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ABSTRACT

Existing studies have shown that Message-Passing Graph Neural Networks
(MPNNs) are highly susceptible to adversarial attacks. In contrast, despite the
increasing importance of Graph Transformers (GTs), their robustness properties
are unexplored. Thus, for the purpose of robustness evaluation, we design the
first adaptive attacks for GTs. We provide general design principles for strong
gradient-based attacks on GTs w.r.t. structure perturbations and instantiate our at-
tack framework for five representative and popular GT architectures. Specifically,
we study GTs with specialized attention mechanisms and Positional Encodings
(PEs) based on random walks, pair-wise shortest paths, and the Laplacian spec-
trum. We evaluate our attacks on multiple tasks and threat models, including
structure perturbations on node and graph classification and node injection for
graph classification. Our results reveal that GTs can be catastrophically fragile
in many cases. Consequently, we show how to leverage our adaptive attacks for
adversarial training, substantially improving robustness.

1 INTRODUCTION

Graphs are versatile data structures that have applications in a wide range of different domains,
and Graph Neural Networks (GNNs) have become the tool of choice for many learning tasks on
graphs. Given the increasing popularity of GNNs, multiple studies in the past years have devel-
oped adversarial attacks for GNNs and analyzed their robustness (Zügner et al., 2018; Zügner &
Günnemann, 2019; Zügner & Günnemann, 2020). These studies mostly focus on Message-Passing
GNNs (MPNNs), such as the Graph Convolutional Network (GCN) (Kipf & Welling, 2017) and
show that GNNs are vulnerable to even slight graph structure perturbations (Zügner et al., 2018).

Recently, Graph Transformers (GTs) have gained popularity (Müller et al., 2024), addressing inher-
ent limitations such as over-smoothing, over-squashing, and limited receptive fields (Müller et al.,
2024). Yet, the adversarial robustness of GTs is entirely unexplored. The unknown stability of GTs
poses a substantial risk in practical applications, where robustness is crucial. However, evaluating
the robustness of GTs is non-trivial. GTs’ employ modified attention mechanisms and Positional
Encodings (PEs) that often include parts that are not differentiable w.r.t. the graph structure. This
renders the application of gradient-based adaptive attacks difficult, even though the gradient is key
for crafting adversarial attacks efficiently. Adaptive attacks can use the model-specific gradient to
adjust to all architecture details and are vital for realistic robustness estimates (Athalye et al., 2018;
Carlini & Wagner, 2017; Tramèr et al., 2020), also in the GNN domain (Mujkanovic et al., 2022).

We provide the first analysis of the robustness of GTs. To obtain precise robustness estimates,
we propose continuous relaxations and perturbation approximations for the most widely used GT
components including (a) Shortest Path, (b) Random Walk, and (c) Spectral PEs. These enable
us to apply adaptive gradient-based attacks to five popular and representative GT architectures: 1)
Graph Inductive bias Transformer (GRIT) (Ma et al., 2023), 2) Graphormer (Ying et al., 2021),
3) Spectral Attention Network (SAN) (Kreuzer et al., 2021), 4) General, Powerful, Scalable (GPS)
GT (Rampášek et al., 2022), and 5) Polynormer (Deng et al., 2024). Moreover, we provide guiding
principles to develop relaxations for other discrete or non-differentiable components in GTs.

Our study reveals that GTs can be catastrophically fragile if evaluated with our adaptive attacks
(Fig. 1). For example, on the proposed node injection attacks (NIAs) for fake news detection (Fig. 1c
& 1d), perturbing 2.5% of edges suffices to essentially halve the accuracy. Consequently, we use
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Figure 1: The adversarial classification accuracy for different GNNs with varying (evasion) attack
budgets on four different datasets: CLUSTER - inductive node classification (global structure at-
tack), Reddit Threads - graph classification (structure attack), UPFD politifact and gossipcop - graph
classification (node injection attack) . The strongest attack for each budget is shown.

our adaptive attacks to devise an effective adversarial training strategy that largely alleviates the
hypersensitivity of some GT architectures.

Our main contributions are: (1) We formulate adaptive gradient-based structure attacks, along with
the guiding principles, for five Graph Transformer (GT) architectures. (2) We are the first to study the
adversarial robustness of graph transformers and show that they suffer from similar vulnerabilities
to adversarial attacks as message-passing GNNs. (3) We show that adversarial training yields an
effective defense counteracting GT’s vulnerabilities.

2 BACKGROUND

Let G = (V, E) be an undirected attributed graph with n nodes V = {v1, ..., vn} and m edges. Let
xi ∈ Rd be the feature vector of node vi. Then the graph can be defined as G = (A,X) with
its symmetric binary adjacency matrix A ∈ {0, 1}n×n and node feature matrix X ∈ Rn×d. The
diagonal degree matrix D with entries Dii = deg(vi) =

∑n
j=1 Aij and the normalized symmetric

graph Laplacian matrix Lsym = I − D−1/2AD−1/2 can both be derived from A. The GNNs
considered in this work are functions fθ(A,X) with model parameters θ. We denote the updated
hidden node representations after each GNN layer l as H(l) with initialization H(0) = X . For node-
level tasks, the output node representations are directly utilized for predictions, while for graph-level
tasks a graph-pooling operation aggregates the nodes embeddings into a graph embedding before
prediction.

2.1 STRUCTURE ATTACKS

In this work we focus on untargeted white-box evasion attacks, i.e., an attacker with full knowledge
of model and data attempts to change the trained model’s prediction to any incorrect class at test time
by slightly perturbing the input graph structure. For node-level tasks we focus on global attacks that
minimize the overall performance metric across all nodes. The attack objective is described by the
following optimization problem:

max
Ã s.t. ||Ã−A||0<∆

Latk(fθ(Ã,X)) (1)

where fθ is the GNN model with fixed parameters θ, Ã ∈ {0, 1}n×n is the discrete perturbed
adjacency matrix in relation to A with the number of edge flips bounded by the budget ∆, and
Latk is a suitable attack loss function. For node classification, we use the tanh-margin attack loss
proposed in (Geisler et al., 2021). For graph classification, we simply optimize the unnormalized
class logits: Latk = −ly +

∑
c̸=y lc. It is convenient to model the perturbation as a function of the

binary matrix indicating the edge flips B ∈ {0, 1}n×n:

Ã = A+ δA, δA = (1n1
T
n − 2A)⊙B (2)

with element-wise product ⊙. The combinatorial problem can be optimized more efficiently with a
continuous relaxation B ∈ [0, 1]n×n. In this setting, the entry Bij represents the probability that the
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edge (vi, vj) is flipped. Discrete perturbations can then be sampled from the continuous solution.
The budget constraint becomes E[Bernoulli(B)] =

∑
Bij ≤ ∆, which can be dealt with by using

projected gradient descent (Xu et al., 2019). For large graphs, optimizing over all entries in B at
once becomes infeasible. Projected Randomized Block Coordinate Descent (PRBCD) solves this
with a strategy that optimizes over sampled random blocks of limited size (Geisler et al., 2021).

