 0.24 0.4712 1.34% 62 7s 0.57 0.4409 4.09% 104 19s 1.19 0.4956 5.24% 105 86s
MLDRL(AUG) 0.24 0.4712 1.34% 61 7s 0.55 0.4408 4.11% 104 19s 1.16 0.4958 5.20% 105 86s
MOGLS+WRPN(T=2K)(AUG) 0.03 0.4774 0.04% 1078 38s 0.06 0.4587 0.23% 4629 90s 0.16 0.5206 0.46% 5327 3.8m
MOGLS+WRPN(T=5K)(AUG) 0.01 0.4776 0.00% 1358 91s 0.03 0.4597 0.00% 4243 3.6m 0.06 0.5230 0.00% 8007 9.2m

Table 2: Comparison results on 200 random MOCVRP instances.

Method Bi-CVRP-20 Bi-CVRP-50 Bi-CVRP-100
IGD+ HV GAP |NDS| TIME IGD+ HV GAP |NDS| TIME IGD+ HV GAP |NDS| TIME

MOEA/D(T=5K) 0.68 0.3913 9.19% 8 7m 0.33 0.4012 2.38% 6 22.2m 0.88 0.3976 2.07% 7 38.5m
NSGA-II(T=5K) 0.06 0.4273 0.84% 14 5.7m 0.75 0.3937 4.23% 14 10.2m 1.67 0.3821 5.89% 13 14.7m
MOGLS(T=5K) 0.04 0.4285 0.56% 11 96s 0.44 0.3992 2.87% 11 4.2m 1.14 0.3939 2.98% 11 6.6m
PPLS/D-C(T=200) 0.04 0.4287 0.51% 15 24.6m 0.31 0.4007 2.51% 17 4.1h 1.00 0.3946 2.81% 20 14.8h

POMO-T 0.03 0.4287 0.51% 7 3s 0.04 0.4076 0.83% 10 7s 0.16 0.4055 0.12% 12 14s
PMOCO 0.06 0.4267 0.97% 5 3s 0.08 0.4031 1.92% 6 6s 0.24 0.3908 3.74% 5 13s
MLDRL 0.04 0.4181 2.97% 5 3s 0.04 0.4020 2.19% 9 6s 0.17 0.4022 0.94% 11 13s
MOEA/D+WRPN(T=5K) 0.01 0.4304 0.09% 16 8.2m 0.03 0.4092 0.23% 20 32.1m 0.21 0.4022 0.54% 16 40.8m
NSGA-II+WRPN(T=5K) 0.01 0.4295 0.32% 15 6.4m 0.08 0.4075 0.85% 19 12m 0.29 0.4045 0.37% 26 20.2m
MOGLS+WRPN(T=2K) 0.01 0.4307 0.05% 14 53s 0.03 0.4097 0.32% 18 2.2m 0.34 0.4034 0.64% 18 6.9m
MOGLS+WRPN(T=5K) 0.01 0.4308 0.02% 15 2.2m 0.02 0.4101 0.22% 20 4.6m 0.30 0.4044 0.39% 20 17.4m

PMOCO(AUG) 0.04 0.4294 0.35% 6 3s 0.04 0.4077 0.80% 7 7s 0.18 0.3966 2.32% 7 14s
MLDRL(AUG) 0.03 0.4219 2.09% 6 3s 0.02 0.4065 1.09% 10 7s 0.14 0.4059 0.02% 13 14s
MOGLS+WRPN(AUG)(T=2K) 0.00 0.4309 0.00% 17 84s 0.01 0.4107 0.07% 24 4.1m 0.28 0.4052 0.20% 24 16.5m
MOGLS+WRPN(AUG)(T=5K) 0.00 0.4309 0.00% 18 3.5m 0.01 0.4110 0.00% 26 10m 0.24 0.4060 0.00% 27 41m

MOCVRP. Table 2 presents the results for MOCVRP instances. From the table, we can find that
MOEAs equipped with WRPN are significantly better than MOEAs in terms of both running time and
solution quality. It also outperforms advanced L2C methods in terms of solution quality. Although
WRPN generally requires longer time, its training efficiency is better than L2C methods. We have
verified that the number of training samples of WRPN is about one to two orders of magnitude less
than PMOCO and MLDRL. Finally, it is worth noting that MOCVRP is more difficult to solve than
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MOTSP. In many leading heuristic approaches, complex problem-specific operators are proposed
to locally improve a solution. In our WRPN methods for MOCVRP, the ensemble operator only
includes relocate, exchange and 2-opt (see Appendix C for details). Such a simple design can partly
validate the effectiveness of WRPN.

