Making Hard Problems Easier with Custom Data Distributions
and Loss Regularization: A Case Study in Modular Arithmetic

Eshika Saxena“' Alberto Alfarano”' Emily Wenger !> Kristin Lauter f !

Abstract

Recent work showed that ML-based attacks on
Learning with Errors (LWE), a hard problem used
in post-quantum cryptography, outperform classi-
cal algebraic attacks in certain settings. Although
promising, ML attacks struggle to scale to more
complex LWE settings. Prior work connected this
issue to the difficulty of training ML models to
do modular arithmetic, a core feature of the LWE
problem. To address this, we develop techniques
that significantly boost the performance of ML
models on modular arithmetic tasks—enabling
the models to sum up to N = 128 elements mod-
ulo ¢ < 974269. Our core innovation is the use
of custom training data distributions and a care-
fully designed loss function that better represents
the problem structure. We apply an initial proof
of concept of our techniques to LWE specifically
and find that they allow recovery of 2x harder se-
crets than prior work. Our techniques also help
ML models learn other well-studied problems bet-
ter, including copy, associative recall, and parity,
motivating further study.

1. Introduction

Modular arithmetic is a key component of many crypto-
graphic hard problems, including Learning with Errors
(LWE), which is the basis for several newly standardized
post-quantum cryptosystems (Chen et al., 2022). The LWE
problem involves determining a secret vector given two
pieces of information: A € Z7'*", a matrix sampled uni-
formly at random mod ¢,andb = A-s+e € ZZ]”, the noisy
dot product of A with the secret vector s mod q. When s
is binary, which often happens in practical applications of
LWE, computing b from A requires computing a subset
sum mod ¢, which is a modular addition problem.

“Equal contribution 1 Equal contribution 'Meta AI *Duke Uni-
versity. Correspondence to: Eshika Saxena <eshika@meta.com>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Recent work has shown that machine learning (ML) models
can, under certain conditions, be used to break LWE by
recovering the secret (Wenger et al., 2022; Li et al., 2023a;b;
Stevens et al., 2024). The attack trains ML models to predict
b given A, which requires learning to compute the (noisy)
modular arithmetic operation A - s (mod q). If models
predict b with even low accuracy, s can be recovered.

However, ML attacks struggle to recover LWE secrets with
many nonzero entries, limiting their efficacy. Prior work
links this struggle to ML models’ inability to learn modu-
lar arithmetic at scale, since recovering LWE secrets with
more nonzero entries requires summing more elements mod
q (Wenger et al., 2024). Given the widespread adoption of
LWE-based cryptosystems, exploring the potential of these
nascent ML attacks—which can exploit statistical depen-
dencies algebraic attacks may miss—is critical to improve
understanding of LWE’s practical security.

ML models’ struggle to perform modular arithmetic extends
beyond cryptanalysis. Numerous works have documented
the poor performance of ML models on modular arithmetic
problems with many terms and/or large prime moduli (Pala-
mas, 2017; Gromov, 2023; Abbe et al., 2023; Mohamadi
et al., 2024; Doshi et al., 2024). This is surprising because
ML models can learn other complex math tasks such as
symbolic regression, linear algebra, discovering Lyapunov
functions, computing Groébner bases, polynomial simplifica-
tion, and computing the greatest common divisor (Charton
et al., 2021; Charton, 2022; Alfarano et al., 2024; Kera et al.,
2024; Agarwal et al., 2021; Charton, 2024). Modular arith-
metic, on its face, seems easier, but scalable ML solutions
remain elusive.

Thus, our goal is simple: train ML models that can sum
many elements mod q. In considering this challenge, we
make two key observations. First, modular arithmetic
problems lie along a gradient of difficulty based on how
many times the sum “wraps” around the modulus. Prior
work observed that models learn better from examples that
wrap fewer times around the modulus ¢, e.g. Y ., a; <
2q (Wenger et al., 2024). Second, the geometry of the mod-
ular field disrupts traditional notions of gradient descent, as
0 and q are close (Shalev-Shwartz et al., 2017). Prior work
proposed an angular embedding for model input/outputs that

Making Hard Problems Easier with Custom Data Distributions and Loss Regularization

better represented this geometry (Stevens et al., 2024), but
this structure was not explicitly used during optimization.

Our contribution. Building on these observations, we hy-
pothesize that two changes to the training process—using
custom training data distributions and problem-specific loss
regularization—may help models better learn modular arith-
metic. The use of custom data distributions is inspired by
recent prior work that demonstrated the efficacy of custom
data in related domains (Charton & Kempe; Abbe et al.,
2023). Crafting training data that simultaneously exposes
models to easy and harder versions of modular arithmetic
(e.g. elements that wrap fewer or more times around q)
could help the model unlock the structure of the problem.
Loss regularization is widely used in ML training, but could
be adapted to better represent modular arithmetic specifi-
cally, as noted by prior work (Gromov, 2023; Jelassi et al.,
2023). Building on this, we:

* Propose a novel training data distribution that in-
cludes both easy and hard variants of the modular arith-
metic problem. This distribution—implemented as a
function over training elements rather than a curricu-
lum—smoothly adjusts the hardness of elements seen
by the model, enabling efficient and effective learning.

e Design a custom loss function with a penalty term
specific to modular arithmetic. This function discour-
ages model convergence at local, unhelpful minima,
enabling discovery of global optima appropriate to our
problem setting.

Key results. Our methods enable ML models to perform
modular addition for a variety of NV and ¢, up to N = 128
and ¢ = 974269. This significantly outperforms prior work,
which summed N < 6 elements mod ¢ < 1000. When we
apply our methods to the LWE problem specifically, we find
we can recover 2x harder secrets than prior work.

Although our motivation is LWE-specific, our methods
could aid learning on other problems as well. In §4.2,
we highlight several interesting findings about how models
learn modular arithmetic, which yield insights that could
aid learning in other settings. We also apply our methods to
other well-studied problems (copy, associative recall, and
parity) and find they enable models to learn better, demon-
strating their potential to generalize. Our code is available
at: https://github.com/facebookresearch/arithmetic.

2. Related Work

ML for modular arithmetic. Previous work has inves-
tigated whether ML models can learn modular arithmetic
operations (Palamas, 2017; Lauter et al., 2024; Gromov,
2023; Abbe et al., 2023; Mohamadi et al., 2024; Doshi et al.,

2024). Table 1 summarizes the best prior results on modular
addition. The best existing methods train models that sum
N < 6 elements for moduli up to ¢ = 1000.

Prior work has laid groundwork for analytically understand-
ing how models learn modular arithmetic (Gromov, 2023;
Doshi et al., 2024; Nanda et al., 2023). Modular arithmetic
is a common task used to study “grokking* as the model
suddenly transitions from memorization to generalization
on this task. Some works go on to show that ML models
are able to inherently learn the problem by encoding the
modular arithmetic structure into the model weights (Nanda
et al., 2023; Doshi et al., 2024). However, prior work consis-
tently shows (Table 1) that models struggle to learn modular
arithmetic as the number of summed terms N and modulus
q increase, motivating our search for new learning methods.

Table 1. Summary of prior work on ML-enabled modular ad-
dition. Best N and q are bold.

