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Abstract

Large Language Models (LLMs) have ad-001
vanced significantly in complex reasoning, of-002
ten leveraging external verifiers to improve003
multi-step process reliability. However, ex-004
isting process verification methods face crit-005
ical limitations: discriminative Process Reward006
Models (PRMs) often provide overly simplistic007
binary feedback and struggle with incomplete008
reasoning traces, while sophisticated Genera-009
tive Reward Models (GenRMs) can be com-010
putationally expensive. Furthermore, curating011
quality supervision data for process verifier is012
of challenging. Therefore, we present Dyve, a013
dynamic process verifier that enhances reason-014
ing error detection in LLMs by integrating fast015
(System 1) and slow (System 2) thinking, in-016
spired by Kahneman’s Systems Theory. Dyve017
adaptively applies immediate token-level con-018
firmation for straightforward steps and com-019
prehensive analysis for complex ones. To ad-020
dress data challenges and enable its adaptive021
fast and slow thinking, Dyve employs a novel022
step-wise consensus-filtered supervision strat-023
egy. This strategy leverages Monte Carlo esti-024
mation, LLM-as-a-Judge, and specialized rea-025
soning models to extract the high-quality train-026
ing signals from noisy rollouts. Experimental027
results on ProcessBench and the MATH dataset028
confirm that Dyve significantly outperforms ex-029
isting process-based verifiers and boosts perfor-030
mance in Best-of-N settings, while maintaining031
computational efficiency through strategic re-032
source allocation.033

1 Introduction034

Large Language Models (LLMs) have significantly035

enhanced their reasoning capabilities by shifting036

from rapid, intuitive System 1 responses to more037

deliberate, extended System 2 thinking (Team et al.,038

2025; Arrieta et al., 2025; Guo et al., 2025). While039

enabling more complex problem-solving in math040

and scientific reasoning, this has also introduced041

new challenges in process verification, particularly 042

in the reliable evaluation of multi-step and poten- 043

tially incomplete reasoning traces. 044

Existing process verification methods, while cru- 045

cial, exhibit notable limitations when applied to 046

these advanced reasoning tasks. Discriminative 047

Process Reward Models (PRMs), for example, are 048

essential for detecting errors but often provide 049

overly simplistic "System 1-like" binary feedback 050

(yes/no predictions) for each step (Lightman et al., 051

2023b; Zhang et al., 2025). This approach is of- 052

ten insufficient for capturing nuanced errors in 053

complex reasoning and can struggle with the re- 054

liable assessment of incomplete traces. Conversely, 055

while more sophisticated Generative Reward Mod- 056

els (GenRMs) can offer deeper, System 2-style an- 057

alytical feedback, they tend to be computationally 058

expensive, limiting their practical applicability for 059

step-wise verification. 060

Furthermore, a pervasive challenge across all 061

current verification approaches is the reliance on su- 062

pervision signals. High-quality human annotations 063

for process supervision (Lightman et al., 2023b) 064

are prohibitively expensive, and automatically gen- 065

erated labels, often derived from Monte Carlo es- 066

timation methods (Wang et al., 2024; Luo et al., 067

2024), can be noisy and weak (Zhang et al., 2025). 068

Our work introduces Dyve (Dynamic Process 069

Verifier), a specialized generative process verifica- 070

tion model that dynamically detects process errors 071

using fast and slow thinking, inspired by Kahne- 072

man’s Systems Theory (Kahneman, 2012). For any 073

given reasoning trace, Dyve adaptively applies ei- 074

ther System 1 verification, supplying immediate, 075

single-token confirmation for clearly correct and 076

straightforward steps, or System 2 analysis, per- 077

forming a comprehensive, deeper evaluation for 078

complex or potentially erroneous ones. This dual- 079

system approach allows Dyve to strategically allo- 080

cate computational resources, balancing verifica- 081

tion depth with efficiency. 082
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LM Proposer Step: 

Step 3: The area of the rectangle is A = l × w = 

10cm × 5cm = 50.

Dyve Response:

+

LLM Proposer Step: 

Thus, the total number of people Conor saw at 

the beach that week is $\boxed{400}$.

Dyve Response:

+

Context: 

Minnie mounts 10 horses/day. Mickey mounts 

$2 × Minnie - 6$.

LLM Proposer Step: 

Step 2: Mickey mounts $12-6=<<12-6=6>>6$ 

horses per day.

Dyve Response:

Let's verify Step 2. The problem states Minnie 

mounts 10 horses per day.

...

The correct calculation based on the previous 

correct step (Minnie=10) is 14.

</think>

-

System 1 Example (Correct)

System 1 Example (Correct)

System 2 Example (Incorrect)

Figure 1: Dyve demonstrating its learned adaptability by dynamically selecting its verification strategy. For simple,
correct steps (left), it provides concise System 1 confirmation using a ’+’ token, which signifies the step is correct.
For more complex or incorrect steps (right), it employs detailed System 2 analysis, including an explanatory
refutation, and concludes with a verdict token, such as ’-’ which signifies the step is incorrect.