2.2 GRAPH TRANSFORMERS

Figure 2: A generic
graph transformer
architecture.

Graph transformers (GTs) apply the popular transformer architecture for se-
quences (Vaswani et al., 2017) to arbitrary graphs. A general GT architecture
is depicted in Fig. 2. In this work, we focus on GTs that apply global self-
attention, where each node can attend to all other nodes. A ‘vanilla’ structure-
unaware self-attention head is defined as:

Attn(H) = softmax

(
(HWq)(HWk)

T

√
d

)
(HWv) (3)

where Wq,Wk,Wv ∈ Rd×d are the weights for the query, key, and value
projections. The individual attention scores can thus be defined as:

αij = softmax(wij) =
ewij∑
k e

wik
, with wij =

Wqhi ·Wkhj√
d

(4)

Since this update is independent of the graph structure, many GTs apply a
modified attention mechanism that also depends on the adjacency matrix.
However, the most common way to add structure information is by adding
Positional Encodings (PEs) to the node features:

H(0) = X + ψ(A) (5)

We categorize the PEs roughly in three main categories: (1) random walk encodings, (2) distance
encodings, and (3) spectral encodings. Next we describe the PEs and attention modifications of the
five GT models that we attack. More details about the architecture are available in § C.

Graphormer (Ying et al., 2021). For the PEs, a degree embedding vector zi ∈ Rd is learned for
each discrete node degree value. Each node feature gets added to a PE vector of its corresponding
degree. Similarly, a scalar bi ∈ R is learned for each discrete Shortest Path Distance (SPD). These
values are added to the pair-wise raw attention scores according to the pairs’ SPDs. This results in a
re-weighting of the attention weights after applying the softmax function.

GRIT (Ma et al., 2023). For the PEs, the random walk probability matrices for walks of lengths 0 to
k− 1 are concatenated to form a 3D tensor. By slicing this tensor, an embedding vector Pi,j,: ∈ Rk

is obtained for each of the n2 node-pairs (vi, vj). The diagonal entries are projected by a linear layer
and added to the node features as PEs. Additionally, all n2 embedding vectors are used as node-pair
features. The node representations hi and node-pair representations hi,j are both updated in each
transformer layer by a modified attention mechanism, which includes scaling by the node degrees.

SAN (Kreuzer et al., 2021). The PEs are based on the eigen-decomposition of the Laplacian matrix.
Specifically, for each node vi the PE is initialized as a sequence of k vectors resulting from the
concatenation of the k smallest eigenvalues with the i-th entries of their corresponding eigenvectors.
The sequence is further processed by a transformer encoder and then pooled in the sequence dimen-
sion. The resulting PE vectors are concatenated to the node features. Additionally, the main graph
transformer attention mechanism is modified to have two separate key and query projection weights
for connected and unconnected node-pairs. The attention scores to the connected nodes and to the
unconnected nodes are computed independently, each with a softmax. A hyperparameter γ controls
how the two scores are relatively scaled, varying the bias towards sparse or full attention.

GPS (Rampášek et al., 2022). Each GPS layer combines local message passing of a MPNN with
a global attention update. We consider the configuration with DeepSet spectral PEs (similar to
SAN), a GatedGCN (Bresson & Laurent, 2018) MPNN, and standard transformer global attention.
Alternatively, if a GCN (Kipf & Welling, 2017) is used as the MPNN we denote the model as GPS-
GCN.
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Polynormer (Deng et al., 2024). This model first applies local message-passing layers followed
by linear global attention layers. The local layer is based on GAT (Veličković et al., 2018) and all
updates are of second polynomial order. No PEs are used. Instead, the global attention relies on the
previous message-passing steps to aggragate enough information about the graph structure.

3 ATTACKING GRAPH TRANSFORMERS

The main obstacles for gradient-based structure attacks on GTs fθ are PEs and attention mechanisms
that are designed for a discrete graph structure. As a result, the model output is often a discontinuous
function of the continuous input adjacency matrix Ã ∈ [0, 1]n×n, rendering continuous optimization
ineffective. Thus, to obtain useful gradients we need to relax the structure aware components such
as PEs. For designing the continuous relaxations f̃θ, we identify three main principles:

Principle I: Relaxed and target models coincide for discrete inputs. The prediction should equal
f̃θ(A) = fθ(A) for any discrete adjacency A ∈ {0, 1}n×n.

Principle II: f̃θ can interpolate “smoothly” between any different discrete graphs. In other
words, f̃θ(Ã) should be continuous w.r.t. Ã but does not need to be continuously differentiable.

Principle III: The relaxed model f̃θ must be efficient. It is a critical property that the relaxation
does not excessively increase memory and runtime complexity.

While Principle II might appear surprising at first glance, we argue that we do not need to enforce
stronger standards on f̃θ than perhaps the most widely used activation function ReLU. We expect
these principles to be sensible defaults for the design of adaptive attacks on future GTs.

Some models, such as GCN and GRIT, are already continuous and do not require relaxations.
Models with local attention, such as GAT, use the adjacency matrix to determine a binary attention
mask from the local neighborhoods N (vi) = Ni = {vj |Aij > 0}), while the attention weights
themselves are computed using only the node features:

αij = softmaxNi
(wij) =

ewij∑
vk∈Ni

ewik
, wij = fθ,attn(hi,hj) (6)

Note that the local neighborhood is discontinuous w.r.t. continuous changes in the adjacency matrix.
As a continuous relaxation, we can instead add a bias to the attention weights: w̃ij = wij + g(Ãij).
Because of the exponentials in the softmax operation, to re-obatin the binary attention mask in the
discrete case, we require g(0) = −∞ and g(1) = 0. A simple valid choice is the natural logarithm.
The attention scores can then be written as:

α̃ij = softmax(wij + log(Ãij)) =
ewij+log(Ãij)∑
k e

wij+log(Ãij)
= Ãij ·

ewij∑
k Ãik · ewik

(7)

As a results, the binary attention mask is emulated in the discrete case and in the continuous case
the attention scores to nodes that are only loosly connected are decreased. Using this relaxation (and
a similar one for GatedGCN), we define continuous GPS and Polynormer relaxations. Note that
Eq. 7 is neither needed nor valid for global attention which can include contributions from all nodes
in the graph regardless of connectivity.

Graphormer. The degree PEs zdeg(vi) and SPD biases bspd(vi,vj) are indexed by the discrete values
of the node degrees (# of neighbors) and shortest path distances (# of hops). To enable the use of
continuous degrees, we define a linear interpolation between the PE embeddings of the two closest
integer degree values:

z̃deg(vi) = η · zdl+1 + (1− η) · zdl , with dl = ⌊deg(vi)⌋, η = deg(vi)− dl (8)

Increasing the edge probabilities to a node also increases the expected discrete degree. However,
the edge probabilities are more challenging to interpret for the SPDs. When a very small edge
probability lies on a (simple) shortest path, the path is less likely to exist in the discrete sampled
adjacency matrix. Therefore, low edge probabilities should only marginally affect the original SPDs.
To model this relationship, we use the reciprocal of the adjacency matrix Rij = 1/Ãij to find
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continuous proxy shortest path distances rspdij = spd(vi, vj |R). We interpolate between the closest
discrete values again and obtain:

b̃spd(vi,vj) = η · bsl+1 + (1− η) · bsl , with sl = ⌊rspdij⌋, η = rspdij − sl (9)

Note that for discrete edge probability values 0 and 1, the reciprocal edge weights become −∞
and 1, respectively, yielding the original SPDs. Hence, we do not alter the clean predictions if
δA = B = 0 (see Principle I).