5.3 ABLATION STUDY

Effects of the weight-related policy network. To verify our design of the weight-related policy
network, we compare WRPN with DACT (Ma et al., 2021), a representative L2I method for solving
single-objective COPs. DACT cannot directly address MOCOPs, since its policy network cannot
handle the weight vector. Therefore, we combine DACT with transfer learning (Li et al., 2020) to
cope with decomposed subproblems, thus solving MOCOPs. Specifically, we adopt the DACT model
pre-trained by the authors and performe transfer learning with 5 epochs per subproblem (keeping
the training dataset size consistent with WRPN). The final results based on the MOGLS framework
are displayed in Table 3. It can be observed that DACT exhibits poor performance with expensive
inference time. We also compare our WRPN with DACT on single objective that DACT specializes
in. The results can be found in Appendix H.

Effects of the shared baseline. To highlight the effectiveness of our shared baseline in training, we
compare it with the critic network as baseline (Ma et al., 2021) on 200 MOTSP-50 instances, while
keeping other settings of the model unchanged. For the critic baseline, it consists of one MHA layer,
two pooling layers and one three-layer MLP, which produces an estimated value for the current state
by using the encoder output (h̃, g̃). Figure 2 shows that the model trained with our shared baseline
converges much faster than that with the critic baseline.

Figure 2: Effects of the shared
baseline.

Table 3: Effects of the weight-
related policy network.

Method Bi-VRP-20
HV GAP TIME

DACT-T(T=2K) 0.3979 7.66% 1.5h
WRPN(T=2K) 0.4307 0.05% 53s
WRPN(AUG)(T=5K) 0.4309 0.00% 84s

Table 4: Effects of the quality
enhancement.

Method Bi-TSP-100
HV GAP TIME

WRPN (VIA) (T=2K) 0.7018 1.02% 2.5m
WRPN (VIA) (T=5K) 0.7044 0.65% 5.7m
WRPN (QE) (T=2K) 0.7081 0.13% 2.7m
WRPN (QE) (T=5K) 0.7090 0.00% 6.9m

Effects of the quality enhancement. To provide further insights and comparisons, we conducted
complementary experiments to evaluate the impact of the proposed quality enhancement (QE)
technique and a vanilla instance augmentation (VIA) technique proposed by Lin et al. (2022). The
VIA technique simply retains the best solution of multiple transformed instances in a prescribed
direction during each iteration, without utilizing a set of temporal external populations to archive
non-dominated solutions. The results based on MOGLS are presented in Table 4. It shows that our
QE mechanism outperforms the VIA technique in terms of HV. This finding clearly demonstrates
the utility of QE as an effective mechanism for enhancing diversity exploration in MOCOPs. More
experimental results can be found in Appendix G.

6 CONCLUSION

L2I is a generic DRL-based improvement paradigm for MOCOPs that iteratively improve a population
of solutions. We propose WRPN, an end-to-end model, to effectively guide the local improvement.
A shared baseline is designed to train WRPN efficiently. The quality enhancement mechanism is
also adopted to improve the search. Extensive experiments on MOTSP and MOCVRP justify that
WRPN can produce promising PF with good proximity and diversity, and achieve state-of-the-art
results. Note that WRPN is also applicable to other MOEA frameworks. In future, more advanced
DRL techniques can be devised to better learn implicit patterns of MOEA components. In addition,
it would be interesting to investigate the performance of other L2I approaches to solve complex
MOCOPs with many objectives.
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A PROBLEM DESCRIPTIONS

A.1 MOTSP

Definition. The multiobjective traveling salesman problem (MOTSP) is one of the most commonly
studied MOCOPs. For MOTSP with N nodes and M objectives, the i-th node has M 2-dimensional
coordinates {(x1

i,1, x
1
i,2), · · · , (xM

i,1, x
M
i,2)}. The m-th cost cmij =

∥∥xm
i − xm

j

∥∥
2

is the Euclidean
distance between node i and node j. The goal is to find a cyclic permutation π to minimize all the M
sum costs simultaneously.

min f(π) = (f1(π), f2(π), · · · , fM (π)), (9)

where

fm(π) = cmπN ,π1
+

N−1∑
i=1

cmπi,πi+1
. (10)

Training Instances. For each instance, N nodes are randomly sampled in the 2M -dimensional unit
hyper-square [0, 1]2M with the uniform distribution.

A.2 MOCVRP

Definition. The capacitated vehicle routing problem (CVRP) is a classic extension of TSP. In addition
to N customer nodes, CVRP has a depot node. Each node is associated with 2-dimensional Euclidean
coordinates. The customer node i has a demand di to be satisfied. An unlimited number of delivery
vehicles with fixed capacity D starts from the depot, then deliver goods to customer nodes to satisfy
their demands, and finally returns to the depot. Each customer must be served exactly once and the
total demands served by each vehicle cannot exceed D.

In the multiobjective capacitated vehicle routing problem (MOCVRP), we consider two objectives,
i.e., the total route length and the length of the longest route (also known as makespan).

Training Instances. The coordinates of n customer nodes and the depot node are randomly sampled
in the unit square with the uniform distribution. The demand di of customer i is sampled uniformly
from a discret set {1, 2, · · · , 9}. The capacity D is set to 30/40/50 for n = 20/50/100. Similar to
the previous works (Kwon et al., 2020; Lin et al., 2022), the demands and capacity will be normalized
to d̂i =

di

D and D̂ = D
D = 1.