Paper # Terms Mod %
(N) (q) Accuracy
Nanda et al. (2023) 2 53, 109, 100
Transformer 113, 401
Mohamadi et al. (2024) 2 433 100
2-layer MLP
Doshi et al. (2024) 6 11,23 97.1
2-layer MLP
Gromov (2023) 2 97 100
2-layer MLP
Jelassi et al. (2023) 2 100, 1000 73

Encoder-only transformer
Abbe et al. (2023)
4-layer MLP

2 100

[\S)

Custom training data distributions. Some prior work has
explored how changing the training data distribution affects
performance on arithmetic tasks. For example, Charton
& Kempe show that repeating training examples improves
transformer performance on arithmetic tasks like modular
multiplication, greatest common divisor, and eigenvalue
calculation. Mohamadi et al. (2024) briefly investigated the
effect of training data on modular arithmetic and found
that models need to be trained on a constant fraction of all
possible modular arithmetic behaviors for a given N and ¢
to generalize. These works motivate further investigation
into how the distribution of training data can affect model
performance on arithmetic tasks.

Related work has investigated the impact of changing the
training data distribution over time in a predetermined pat-
tern, a technique known as curriculum learning (CL) (Ben-
gio et al., 2009). Abbe et al. (2023) show that the parity
function can be learned via curriculum learning strategies.
We note that our approach is different than CL because
we do not change the data distribution over time, so our
approach requires less tuning than CL. Our experiments

Making Hard Problems Easier with Custom Data Distributions and Loss Regularization

show that CL is highly sensitive to the curriculum parame-
ters, whereas our approach is simpler and ensures consistent
convergence (see Table 4).

Effect of loss functions. Several works attribute models’
failure to learn harder modular addition problems to the
complexity of the loss space (Gromov, 2023; Jelassi et al.,
2023). Shalev-Shwartz et al. (2017) highlight the limi-
tations of gradient-based methods on different problems,
including learning random parities. These motivate adding
loss regularization based on the problem to overcome these
challenges.

3. Methodology

Following prior work (Jelassi et al., 2023), we train encoder-
only transformer models to add N elements mod ¢ (fixed
N and ¢ for each model). We also leverage angular em-
beddings proposed by Stevens et al. (2024), which map
input and output elements mod O to points on the unit circle.
These better represent the structure of modular arithmetic
since 0 and 27, which corresponds to g, are close under
this geometry. This section describes our key innovations to
the training pipeline, custom training data and loss regular-
ization, then gives an overview of our end-to-end training
procedure and evaluation metrics.

3.1. Innovation 1: Augmenting Training Data with
Sparse Vectors.

Most prior work on ML for modular arithmetic trains mod-
els using randomly generated (a, b) pairs, where a is drawn
uniformly at random from 7N i.e. a consists of elements
[a1,a2,...,an], a; € Zyand b = Zivzl a; (mod q) (Je-
lassi et al., 2023; Doshi et al., 2024). Based on observations
about the importance of training data diversity from Wenger
et al. (2024) and Mohamadi et al. (2024), models learn bet-
ter when they see more examples of “simpler” versions of
the target operation. Seeing these simplified problems may
help models understand the modular arithmetic structure
and learn better. Thus, we propose adding additional sparse
vectors to the training data, in which more coordinates of a
are 0, alongside more general vectors.

Data generation approach. We selectively add sparse
vectors to the training data by employing a sampling distri-
bution f in our data generation procedure, which controls
the number of nonzero elements in a training data element
a. To generate a, we first sample from f to get a number
n € [1, N], the number of nonzero elements in a. We then
sample the nonzero elements of a from Zj, pad this with a
zero string of length N — n, and shuffle the resulting vector
to ensure Os are randomly distributed.

We experiment with two f distributions: funi(z) = & (..

. . 1 . .
uniform density) and finy_sqrt (2) TRt (similar to the

distribution chosen by Allen-Zhu (2025)) where o means
the functions are rescaled by a constant such that the sum
of f over all z in its domain equals 1. We compare these
to a baseline of fgefault, Which is the PDF of the number
of zeros in @ when a is drawn uniformly from Z(IJV . Most
prior work on ML for modular arithmetic used fgefaus for
training data generation, as noted previously.

Effect of f on training data. Figure 1 shows the sparsity of
training data elements created using these sampling strate-
gies with NV = 16 and ¢ = 257. Note that finy_sqrt is biased
towards creating “harder” elements with few Os but still al-
lows some easier examples to exist, whereas fyefau1s rarely
creates examples with many zeros, meaning that the model
must learn only from hard examples. During testing, we
evaluate models on examples drawn uniformly at random
from Zflv , since general modular addition is the target task.

02— T T
4= finv_sart
—&— funi

0.15 |-| ~*— faetauit

Probability
o
=
T

Number of non-zero elements

Figure 1. Probability of number of non-zero elements in each
training data element when N = 16 and ¢ = 257 for finv_sqrt,
funi and faefau1s sampling distributions.

3.2. Innovation 2: Loss Regularization to Avoid Model
Collapse.

Following Stevens et al. (2024), we use an angular embed-
ding to represent transformer inputs and outputs. Practi-
cally, the embedding encodes an integer ¢ € Z, as an angle
¢ = 27 and then as a point (cos(¢), sin(¢)) € R? on the
unit circle. Based on this, we initially chose an MSE loss for
training. However, we observed that in harder settings the
model would often converge to bad local minima like the
origin. To address this issue, we use a custom loss function
during training that combines mean squared error (MSE)
loss with an extra regularization term. Given a prediction of
the form (2, ") and ground truth (x = cos ¢,y = sin ¢),
this loss takes the form:

_ 12 12

+((z—2)2+@y-vy)?), a=10""

Making Hard Problems Easier with Custom Data Distributions and Loss Regularization

The first term penalizes the model for predicting the origin
by driving the loss to infinity if 2 = 0,y = 0. It also
encourages the model to predict (z’,y’) on the unit circle
(the first term is minimized with /2 4+ 1’2 = 1). The second
term is the standard MSE loss. After some training x’ and
1y’ are close to the unit circle, so we can approximate x’ and
1/’ as cos ¢ and sin ¢'. Under this condition, the MSE loss
function component becomes:

{ =(cos ¢ — cos ¢')? + (sin ¢ — sin ¢')?
=2 — 2cos¢cos ¢’ — 2sin psin ¢’
=2 — 2cos(¢p — ¢')

This loss component will be minimized when cos(¢ — ¢') =
1, which occurs at ¢ — ¢ = 0 and ¢ — ¢’ = 27. In
the modular arithmetic setting, we want 0 and 27 to be
understood as “close” in the loss space, so this loss term
correctly describes the desired behavior.

3.3. Model Training and Evaluation

We implement the proposed changes and train encoder-only
transformers to sum N elements mod g, using the following
settings and evaluation metrics.

Parameter selection. @ We experiment with N =
{16, 32,64, 128} to identify trends as N increases. Be-
cause we are interested in the LWE application, we use
prime moduli, which are commonly used in that setting.
We use ¢ = {257, 3329,42899,974269}, including one
(¢ = 3329) used in a standardized LWE-based cryptosystem,
CRYSTALS-KYBER (Avanzi et al., 2021). We also tested
with non-prime modulus ¢ = 2'6 and obtained similar re-
sults, as shown in Appendix A. We select N = 16, ¢ = 257
as our base case because the sample space is large enough
to ensure models generalize.