SAN. Since SAN applies a separate attention mechanism based on the binary decision whether an
edge is real or fake, it can be interpreted as applying local attention to the original graph and to the
‘inverse’ graph in parallel. Analogously to Eq. 7, we bias the ‘real’ and ‘fake’ edge attention score
with w̃real,ij = wreal,ij + log(Ãij) and w̃fake,ij = wfake,ij + log(1− Ãij) respectively. Note that for
a discrete real edge, i.e., Ãij = 1, the logarithm terms become 0 and −∞ respectively, such that it
fully contributes to the ‘real’ attention mechanism while not affecting the ‘fake’ one. The same can
be shown for discrete fake edges, thus the descrete output remains unchanged (see Principle I).

The Laplacian matrix itself is a continuous functions of the entries in the adjacency matrix. How-
ever, its eigen-decomposition used for the PEs poses some challenges for gradient computation,
especially w.r.t. the eigenvectors. The problems arise because: (a) the choice of direction (sign)
for eigenvectors is arbitrary, (b) the choice of an eigenvector-basis of the eigenspace of a repeated
eigenvalue is arbitrary, thus the gradient is not well defined, (c) for eigenvalues that are close to-
gether, the corresponding eigenvector gradients are numerically unstable. To avoid direct gradient
computation, we use results from matrix perturbation theory (Stewart & Sun, 1990; Bamieh, 2022)
to approximate the perturbed eigen-decomposition as a simpler function of the input perturbation.
We define the perturbation on the Laplacian as δLsym = L̃sym − Lsym, where L̃sym is the Lapla-
cian of the perturbed continuous adjacency matrix Ã. The first-order approximations from (Bamieh,
2022) are, for the eigenvalues and eigenvectors:

Λ̃ = Λ+ δΛ, δΛ ≈ diag(UTδL U) (10)

Ũ = U + δU , δU ≈ −U
(
Π⊙

(
UTδL U

))
, where Πij =

{
1

λi−λj
if λi ̸= λj

0 else
(11)

However, when repeated eigenvalues are present in the unperturbed Laplacian, special care for the
choice of the eigenvectors in U that span the eigenspaces of the repeated eigenvalues is required.
This case is treated by Bamieh (2022) and we show the application in our specific case in § H.1. A
completely different strategy consists of adding a bit of random noise to L̃sym in hopes of breaking
apart any repeated eigenvalues, such that is possible to directly backpropagate through the eigende-
composition Lin et al. (2022). We elaborate on this strategy and propose an alternative in § H.2.

4 NODE INJECTION ATTACK

We also consider the relevant case of inserting nodes into an existing graph structure. In contrast to
the usual framing of Node Injection Attack (NIA), where the attacker also chooses the node features
for the new vicious nodes (Wang et al., 2020), we connect existing nodes from other graphs of an in-
ductive graph dataset. Therefore, the nodes’ features are fixed but physically realizable even if, e.g.,
they represent embeddings of natural language. This alleviates us from a somewhat subjective def-
inition of imperceptibility required to craft the node features in the existing NIA. Hence, our attack
solely focuses on ‘structure’ perturbations and their influence on the PEs, which are of particular
interest for attacking GTs.

We formulate our node injection attack as a structure attack on an augmented graph that includes
both the original nodes and the set of potential injection nodes. This formulation enables the use of
the same PRBCD attack optimization, where the edge flip budget constraint also serves as an upper
bound for the number of nodes that can be injected. We provide details in D.

Node probability for smooth node insertion. The continuous optimization of structure attacks in
§ 2.1 assigns probabilities to edges-flips, while nodes are assumed to all be part of the graph. In
contrast, during NIAs the nodes also have have certain probabilities of being included. To approxi-
mate these node probabilities from the edge weights in a general way, we propose a simple iterative
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computation. For a continuous connected graph, let N (vi) be the 1-hop neighborhood of node vi.
We can calculate the probability pi of vi being connected to the graph, by using the probability of
being connected to its neighbors and the probabilities that these neighbor themselves are connected
to the graph. We start with the assumption that all nodes are connected to the graph and update using
the edge probabilities:

p
(t+1)
i = 1 −

∏
vj∈Ni

(1−Aij · p(t)j ), with p
(0)
i = 1 (12)

An example is shown in § D.1. To ensure that the model output is continuous w.r.t. node injections,
this node probability is used to compute a weighted sum or mean in the graph-pooling for graph
level tasks. Additionally for GTs, we use the node probability to bias the global pairwise attention
scores which result in a continuous weighting of the attention scores similar to Eq. 7:

ŵij = wij + log(pj), α̂ij = softmax(ŵij) =
eŵij∑
k e

ŵik
=

pj · ewij∑
k pk · ewik

(13)

Note that while Eq. 7 is only valid for local attention, the potentially complete removal or addition
of a node has global influence. Therefore, this node probability bias can be applied to any global
attention mechanism.

5 EVALUATION

Datasets. We first evaluate our structure attacks on CLUSTER (Dwivedi et al., 2023). It contains
SBM-generated graphs with 6 clusters, where each cluster has one labeled node. The average num-
ber of nodes is 117.2. The task is to predict which node belongs to which cluster, i.e., inductive node
classification. For training, we use the standard PyG train/val/test split of 10000/1000/1000 graphs,
respectively. Additionally, we evaluate on the graph classification dataset Reddit Threads (Rozem-
berczki et al., 2020). It contains 203 088 small graphs without any features and with an average of
23.9 nodes. The graphs represent users that are connected if they directly reply to each other in the
thread. The task is binary classification of whether the thread is disscussion-based. We use stratified
random train/val/test split of 75%/12.5%/12.5%.

We use the UPFD Twitter fake news detection datasets from (Dou et al., 2021) to evaluate our node
injection attacks. There are 2 datasets: politifact, with political; and gossipcop with celebrity fake
news. The average number of nodes is 131 and 58, respectively. The graphs consist of retweet
trees, where the root node has features concerning both the news content and the user who posted
the news. All other nodes’ features are related to the users that retweeted the news. We add all
dataset nodes except for the graph roots into the candidate set of injection nodes, since the roots are
special. Moreover, we do not allow for perturbations of the original tree structure and if the discretely
sampled injection perturbations do not have a tree structure, we take the maximum spanning tree
(using the edge probabilities) to ensure all perturbations are valid retweet trees. The task is binary
classification whether the graph contains fake news or not. We use the standard PyG train/val/test
split of 20/10/70% of the 314 and 5464 graphs for politifact and gossipcop, respectively.