B ADDITIONAL DETAILS OF THE WEIGHT-RELATED POLICY NETWORK

Figure 3: Architecture of the weight-related policy network.
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Algorithm 2 Pseudocode of WRPN.

Input: Solutions set x, Instance v, Weight vector set λ, Number of stacked encoders L.
Output: Improved solutions set x′.

1: procedure WRPN(x, λ, v)
2: h← NodeEmbedding (v);
3: g← PositionalEmbedding (x);
4: λ̃←WeightEmbedding (λ);
5: h̃← Node-wise Linear (h, λ̃);
6: g̃← Position-wise Linear (g, λ̃);
7: for l← 1 : L do
8: h̃(l), g̃(l) ← Encoder (h̃(l−1), g̃(l−1));
9: end for

10: Action Probability Matrix P ← Decoder(h̃(L), g̃(L));
11: a← GreedyAction(P );
12: x′ ← EnsembleOperator(x, a);
13: return x′;
14: end procedure

WRPN generates the action proposal for improving a solution x under a given preference λ. Algo-
rithm 2 provides the pseudo-code for WRPN to solve an MOCOP instance v, where the Node-wise
Linear and Position-wise Linear follows the design of FiLM (Brockschmidt, 2020). Figure 3
illustrates the detailed architecture of the policy network, which is based on the encoder-decoder
architecture. The proposed network is a unified model for general MOCOPs, with problem-specific
adjustments for different inputs and masking mechanisms. In the following, we present the network
inputs and masking mechanisms for both MOTSP and MOCVRP.

B.1 NETWORK INPUTS OF MOTSP

The network inputs of MOTSP contain:

• N 2M -dimensional vectors for the nodes v1, . . . , vN , where each node is associated with
M groups of coordinates.

• An N -dimensional vector for the current solutions x1, . . . , xN .

• A M -dimensional vector for the decomposed weight.

We simply mask all the diagonal elements of the output action probability matrix, since they have no
meanings for the designed operators.

B.2 NETWORK INPUTS OF MOCVRP

A solution of MOCVRP may contain multiple routes. We use a giant tour representation, which con-
catenate all the routes using the depot node as delimiters, to denote a solution. For example, a solution
with three routes {(0, 1, 2, 0), (0, 3, 0), (0, 4, 5, 6, 0)} can be represented as (0, 1, 2, 0, 3, 0, 4, 5, 6, 0).
For ease of parallel batch training, we add multiple dummy nodes to the end of solutions to align
the length of different solutions (Wu et al., 2021). In this paper, the maximum number of dummy
depots is set to Q = 10/20/20 for N = 20/50/100. Thus, the total number of nodes in a solution is
N +Q+ 1.

The network inputs for MOCVRP contain:

• N 3-dimensional vectors for the nodes v1, . . . , vN , where each node is associated with two
coordinates and a demand.

• A 2-dimensional vector for the depot v0.

• A 2-dimensional vector for the decomposed weight.
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• An (N +Q+ 1)-dimensional vector for the current solutions x1, . . . , xN+Q+1.

For MOCVRP, we further design a few more solution-specific features for each node. Given a specific
solution (x1 = 0, · · · , xi−1, xi, xi+1, · · · , xN+Q+1 = 0), we include an additional 4-dimensional
vector for each node xi, which consists of a 2-dimensional vector for the total demand before node xi

and the total demand after node xi (inclusive) on the corresponding sub-route, and a 2-dimensional
vector for the distance from node xi to its neighbor nodes xi−1 and xi+1;

The masking mechanism in MOCVRP is similar to that in MOTSP. In addition to masking the
diagonal elements, those elements in the action probability matrix which make the solution infeasible
(e.g., violating the capacity constraints) are also masked.

C DETAILS OF OPERATORS

A solution of MOTSP or MOCVRP can be represented by a sequence of nodes. The following three
operators are applied to define the neighborhood of a solution.

• Relocate(i,j): Remove the node at location i and relocate it next to location j.

• Exchange(i,j): Exchange the node at location i with the node at location j.

• 2-opt(i,j): Exchange two edges by reversing a segment between location i and location j.

D METRIC DETAILS

Hypervolume (HV). HV is a widely used hybrid indicator to evaluate the quality of Pareto fronts
(PFs). It represents the volume covered by the non-dominated set of solutions with respect to the
reference point. HV comprehensively measures the convergence and diversity of PFs. Given an
approximated Pareto set P ⊂ RM and a reference point r∗, we can calculate the hypervolume HV(P ,
r∗) as defined in Eq. (11).

HV(P, r∗) = VOL(S) (11)

S = {r ∈ RM | ∃r ∈ P such that y ≺ r ≺ r∗} (12)

where VOL(·) is the Lebesgue measure (Zizler, 1998), and r∗ is dominated by all solutions in P .