Training procedure. All our experiments were imple-
mented in Python with Pytorch. We train the transformer
models with a hidden dimension of 256, 4 attention heads,
and 4 encoding layers on batches of 250 examples, using
the Adam optimizer (Kingma & Ba, 2015) with a learning
rate of 3 - 10~°, an initial linear warm-up phase of 1,000
optimization steps, and cosine scheduling. All experiments
run on 1 V100 GPU with 32 GB of memory. The models
were trained with 100 distinct samples for a total 1000/
samples. Training time is around 3 hours.

Evaluation metrics. We generate a held-out test set Dyegt
of size 100,000 that is distinct from the training set and
contains examples drawn uniformly from Zév . To eval-
uate model performance on Dieyt, We take the final hid-
den state of the transformer and pass it through a linear
layer to produce an output of the form (2/,y"). We project
this point onto the unit circle, producing (cos ¢',sin ¢') =

(cos 2’ sin 27s"). The model prediction is then compared

against the ground truth of (cos 27”5, sin 27”5)

To get a complete picture of model performance, we com-
pute the following metrics: Mean Squared Error (MSE)
of angle predictions and % accuracy with a margin of er-
ror (7) relative to g. MSE help us to evaluate the model’s
performance in terms of closeness between the predicted
and ground truth angles (MSE). 7-accuracy enables us to
measure whether the model learns the approximate function
behavior, even if exact accuracy is low. The formulae for
these metrics are:

MSE = 5 3 ((cosd = con /) + (sin g —sin)?)

zeD

1
T-accuracy = —— E Lys—s|<rq
|D| z€D

4. Results and Further Exploration
4.1. Key Results

Best results on modular addition. Our methods enable
models to learn modular addition of up to N = 128 ele-
ments mod gq. We present best results across a range of N
and ¢ values in Table 2. Overall, the MSE is near 0 across
N and g, showing that the model converges and learns well.
Notably, 7 = 0.5% accuracy is almost perfect for all models.
This means that in almost all cases, an “incorrect” model
prediction is still within 0.5% of q.

Comparison to baseline. We compare our results to a
baseline encoder-only transformer with standard MSE loss
and the fgefaut distribution, as is used in some of the prior
work (Jelassi et al., 2023). With the baseline approach, we
observe 1.3% 7 = 0.5%-accuracy on N = 16, ¢ = 257
data (our base case) with the same number of training data
samples as we used. In other words, the model does not
learn the task at all. In comparison, our methods achieve
99.8% on the same problem. Unlike Gromov (2023) and
Doshi et al. (2024), we do not observe grokking in our
models because we use a very small fraction of data from
the possible sample space (2.76 - 1073! when N = 16 and
q = 257). As such, our models gradually learn with a
standard training loss behavior and do not overfit.

4.2. Deeper Exploration of Our Methods

Beyond simply improving ML performance on modular
arithmetic, our methods offer interesting lessons on the
learning process. Here, we present results that validate our
approach and give more general insight about how models
learn modular arithmetic.

Models learn easy examples before hard ones. A key
motivation for our approach is that models should initially

Making Hard Problems Easier with Custom Data Distributions and Loss Regularization

Table 2. Our methods perform consistently well adding N €
[16, 32,64, 128] elements mod g € [257, 3329, 42899, 974269].
All metrics are computed on a held out test set. MSE is mean
squared error, 7 = 0.5% Accuracy is percentage of predictions
within 0.005q of right answer and 7 = 1% Accuracy is percentage
of predictions within 0.01¢ of right answer (see §3). The models
perform with consistently low MSE and very high T-accuracy.

#Terms (N) Mod(q) || MSE 7=05% 7=1%
Accuracy Accuracy

16 257 0.00 99.8% 100.0%
3329 0.00 99.7% 100.0%

42899 0.00 99.7% 100.0%

974269 0.00 99.7% 100.0%

32 257 0.00 99.5% 100.0%
3329 0.00 99.4% 100.0%

42899 0.00 99.4% 100.0%

974269 0.00 99.5% 100.0%

64 257 0.01 98.9% 99.4%

3329 0.01 97.4% 99.4%

42899 0.01 97.4% 99.4%

974269 0.01 98.2% 99.4%

128 257 0.04 96.1% 98.2%

3329 0.04 92.9% 98.0%

42899 0.05 94.1% 97.9%

974269 0.04 93.3% 97.4%

learn from the sparse training examples before learning the
full task. To validate that this occurs, we train a model on
N = 64, ¢ = 257 and monitor its performance on a dataset
Dya) drawn from the same distribution as Dy, ,i,. Figure 2
shows model accuracy on samples with 1 to 64 nonzero
elements over the training epochs. Here, we see that the
model initially performs better on sparse examples (e.g.
1 non-zero element) and then becomes accurate on more
complex examples in later epochs. This suggests that these
models first learn simpler sums and build on that knowledge
to learn more complex sums, supporting our use of sparsity
sampling in creating training data.

Sparse data elements are critical for learning. As de-
scribed in §3, we construct more diverse training datasets by
sampling elements with sparsity defined by a PDF f. Here,
we explore how different PDFs (fctault> finv_sqrt> and funis
see §3) affect model performance. We report two metrics:
7 = 0.5% accuracy of models and the Kullback—Leibler
(KL) divergence between the training and testing datasets.
KL divergence quantifies the similarity between training
dataset Dy;ain, constructed using function f, and Dyegt, sam-
pled from the set Zf;’ uniformly at random, i.e. fqefauit. AS
Table 3 shows, the accuracy difference between models
trained with the default sampling (fgefauit) and any other
distribution f is stark. The exact same architecture has neg-
ligible accuracy if we do not modify the training dataset
sparsity distribution and achieves over 90% when we do.

100

80

60

—— 1 nonzero element accuracy
—— 5 nonzero elements accuracy
—— 10 nonzero elements accuracy

40

Accuracy (%)

20 20 nonzero elements accuracy

/ —— 30 nonzero elements accuracy
—— 64 nonzero elements accuracy
I T T T

0 20 40 60 80 100

Training completion (%)

Figure 2. The model learns to sum fewer nonzero elements
earlier than more complex examples. Model accuracy (N =
64,q = 257) after each epoch on unseen test set stratified by
number of nonzero elements. As the number of nonzero elements
increases, it takes longer to reach perfect accuracy.

This strongly indicates that these models need to see sparse
training examples to generalize.

Table 3. Sampling the training data from fi,._sq-« produces the
best accuracy results across N and q. 7 = 0.5% Accuracy is
percentage of predictions within 0.005¢ of right answer (see §3),
KL divergence is the level of similarity between the training and
testing datasets. With default sampling fqcfauit, the model does
not learn at all. Distributions with a KL divergence that is not too
high or too low enable the model to perform best.