Crucially, to enable this adaptive fast and slow083

thinking and overcome the limitations of costly or084

noisy supervision, we introduce a novel step-wise085

consensus-filtered process supervision technique.086

This method leverages Monte Carlo estimation to087

generate multiple rollouts per query, then uses an088

LLM-as-a-Judge (Gu et al., 2024) to assess the089

full reasoning trace, and finally employs a power-090

ful reasoning LLM for detailed step-by-step analy-091

sis to flag steps that require System 2 verification.092

Through this pipeline, we curate approximately093

117K high-quality training examples from 1.2M094

noisy Monte Carlo rollouts. Our findings under-095

score that the quality of supervision data, rather096

than mere quantity, is paramount for effectively097

training a robust and adaptive process-based veri-098

fier like Dyve.099

Our contributions include:100

• We introduce Dyve, a dynamic process verifi-101

cation framework that combines rapid System102

1 validation with comprehensive System 2 cor-103

rection and context-aware error recovery.104

• We propose a novel step-wise consensus-105

filtered process supervision technique that106

employs Monte Carlo estimation and an LLM-107

as-a-Judge to reliably label each reasoning108

step.109

• We demonstrate empirically that Dyve sub-110

stantially outperforms existing PRMs and111

LLM-as-judges baslines on the ProcessBench112

benchmark and significantly boosts the per- 113

formance of Proposer LLMs in Best-of-N set- 114

tings on MATH-500. 115

2 Related Work 116

2.1 The Spectrum of Process Verification: 117

Speed vs Depth 118

Verifying the multi-step reasoning of LLMs is 119

crucial. Current verifiers often trade speed 120

for analytical depth. Outcome Reward Models 121

(ORMs) (Cobbe et al., 2021b; Yang et al., 2024) 122

evaluate only final answers, lacking step-wise in- 123

sight. Process Reward Models (PRMs) (Light- 124

man et al., 2023a; Zhang et al., 2025; Wang et al., 125

2024) provide rapid, "System 1-like" binary feed- 126

back per step, but their simplicity can hinder nu- 127

anced error diagnosis and struggle with incomplete 128

reasoning. Conversely, Generative Reward Mod- 129

els (GenRMs) (Zhang et al., 2024b) offer "Sys- 130

tem 2-like" depth with detailed explanatory judg- 131

ments (Wei et al., 2022), but are computationally 132

intensive and their verbose outputs aren’t always 133

ideal for efficient, iterative verification. Dyve aims 134

to overcome this speed-versus-depth trade-off. In- 135

spired by Kahneman’s dual-process Systems The- 136

ory (Kahneman, 2012), Dyve dynamically adapts 137

its strategy, employing rapid, PRM-like System 1 138

token-level confirmation for straightforward steps 139

and a more comprehensive, GenRM-like System 140

2 analysis for complex or potentially erroneous 141

steps. This learned adaptability optimizes both 142
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verification accuracy and resource allocation but143

necessitates highly specialized supervision signals.144

2.2 Supervision for Process Verifiers145

The efficacy of process verifiers, especially adap-146

tive ones like Dyve, depends on training data qual-147

ity. Human annotations (e.g., PRM800k (Lightman148

et al., 2023b)) offer high fidelity but are expen-149

sive and slow to scale. Consequently, automated150

data generation using Monte Carlo (MC) estima-151

tion or MCTS-based exploration is common (Luo152

et al., 2024; Wang et al., 2024; Zhang et al., 2024a),153

but often yields noisy or misleading labels (Zhang154

et al., 2025). Recent efforts use consensus mecha-155

nisms or LLM-as-a-Judge filtering (Gu et al., 2024;156

Zhang et al., 2025) to improve label quality, typi-157

cally at the trace level. Our step-wise consensus-158

filtered process supervision technique ensures high-159

quality data curation without expensive human an-160

notations. This multi-stage pipeline first generates161

reasoning traces using Monte Carlo estimation and162

filters them at the trace level with an LLM-as-a-163

Judge. Subsequently, a powerful reasoning LLM164

meticulously analyzes each step, flagging it to gen-165

erate distinct training signals for Dyve’s System 1166

(rapid confirmation) and System 2 (detailed analy-167

sis) modes, which is crucial for enabling its unique168

adaptive verification capabilities.169

3 Method170

Dyve is designed to dynamically adapt its veri-171

fication strategy. It distinguishes between rapid,172

intuitive checks (System 1) for straightforward rea-173

soning steps and more deliberate, analytical evalu-174

ations (System 2) for complex or potentially erro-175

neous steps.176

3.1 Core Principle: Learned Adaptive177

Verification via Dual Output Modes178

Dyve’s core principle is a learned adaptive verifi-179

cation mechanism that employs a dual-output strat-180

egy inspired by fast and slow thinking. For straight-181

forward reasoning steps, Dyve activates its System182

1 Output Mode, providing a rapid, low-latency183

confirmation, typically a single predefined token184

like “+” to signal correctness. However, when185

faced with complex, uncertain, or erroneous steps,186

Dyve shifts to its System 2 Output Mode. In this187

mode, it generates a comprehensive analytical re-188

sponse, offering a detailed natural language expla-189

nation enclosed in special <think>...</think>190

tags, followed by a final verdict token (“+” or “-”).191

Figure 2: (1) LLM self-reflection is unreliable (2) Bi-
nary verification lacks depth, (3) Chain-of-Thought
(CoT) verification is deeper but more expensive, (4)
GenRM with CoT combines generation and verification
without step-wise assessment, (5) Dyve, our proposed
framework that dynamically combines fast System 1
and deep System 2 verification.