As the HV values vary significantly due to different objective scales of different problems, our
experimental results report the normalized values H̃(PF, r∗) = HV(PF, r∗)/

∏M
i=1 r∗i , where all

the methods share the same r∗ . The specific settings of r∗ for all MOCOPs are shown in Table 5.

Table 5: The settings of reference points for different MOCOPs.

Problem Size Reference point r∗

Bi-TSP
20 (20, 20)
50 (35, 35)

100 (65, 65)

Bi-CVRP
20 (30, 4)
50 (45, 4)

100 (80, 4)

Tri-TSP
20 (20, 20, 20)
50 (35, 35, 35)

100 (65, 65, 65)

Inverted generational distance plus (IGD+). IGD+ is a variant of the inverted generational
distance (IGD) that is also widely used to evaluate the performance of multiobjective combinatorial
optimization algorithms. Compared with IGD, it has the advantage of computation simplicity and
weakly Pareto-compliant, so that it can more accurately evaluate PFs. IGD+ measures the distance
between the approximated Pareto solutions P and the Pareto optimal solutions P∗ in PF. The
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definitions of IGD+ is as follows:

IGD+(P) = (

|P∗|∑
i=1

|P|
min
j=1

d(zi, xj))/|P∗|, z ∈ P∗, x ∈ P (13)

d(z, x) =
√
(max{x1 − z1, 0})2 + · · · , (max{xM − zM , 0})2 (14)

In above, xi and zi denote the i-th objective value in the approximation solution x and the Pareto
optimal solution z, respectively.

Since P∗ is difficult to be known beforehand, all the approximated solutions obtained by different
algorithms for the same instance are aggregated to represent P∗ in this paper.

E ADDITIONAL DETAILS OF EXPERIMENTS

E.1 RESULTS ON BENCHMARK INSTANCES

In Table 6, we report results of all the methods on four MOTSP benchmark instances, which are
constructed by KroA/B/C/D/E in the TSPLIB (Reinelt, 1991). It can be noted that for all the instances,
our WRPN significantly outperforms other methods in terms of HV and IGD+. The visualisation in
Figure 4 also validates the superiority of WRPN.

Table 6: Computational results on MOTSP benchmark instances.

Method KroAB100 KroBC100 KroCD100 KroDE100
IGD+ HV GAP |NDS|IGD+ HV GAP |NDS|IGD+ HV GAP |NDS|IGD+ HV GAP |NDS|

WS-LKH 0.13 0.7022 0.06% 73 0.10 0.7022 0.03% 68 0.08 0.71610.00% 70 0.12 0.7019 0.07% 66
WS-ORTools 0.37 0.6956 1.00% 63 0.40 0.6942 1.17% 63 0.38 0.7079 1.15% 65 0.36 0.6958 0.94% 65
MOEA/D(T=5K) 0.71 0.6897 1.84% 119 0.50 0.6906 1.68% 132 0.67 0.7016 2.02% 113 0.64 0.6889 1.92% 114
NSGA-II(T=5K) 1.91 0.6682 4.90% 113 2.01 0.6608 5.92% 105 2.03 0.6760 5.60% 107 2.00 0.6621 5.74% 107
MOGLS(T=5K) 1.89 0.6576 6.40% 122 2.01 0.6536 6.95% 101 2.09 0.6651 7.12% 90 1.88 0.6588 6.21% 108
PPLS/D-C(T=200) 1.10 0.6785 3.43% 388 0.66 0.6879 2.06% 519 0.64 0.7027 1.87% 0.64 0.65 0.6881 2.04% 546

DRL-MOA 3.69 0.631410.13% 44 3.37 0.6336 9.79% 45 3.41 0.6521 8.94% 34 3.47 0.6364 9.40% 39
POMO-T 0.56 0.6912 1.62% 67 0.67 0.6886 1.96% 64 0.63 0.7039 1.70% 65 0.61 0.6900 1.77% 69
PMOCO 0.56 0.6884 2.02% 72 0.59 0.6883 2.01% 73 0.61 0.7011 2.09% 76 0.59 0.6887 1.95% 77
MLDRL 0.58 0.6892 1.91% 67 0.58 0.6895 1.84% 74 0.58 0.7038 1.72% 68 0.58 0.6902 1.74% 77
MOEA/D+WRPN(T=5K) 0.35 0.6962 0.91% 136 0.33 0.6958 0.94% 146 0.32 0.7108 0.74% 122 0.32 0.6961 0.90% 146
NSGA-II+WRPN(T=5K) 0.17 0.7002 0.34% 439 0.09 0.7011 0.19% 381 0.17 0.7133 0.39% 297 0.16 0.6991 0.47% 373
MOGLS+WRPN(T=2K) 0.21 0.6992 0.48% 193 0.23 0.6986 0.54% 200 0.22 0.7129 0.45% 186 0.23 0.6983 0.58% 197
MOGLS+WRPN(T=5K) 0.14 0.7007 0.27% 231 0.14 0.7003 0.30% 224 0.15 0.7140 0.29% 243 0.15 0.7002 0.31% 250