Due to the quadratic scaling in the number of nodes of the three chosen GTs, their application is lim-
ited to smaller graphs. This renders evaluation on larger graph datasets commonly used in robustness
studies impractical. While GTs are most widely applied to molecule data, adversarial attacks are of
little practical relevance in that domain. Thus, we omit molecule data from our evaluations.

Attacks. As explained in § 2.1, we apply untargeted (global) evasion attacks, i.e., we perturb
the graph structure of the test input for a trained model with fixed weights. For model training
we do a random hyperparameter search, choosing the model with the highest validation metric.
This approach is consistent with common practice. The hyperparameters used for the attacks are
reported in § G. We show results for 4 different attacks. Adaptive PRBCD uses our relaxations
described in § 3 for a gradient-based PRBCD attack. Random perturbation is the simplest baseline,
where a single random perturbation of the adjacency matrix is used. In contrast, random attack is
a brute-force random search that tests many random perturbations and selects the best. To match
the computational budget of the adaptive attacks, it gets the same number of model evaluations.
Finally, the GCN PRBCD transfer attack transfers the perturbation computed from a PRBCD attack
of a GCN model to the GT models. This is a strong baseline attack that follows the same principle
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Figure 3: Global structure (evasion) attack results for CLUSTER (inductive node classification).
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Figure 4: Structure (evasion) attack results for Reddit Threads (graph classification).

as many other established GNN attacks for different settings, such as Nettack (Zügner et al., 2018)
and Mettack (Zügner & Günnemann, 2019): it is a gradient-based attack (PRBCD) on a simpler
surrogate (GCN) that gets transferred to the victim model. Moreover, it is the main (global evasion)
attack for non-GCN models proposed and used by (Geisler et al., 2021), where it has been show to
be just as effective (or more) than other baselines.

For all datasets, we evaluate our attacks on the 50 first graphs in the test set and report average and
standard deviation over 4 random seeds. For UPFD node injection, we use a small block size of
1000, which is necessary due to the n2 scaling of GTs. For GCN it is possible to increase the block
size, but we keep it the same for comparability. We optimize all our adaptive attacks for 125 steps
and sample 20 discrete perturbations from the result, of which we take the strongest. For all other
attack hyperparameters, we use default values that performed well in preliminary evaluations. For
all results outside of the ablation tables, we use all of our continuous relaxations proposed in § 3.

6 ATTACK RESULTS

We present the first principled analysis on the robustness of GTs on five representative architecture
types (Graphormer, GRIT, SAN, GPS, Polynormer). We define different goals for our evaluation:
(A) efficacy of the proposed adaptive attacks, (B) providing an accurate assessment of GT robustness
for relevant real-world tasks. To this end, we perform our evaluation on datasets with varying com-
plexity. Towards (A) we explore the robustness of GTs on CLUSTER and Reddit Threads, which
comprise simple, interpretable structures. This exploration helps us evaluate the effectiveness of the
proposed relaxations, ideally leading our attacks to target semantically meaningful structures within
the dataset. We address (B) through evaluations on UPFD. Here, we constrain our attack to remain
within the predefined tree structure of the dataset. As a result, the attack represents impersonating
an existing user who is retweeting the respective news article. This evaluation goes beyond previous
robustness analyses of citation networks in GNNs (Zügner et al., 2018; Geisler et al., 2021), offering
a more practical use case and semantically meaningful attacks.

CLUSTER. The node classification accuracy for the CLUSTER dataset for different attack budgets
is shown in Fig. 3. The fragility of the data can already be seen by the random perturbation attack.
Since only a single node in each cluster is labeled, attacking these labeled nodes requires little budget
and leads to strong attacks. We manually inspected the adaptive attack perturbations and confirmed
that most edge modifications are connected to the labeled nodes, which shows their efficacy. The
GCN transfer attacks tend to work very well, strengthening our hypothesis that the straightforward
nature of the task leads to the same type of semantically meaningful model-independent perturba-
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Figure 5: Node injection (evasion) attack results for UPFD politifact (graph classification).
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Figure 6: Node injection (evasion) attack results for UPFD gossipcop (graph classification).

tions: modifying edges to labeled nodes. This outcome positively indicates the effectiveness of our
adaptive attacks (A), as they consistently identify meaningful perturbations across all GTs. They
may sometimes be weaker than the GCN transfer baseline (for the smallest budgets) simply due to
a more difficult optimization function. To avoid the natural fragility in the data, we also evaluate a
constrained attack that prohibits modifying edges to the labeled nodes, for which results are shown in
§ E.1. For CLUSTER, we additionally attack the GAT (Veličković et al., 2018) and GATv2 (Brody
et al., 2022). The worst case perturbation results for all models are shown in Fig 1a, where we
observe that GTs are consistently slightly more robost than MPNNs for small budgets (their clean
accuracies are also higher though).

Reddit Threads. For this dataset we were unable to train a comparable Polynormer model. Fig. 1b
shows a comparison of the models’ robustess for small budgets. While there are differences in
robustness, all models follow a similar trend. In Fig. 4, the individual attack accuracies for a wider
range of budgets are shown for all models. While the GCN transfer attacks are also effective, our
adaptive attacks are significantly stronger and the adversarial accuracy drops close to zero when up
to 75% of the edges can be modified. SAN is the exception, for which in this particular case the
adaptive attacks are comparatively weak. The low accuracy for large budgets is unsurprising, as
there are no node features and the prediction relies soly on the graph structure. Interestingly, the
random attack never seems to work well. This demonstrates that the gradient information provided
by our relaxations is extremely helpful for finding good perturbations.

UPFD. The graph classification accuracies for different attack budgets are shown in Fig. 5 and
Fig. 6 for the politifact and gossipcop dataset. In contrast to the results observed for the previous
datasets, we note big robustness differences across models. In general, Graphormer seems to be the
least robust and for which our adaptive attacks work best in comparison to the baselines. In most
cases the adaptive attacks are the strongest, providing the best estimates of the models’ robustness,
highlighting the efficacy and importance of our gradient-based adaptive attacks. Moreover, these
results reveal that GTs can showcase catastrophic vulnerabilities to adversarial modifications of
the graph structure, even when these changes are constrained to meaningful perturbations. Fig. 1
provides a direct model comparison of the worst case perturbations for smaller budgets. It shows
that the GCN model can exhibit considerably higher robustness than some GTs. The SAN model is
the exception, as it is suprisingly robust for both datasets.

Transferability. We collected the adversarial examples generated for each of our adaptive GT
attacks and applied them to the other models. In Fig. 7, we compare the strongest such transfer
attack (best transfer) with the GCN transfer and adaptive attacks on UPFD gossipcop. The results
show that our GT attack perturbations transfer better than from GCN. This may be because the
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Figure 7: Transfer attack results (node injection, evasion) for UPFD gossipcop (graph classification).

Table 1: Ablations for the Graphormer relaxations for a fixed budget of 1% for CLUSTER without
and with perturbation constraints (c.), and 10% for UPFD politifact (pol.) and gossipcop (gos.). The
mean and standard deviation over 4 runs with different seeds are reported.