#Terms Mod || Training | 7 = 0.5% KL
(N) (q) Data f Accuracy divergence
16 257 Sdefault 1.2% 0.0
finv_sqrt 99.8% 25 2
funi 99.7% 354
32 257 [default 1.3% 0.0
finvisqrt 99.5% 498
funi 98.9% 71.5
64 257 fdefault 1.3% 0.0
finvisqrt 98.9% 981
Sfuni 95.3% 144.0
128 257 fdefault 1.3% 0.0
Sinv_sqrt 96.1% 193.7
funi 92.7% 289.5

KL divergence D, ,in/Diost impacts accuracy. We ob-
serve that models trained using f that produce very low
(= 0) or very high D;;ain/Drest KL divergence generalize
worse than f with mid-range KL divergence. Models trained
with the default fgefan1s distribution have 0 Dyyain/Diest KL
divergence, since the train/test distributions are almost iden-
tical, and model accuracy is 0%. On the other hand, the
uniform sparsity function f,5; diverges too far from the test
distribution (there are too many “simple” samples in the fi,;
distribution), resulting in lower accuracy. A “Goldilocks”
KL divergence is needed, and we find that distributions with

Making Hard Problems Easier with Custom Data Distributions and Loss Regularization

fewer sparse training elements, like finy_sqrt, WOrk best.

Our data distribution produces more consistent results
than curriculum learning. We explore how our approach
compares to standard CL since both involve improving
model learning by showing the model easier versions of
the task. However, CL requires (a) defining phases of the
curriculum by ranking the difficulty of each samples and de-
ciding when to switch phases, (b) determining how to adjust
the weight decay and learning rate parameters, (c) defin-
ing the data mixture across different phases. Our approach
instead fixes these parameters during training by implic-
itly encoding curriculum “phases” via our data distribution,
resulting in a more static but easier-to-train method.

For comparison, we implement CL as follows. First, train
the model for a fixed horizon on easier samples only, then
train on the entire dataset, as in Abbe et al. (2023). Table 4
indicates that CL results in noisy outcomes, especially with
large N, when evaluating average accuracy and variance
over 8§ trials. Conversely, our method, which fixes the data
distribution during training, ensures convergence. We also
explored alternative curriculum designs (e.g. training on
easier samples until training loss reaches a certain threshold)
and conducted extensive hyperparameter tuning on weight
decay, learning rate, alternative difficulty ranking, and data
mixture. These alternatives yield results similar to those in
Table 4. We provide the specific parameter sets tested in
Appendix F and report the best results in Table 4. Ultimately,
while it may be possible to design an optimal curriculum,
our approach is simpler and task agnostic (see §6).

Table 4. Our approach is more consistent and stable than CL,
especially for larger N. We chose the best performing curriculum
to compare to our approach. We report the average 7 = 0.5%
accuracy (see §3) and the variance across 8§ trials.

[7 = 0.5% Accuracy

#Terms (N) Mod (¢) || Ourapproach CL

16 257 99.7% + 0.0% 99.7% =+ 0.0%
3329 99.6% + 0.0% 99.5% =+ 0.0%

42899 99.6% + 0.1% 99.4% 4+ 0.0%

974269 99.6% +0.0% 99.4% =+ 0.0%

32 257 99.3% +0.1% 98.8% =+ 0.4%
3329 99.2% + 0.1% 98.0% + 0.5%

42899 992% +0.1% 97.8% + 1.2%

974269 99.4% +0.1% 98.5% =+ 0.4%

64 257 98.5% +03% 95.7% + 2.8%
3329 97.3% +0.1% 91.2% £+ 2.5%

42899 97.3% +02% 91.3% £+ 0.9%

974269 98.0% = 0.2% 93.9% 4 3.2%

128 257 95.8% + 0.5% 85.1% £ 10.3%
3329 92.2% 4+ 0.7% 82.2% + 8.8%

42899 92.9% +0.8% 80.0% + 12.2%

974269 92.1% +04% 77.3% £+ 7.5%

The data distribution approach is agnostic of the element
chosen for sparsity. Regarding choosing to include O as
the element for sparsity, we actually found that including a
random but fixed number instead of 0 yields similar results.
It is not the number itself but instead the shift in distribution
that leads to performance improvements. The key is chang-
ing the KL divergence between the train and test sets, which
is irrespective of the element chosen for sparsity.

To prove this, we run an experiment where we substitute the
0 with an arbitrary integer K and shift the distribution by
sampling more K's compared to all remaining elements in
Zév . We used a random K for each different ¢ to ensure K
is not a factor. We report the results in Table 5.

Table 5. Our approach works well consistently across different
integers used for sparsity. We train the models with the best data
parameters from §4 and include a random number K instead of
0 in the data to make the examples sparse. 7 = 1% Accuracy is
percentage of predictions within 0.01¢ of right answer (see §3)

Terms Mod K T=1%
(N) (q) Accuracy
32 257 160 100%
3329 3176 100%
42899 24606 100%
974269 79062 100%
64 257 160 99.2%
3329 3176 99.3%
42899 24606 99.4%
974269 79062 99.3%
128 257 160 97.9%
3329 3176 98.3%
42899 24606 97.9%
974269 79062 97.9%

Repeating examples helps. In applications like LWE crypt-
analysis, the amount of training data may be limited, so
we consider whether models can learn from fewer samples.
Interestingly, recent work shows that it may be beneficial
for models to encounter samples multiple times during train-
ing, suggesting that limited training data may not be as
problematic as anticipated (Charton & Kempe). To test
whether repeated examples help in our setting, we train
models with d = {0.1M, 1M, 10M,100M } distinct sam-
ples from the finv_sqrt Sampling distribution over a fixed
training budget of b = 100M samples. This means that the
model sees each distinct sample b/d times during training,
so 1000 /0.1M = 1000 times in the d = 0.1M case. We
find that as long as the model is exposed to at least 1M/
distinct samples—corresponding to 100 repeats in our ex-
periments—it can readily learn the underlying algorithm
(see Table 6).

Loss regularization prevents model collapse when the
task is hard. Finally, we evaluate how the regularization

Making Hard Problems Easier with Custom Data Distributions and Loss Regularization

Table 6. Seeing some—but not too many—repeated examples
aids performance. We train the models with ¢ = 257 and with
different numbers of repeated examples (all with the finv_sqrt
distribution, angular embedding, and custom loss) and evaluate on
the same test set for all. # data repeats is computed as 1000 /d,
where d is the number of distinct training examples out of the
total 100M training budget. 7 = 0.5% Accuracy is percent of
predictions within 0.005q of right answer (see §3).

I 7 = 0.5% Accuracy

#datarepeats || N=16 N=32 N=64 N =128
1000 99.3% 97.7% 95.7% 86.1%
100 99.8 % 99.2% 98.4% 92.7%
10 99.8% 99.5% 98.9% 96.1%
1 99.7% 99.2% 97.2% 91.5%

term in our custom loss function affects model performance.
We train several models with varying N and g on two ver-
sions of the loss function from §3.2: one with a = 1074,
activating our additional term, and one with o = 0.0, which
is standard MSE loss. We find that when the task is still
easy, regularization is not necessary (Table 7). However, as
task difficulty increases, the regularization term increases
the probability of success. We explore explanations for this
in §5.

Table 7. Model performance with custom and MSE loss are
comparable when trained on the modular addition. We train
the models with ¢ = 257 and with the best training data parameters
identified in §4 with angular embeddings and evaluate on the same
test set for all. 7 = 0.5% Accuracy is percentage of predictions
within 0.005q of right answer (see §3).