PMOCO(AUG) 0.37 0.6938 1.25% 73 0.37 0.6938 1.22% 75 0.35 0.7079 1.15% 72 0.39 0.6941 1.18% 85
MLDRL(AUG) 0.37 0.6952 1.05% 81 0.37 0.6946 1.11% 75 0.32 0.7089 1.01% 84 0.39 0.6944 1.14% 82
MOGLS+WRPN(T=2K)(AUG) 0.08 0.7019 0.10% 314 0.09 0.7015 0.13% 376 0.09 0.7150 0.15% 310 0.08 0.7016 0.11% 343
MOGLS+WRPN(T=5K)(AUG) 0.04 0.7026 0.00% 382 0.05 0.70240.00% 413 0.05 0.71610.00% 360 0.04 0.70240.00% 399

E.2 RESULTS OF DIFFERENT IMPLEMENTATIONS OF MOEAS

Considering that we implemented efficient parallelism MOEAs by ourselves based on their original
frameworks, we further provide experimental results of the serial version of MOEAs based on the
Pymoo library 2 (MOEA/D (Pymoo) and NSGA-II (Pymoo)) implementation with our replicated
parallel version. It is worth mentioning that in the parallel version we implemented, we removed
crossover operators, since the crossover operators hardly benefit the solution quality. Table 7 shows
that the version we have implemented is superior on large-scale instances in terms of solution quality
and running time.

2https://pymoo.org/
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(a) KroAB100 (b) KroBC100

(c) KroCD100 (d) KroDE100

Figure 4: The Pareto front obtained on MOTSP benchmark instances. (Note: for clarity, we only put
a dot for every 5 consecutive solutions along each PF.)

Table 7: Results of different implementations of MOEAs.

Method Bi-TSP-20 Bi-TSP-50 Bi-TSP-100
IGD+ HV GAP |NDS| TIME IGD+ HV GAP |NDS| TIME IGD+ HV GAP |NDS| TIME

MOEA/D (Pymoo) 0.15 0.6264 0.54% 15 11m 0.69 0.5994 7.08% 82 14m 3.74 0.5947 16.12% 70 22.6m
NSGA-II (Pymoo) 0.14 0.6294 0.06% 87 3.9m 0.45 0.6248 3.15% 100 8.5m 3.88 0.6106 13.88% 99 18.4m
MOEA/D 0.35 0.6247 0.81% 16 47s 0.56 0.6336 1.78% 56 1.2m 0.71 0.6951 1.96% 181 2.2m
NSGA-II 0.17 0.6283 0.24% 77 2.3m 1.07 0.6145 4.74% 98 2.3m 2.09 0.6634 6.43% 42 2.6m

Method Bi-CVRP-20 Bi-CVRP-50 Bi-CVRP-100
IGD+ HV GAP |NDS| TIME IGD+ HV GAP |NDS| TIME IGD+ HV GAP |NDS| TIME

MOEA/D (Pymoo) 0.11 0.3991 7.38% 6 4.9m 0.86 0.3199 22.17% 5 9.3m 6.11 0.1979 51.26% 4 16.6m
NSGA-II (Pymoo) 0.09 0.4038 6.29% 15 4.1m 0.17 0.3785 7.91% 9 9.2m 3.47 0.2849 29.83% 8 17.9m
MOEA/D 0.10 0.4260 1.14% 5 7m 0.33 0.4012 2.87% 11 22.2m 0.88 0.3976 2.07% 10 38.5m
NSGA-II 0.06 0.4273 0.84% 14 5.7m 0.75 0.3937 4.21% 14 10.2m 1.29 0.3821 5.89% 13 14.7m

Method Tri-TSP-20 Tri-TSP-50 Tri-TSP-100
IGD+ HV GAP |NDS| TIME IGD+ HV GAP |NDS| TIME IGD+ HV GAP |NDS| TIME

MOEA/D (Pymoo) 0.25 0.4588 3.94% 86 12.9m 1.83 0.3677 20.01% 96 18m 7.56 0.3284 37.21% 95 27.4m
NSGA-II (Pymoo) 0.79 0.4502 5.74% 105 5.1m 5.93 0.2746 40.27% 105 10.8m 19.13 0.1990 61.95% 105 20.3m
MOEA/D 0.23 0.4704 1.51% 104 48s 0.61 0.4376 4.81% 627 78s 2.19 0.4698 10.17% 978 3.3m
NSGA-II 0.37 0.4572 4.27% 517 2.2m 3.55 0.3295 28.32% 624 3.1m 8.48 0.3301 36.88% 588 3.4m
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F EFFECT OF DIFFERENT MODULES OF WRPN

F.1 EFFECT OF OPERATORS

In our MOGLS+WRPN for MOTSP, the state transition for a solution executes the ensemble operator
based on the action proposal. In Table 8, we evaluate the effectiveness of the ensemble operator
against a single operator on MOTSP-50. The 2-opt operator takes the longest running time but has
the most significant effect among three single operators. It achieves similar performance as the
ensemble operator when T = 2K steps. However, it seems to trap into local optima and cannot get
further improved when T = 5K steps. In comparison, the ensemble operator makes the improvement
process less vulnerable to falling into local optima.