Crucially, this dynamic selection between fast 192

and deep verification isn’t governed by hard-coded 193

rules or heuristics. Instead, Dyve learns to choose 194

and generate the appropriate output mode based 195

on the input reasoning trace entirely through su- 196

pervised fine-tuning (SFT). This allows Dyve to 197

strategically allocate computational resources, us- 198

ing quick checks for simple steps and more inten- 199

sive analysis for complex ones. 200

3.2 The Step-wise Consensus-Filtered Process 201

Supervision Pipeline 202

Our multi-stage data pipeline is designed to curate 203

training instances that teach Dyve its adaptive ver- 204

ification capabilities. Given a problem P and a 205

sequence of reasoning steps {s1, s2, . . . , sT } gen- 206

erated by a Proposer LLM, our pipeline associates 207

each step st with a target verification output, vt. 208

This output vt manifests in one of two forms cor- 209

responding to Dyve’s dual output modes: either a 210

System 1 (fast) verification (vS1
t ), which is a con- 211

cise token-level confirmation (e.g., +) for correct 212

and straightforward steps, or a System 2 (slow) ver- 213

ification (vS2
t ), which is a detailed natural language 214

explanation of st’s correctness or error followed by 215

a final verdict token. 216
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The pipeline transforms raw reasoning traces217

into structured training data examples. For a com-218

plete reasoning trace of T steps that is entirely cor-219

rect and composed of straightforward steps, the cu-220

rated training example, denoted ES1-complete, takes221

the form:222

ES1-complete = (P, {s1, vS1
1 , s2, v

S1
2 , . . . , sT , v

S1
T }).

(1)223

Conversely, if a trace proceeds with System 1224

verifications but encounters an error at step st′ ,225

where 1 ≤ t′ ≤ T , the curated training example,226

ES2-diverge, is structured as:227

ES2-diverge = (P, {s1, vS1
1 , . . . , st′−1, v

S1
t′−1, st′ , v

S2
t′ }).
(2)228

In this scenario, the reasoning sequence for training229

purposes concludes at step t′.230

Initial Rollout Generation. We begin by col-231

lecting 15K query-problem pairs from estab-232

lished mathematical reasoning datasets, pri-233

marily GSM8K (Cobbe et al., 2021a) and234

MATH (Hendrycks et al., 2021). To generate di-235

verse reasoning traces (rollouts) for each query,236

we employ an automated process supervision237

technique based on Monte Carlo Tree Search238

(MCTS), leveraging OmegaPRM (Luo et al., 2024).239

OmegaPRM utilizes a divide-and-conquer MCTS240

algorithm to efficiently explore the solution space.241

Within this MCTS, partially completed reasoning242

paths (states s) are explored, and a selection strat-243

egy, such as an Upper Confidence Bound (UCB)244

score, guides the search towards promising or245

under-explored paths:246

U(s) = cpuct

√∑
iN(si)