Deg. SPD Acc. (%) Node
prob.

Acc. (%)

CLUSTER CLUSTER c. UPFD pol. UPFD gos.

✓ ✓ 52.61± 0.57 60.00± 0.42 ✓ 67.0± 2.0 38.0± 0.0
✓ 46.78± 0.46 68.45± 0.37 ✓ 67.0± 2.0 38.0± 0.0

✓ 50.81± 0.41 60.66± 0.21 ✓ 66.5± 1.9 39.5± 1.9

✓ 66.5± 1.9 38.5± 1.0
✓ ✓ 80.5± 3.4 53.5± 1.0

random 66.52± 0.61 70.29± 0.32 85.0± 2.6 61.5± 4.1
clean 77.89 77.89 92.0 98.0

GT models are more similar to each other than to a GCN. In some cases, best transfer is the overall
strongest attack. However, note that choosing the best from up to eight (adaptively generated) attacks
can be considered an ensemble with high computational cost. However, best transfer can be used
as a “unit test” before laboriously designing adaptive attacks for a new GT architecture. Results
of best transfer for other datasets and all individual transfer attacks are available in § E.2 & § E.3
respectively.

Ablations. We enable each of the continuous relaxations individually and together in different
combinations. We report the results for Graphormer in Tab. 1. The node probability relaxation
only applies to the node injection attacks on UPFD. The main insights from the results are: (a) All
continuous relaxations individually seem to give somewhat useful gradients and can be used to get
better results than the gradient-free random baseline. (b) For node injection attacks, using only the
node probabilities in the graph pooling and to bias the attention scores is usually sufficient and leads
to some of the strongest attack results. (c) Some relaxations are more effective than others, and using
multiple does not seem to always work better than only one. However, one is not consistently better
than the other. A good approach might be to try the relaxations individually, to find which are most
relevant. Similar effects have been reported by (Tramèr et al., 2020) (Recurring Attack Theme T2).
In § E.4, we also show ablations for GRIT and SAN components in Tab. 2 and Tab. 3 respectively,
from which we can draw the same conclusions.

7 ADVERSARIAL TRAINING

We based our implementation of the adversarial training on the ‘Free’ adversarial training of Shafahi
et al. (2019). The main idea is to couple the attack and training updates by ‘replaying’ the same
mini-batch k times for each of which both an attack and a training optimization step is made. This
enables finding stronger perturbations whithout the large overhead of only performing a single model
update for every k attack steps of ‘traditional’ adversarial training. Note that we make some slight
modifications to fit the limitations of our setting which are described in § F.

We evaluate our advarsarial training using Graphormer, which was one of the least robust models in
our attack evaluation and thus has a large potential for robustness gains. As a baseline comparison
we also include GCN. We evaluate node injection attacks on the UPFD datasets, the results for
politifact are shown in Figs. 8a & 8b and for gossipcop in Figs. 8c & 8d. We show results for
training configurations with different attack budgets and number of replay steps.
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Figure 8: Node injection (evasion) attack results for adversarially trained models on UPFD politifact
(pol) and gossipcop (gos) (graph classification).

On politifact the GCN adversarial training increases robustness a bit and even increases the clean
accuracy. For Graphormer, there is a notable clean accuracy drop, however, the resulting models are
very robust compared to both the normally trained Graphormer and the robust GCN models. For
Gossipcop, adversarial training with GCN works quite well. The normally trained GCN was already
very robust for small budgets, but the adversarial training makes it more robust for larger budgets
as well. The normally trained Graphormer is catastrophically brittle. But with adversarial training
it becomes remarkably robust, much more even than the GCN. Moreover, there is no major clean
accuracy drop for neither model. These results indicate that the increased flexibility and capacity of
graph transformers may be advantageous for learning robust models via adversarial training, even
when the normally trained models are extremely non-robust.

8 RELATED WORK

Triggered by the seminal works of Zügner et al. (2018); Dai et al. (2018), a research area
emerged spanning attacks, defenses, and certification of GNNs (Jin et al., 2021; Günnemann, 2022;
Schuchardt et al., 2021; Scholten et al., 2022; Guerranti et al., 2023; Gosch et al., 2023b). However,
GTs have been entirely neglected despite their success on common benchmarks. Zhu et al. (2024)
is the sole exception acknowledging this gap. However, they solely propose a robust and sparse
transformer and evaluate it with non-adaptive poisoning attacks. Thus, they do not shine light on the
robustness of the diverse set of graph transformers nor do they study adaptive attacks.

Our attack is rooted in the GNN robustness literature. Xu et al. (2019) proposes the first Pro-
jected Gradient Descent attack for discrete L0 perturbations of the graph structure, with a focus
on message-passing architectures. Geisler et al. (2021) extend this PGD with a randomization
scheme to obtain the efficient Projected Randomized Block Coordinate (PRBCD) attack. Gosch
et al. (2023a) extend PRBCD with local constraints, which is comparable with our relaxed GTs.
While highlighting the general nature of our framework, we leave the empirical evaluation for fu-
ture work. Further important related works are Lin et al. (2022); Zhu et al. (2018); Bojchevski
& Günnemann (2019), where the authors study similar approximations for perturbations on the
eigen-decomposition of the graph Laplacian. Moreover, Wang et al. (2023) attack message-passing
architectures on the UPFD fake news detection using reinforcement learning. As an entry to Node
Insertion Attacks (NIA), we refer to Wang et al. (2020); Zou et al. (2021).

9 CONCLUSION

We are the first to study the adversarial robustness of GTs and we provide the guiding principles
for designing adaptive attacks. We study five representative GTs which use three of the most com-
monly used PEs: random-walk-based PEs; distance-based PEs; and spectral PEs. We empirically
demonstrate that GTs can be catastrophically fragile in some settings and remarkably robust w.r.t.
the studied attack in other settings. This diverse picture underlines the importance and need for
adaptive attacks to reveal nuanced robustness properties. Similarly, also the comparison of GT’s and
GNN’s robustness w.r.t. the studied attacks does not allow for a conclusion about which approach is
superior in terms of robustness. Nevertheless, our work sets the important cornerstone for empirical
research in answering this very question. Finally, we leverage our adaptive attacks to obtain the first
results for adversarial training with GTs. These results are promising and show that GTs have the
potential to become very robust against graph structure perturbations.
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A LIMITATIONS

All our adversarial attacks do neither provide a guarantee nor insights about how close they are to the
optimal adversarial example. We note that this is common practice in the adversarial learning com-
munity. Nevertheless, if we are able to find an adversarial example, this proves the non-robustness
of the studied model. We conducted the experiment with utmost care, s.t. we expect the results to be
reasonable upper bounds that will be challenging to beat for future work. We still state clearly that
due to the high computational cost of dense GTs, we cannot certify that these efforts are sufficient
(e.g., our hyperparameter searches were comprehensive yet not exhaustive).

B BROADER IMPACT

While the threat model of attacking fake news detection could have a negative societal impact, our
methods are applicable mostly in a white-box setting and, therefore, are much more useful to those
who are developing fake news detection to probe and improve the robustness of their models. If a
model developer has access to the right tools, we expect its information advantage to outweigh the
availability of attacks by far.