Table 8: Comparison results on MOTSP-50 for different operators.

Method Operator HV GAP Time

MOGLS+WRPN(T=2K) Exchange 0.6313 2.13% 18s
Relocate 0.6409 0.64% 17s

2-opt 0.6442 0.14% 20s
Ensemble 0.6443 0.13% 22s

MOGLS+WRPN(T=5K) Exchange 0.6350 1.57% 43s
Relocate 0.6424 0.41% 42s

2-opt 0.6441 0.15% 52s
Ensemble 0.6451 0.00% 55s

F.2 EFFECT OF THE NUMBER OF NON-DOMINATED SOLUTIONS

Note that our WRPN may generate more than 100 non-dominated solutions. Its HV can take
advantage of the mass number of solutions. Therefore, we design MOGLS+WRPN with truncated
PF (MOGLS+WRPN-), which restricts the number of non-dominated solutions found by WRPN to
an upper limit 100/105 for Bi-TSP/Tri-TSP according to the crowding distance approach (Deb et al.,
2002). Table 9 shows the comparison results. The good performance of MOGLS+WRPN- suffices to
verify the quality of found solutions.

Table 9: Effect of the number of non-dominated solutions.

Method Bi-TSP-20 Bi-TSP-50 Bi-TSP-100
IGD+ HV GAP |NDS| TIME IGD+ HV GAP |NDS| TIME IGD+ HV GAP |NDS| TIME

WS-LKH 0.11 0.6270 0.44% 15 3s 0.14 0.6415 0.56% 38 30s 0.11 0.7090 0.00% 65 1.8m

MOGLS+WRPN-(T=2K) 0.01 0.6296 0.03% 76 15s 0.09 0.6429 0.34% 100 22s 0.28 0.7044 0.65% 100 44s
MOGLS+WRPN-(T=5K) 0.00 0.6297 0.02% 82 37s 0.10 0.6426 0.39% 100 55s 0.24 0.7053 0.52% 100 1.8m
MOGLS+WRPN(T=2K) 0.01 0.6296 0.03% 76 15s 0.03 0.6443 0.12% 255 22s 0.22 0.7054 0.51% 193 44s
MOGLS+WRPN(T=5K) 0.00 0.6297 0.02% 84 37s 0.02 0.6446 0.08% 327 55s 0.15 0.7069 0.30% 234 1.8m

MOGLS+WRPN(T=5K)(AUG) 0.00 0.6298 0.00% 89 66s 0.00 0.6451 0.00% 570 2.7m 0.05 0.7090 0.00% 393 6.9m

Method Tri-TSP-20 Tri-TSP-50 Tri-TSP-100
IGD+ HV GAP |NDS| TIME IGD+ HV GAP |NDS| TIME IGD+ HV GAP |NDS| TIME

WS-LKH 0.24 0.4712 1.34% 61 4s 0.51 0.4440 3.42% 103 33s 0.81 0.5076 2.94% 105 2m

MOGLS+WRPN-(T=2K) 0.23 0.4693 1.74% 105 15s 0.78 0.4321 6.03% 105 26s 1.58 0.4862 7.04% 105 49s
MOGLS+WRPN-(T=5K) 0.23 0.4687 1.86% 105 40s 0.76 0.4324 5.95% 105 59s 1.56 0.4874 6.81% 105 2.2m
MOGLS+WRPN(T=2K) 0.08 0.4759 0.36% 486 15s 0.23 0.4528 1.51% 1269 26s 0.54 0.5115 2.20% 1436 49s
MOGLS+WRPN(T=5K) 0.06 0.4766 0.21% 693 40s 0.16 0.4553 0.96% 2190 59s 0.36 0.5159 1.36% 2478 2.2m

MOGLS+WRPN(T=5K)(AUG) 0.01 0.4776 0.00% 1142 91s 0.03 0.4597 0.00% 6971 3.6m 0.06 0.5230 0.00% 8007 9.2m

F.3 EFFECT OF SOLVING TIME

Furthermore, we supplement the experiments in Table 10 by expanding the solving time of PMOCO
and restricting the solving time of WRPN , but the results do not exhibit significant improvement
with an increase in runtime cost.
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Table 10: Effect of solving time.