1 +N(s)
, (3)247

where N(s) is the visit count of state s,
∑

iN(si)248

represents the total visits to sibling or relevant249

nodes, and cpuct is an exploration constant. This250

MCTS-driven approach (detailed in Appendix A.4)251

allows us to generate approximately 20 rollouts per252

query. This corpus is augmented with open-source253

PRM data from MathShepherd (Wang et al., 2024)254

and RLHFlow, while PRM800k (Lightman et al.,255

2023b) is excluded to prevent data leakage. This256

stage yields approximately 1.2 million initial roll-257

outs, each containing step-by-step reasoning along258

with potentially noisy process labels (e.g., initial259

error step hypotheses from OmegaPRM).260

Consensus Filtering and Rebalancing. To re- 261

duce noise from the initial rollouts, we employ 262

DeepSeek V3 as an LLM-as-a-Judge. It verifies the 263

initial error steps identified by OmegaPRM within 264

each full rollout. Rollouts where the judge confirms 265

the error assessment are retained; contradictory are 266

discarded. This filtering process removes approx- 267

imately 50% of the noisy rollouts. Subsequently, 268

the dataset is rebalanced to ensure an appropriate 269

distribution of positive (correct) and negative (in- 270

correct) step examples, resulting in a curated set of 271

approximately 117K high-quality reasoning traces. 272

System 1 and System 2 Target Output Genera- 273

tion. This pivotal stage creates the distinct train- 274

ing signals for Dyve’s dual output modes from 275

the filtered, high-fidelity traces. For correct steps 276

(requiring System 1 thinking), Dyve is trained to 277

provide simple token-level confirmation (e.g., the 278

+ token), which constitutes vS1
t . For steps identi- 279

fied as incorrect or requiring deeper analysis (Sys- 280

tem 2 thinking), Dyve is trained using detailed 281

error explanations. These detailed System 2 expla- 282

nations are wrapped within <think>...</think> 283

tags and a concluding verdict token -, are generated 284

by the DeepSeek-R1-Distill-Qwen-32B model 285

and constitute vS2
t . The output of this pipeline is 286

the final training dataset. The resulting data exam- 287

ple is illustrated in Appendix A.5. 288

3.3 Dyve Training 289

We select DeepSeek-R1-Distill-Qwen-14B as 290

the base model for Dyve and train it using Super- 291

vised Fine-Tuning (SFT) on the dataset curated as 292

described in Section 3.2. For each training exam- 293

ple, ES1-complete (Eq. 1) or ES2-diverge (Eq. 2), Dyve 294

is tasked with generating the target verification out- 295

put (vS1
t or vS2

t ) for a given step st, conditioned on 296

the problem P and the preceding reasoning context 297

(e.g., s1, v1, . . . , st−1, vt−1). This is framed as a 298

standard autoregressive, next-token prediction task, 299

where we minimize the cross-entropy loss between 300

the model’s predicted token probabilities and the 301

target tokens of the verification output vt. For a 302

dataset of N such step-level training instances, the 303

loss is: 304

L(θ) = − 1

N

N∑
i=1

L(i)∑
k=1

log pθ

(
y
(i)
k | input(i), y(i)<k

)
,

(4) 305

where θ represents the model parameters. For the 306

i-th training instance, input(i) is the prompt con- 307
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taining P and the reasoning history up to s
(i)
t , and308

y(i) is the target verification sequence v
(i)
t . L(i) is309

the length of this target sequence y(i). By training310

on examples that require generating either short vS1
t311

or longer vS2
t sequences based on the input context,312

Dyve learns its adaptive verification strategy.313

3.4 Inference with Dyve314

During inference, the Dyve model sequentially ver-315

ifies a sequence of reasoning steps {s1, . . . , sT }316

for a given problem P . For each step st, Dyve pro-317

cesses P and the cumulative steps s1:t to generate318

a verification response rt:319

rt = Dyve(P, s1:t; θ). (5)320

This response rt manifests as either a concise Sys-321

tem 1 confirmation (e.g., +) or an elaborate System322

2 analysis, its token length varying accordingly323

from one to 8192 tokens.324

A parsing function, Parse(rt), then extracts a bi-325

nary outcome (correct/error) from rt; for System 1326

outputs, this is direct, while for System 2’s detailed327

explanations, the verdict is typically found at the328

end. If Parse(rt) indicates an error (e.g., returns329

0), verification halts, returning the erroneous step’s330

index t and the response rt (which may contain331

the System 2 explanation). Otherwise, verification332

proceeds to the next step, st+1.333

4 Experiments334

To evaluate the capabilities of Dyve, particularly335

its core principle of learned adaptive verification,336

we conduct a series of experiments. These exper-337

iments are designed to: (1) assess Dyve’s profi-338

ciency in identifying errors within multi-step rea-339

soning processes, (2) quantify its dynamic alloca-340

tion of System 1 (fast) and System 2 (deep) verifi-341

cation resources, (3) compare its performance and342

efficiency against established baselines, including343

other process reward models (PRMs) and LLM-as-344

Judge setups, and (4) evaluate its synergy when in-345

tegrated with Proposer LLMs in a Best-of-N reason-346

ing framework. All experiments were conducted347

on 8 × NVIDIA A800-SXM4-80GB GPUs. In-348

terested readers may refer to Appendix A.1 for a349

detailed experimental setup.350

4.1 Benchmarks and Evaluation Protocol351

We utilize two primary benchmarks to evaluate352

different facets of Dyve’s performance:353

Standardized Prompt Format

Problem: [Problem Description]
Step 1: [s_1]
...
Step t: [s_t]

Is Step t correct given the problem and
previous steps?

You must answer with '+'
for correct or '-' for incorrect
at the end of your response.

Figure 3: Standardized prompt format used for evalu-
ating baseline LLMs on each reasoning step st. LLMs
were required to output ’+’ for a correct step or ’-’ for
an incorrect step.

ProcessBench (Zheng et al., 2024) comprises 354

four sets of test data derived from GSM8K (Cobbe 355

et al., 2021a), MATH (Hendrycks et al., 2021), 356

OlympiadBench (He et al., 2024), and Omni- 357

MATH (Gao et al., 2024). It includes 3,400 358

test cases, covering high-school to Olympiad-level 359

math problems. Each case provides a step-by-step 360

solution with error locations annotated by experts. 361

Models are given s1:t, from the first to the last step, 362

and must identify the earliest error or confirm that 363

all steps are correct. For each ProcessBench sub- 364

set, we calculate the accuracies for erroneous and 365

correct samples and compute their harmonic mean 366

as the F1 score. 367

MATH-500 (Lightman et al., 2023b) evaluates 368

Dyve’s integration with a Proposer LLM. We mea- 369

sure performance using maj@k and rm@k metrics 370

as defined in (Yang et al., 2024) and apply a Best- 371

of-N decoding strategy. Due to inconsistent results 372

from different evaluation tools, we manually veri- 373

fied all reported outcomes. 374

Evaluation Protocol for Baselines. To ensure 375

fair and rigorous comparisons, especially against 376

LLM-as-Judge baselines on ProcessBench, we em- 377

ployed a standardized evaluation protocol. For each 378

step st of a given reasoning trace, baseline LLMs 379

were prompted with the problem context and the 380

specific step using the format shown in Figure 3. 381

This step-by-step prompting ensures that base- 382

lines perform the same sequential verification task 383

as Dyve. For models marked with an asterisk (*) 384

in our results table (Table 1), this standardized 385

prompting and evaluation was conducted using our 386

custom implementation to maintain consistency. 387
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Table 1: Performance comparison on ProcessBench (F1 Scores). Dyve 14B leverages a dual reasoning approach
(fast System 1 and deep System 2). Models marked with (∗) are evaluated using our custom implementation aligning
with the standardized protocol. The "Type" column clarifies the model’s nature or the specific training data subset
used.