7 = 0.5% Accuracy

Terms Mod Custom Loss MSE Loss

(N) (@) a=10"* a=0
16 257 99.8% 99.9%
3329 99.7% 99.7%

42899 99.7% 99.6%

974269 99.7% 99.7%

32 257 99.5% 99.6%
3329 99.4% 99.2%

42899 99.4% 99.3%

974269 99.5% 98.9%

Our approach has minimal computational overhead.
The computational overhead of our approach is minimal
compared to the baseline, as we still generate the same num-
ber of data samples and simply modify the distribution used
for generation. Similarly, the loss regularization term does
not introduce any additional cost (besides the negligible cost
of calculating the term itself) as we have a standard training
loop. We time the difference between the custom loss and
standard loss experiments and report that the time difference

is negligible, around 0.04% relative difference.

5. Application: Cryptanalysis of LWE

Having established that our methods enable ML models to
better learn modular addition, we now apply them to our
motivating example: improved ML-enabled attacks on the
Learning with Errors (LWE) problem. The goal of these
attacks is find s given A and b, where b = A -s + e
(mod g). A € Zg**" is a uniformly random m X n matrix,
the secret s € Zy is a vector with length n.

For this proof-of-concept evaluation, we ignore the error
vector e so we can better study if models learn the harder
part of the problem: computing A - s (mod ¢). If models
recover s without noise, recovery with noise should be pos-
sible based on experiments from Wenger et al. (2022). We
assume s is binary and sparse, based on proposed implemen-
tations for LWE in the popular homomorphic encryption
setting (Bossuat et al., 2024).

Following Stevens et al. (2024), we train an encoder-only
model on (A, b) pairs to predict b from A. We use 30 mil-
lion distinct data examples and a total training budget of
1 billion examples, adding our improvements to the loss
function to the training pipeline. We evaluate attack perfor-
mance by measuring number of successful secret recoveries
out of 20 random model initializations. We use the binary
distinguisher of Wenger et al. (2022) to recover secrets.

We report the results in Table 8: for N = 64 and ¢ =
{257, 3329, 42899, 974269}, the model successfully recov-
ers binary secrets with Hamming weight (number of nonzero
elements in the secret) up to 6. This result is significant be-
cause Wenger et al. (2024) show that ML attacks on LWE
traditionally only work when secret recovery requires effec-
tively summing < 3 elements mod ¢g. Thus, our methods
appear to double the performance of ML attacks on LWE,
paving the way for future study.

Effect of regularization term in LWE setting. In the prior
section (§4.2), we noted that the regularization term in our
loss function aided learning in more difficult problem set-
tings. To explain this, we consider the LW (ithout)E task set-
ting. Without regularization, for a given batch 3 with ground
truth (2, y) and model predictions (z’, y’), the MSE loss to
optimize is £ = ||@ — x’||3+ ||y — y’||3. At the beginning of
the training, we inspect model predictions, and we observe
they are approximately equal, as shown in Appendix E.
Using this and given b = a - s (mod ¢) is uniformly
distributed, we conclude that, on average, the model loss
{0~ Zf;é ((x’ — cos 27r§)2 + (y' — sin 27T§)2). Since
S92 cos 21, = S sin 2 = 0, the minimum loss
is achieved when (2’,y") = (0,0). This encourages the
model to produce predictions with decreasing magnitude at

Making Hard Problems Easier with Custom Data Distributions and Loss Regularization

each training epoch, ultimately degenerating to predictions
centered around the origin. Adding the regularization term
encourages the model to avoid the origin, allowing faster
and better convergence (see Table 8 for comparison).

We experimented with other alternatives to loss regulariza-
tion, such as estimating the angle distance between predic-
tions, but found that the regularization term most effectively
ensured consistent convergence.

Table 8. Model performs better when trained with our custom
loss on the LW (ithout)E problem. We train the models with the
best data parameters from §4 and evaluate if the model successfully
recovers the secret. Recovery % is the percent of secrets recovered
out of 20 different model initialization.

[Recovery %
#Terms Hamming Mod Custom Loss MSE Loss
(N) weight (q) a=1072 a=0
64 6 257 15% 0%
3329 20% 0%
42899 15% 0%
974269 15% 0%
128 5 257 10% 0%
3329 15% 0%
42899 15% 0%
974269 10% 0%
256 4 257 10% 0%
3329 15% 0%
42899 15% 0%
974269 15% 0%

6. Beyond Modular Addition

Finally, we consider whether our methods can aid learning in
settings beyond modular addition, including other modular
arithmetic tasks and broader functions.

6.1. Other Modular Arithmetic Tasks

We investigate whether our methods enable ML models to
learn other modular arithmetic functions beyond addition.
We train models to predict outputs from these functions,
using the same setup as before: encoder-only transformer
model with modified data distribution, angular embedding,
and custom loss.

Asymmetric Functions. Doshi et al. (2024) conjectured
that two-layer MLPs can only learn functions that can be
represented as h(g1(a1), g2(az), ..., gn(an)) and cannot
extend beyond this class. We introduce a class of functions
h : ZY — Zq outside the aforementioned class, where

hje = (Zz]\il a{

models learn other modular arithmetic functions.

2
+ a¥, to show that our approach helps

For these problems, we add a positional embedding in the
transformer since these functions depend on input sequence

positions. Table 9 shows that for N = 16 and ¢ = 257, we
achieve an accuracy exceeding 95%-+ for these functions.

Table 9. With our methods, models can learn other modular
arithmetic functions with good accuracy (N = 16,q = 257).
% Accuracy is percentage of predictions exactly correct.

Function || % Accuracy
hjz1p=1 = (a1 + ...+ aN)2 +al modgq 95.1%
hj=1,k=3 = (a1 + ...+ aN)2 +a? mod g 96.2%
hj—2 k=1 = (a% +...+ a?\,)Q +al modgq 95.5%

Modular multiplication and scalar product. We test both
modular multiplication and the scalar product of two vectors
mod g, respectively in Table 10 and Table 11. The angular
embedding is designed for addition, so we use standard to-
ken embedding in multiplication experiments and compare
finv_sqrt tO fdefault. For both tasks, the model with finy_sqrt
performs well for smaller ¢, but declines for larger ¢q. In
all scenarios and in both tasks, we see that the 7 = 1%
accuracy for fqefaurt is around 2%. We also note that the
scalar product is more difficult, because the model needs to
learn both both multiplications and additions.

Table 10. Our methods also lead to better performance on mod-
ular multiplication. We train the models with the best data param-
eters from §4. The model performance when trained using fdacfauit
is 2% on all different settings. 7 = 1% Accuracy is percentage of
predictions within 0.01q of right answer (see §3).

#Terms Mod || 7= 1% Accuracy
(N) (@)
16 97 100%
257 98%
3329 3%
32 97 100%
257 75%
3329 3%
64 97 100%
257 65%
3329 3%
6.2. Synthetic Tasks

Finally, we explore whether the data distribution techniques
alone aid transformer performance on well-studied synthetic
tasks, including:

* Copy task (Graves (2014)): given a vector of size [N
where each element is sampled from a vocabulary V,
output an exact copy of the vector. A random guess is
correct with probability V=,

* Associative recall task (Graves (2014)): given N keys
and N values sampled from two distinct vocabularies

Making Hard Problems Easier with Custom Data Distributions and Loss Regularization

Table 11. Our methods also lead to better performance on the
scalar product task. We train the models with the best data
parameters from §4. The model performance when trained using
fdefauit 18 2% on all different settings. 7 = 1% Accuracy is
percentage of predictions within 0.01q of right answer (see §3).