C GRAPH TRANSFORMER ARCHITECTURE DETAILS

Random-walk-based GRIT. The GRIT model architecture (Ma et al., 2023) terms their PE Relative
Random Walk Probabilities (RRWP). The random walk encodings are collected from a fixed-length
walk of length k, which is a hyperparameter (usually k > 10). The PEs are based on the tensor:

P = [I,M ,M2, ...,Mk−1] ∈ Rn×n×k, with M = D−1A (14)

This yields an embedding vector Pij ∈ Rk for each of the n2 node-pairs (vi, vj). The diagonal
vector entries are transformed to dimension d by a linear layer and added to the node features as
PEs: h(0)

i = xi + g1(Pii). Additionally, all n2 vectors are transformed by a separate linear layer
and added as node-pair features: h

(0)
i,j = g2(Pij). The node representations hi and node-pair

representations hi,j are updated in each transformer layer by a modified attention mechanism, which
includes an adaptive degree-scaler that is applied to the node representations:

h̃i = (hi ⊙ θ1) + log(1 + deg(vi)) · (hi ⊙ θ2) (15)

where θ1,θ2 ∈ Rd are learnable weights.

Distance-based Graphormer. The Graphormer model (Ying et al., 2021) uses degree PEs. For
each discrete degree value there is a learnable embedding vector z ∈ Rd. The embeddings are
added to the node features according to the node degrees:

h
(0)
i = xi + zdeg(vi) (16)

Similarly, a learnable scalar b ∈ R is assigned to each discrete Shortest Path Distance (SPD). This
value is added to the raw attention scores and results in a re-weighting of the attention weights after
applying the softmax function:

ŵij = wij + bspd(vi,vj), αij = softmax(ŵij) (17)

where wij = Wqhi · Wkhj/
√
d. For graph-level tasks, a virtual node is added to the graph with its

own distinct learnable bias bvirtual , which is used as graph representation in the pooling stage.

Spectral SAN. The SAN architecture (Kreuzer et al., 2021) uses learned Laplacian-based PEs
(LPEs), starting with the eigen-decomposition of the Laplacian Lsym = UΛUT, where diago-
nal entries of Λii = λi are the eigenvalues of Lsym in ascending order λ1 ≤ λ2 ≤ ... ≤ λn,
and the columns of U are the corresponding eigenvectors. Determined by a hyperparameter, only
the k-th smallest eigenvalues and their eigenvectors are used, which we write as Λk ∈ Rk×k and
Uk ∈ Rn×k. For each node vi, its PEs are initialized as the concatenation of the eigenvalues and the
i-th row of Uk:

Pi = [diag(Λk) ∥ (Uk)i] ∈ Rk×2 (18)
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Further processing by a transformer encoder results in pi = f(Pi) ∈ Rdp , which is concatenated to
the node features: h(0)

i = xi ∥ pi. Additionally, the main graph transformer attention mechanism is
modified to have two separate key and query weights for connected and unconnected node-pairs. The
attention scores to the connected nodes and to the unconnected nodes are computed independently,
each with a softmax. A hyperparameter γ ∈ R+ controls how the two scores are relatively scaled,
varying the bias towards sparse or full attention:

αij =

{
1

1+γ softmax (Wq,realhi · Wk,realhj/
√
d) if (vi, vj) is a real edge

γ
1+γ softmax (Wq,fakehi · Wk,fakehj/

√
d) otherwise

(19)

D NODE INJECTION ATTACK DETAILS

Let D = {G1, ...,GN} be the dataset including all graphs, where each graph Gi = (Vi, Ei) has ni
nodes Vi = {vi,1, ..., vi,ni

} with node feature matrix Xi ∈ Rni×d. The total number of nodes in the
dataset is nD =

∑
ni. Let Gatk be the graph that is being attacked. We define the candidate set of

injection nodes as the union of the nodes of all other graphs: Vcs =
⋃

Gi∈D\Gatk
Vi, which includes

ncs = nD − natk nodes with corresponding features Xcs. It is of course possible to restrict this
candidate set if is is not sensible or not feasible to include all nodes.

We can augment the original (connected) graph Gatk = (Aatk,Xatk) by adding the injection can-
didate set as isolated nodes:

G′atk = (A′
atk,X

′
atk), A′

atk =

[
Aatk 0
0 0

]
∈ {0, 1}nD×nD , X ′

atk =

[
Xatk

Xcs

]
∈ RnD×d

(20)
Edge-flip perturbations to this augmented adjacency matrix, Ã′ = A′ + δA′, model both structure
perturbations and node injections together. As in Eq. 2, the perturbation δA′ can be expressed in
terms of a binary edge flip matrix: Ã′ = A′ + (1n1

T
n − 2A′)⊙B′, where:

B′ =

[
B E
ET F

]
∈ {0, 1}nD×nD (21)

Since the number of edge flips is bounded by a budget usually much smaller than the candidate set
size i.e., ∆ ≪ ncs, the perturbed augmented graph G̃ = (Ã′,X ′) still mostly contains isolated
nodes. Therefore, we prune away all disconnected components, which for the unperturbed graph
simply reverts the augmentation: prune(G′) = G. However, for a perturbed augmented graph, this
results in the perturbed graph that we are seeking:

G̃ = prune(Ã′,X ′) = (Ã, X̃), Ã ∈ {0, 1}ñ×ñ, X̃ ∈ Rñ×d (22)

Here, nin is the number of injected nodes, and ñ = n + nin is the total number of nodes of the
perturbed graph. The NIA objective can thus be written as:

max
B′ s.t. ||B′||0<∆

Latk(fθ(G̃)), with G̃ = prune(A′ + (1n1
T
n − 2A′)⊙B′, X̃ ′) (23)

where, fθ is the trained GNN and Latk is a suitable attack loss. Note that the edge flip budget ∆ is
also an upper bound for the number nodes that can be injected: 0 ≤ nin ≤ ∆.

Edge block sampling. To optimize the objective, we can apply the relaxation Bij ∈ [0, 1], as shown
in § 2.1. In this case, PRBCD (Geisler et al., 2021) not only enables more efficient optimization,
but setting a smaller block size is crucial to limit the number of connected injection nodes during
optimization, since GTs complexity scales with O(ñ2). Moreover, the edge sampling allows us to
control which parts of B′ in Eq. 21 to sample from, e.g. not sampling in B results in ‘pure’ node
injections without modifying edges in the original graph. For NIAs with large candidate sets, we
only sample from E, as sampling from the n2cs entries of F results in many disconnected injection
node pairs that get pruned away.

D.1 NODE PROBABILITY EXAMPLE

We provide an illustrative example in Fig. 9 of how the iterative node probability is applied. Each
iteration of Eq. 12 can be thought of as a message passing step to update the node probability
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(a) Edge probabilities.
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(b) Node probability initialization.
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(c) After 1st iteration.
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0.518 0.028

(d) After 2nd iteration.