Model Type / Training Data GSM8K MATH OlympiadBench OmniMATH

Existing Process Reward Models (PRMs) - System 1 Verification
Qwen2.5-Math-7B-PRM System 1 39.4∗ 52.2∗ 39.4∗ 33.1∗

Math-Shepherd-PRM-7B System 1 47.9 29.5 24.8 23.8
RLHFlow-PRM-Mistral-8B System 1 50.4 33.4 13.8 15.8
RLHFlow-PRM-Deepseek-8B System 1 38.8 33.8 16.9 16.9
Skywork-PRM-1.5B System 1 59.0 48.0 19.3 19.2
Skywork-PRM-7B System 1 64.1∗ 43.2∗ 16.2∗ 17.9∗

LLM-as-Judge Baselines (Standard Prompting)
Llama-3.1-8B-Instruct LLM-as-Judge 27.5∗ 26.7∗ 18.5∗ 19.2∗

GPT-4o LLM-as-Judge 61.9∗ 53.9∗ 48.3∗ 44.6∗

QwQ-32B-Preview LLM-as-Judge 62.3∗ 52.7∗ 46.2∗ 43.9∗

DeepSeek-R1-Distill-Qwen-14B LLM-as-Judge (Standard Prompting) 67.3∗ 38.8∗ 29.9∗ 32.1∗

Ablation Baselines for Dyve
DeepSeek-R1-Distill-Qwen-14B Trained on System 1 Data Only 66.3∗ 56.0∗ 36.1∗ 37.7∗

Qwen2.5-14B-Instruct Trained on System 1+2 Data 51.7∗ 42.3∗ 30.2∗ 23.6∗

Dyve 14B Trained on System 1+2 Data 68.5 58.3 49.0 47.2

4.2 ProcessBench Evaluation388

We first evaluate Dyve’s core capability in identify-389

ing process errors using the ProcessBench bench-390

mark. The comprehensive results, including com-391

parisons against various baselines, are presented in392

Table 1.393

Overall Performance. As demonstrated in Ta-394

ble 1, Dyve 14B obtains substantial improvement395

in F1 scores across all four ProcessBench subsets396

over other baselines, with 68.5 on GSM8K, 58.3397

on MATH, 49.0 on OlympiadBench, and 47.2 on398

OmniMATH. This underscores the effectiveness399

of its learned adaptive verification strategy, which400

combines rapid System 1 checks with deep System401

2 analysis. Dyve not only outperforms existing402

PRMs that typically rely on simpler System 1 ver-403

ification but also surpasses strong LLM-as-Judge404

baselines, including powerful models like GPT-4o,405

especially on more complex benchmarks such as406

OmniBench and OlympiadBench.407

Comparison with Specialized Baselines. To408

further understand the contributions of Dyve’s409

training methodology and base model choice, we410

compare it against two specialized baselines de-411

rived from our rebuttal analysis. First, when412

the DeepSeek-R1-Distill-Qwen-14B model is413

trained only on System 1 type data, it achieves414

strong scores on GSM8K (66.3) and MATH415

(56.0). However, its performance drops notably416

on OlympiadBench (36.1) and OmniMATH (37.7)417

compared to the full Dyve model. This indi-418

cates that while System 1 training is effective for 419

problems closer to its training distribution, the 420

System 2 component, learned from data with de- 421

tailed reasoning traces, is crucial for generaliza- 422

tion to more complex, Olympiad-level mathemat- 423

ics that require deeper error analysis. Second, we 424

trained Qwen2.5-14B-Instruct using our full Sys- 425

tem 1+2 data. This model achieved F1 scores of 426

51.7 (GSM8K), 42.3 (MATH), 30.2 (Olympiad- 427

Bench), and 23.6 (OmniMATH). These results 428

are significantly lower than Dyve. This suggests 429

that DeepSeek-R1-Distill-Qwen-14B is a more 430

suitable base model for learning Dyve’s adap- 431

tive verification from our specialized dataset, po- 432

tentially due to its inherent reasoning capabili- 433

ties or better alignment with the training data 434

format that includes metacognitive elements like 435

<think> tags for System 2 responses. The standard 436

DeepSeek-R1-Distill-Qwen-14B when used as 437

an LLM-as-Judge also shows weaker performance 438

(e.g., 38.8 on MATH, 29.9 on OlympiadBench) 439

compared to Dyve, highlighting that Dyve’s fine- 440

tuning on our step-wise consensus-filtered data is 441

key to its superior verification abilities. 442

4.2.1 Analysis of Dyve’s Adaptive Verification 443

A core tenet of Dyve is its learned ability to dy- 444

namically switch between fast, token-level System 445

1 verification for clear steps and more comprehen- 446

sive System 2 analysis for ambiguous or erroneous 447

ones. This adaptive behavior is not rule-based but 448

emerges from training on curated data as in Fig- 449

ure 1. To quantify this, we analyzed the proportion 450
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Table 2: Dyve 14B: Distribution of System 1 vs. System 2 responses and average verification time per sample on
ProcessBench datasets.