#Terms Mod || 7 = 1% Accuracy
(N) (@)

2 97 100%
257 100%
3329 3%

4 97 100%
257 30%
3329 3%

8 97 78%
257 2%
3329 3%

Vi and Vi, retrieve the correct value of one key. A
random guess is correct with probability N1,

* Parity task (Abbe et al. (2023)): given a binary vector
of size N, output the parity of the vector. A random
guess is correct with probability 50%.

L]

Selective copy (Gu & Dao): given a vector of size N
where T' = 16 non-zero elements are sampled from
vocabulary V' and N — T elements are equal to zero,
output a copy of the vector, discarding all elements
equal to 0.

For these different generative tasks, we trained a decoder-
only model with rotary positional embedding ((Black et al.,
2022)), 4 layers, and a hidden dimension of 256 on batches
of 250 examples for 10M total samples. Similar to Sec-
tion 3.1, we sample each problem length from a distribution
f to vary between 1 and max_length, instead of fixing it to
be always max_length. When we use fqefaut We sample
problems with length max_length. During evaluation, we
calculate the accuracy on problems with length max_length
only. We do not use the custom loss during training, as it
was designed for modular arithmetic.

As demonstrated in Table 12, incorporating a mix of easier
and harder data can significantly enhance model perfor-
mance. This is particularly evident in the Associative recall
and Parity, where models trained with fyegaut are essentially
making predictions at random.

7. Conclusion

This work introduces two key changes to the training pro-
cess to help ML models learn modular addition. These
techniques—varying the diversity of training data and intro-
ducing a regularized loss function—enable ML models to
add hundreds of elements mod a large ¢ with high accuracy,

Table 12. Training data with more diverse problem lengths
yields better accuracy results across different tasks. Partic-
ularly on the Associative recall and Parity, the model fails to learn
with fdefauls. % Accuracy is percentage of predictions exactly
correct.

% Accuracy

Task # maX_length ‘ ‘ fdefault finv_sqrt funi
Copy 32 100.0% 100.0% 100.0%
64 100.0% 100.0% 100.0%
128 94.3% 100.0% 100.0%
256 81.4% 98.1% 97.4%
Associative 8 32.5% 100.0% 100.0%
recall 16 6.6% 100.0% 100.0%
32 3.4% 100.0% 100.0%
64 1.8% 100.0% 1.8%
Parity 32 50.3% 100.0% 100.0%
64 50.6% 99.8% 100.0%
128 50.0% 99.7 % 50.2%
256 50.2% 99.4% 50.2%
Selective 32 100.0% 100.0% 100.0%
copy 64 100.0% 100.0% 100.0%
128 83.4% 100.0% 100.0%
256 57.2% 100.0% 99.3%

a significant improvement over prior work. We also demon-
strate that these techniques can be applied to the Learning
with Errors (LWE) problem in cryptography to train ML
models that recover 2x harder secrets than prior work.

Furthermore, our findings provide valuable insights into
how models learn modular arithmetic, which can inform
the development of more effective ML algorithms for a
wide range of tasks. By applying our methods to other
well-studied problems, we demonstrated their potential to
generalize and improve learning outcomes.

Several interesting directions remain for future work. As
the number of terms N increases, our models have slightly
higher MSE and lower accuracy. This motivates future work
to understand how to improve performance as N scales. An-
other avenue is more exploration into transferring our tech-
niques to other settings, such as ML-enabled cryptanalysis.
While our method achieves success on g used in real cryp-
tosystems and NV close to real-world use cases (/N = 512 is
used in practice (Avanzi et al., 2021)) on Learning without
Errors, more experimentation is needed to transfer modular
addition knowledge to Learning with Errors with large N
and g. Possible approaches include pretraining on general
modular addition and fine-tuning on specific settings, but
future research should consider creative approaches.

Making Hard Problems Easier with Custom Data Distributions and Loss Regularization

Acknowledgments

The authors wish to thank Zeyuan Allen-Zhu for initially
proposing the sampling distribution strategy. We also thank
Francois Charton for discussions on the data repetition effect
and Mohamed Malhou and Andrey Gromov for helpful
conversations on arithmetic tasks.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References

Abbe, E., Cornacchia, E., and Lotfi, A. Provable advantage
of curriculum learning on parity targets with mixed inputs.
Proc. of NeurlPS, 2023.

Agarwal, V., Aditya, S., and Goyal, N. Analyzing the
nuances of transformers’ polynomial simplification abili-

ties, 2021. URL https://arxiv.org/abs/2104.

14095.

Alfarano, A., Charton, F., and Hayat, A. Global lyapunov
functions: a long-standing open problem in mathematics,
with symbolic transformers. In Proc. of NeurlPS, 2024.

Allen-Zhu, Z. Physics of Language Models: Part 4.1, Ar-
chitecture Design and the Magic of Canon Layers. SSRN
Electronic Journal, May 2025. https://ssrn.com/
abstract=5240330.

Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyuba-
shevsky, V., Schanck, J. M., Schwabe, P., Seiler, G., and
Stehlé, D. CRYSTALS-Kyber (version 3.02) — Submis-
sion to round 3 of the NIST post-quantum project. 2021.
Available at https://pg-crystals.org/.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J.
Curriculum learning. Proc. of ICML, 2009.

Black, S., Biderman, S., Hallahan, E., Anthony, Q., Gao, L.,
Golding, L., He, H., Leahy, C., McDonell, K., Phang, J.,
et al. Gpt-neox-20b: An open-source autoregressive lan-
guage model. In Workshop on Challenges & Perspectives
in Creating Large Language Models, 2022.

Bossuat, J.-P., Cammarota, R., Cheon, J. H., Chillotti, L.,
et al. Security guidelines for implementing homomorphic
encryption. Cryptology ePrint Archive, 2024.

Charton, F. Linear algebra with transformers. Transactions
in Machine Learning Research, 2022.

10

Charton, F. Learning the greatest common divisor: explain-
ing transformer predictions. In /CLR, 2024.

Charton, F. and Kempe, J. Emergent properties with re-
peated examples. In NeurIPS 2024 Workshop on Scien-
tific Methods for Understanding Deep Learning.

Charton, F., Hayat, A., and Lample, G. Learning advanced

mathematical computations from examples. Proc. of
ICLR, 2021.
Chen, L., Moody, D., Liu, Y.-K., et al. PQC Stan-

dardization Process: Announcing Four Candidates
to be Standardized, Plus Fourth Round Candi-
dates. US Department of Commerce, NIST, 2022.
https://csrc.nist.gov/News/2022/
pgc—candidates—to-be-standardized\
—and-round-4.

Doshi, D., He, T., Das, A., and Gromov, A. Grokking
modular polynomials. arXiv preprint arXiv:2406.03495,
2024.

Graves, A. Neural turing machines.
arXiv:1410.5401, 2014.

arXiv preprint

Gromov, A. Grokking modular arithmetic. arXiv preprint
arXiv:2301.02679, 2023.