Figure 9: Node probability example. Dashed lines indicate injection nodes.

approximation based on the neighbors current approximations:

p
(t+1)
i = 1 −

∏
vj∈Ni

(1−Aij · p(t)j ), with p
(0)
i = 1

The number of iterations should be set in the order of expected longest chain of added injection
nodes. Therefore very few iterations (2-5) should suffice for most NIAs.

E ADDITIONAL ATTACK RESULTS

E.1 CLUSTER CONSTRAINED ATTACK

Fig. 10 shows the attack results for the CLUSTER dataset when constraining edge perturbations
such that edges to the labeled nodes cannot be flipped. As expected, this significantly reduces the
attack strength compared to the unconstrained setting shown in Fig 3.

random perturbation random attack GCN PRBCD transfer adaptive PRBCD (ours)
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Figure 10: CLUSTER constrained attack results.
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E.2 BEST TRANSFER ATTACKS

Here we provide the results for the best transfer results, analogous to Fig. 7 but for all additional
datasets. Results for CLUSTER are in Fig. 11, for CLUSTER (constrained) in Fig. 12, for Reddit
Threads in Fig. 13, and for UPFD politifact in Fig. 14.
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Figure 11: Best transfer, CLUSTER (inductive node classification), structure attack (global, eva-
sion).
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Figure 12: Best transfer, CLUSTER (inductive node classification), constrained structure attack
(global, evasion).
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Figure 13: Best transfer, Reddit Threads (graph classification), structure attack (evasion).
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Figure 14: Best transfer, UPFD politifact (graph classification), node injection attack (evasion).

E.3 ALL TRANSFER ATTACKS

Here we provide the more detailed (but less readable) attack results including the individual transfer
models. Results for Graphormer are in Fig. 15, for GRIT in Fig. 16, for SAN in Fig. 17, for GPS in
Fig. 18, for Polynormer in Fig. 19, and for GCN in Fig. 20.
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Figure 15: Graphormer attack results with all transfer models shown.
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Figure 16: GRIT attack results with all transfer models shown.
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Figure 17: SAN attack results with all transfer models shown.
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Figure 18: GPS attack results with all transfer models shown.
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Figure 19: Polynormer attack results with all transfer models shown.

0 10 20 30 40 50

Edge modification budget (%)

0

10

20

30

40

50

60

70

80

A
cc

u
ra

cy
(%

)

tr. Graphormer

tr. GRIT

tr. SAN

tr. GPS

tr. GPS-GCN

tr. Polynormer

tr. GATv2

tr. GAT

rand. pert.

rand. attack

adaptive

(a) CLUSTER

0 10 20 30 40 50

Edge modification budget (%)

0

10

20

30

40

50

60

70

80

(b) CLUSTER con.

0 10 20 30 40 50 60 70 80

Edge modification budget (%)

0

10

20

30

40

50

60

70

80

(c) Reddit Threads

0 20 40 60 80 100

Edge modification budget (%)

0

20

40

60

80

(d) UPFD pol.

0 20 40 60 80 100

Edge modification budget (%)

0

20

40

60

80

100

(e) UPFD gos.

Figure 20: GCN attack results with all transfer models shown.
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E.4 ABLATIONS FOR GRIT AND SAN

We also check the attack strength for GRIT when enabling or disabling gradient computation through
certain parts of the model and show the results in Tab. 2. It is possible to get strong attacks even
without computing gradients through RRWP, which could be much more efficient computationally,
depending on the model and graph size. For node injection attacks, as for the other models, using
only the node probability bias in the attention scores already leads to the strongest attacks we report.

Ablation on different attack components on SAN are presented in Tab. 3. The colomn ‘Eig. backp.’
refers to the alternative method of obtaining gradients through the eigen-decomposition discussed in
§ H.2. The results indicate that both methods seem to work equally well.

Table 2: Ablations for the GRIT relaxations for a fixed budget of 1% for CLUSTER without and
with perturbation constraints (c.), and 10% for UPFD politifact (pol.) and gossipcop (gos.). The
mean and standard deviation over 4 runs with different seeds are reported.

PE
grad.

Deg.
grad.

Acc. (%) Node
prob.

Acc. (%)

CLUSTER CLUSTER c. UPFD pol. UPFD gos.

✓ ✓ 44.07± 0.79 65.25± 0.22 ✓ 34.5± 1.0 75.0± 2.6
✓ 46.27± 0.36 65.70± 0.35 ✓ 34.5± 1.0 74.5± 2.5

✓ 49.51± 0.90 66.49± 0.49 ✓ 34.5± 1.0 73.5± 1.0

✓ 34.5± 1.0 73.5± 1.0
✓ ✓ 54.5± 1.9 83.0± 2.0

random 69.13± 0.10 72.25± 0.29 76.0± 4.3 82.0± 0.0
clean 78.98 78.98 98.0 84.0

Table 3: Ablations for the SAN relaxations for a fixed budget of 1% for CLUSTER without and with
perturbation constraints (c.), and 10% for UPFD politifact (pol.) and gossipcop (gos.). The mean
and standard deviation over 4 runs with different seeds are reported.

Attn. Lap.
pert.

Eig.
backp.

Acc. (%) Node
prob.

Acc. (%)

CLUSTER CLUSTER c. UPFD pol. UPFD gos.

✓ ✓ 54.0± 0.6 63.3± 0.3 ✓ 83.5± 1.0 91.5± 4.1
✓ ✓ 54.4± 0.6 62.9± 0.2 ✓ 82.0± 2.3 94.0± 3.0
✓ 53.9± 0.3 63.2± 0.1 ✓ 77.5± 1.0 91.5± 2.5

✓ 57.1± 0.6 67.2± 0.2 ✓ 83.5± 1.0 89.5± 1.9
✓ 55.1± 1.0 67.3± 0.3 ✓ 81.0± 1.2 89.5± 3.4

✓ 77.0± 1.2 89.5± 3.4
✓ ✓ 86.0± 0.0 90.1± 6.0
✓ ✓ 86.0± 2.3 91.0± 5.3

random 65.7± 0.7 68.9± 0.3 86.0± 0.0 87.5± 1.0
clean 76.1 76.1 86.0 98.0
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F ADVERSARIAL TRAINING ALGORITHM

We based our implementation of the adversarial training on the ‘Free’ adversarial training of Shafahi
et al. (2019). Pseudocode for our adversarial training is given in Alg. 1. The main modifications
are that we do two separate forward and backwards passes for the attack and model respectively.
This is because: (1) the attack and model often have distinct loss functions that they optimize for,
and (2) we sample a discrete structure perturbation for the model, such that the perturbed graph is
included in the original valid sample space. Another difference is that we need to iterate over the
graphs in the minibatch separately. This is a limitation caused by: (1) The attack optimization steps
are not trivial to parallelize, especially for node injection attacks, and (2) the PE computations (e.g.
Laplacian eigen-decomposition) are also not easily parallelizable and need to re-computed for each
new perturbed graph.