Dataset System 1 Resp. System 2 Resp. System 1 % Avg. Time (s)

GSM8K 420 1106 27.5% 0.47
MATH 1263 2849 30.7% 0.51
OlympiadBench 2102 3027 41.0% 1.25
OmniMATH 1336 2766 32.6% 2.05

Figure 4: Inference speed comparison on ProcesBench,
time per sample in seconds, for System-1, Dyve, and
DeepSeek-R1-14B.

of System 1 and System 2 responses from Dyve451

14B on ProcessBench datasets, as shown in Table 2.452

Dyve exhibits a clear adaptive strategy.453

On GSM8K, System 2 verification is predomi-454

nant (System 1 usage: 27.5%). This is likely due455

to GSM8K’s condensed reasoning traces where in-456

dividual steps can encompass multiple calculations457

or implicit assumptions, benefiting from deeper458

scrutiny. Strategic System 1 use for clearer sub-459

steps still contributes to efficiency (discussed in460

Section 4.2.2).461

For more complex datasets like MATH,462

OlympiadBench, and OmniMATH, which in-463

volve longer reasoning chains, Dyve increases its464

reliance on System 1 verification (30.7%, 41.0%,465

and 32.6% respectively). This allows efficient pro-466

cessing of straightforward segments, reserving in-467

tensive System 2 analysis for genuinely complex468

or erroneous steps.469

This dynamic allocation is crucial for maintain-470

ing high performance on challenging problems471

while managing computational resources. Figure 1472

illustrates Dyve’s learned capability, showing a con-473

cise System 1 confirmation for a correct arithmetic474

step versus a detailed System 2 thought process and475

refutation for an incorrect step requiring multi-step476

derivation.477

4.2.2 Comparison on Inference Time478

The adaptive nature of Dyve is designed not only479

for accuracy but also for efficiency. Figure 4 com-480

pares the average inference time per sample on481

ProcessBench for Dyve 14B, a hypothetical Sys-482

tem 1-only version, and the base DeepSeek-R1- 483

14B model when performing detailed System 2-like 484

analysis for every step. 485

As illustrated in Figure 4, Dyve 14B is notably 486

faster than its base model when the latter is forced 487

to generate detailed step-by-step explanations for 488

every step. While a pure System 1 verifier is in- 489

herently the fastest, Dyve strikes a balance. Its 490

efficiency gains are directly attributable to its dy- 491

namic allocation of System 1 verification for a sub- 492

stantial portion of steps as quantified in Table 2. 493

For instance, on GSM8K, even with 72.5% Sys- 494

tem 2 usage, the average time per sample for Dyve 495

(0.47s, from Table 2) is considerably lower than 496

if all steps required full System 2 analysis. This 497

demonstrates that Dyve effectively conserves com- 498

putational resources without unduly sacrificing ver- 499

ification depth, making it well-suited for applica- 500

tions requiring both accuracy and reasonable pro- 501

cessing speed. 502

4.2.3 Impact of Model Choice and Step-wise 503

Consensus Filtering 504

Figure 5: Impact of model choice and step-wise con-
sensus filtering on performance across GSM8K, MATH,
OlympiadBench, and OmniMATH. The figure illus-
trates improvements achieved through consensus fil-
tering and step-wise flagging, highlighting the superior
performance of the 14B reasoning model over the 7B
Llama.

Our step-wise consensus-filtered process super- 505

vision pipeline is crucial for Dyve’s adaptive veri- 506

fication strategy. Figure 5 illustrates the impact of 507

our model and data curation choices. 508

The left panel of Figure 5 com- 509
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Figure 6: Comparison of Dyve, Dyve System1 and Ma-
jority Vote with different generation budget when inte-
grating with the reasoning model DeepSeek-R1-Distill-
Qwen-14B as Proposer LLMs.