Method Bi-TSP-20 Bi-TSP-50 Bi-TSP-100
IGD+ HV GAP |NDS| TIME IGD+ HV GAP |NDS| TIME IGD+ HV GAP |NDS| TIME

WS-LKH 0.23 0.6270 0.44% 15 3s 0.19 0.6415 0.56% 38 30s 0.12 0.7090 0.00% 65 1.8m

PMOCO 0.20 0.6259 0.62% 18 2s 0.31 0.6351 1.55% 49 4s 0.54 0.6957 1.88% 71 7s
MLDRL 0.20 0.6271 0.43% 26 2s 0.28 0.6364 1.35% 63 4s 0.56 0.6969 1.71% 73 7s
MOGLS+WRPN(T=2K) 0.14 0.6296 0.03% 76 15s 0.09 0.6443 0.12% 241 22s 0.22 0.7055 0.49% 192 44s
MOGLS+WRPN(T=5K) 0.14 0.6297 0.02% 84 37s 0.08 0.6446 0.08% 302 55s 0.16 0.7069 0.30% 233 1.8m
MOGLS+WRPN(Restricted time) 0.14 0.6296 0.03% 83 2s 0.13 0.6428 0.36% 194 5s 0.34 0.7026 0.90% 221 12s

PMOCO(AUG) 0.23 0.6271 0.43% 15 2s 0.16 0.6401 0.78% 51 5s 0.33 0.7013 1.09% 77 12s
PMOCO(AUG)(Extended time) 0.22 0.6273 0.40% 17 55s 0.18 0.6407 0.73% 76 1.7m 0.26 0.7032 0.82% 169 3.7m
MOGLS+WRPN(AUG)(T=2K) 0.14 0.6298 0.00% 92 27s 0.01 0.6450 0.02% 490 60s 0.10 0.7081 0.13% 324 2.7m
MOGLS+WRPN(AUG)(T=5K) 0.14 0.6298 0.00% 94 66s 0.00 0.6451 0.00% 465 2.7m 0.05 0.7090 0.00% 393 6.9m

F.4 EFFECT OF THE NUMBER OF INDEPENDENT EXECUTIONS

All learning-based methods employing the greedy strategy are executed only once, as their outcomes
exhibit no randomness. For WS-LKH and WS-ORTools, we conduct a single run, because their
results from 10 runs, despite consuming more runtime, are close to those from a solitary run, as
discussed in Kool et al. (2019). For our WRPN and the baseline MOEAs, we have further performed
10 independent executions for Bi-TSP-20/50/100 and supplement the mean and standard deviations
of these methods in HV, as presented in Table 11. The additional experiments indicated very minimal
standard deviations, so for all experiments we run them only once to reduce time overheads.

Table 11: Effect of 10 independent executions on 200 randomly instances of Bi-TSP.

Method Bi-TSP-20 Bi-TSP-50 Bi-TSP-100
mean std. mean std. mean std.

MOEA/D 0.6247 1.1 ×10−4 0.6338 1.4 ×10−4 0.6956 7.5 ×10−5

NSGA-II 0.6284 9.1 ×10−5 0.6147 1.1 ×10−4 0.6708 6.2 ×10−5

MOGLS 0.6286 4.1 ×10−5 0.6296 9.9 ×10−5 0.6504 1.6 ×10−4

MOGLS+WRPN 0.6297 1.7×10−6 0.6446 4.4×10−6 0.7069 1.4×10−5

G ADDITIONAL DETAILS OF QUALITY ENHANCEMENT

In the quality enhancement process, several instances are first augmented. The instance augmentation
for MOCOPs is presented in construction methods (Lin et al., 2022), which transform the original
instance into multiple instances through a variety of efficient transformations, while all the instances
share the same optimal solution. For a 2-dimensional coordinate (x, y) in the space [0, 1] × [0, 1],
it can be transformed by flipping or rotating. Typically, there are 8 common transformations,
{(x, y), (y, x), (x, 1− y), (y, 1− x), (1− x, y), (1− y, x), (1− x, 1− y), (1− y, 1− x)}. When it
is generalized to MOCOPs (e.g., MOTSP), there are M 2-dimensional coordinates, and thus a total
of 8M transformations can be obtained. In this paper, in order to reduce the inference time, we only
consider one of M 2-dimensional coordinates for a problem instance so as to obtain 8 transformed
instances.

As an example, we provide the frameworks of a conventional MOGLS and its augmented L2I
counterpart in Algorithm 3. The improvement process in MOGLS is modified into the L2I process
in MOGLS_L2I. During the iterations, those non-dominated solutions are archived in the external
population EPz for instance Iz . In lines 13–15, some solutions may be discarded based on their
crowding distances (Deb et al., 2002), if the external population has an upper limit. The final EP is
obtained by aggregating all EPz of different transformed instances.

The full results of our quality enhancement (QE) and vanilla instance augmentation (VIA) are
presented in Table 12.
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Algorithm 3 Conventional MOGLS and its augmented L2I counterpart.
Input: Instance set I, weight vector

distribution Λ, iteration number
T .

Output: External population EP .
1: procedure MOGLS( I, Λ, T )
2: (Empty)
3: δ← InitialSolutions(I);
4: EP ← ∅;
5: for t← 1 : T do
6: λ← SampleWeight(Λ);
7: δ̂← Selection(δ, λ);
8: o← Crossover(δ̂);
9: o′ ← Improve(o, λ);

10: δ← Update(δ, o′);
11: EP ← Archive(EP, o′);
12: end for
13: (Empty)
14: (Empty)
15: (Empty)
16: return EP ;
17: end procedure

Input: Instance set I, policy network πθ, weight vector
distribution Λ, iteration number T , number of trans-
forms Z.