Gu, A. and Dao, T. Mamba: Linear-time sequence model-
ing with selective state spaces. In First Conference on
Language Modeling.

Jelassi, S., d’Ascoli, S., Domingo-Enrich, C., Wu, Y., Li,
Y., and Charton, F. Length generalization in arithmetic
transformers. arXiv preprint arXiv:2306.15400, 2023.

Kera, H., Ishihara, Y., Kambe, Y., Vaccon, T., and
Yokoyama, K. Learning to compute grobner bases. Ad-
vances in Neural Information Processing Systems, 37:
33141-33187, 2024.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In Proc. of ICLR, 2015.

Lauter, K., Li, C. Y., Maughan, K., Newton, R., and Srivas-
tava, M. Machine learning for modular multiplication. In
Research Directions in Number Theory-Women in Num-
bers 6. Springer, 2024.

Li, C. Y, Sotdkova, J., Wenger, E., Malhou, M., Garcelon,
E., Charton, F., and Lauter, K. Salsa Picante: A Machine
Learning Attack on LWE with Binary Secrets. In Proc.
of ACM CCS, 2023a.

Li, C. Y., Wenger, E., Allen-Zhu, Z., Charton, F., and Lauter,
K. E. SALSA VERDE: a machine learning attack on
LWE with sparse small secrets. In Proc. of NeurlPS,
2023b.

https://arxiv.org/abs/2104.14095
https://arxiv.org/abs/2104.14095
https://ssrn.com/abstract=5240330
https://ssrn.com/abstract=5240330
https://pq-crystals.org/
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized\-and-round-4
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized\-and-round-4
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized\-and-round-4

Making Hard Problems Easier with Custom Data Distributions and Loss Regularization

Mohamadi, M. A., Li, Z., Wu, L., and Sutherland, D. J. Why
do you grok? a theoretical analysis on grokking modu-
lar addition. In International Conference on Machine
Learning, pp. 35934-35967. PMLR, 2024.

Nanda, N., Chan, L., Lieberum, T., Smith, J., and Stein-
hardt, J. Progress measures for grokking via mechanistic
interpretability. In Proc. of ICLR, 2023.

Palamas, T. Investigating the ability of neural net-
works to learn simple modular arithmetic. 2017.
https://project—archive.inf.ed.ac.uk/
msc/20172390/msc_proj.pdf.

Shalev-Shwartz, S., Shamir, O., and Shammah, S. Failures
of gradient-based deep learning. In International Con-
ference on Machine Learning, pp. 3067-3075. PMLR,
2017.

Stevens, S., Wenger, E., Li, C. Y., Nolte, N., Saxena, E.,
Charton, F., and Lauter, K. Salsa fresca: Angular em-
beddings and pre-training for ml attacks on learning with
errors. Cryptology ePrint Archive, 2024.

Wenger, E., Chen, M., Charton, F., and Lauter, K. Salsa:
Attacking lattice cryptography with transformers. In Proc.
of NeurlPS, 2022.

Wenger, E., Saxena, E., Malhou, M., Thieu, E., and Lauter,
K. Benchmarking attacks on learning with errors. In
2025 IEEE Symposium on Security and Privacy (SP), pp.
58-58. IEEE Computer Society, 2024.

11

https://project-archive.inf.ed.ac.uk/msc/20172390/msc_proj.pdf
https://project-archive.inf.ed.ac.uk/msc/20172390/msc_proj.pdf

Making Hard Problems Easier with Custom Data Distributions and Loss Regularization

A. Additional results

We report additional results using our approach in Table 13 and Table 14 for different non-prime ¢ and in Table 15 for
different NV that are not powers of 2. We see similar trends as Table 2.

Table 13. Our approach is also successful for non-prime ¢ = 2'® and N ¢ {16, 32, 64,128} elements. All metrics are computed
on a held out test set. MSE is mean squared error, 7 = 0.5% Accuracy is percentage of predictions within 0.005¢ of right answer, and
7 = 1% Accuracy is percentage of predictions within 0.01q of right answer (see §3 for details).

#Terms (N) Mod(q) || MSE 7 =0.5% Accuracy 7 = 1% Accuracy

16 216 0.00 99.8% 100.0%
32 216 0.00 99.6% 100.0%
64 216 0.01 98.1% 99.5%
128 216 0.02 95.7% 98.4%

Table 14. Our approach also works for different non-prime
gand N € {16,32,64,128}. We train the models with

the best data parameters from §4. All metrics are computed Table 15. Our approach also works with non powers of
on a held out test set. 7 = 1% Accuracy is percentage of 2 N and prime g. We train the models with the best data
predictions within 0.01q of right answer (see §3 for details). parameters from §4. All metrics are computed on a held out
test set. 7 = 1% Accuracy is percentage of predictions within
Terms Mod T = 1% Accuracy 0.01q of right answer (see §3 for details).
(N) (@)
16 1728 100% # Terms Mod 7 = 1% Accuracy
100000 100% (N) (@)
1048576 100% 20 257 100%
10000001 100% 3329 100%
32 1728 100% 42899 100%
100000 100% 974269 100%
1048576 100% 49 257 99.7%
10000001 100% 3329 99.6%
64 1728 99.5% 42899 99.7%
100000 99.3% 974269 99.6%
1048576 99.4% 101 257 98.6%
10000001 99.8% 3329 98.8%
128 1728 98.0% 42899 98.9%
100000 98.29% 974269 98.5%
1048576 98.1%
10000001 98.8%

We also see that our method is not fully robust to high N, but perhaps a longer training time or larger model is needed for
higher N. We experiment both with a longer training time and a larger model and see that both help with performance on
high N. We present these results in Tables 16, 17, and 18.

B. Sample Efficiency Comparison

We investigate why our method succeeds and find that our sampling technique allows for a linear sample complexity, while

fdefaut Needs an exponential sample complexity to tackle the problem. This helps to explain why our proposed sampling
strategy is so effective.

In Table 19, we measure the number of samples needed to get < 0.005 loss and 90% test accuracy.

12

Making Hard Problems Easier with Custom Data Distributions and Loss Regularization

Table 16. With our approach, performance declines Table 17. Training 4x longer improves performance
with higher N. All metrics are computed on a held on high N. All metrics are computed on a held out
out test set. MSE is mean squared error and 7 = 1% test set. MSE is mean squared error and 7 = 1%
Accuracy is percentage of predictions within 0.01q of Accuracy is percentage of predictions within 0.01q of
right answer (see §3 for details). right answer (see §3 for details).
#Terms Mod ‘ MSE 7=1% #Terms Mod ‘ MSE 7=1%

(N) (@) Loss Accuracy (N) Q) Loss Accuracy

256 257 0.15 90.4% 256 257 0.08 94.8%

256 3329 0.14 92.7% 256 3329 0.08 95.1%

256 42899 0.18 91.2% 256 42899 0.09 95.0%

256 974269 || 0.17 90.6% 256 974269 || 0.10 94.5%

Table 18. A 4x larger model also improves perfor-
mance on high N. All metrics are computed on a held
out test set. MSE is mean squared error and 7 = 1%
Accuracy is percentage of predictions within 0.01q of
right answer (see §3 for details).