pares Llama-3.1-8B-Instruct and510

DeepSeek-R1-Distill-Qwen-14B as Dyve’s511

base models, both trained on our System 1+2512

dataset. The 14B DeepSeek-R1 consistently513

outperformed the 8B Llama, validating our choice514

of a more capable architecture for this nuanced515

verification task.516

The right panel of Figure 5 highlights the pro-517

gressive benefits of our data curation for the518

DeepSeek-R1-Distill-Qwen-14B model. While519

training on unfiltered Monte Carlo data ("w/o520

Consensus") offered some improvement over521

raw LLM-as-Judge, Consensus Filtering signif-522

icantly boosted performance (e.g., MATH F1523

from 34.7 to 56.0). Crucially, the final Step-524

wise Flagging stage, where a reasoning LLM525

(DeepSeek-R1-Distill-Qwen-32B) created ex-526

plicit System 1 (’+’) and System 2 (error expla-527

nations) target outputs, led to full Dyve 14B per-528

formance (e.g., MATH F1 58.3, GSM8K 68.5).529

This final step is vital for enabling Dyve’s adaptive530

System 1 / System 2 verification mechanism, un-531

derscoring the importance of our data pipeline in532

achieving Dyve’s high performance.533

4.3 Integrating Dyve with Proposer LLMs534

We integrate Dyve as a process verifier to assist535

Proposer LLMs (Qwen-Math-7B and Deepseek-536

R1-Distill-Qwen-14B) on MATH-500. For fair-537

ness, we compare three setups across Best-of-N (N538

= 1, 2, 4, 8) decoding settings: Dyve verification,539

System 1 only, and Majority Vote (no verification).540

Results and Analysis As shown in Figures 6541

and 7, our proposed Dyve framework consistently542

demonstrates superior performance across differ-543

ent Proposer LLMs, irrespective of their inherent544
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Figure 7: Comparison of Dyve, Dyve System1 and
Majority Vote with different generation budget when
integrating with the language model Qwen2.5-MATH-
7B-Instruct as Proposer LLMs.

reasoning capabilities. Specifically, Dyve’s inte- 545

gration of fast and slow verification mechanisms 546

outperforms both the Majority Voting and the Sys- 547

tem 1 only verification baselines when coupled 548

with Best-of-N decoding. 549

When integrated with the reasoning model, 550

DeepSeek-R1-14B (Figure 6), Dyve achieves a 551

peak accuracy of 95.5% with a generation budget 552

of N = 8. This significantly surpasses the perfor- 553

mance of both Majority Vote and relying solely 554

on System 1 verification with the same underlying 555

Proposer LLM. Similarly, when Dyve is integrated 556

with Qwen2.5-MATH-7B-Instruct, a model with 557

comparatively less emphasis on complex reasoning 558

(Figure 7), it still reaches an impressive accuracy of 559

90.4% at N = 8. Notably, Dyve’s performance with 560

Qwen2.5-MATH-7B-Instruct also exceeds that of 561

the Majority Vote and System 1 only approaches 562

using the same Proposer LLM. 563

These results demonstrate Dyve’s robustness and 564

generalizability. By combining fast and slow ver- 565

ification, Dyve effectively guides both strong rea- 566

soning models and more general language models 567

towards accurate solutions, highlighting its broad 568

applicability. 569

5 Conclusion 570

Our study demonstrates Dyve’s, with a dual reason- 571

ing approach, superior performance in mathemat- 572

ical reasoning verification. The consensus filter- 573

ing and step-wise flagging significantly enhanced 574

model accuracy and robustness. Ablation studies 575

confirm the 14B model’s advantages over smaller 576

variants for complex reasoning tasks, establishing 577

Dyve as an effective solution for precise and effi- 578

cient error detection. 579
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6 Broader Ethical Impact580