Output: External population EP .
1: procedure MOGLS_L2I( I, Λ, T , πθ, Z)
2: {I1, I2, · · · , IZ} ← InstanceTransform(I);
3: δz ← InitialSolutions(Iz), ∀z ∈ {1, · · · , Z};
4: EP , EPz ← ∅, ∀z ∈ {1, · · · , Z};
5: for t← 1 : T do
6: λ← SampleWeight(Λ);
7: δ̂z ← Selection(δz, λ), ∀z ∈ {1, · · · , Z};
8: oz ← Crossover(δ̂z), ∀z ∈ {1, · · · , Z};
9: o′z ←WRPN(oz, λ), ∀z ∈ {1, · · · , Z};

10: δz ← Update(δz, o′z), ∀z ∈ {1, · · · , Z};
11: EPz ← Archive(EPz, o

′
z), ∀z ∈ {1, · · · , Z};

12: end for
13: for z ← 1 : Z do
14: EP ← Archive(EPz, EP );
15: end for
16: return EP ;
17: end procedure

Table 12: Experimental results of different enhancement mechanism on 200 randomly instances of
Bi-TSP.

Method Bi-TSP-20 Bi-TSP-50 Bi-TSP-100
HV GAP |NDS| TIME HV GAP |NDS| TIME HV GAP |NDS| TIME

MOGLS+WRPN (VIA) (T=2K) 0.6295 0.05% 79 26s 0.6425 0.39% 182 56s 0.7018 1.02% 188 2.5m
MOGLS+WRPN (VIA) (T=5K) 0.6296 0.03% 92 62s 0.6437 0.28% 214 2m 0.7044 0.65% 228 5.7m
MOGLS+WRPN (QE) (T=2K) 0.6298 0.00% 92 27s 0.6450 0.02% 490 60s 0.7081 0.13% 324 2.7m
MOGLS+WRPN (QE) (T=5K) 0.6298 0.00% 94 66s 0.6451 0.00% 465 2.7m 0.7090 0.00% 393 6.9m

H COMPARISON ON SINGLE OBJECTIVE WITH DACT

While the core idea of our method and single-objective L2I is to achieve approximate optimal
solutions through improvement, our method differs significantly from single-objective L2I in terms
of network structure, training algorithm, action space, etc. Our WRPN approach enables the parallel
improvement of multiple solutions and can be easily integrated with the general MOEA framework.
In addition to the MOCOPs, we adapted WRPN to solve SOCOPs by fixing weights in a specific
direction for the search. Table 13 presents WRPN on VRP-20 and VRP-50 with the objective solely
on optimizing the first objective f1 (i.e., the total routing cost) in Bi-VRP. Although WRPN performs
slightly inferior to DACT, it still achieves competitive results.

Table 13: Experimental results of WRPN and DACT on 200 randomly instances of single-objective
VRP.

Method VRP-20 VRP-50
f1 GAP TIME f1 GAP TIME

DACT(T=2K) 6.105 0.03% 1.3m 10.342 0.17% 2.2m
DACT(T=5K) 6.099 -0.08% 3.7m 10.282 -0.40% 6.2m
WRPN(T=2K) 6.108 0.08% 1.3m 10.374 0.49% 2.2m
WRPN(T=5K) 6.104 0.00% 3.6m 10.324 0.00% 6.2m
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I MODEL HYPERPARAMETERS

In addition to the various parameters mentioned in the training details in Section 5.1. More detailed
hyperparameters settings of our WRPN are listed in Table 14.

Table 14: List of model hyperparameters.

Parameter Value

Number of stacked encoders L 3
Number of attention heads m 4

Embedding dim 64
Hidden dim 64

J USED ASSETS AND LICENSES

Table 15 lists the assets used in our work, which are all open-source for academic research. We use
the MIT license for our code and the used data (new assets).

Table 15: Used assets and their licenses.

Type Asset License Usage

Code

LKH (Tinós et al., 2018) Available for academic use Evaluation
ORTools Tinós et al. (2018) Available for academic use Evaluation
NSGA-II (Deb et al., 2002) MIT License Remodification and evaluation
MOEA/D (Ke et al., 2013) MIT License Remodification and evaluation

MOGLS (Jaszkiewicz, 2002) MIT License Remodification and evaluation
PPLS-D/C (Shi et al., 2022) MIT License Remodification and evaluation
DRL-MOA (Li et al., 2020) MIT License Remodification and evaluation

POMO-T (Kwon et al., 2020) MIT License Remodification and evaluation
PMOCO (Lin et al., 2022) MIT License Remodification and evaluation

MLDRL (Zhang et al., 2022) MIT License Remodification and evaluation

Datasets TSPLIB Available for any non-commerial use Testing
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