Terms Mod MSE 7=1%
(N) (@) H Loss Accuracy
256 257 0.07 96.2%
256 3329 0.07 96.7%
256 42899 0.08 96.1%
256 974269 0.09 95.8%

Table 19. Number of samples needed to get < 0.005 loss and 90% test accuracy with ¢ = 3329.

N faetault finv_sqrt (With best faefauls Setting) finv_sqrt (With our best setting)

6 4.5M 4.1M 0.6M
9 7.1M 1.9M 0.45M
12 12.85M 2.6M 0.95M
15 51.1M 8.15M 1.3M
18 Never 9.35M 1.75M

C. Polynomial Sum Tasks

We additionally run two symbolic polynomial tasks mod ¢: (a) sum N polynomials with degree < K and (b) sum 2
polynomials with degree < K.

For both tasks, we fix ¢ = 3329 and we encode the polynomial as a,, @ym—1, . .., ag, separate polynomials with <SEP>
token, and ask the model to predict the coefficients of the polynomial sum. We add a RoPE positional embedding. We report
the results comparing finy_sqrt VS fdefault-

For all experiments, model can quickly predict the degree of the polynomial sum, i.e. the number of tokens to output before
the <EOS> token. Therefore the real difference between the two strategies is predicting the right coefficients. We say that
the model found the solution if the maximum error across all coefficients is less than 0.01q.

Task (a) is closely related to our original modular addition task (with K = 0), and we see the success of the distribution
finv_sqrt- Results are reported in Table 20.

Task (b) can be decomposed into finding the right index to attend to and summing two numbers mod ¢ (which can be
completely memorized with O(q?) even without angular embedding). We show the results on Table 21.

D. XE as a MSE-like loss

When selecting an appropriate loss function for our model, we had to choose between a MSE-like loss (regression) or a

13

Making Hard Problems Easier with Custom Data Distributions and Loss Regularization

Table 20. On summing N polynomials with degree
< K task, the finy_sqrt distribution shows good per-

formance. The standard distribution fyefauic fails to Table 21. On summing two polynomial with degree
learn the task. < K task, the fi,v_sqr¢ distribution shows spectac-
ular performance, while ficrau1¢ fails to learn the
N K || Correct % Correct % task.
(finv,sqrt) (fdefault)
16 1 99.5% 0% K H Correct % Correct %
4 99.29% 0% (finv_sqrt) (fdefault)
16 || 99.3% 0% 64 99.5% 0%
64 1 98.8% 0% 128 H 99.2% 0%
4 98.7% 0%
16 98.5% 0%

cross-entropy-like (XE) loss (classification). The choice is particularly delicate for arithmetic problems, especially if the
model decodes a token from a vocabulary (with XE) or an angular representation (with MSE). Our claim is that, in our
particular case, MSE is actually superior compared to XE. In particular let € Z, be a point, and let the vector ¢; € Zflv
where all components are zeros except for the ¢-th component, which is 1. Let g : Zév — Z4 be the function the model
needs to learn (in particular g(z) = x - 1 (mod ¢) for the modular arithmetic task and g(z) = x - s (mod ¢), where the
secret s € Zév is a binary unknown vector, for the LWE task). The finite difference in the i-th direction can be defined as

Aig(w) = g(x + ;) — g(z).

It’s easy to show that for these tasks, max, ; |A;g(z)| < 1. This equivalently means that the difference between the function
evaluated on closely related inputs remains relatively small. In this case, we observed that a well-trained model using XE
loss can correctly approximate the aforementioned g(z).

Table 22. Models perform better when trained with MSE-like loss. Models trained on the best settings identified in §4 and evaluated
on the same test set for all. 7 = 0.5% Accuracy is percentage of predictions within 0.005q of right answer (see §3)

7 = 0.5% Accuracy

Terms Mod Custom Loss MSE Loss XE Loss

(N) (@) a=1le—4 a=0

16 257 99.8% 99.9% 99.5%

3329 99.7% 99.7% 99.2%

42899 99.7% 99.6% 98.1%

974269 99.7% 99.7% 96.4%

32 257 99.5% 99.6% 98.5%

3329 99.4% 99.2% 96.8%

42899 99.4% 99.3% 94.3%

974269 99.5% 98.9% 91.0%

After inspecting the cross-entropy output, we noticed that XE loss learned a bell-shape curve centered at the correct solution
with a tiny variance (in the order of 0.01¢) which effectively forces the XE loss into a MSE-like loss. This suggests us to
prefer a MSE loss and decode the output as regression and as Table 22 shows, we achieve best results using MSE-like loss.

E. Visualizing model predictions in LWE setting

We analyze the model’s output predictions after 100 steps of the training to validate that, when the task is particularly hard,
MSE loss cannot be used without the regularization term. To do this, we pass input sequences to the model and extract their
outputs. We plot the outputs, coloring them based on y = z - s (mod ¢) of the input sequence x. Figure 3 presents this
analysis for three models trained with N = 64, ¢ = 257 and different settings for the hamming weight (number of nonzero
elements in the secret) and loss: (a) hamming weight 3 with MSE Loss; (b) hamming weight 6 with MSE Loss; (c) and
hamming weight 6 with Custom Loss.

14

Making Hard Problems Easier with Custom Data Distributions and Loss Regularization

0.00010
SN

05 5 0.00005 SH 05

] 0.00000

~0.00005

~0.00010

W

-1.00 -0.75 -0.50 -0.25 000 025 050 075 1.00 ~0.00075-0.00050-0.00025 0.00000 0.00025 0.00050 0.00075 0.00100 -1.00 -0.75 -050 -0.25 000 025 050 075 1.00

(a) hamming weight 3, MSE Loss (b) hamming weight 6, MSE Loss (c) hamming weight 6, Custom Loss

Figure 3. Final model output for different hamming weights and losses. Plots show the model’s final output. Points with the same
color have the same output y = x - s mod ¢ (i.e. they should be close together in representation).

As Figure 3 shows, a model trained with MSE loss can successfully learn the problem when hamming weight is 3. However,
for the setting without the regularization term and hamming weight 6, the model fails to learn, and the final output is visually
meaningless. Additionally, looking at the magnitude, we empirically verify that predictions for a single batch are tied
together and very close to the origin. Once we add the regularization term, the model can learn the task with hamming
weight 6. This implies that for small hamming weight, the custom loss is not as important, likely because the problem is
simpler, but for larger hamming weight, the custom loss enables learning.

F. Curriculum Learning Hyperparameter Analysis

We provide the different configurations we tried to get a fair comparison between curriculum learning and our sampling
strategy. In bold, we indicate the best setting.

When we ran the CL baselines, we modified three things:

1. Thresholds:

(a) Ty is either 1% or 3% or 10% of the training
(b) T is when train_loss(X1) < eps, where we chose eps = 1e-2, le-3

2. Data mix: we divide the training dataset X into two disjoint sets X; and X5 where X is the subset of X such that
each instance contains at least half of the elements equal to zeros.

(a) Train the model using X7 up to 77, then X5 until the end
(b) Train the model using X, up to 77, then the entire X until the end

3. Learning rate and weight decay:

(a) We experimented with 3 choices of learning rate (1e-5, 3e-5, le-4) and 3 choices of weight decay (0.03, 0.1, 0.3)

15