Our method is centered on rigorous verification of581

AI reasoning, ensuring each step is systematically582

validated for enhanced reliability and transparency.583

By exclusively using publicly available datasets584

under their proper licenses, we adhere to responsi-585

ble research practices. We believe that improving586

verification in AI reasoning not only boosts system587

robustness but also exemplifies ethical AI develop-588

ment.589

7 Limitations590

While Dyve demonstrates strong performance, it591

shares several limitations common to verification-592

based systems. Its effectiveness naturally depends593

on the complexity of the reasoning tasks, and more594

intricate multi-step problems may require further595

adaptation or deeper analysis. In addition, although596

our consensus-filtered process supervision consid-597

erably enhances signal quality, a modest level of598

noise remains inherent in any automated estimation599

process. Finally, the overall performance is influ-600

enced by the quality and diversity of the training601

data, suggesting that further efforts in data curation602

and filtering could yield even more robust results.603

These aspects offer promising directions for future604

research.605
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A Appendix 711

A.1 Detailed Experiment Setup 712

A.2 Training Details 713

Our model processes inputs with a maximum token 714

length of 2048, ensuring robust contextual under- 715

standing. To further enhance efficiency, we employ 716

Low-Rank Adaptation (LoRA) configured with a 717

rank of 16, an alpha value of 16, and a dropout rate 718

of 0.1. The training regimen spans three epochs, 719

using a per-device batch size of 2 and leveraging 720

gradient accumulation over 8 steps. The learning 721

rate is set to 2× 10−5 and a weight decay of 0.01 722

is applied. Training is executed with mixed pre- 723

cision (fp16), optimizing computational resources 724

without sacrificing performance. 725

Inference During inference, our model leverages 726

a multi-step reasoning process to evaluate each 727

problem instance. The procedure begins by formu- 728

lating a sequence of conversational prompts that 729

encapsulate both the problem statement and its pro- 730

gressive steps. At each step, the Dyve model is 731

queried via its custom chat interface, and the gen- 732

erated response is examined for specific response 733

patterns — such as the presence of a "+" sym- 734

bol signaling a correct evaluation. This iterative 735

mechanism continues until a response fails to meet 736

the designated correctness criteria, at which point 737

the process halts. To ensure efficiency, the infer- 738

ence is executed concurrently using a pool of 32 739

parallel workers, processing various configurations 740

from the ProcessBench dataset (including gsm8k, 741

math, olympiadbench, and omnimath). For every 742

evaluated problem, all intermediate responses (or 743

generations) and the final step classification are 744

recorded. These results are then systematically 745

saved in JSON Lines format, facilitating subse- 746

quent analysis and serving as a robust foundation 747

for further evaluation. 748

A.3 Benchmark Details 749

ProcessBench (Zheng et al., 2024) serves as 750

our main benchmark for evaluating step-wise er- 751

ror identification. It comprises four challeng- 752

ing test sets derived from GSM8K (Cobbe et al., 753

2021a), MATH (Hendrycks et al., 2021), Olympiad- 754

Bench (He et al., 2024), and OmniMATH (Gao 755

et al., 2024). ProcessBench includes 3,400 test 756

cases that span from high-school to Olympiad- 757

level mathematical problems. Each case provides 758

a problem, a step-by-step solution, and expert an- 759
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notations indicating the location of the first error,760

if any. For this benchmark, models are tasked761

with sequentially verifying a given reasoning trace762

{s1, s2, . . . , sT }. For each step st, the model must763

determine if an error has occurred in s1:t. If an764

error is identified, the process halts, and the index765

of the erroneous step is reported; otherwise, the766

model confirms the correctness of all steps. Our767

primary metric for ProcessBench is the F1 score,768

calculated as the harmonic mean of the accuracies769

on identifying erroneous samples and correct sam-770

ples (Zheng et al., 2024). This metric effectively771

balances a model’s ability to detect errors without772

being overly critical.773

MATH-500 (Lightman et al., 2023b) is em-774

ployed to assess Dyve’s effectiveness when inte-775

grated as a verifier with Proposer LLMs. This776

dataset consists of 500 problems from the MATH777

dataset. We measure performance using the778

pass@k (maj@k and rm@k) metrics as defined779

in (Yang et al., 2024), applying a Best-of-N (BoN)780

decoding strategy where N varies (1, 2, 4, 8). Due781

to known inconsistencies with automated evalua-782

tion tools for complex mathematical reasoning, all783

reported outcomes on MATH-500 were manually784

verified for accuracy.785

A.4 Efficient Estimation of MCTS786

In this section, we detail our approach to effi-787

ciently utilize Monte Carlo Tree Search (MCTS)788

for sampling rollouts, which are crucial for training789

process-based verifiers.790

Overview791

Our method leverages MCTS to construct a state-792

action tree representing detailed reasoning paths793

for a given question. This approach allows us to794

collect Process-based Reward Model (PRM) train-795

ing examples by exploring various reasoning paths796

and identifying errors efficiently.797

State-Action Tree Construction798

Each state s in the tree corresponds to a ques-799

tion and its preceding reasoning steps, with the800

root state being the question without any reason-801

ing steps. An action a is a potential next step,802

and the state transition function is defined as s′ =803

Concatenate(s, a). Each node s stores the visit804

count N(s), Monte Carlo estimation MC(s), and805

rollout value function Q(s, r).806

MCTS Process 807

Selection We maintain a pool of rollouts with 808

0 < MC(s) < 1. During selection, a rollout is 809

chosen based on tree statistics using a variant of 810

the PUCT algorithm: 811

U(s) = cpuct

√∑
iN(si)

1 +N(s)
812

This strategy initially favors rollouts with low visit 813

counts, gradually shifting preference towards those 814

with high rollout values. 815

Binary Search A binary search identifies the first 816

error location in the selected rollout. Rollouts with 817

0 < MC(s) < 1 are added to the selection pool. 818

The search process divides and examines rollouts to 819

pinpoint errors, updating the tree with new states. 820

Maintenance After binary search, update the 821

statistics N(s), MC(s), and Q(s, r). Increment 822

N(s) for the selected state-action pair and update 823

MC(s) and Q(s, r) based on the binary search 824

results. 825

Tree Construction Repeat the above process to 826

construct the state-action tree. The process ends 827

when the search count reaches a predetermined 828

limit or no additional rollouts are available. 829

A.5 Training Data Example 830
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Example Data Sample

LLM Proposer:
Step: Cowboy Mickey and cowgirl Minnie train horses. Mickey mounts six less than twice as
many horses per day as Minnie, while Minnie mounts three more horses per day than there are days in
a week. How many horses does Mickey mount per week?
Step 1: Minnie mounts 7+3=<<7+3=10>>10 horses per day.
Is this step correct? Answer with '+' for correct or '-' for incorrect.

Dyver:
<think>
</think> +

LLM Proposer:
Step 2: Mickey mounts 12-6=<<12-6=6>>6 horses per day.
Is this step correct? Answer with '+' for correct or '-' for incorrect.

Dyver:
<think>
Let's verify Step 2 ....
Mickey mounts six less than twice Minnie's count. Minnie mounts 10 horses, so Mickey should mount
2*10 - 6 = 14. Step 2 is incorrect.
</think>
Answer: -

Figure 8: A example of the training data.
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