Given these limitations, our adversarial training is much less efficient. It requires at least 2 · |B| times
more model evaluations than normal training. Furthermore, for many GTs the PE computation is
one of the most computationally expensive steps. Therefore, PEs are usually precomputed in a pre-
processing step. During adversarial training, we need to compute PEs for new unseen perturbations
at each step, which further increases the overhead. Nonetheless, following the main idea of Shafahi
et al. (2019) alleviates some of the overhead and makes it somewhat practically feasible.

Algorithm 1 Our k-step ‘free’ adversarial training

Require: Training dataset T , model fθ, attack budget ∆, number of steps k, learning rate α
Initialize θ
for epoch = 1...Nep/k do

for minibatch B ⊂ T do
Initialize perturbations P
for i = 1...k do

gθ ← 0
for graph G = (A,X,y) ∈ B do

P ← PRBCD step(fθ,X,A,P ,∆)
A′ ← sample discrete(A,P )
gθ ← gθ∇θL(fθ(A′,X),y)

end for
θ ← θ + α · 1

|B| · gθ
end for

end for
end for
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G HYPERPARAMETERS

We include the hyperparameters for Graphormer in Tab. 4, for GRIT in Tab. 5, for SAN in Tab. 6,
and for GCN in Tab. 7.

Table 4: Hyperparameters for Graphormer.

CLUSTER UPFD pol. UPFD gos.

Optimizer Adam AdamW AdamW
Learning rate 8.04× 10−4 1.29× 10−4 3.75× 10−4

Weight decay - 6.7× 10−3 3.75× 10−4

Max. deg. 70 37 21
Max. dist. 4 10 8
Attention dropout 0.107 0.0 0.382
Input dropout 0.0 0.0 8.65× 10−3

Dropout 0.069 0.0 0.069
Hidden dimension 60 40 30
Layers 15 6 8
Attention heads 6 8 3
Graph pooling - virtual node virtual node

Table 5: Hyperparameters for GRIT.

CLUSTER UPFD pol. UPFD gos.

Optimizer AdamW AdamW AdamW
Learning rate 1.29× 10−3 5.61× 10−4 2.24× 10−3

Weight decay 4.16× 10−6 2.97× 10−2 1.20× 10−8

RRWP max. steps 4 9 6
Attention dropout 0.478 0.490 0.292
Dropout 0.100 0.0 0.056
Hidden dimension 48 9 18
Layers 12 2 6
Attention heads 8 3 6
Graph pooling - add add

Table 6: Hyperparameters for SAN.

CLUSTER UPFD pol. UPFD gos.

Optimizer Adam Adam Adam
Learning rate 5.0× 10−4 1.29× 10−4 5.41× 10−4

Weight decay 0.0 1.0× 10−3 0.0
Max. eig. 10 10 24
PE dim. 16 16 20
PE layers 1 2 2
PE heads 4 4 5
gamma 0.1 1.43× 10−2 4.28× 10−3

Dropout 0.0 0.0 1.73× 10−2

Hidden dimension 48 96 80
Layers 16 3 3
Attention heads 8 4 8
Graph pooling - add add

Table 7: Hyperparameters for GCN.

CLUSTER UPFD pol. UPFD gos.

Optimizer Adam AdamW AdamW
Learning rate 1.00× 10−3 5.29× 10−3 1.23× 10−4

Weight decay - 2.59× 10−2 2.85
Dropout 0.0 0.0 0.5
Hidden dimension 172 473 105
Layers 16 2 3
Graph pooling - add add
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H LAPLACIAN EIGEN-DECOMPOSITION GRADIENT

H.1 PERTURBATION APPROXIMATION: REPEATED EIGENVALUES

Unfortunately, Eq. 10 and 11 do not hold in general when repeated eigenvalues are present. This is
due to the fact that a small perturbation can separate repeated eigenvalues into distinct eigenvalues.
For the unperturbed graph, the choice of eigenvector basis of the repeated eigenvalue’s eigenspace is
arbitrary. In the perturbed graph, however, the eigenvectors corresponding to the now distinct eigen-
values are uniquely defined (up to the sign). Thus, a large discontinuous change in the eigenvectors
can be caused by an arbitrarily small input perturbation. For instance, consider the matrix M with
repeated eigenvalue 1 and the following valid eigendecomposition:

M =

[
1 0
0 1

]
= UΛUT, Λ =

[
1 0
0 1

]
, U =

√
2

2

[
1 1
1 −1

]
(24)

As soon as an arbitrarily small perturbation ε is added to one of the diagonal entries, the eigenvalues
become distinct and the choice of eigenvectors becomes constrained, which results in a discontinu-
ous change:

M̃ =

[
1 0
0 1 + ε

]
= ŨΛ̃ŨT, Λ̃ =

[
1 0
0 1 + ε

]
, Ũ =

[
1 0
0 1

]
(25)

However, there is always some valid choice of eigenvectors in the unperturbed graph that leads to
a continuous change with respect to the given perturbation, e.g., in the above example Ũ is also a
valid choice for the eigenvectors U of the unperturbed matrix. With the right choice of unperturbed
eigenvectors, the approximation equations are, therefore, still valid. Here, we provide a procedure
to transform arbitrary eigenvectors into the ones that lead to good perturbation approximations. For
the theory showing why this leads to the correct result, we refer to Bamieh (2022).

Let (Λ, Û) be the output of the eigendecomposition algorithm for the unperturbed Laplacian Lsym

containing repeated eigenvalues. We can write the eigendecomposition in it’s block form:

Lsym = ÛΛÛT, Λ =

Λ1

. . .
Λn′

 , Û =

 | |
Û1 · · · Ûn′

| |

 (26)

For a simple eigenvalue λi, the block has dimension one, i.e., Λi = [λi] and Ûi = ui. For a repeated
eigenvalue λj with multiplicity r, it’s corresponding block is λjIr and Ûj ∈ Rn×r. Let P = P T

be an arbitrary symmetric perturbation to the original symmetric Laplacian. We can transform each
eigenspace basis of a repeated eigenvalue Ûj to the correct choice of eigenvectors as follows:

Uj = ÛjQ

PÛ,j = ÛT
j PÛj = QΛPQ

T ∈ Rr×r
(27)

First, we do a basis transformation of the perturbation matrix onto the eigenbasis Û . Then we
find the eigendecomposition of the corresponding diagonal block PÛ,j and use these perturbation
eigenvectors to transform the original Laplacian eigenvectors. This results in a choice of valid
eigenvectors Uj such that the approximations in Eq. 10 and 11 are valid for repeated eigenvalues
and guarantees continuity of the eigenvalues and vectors with respect to a single perturbation, e.g.,
when linearly interpolating from the unperturbed to the fully perturbed matrix.

H.2 BACKPROPAGATION: BREAKING UP REPEATED EIGENVALUES

The only thing preventing the use of auto-differentiation to compute gradients through the eigen-
decomposition is the presence of repeated eigenvalues. As a workaround, Lin et al. (2022) propose
adding small amplitude random noise to the entire adjacency matrix. While this usually separates the
repeated eigenvalues, it is not guaranteed to. We propose a different approach in which the smallest
possible perturbation term is added to the Laplacian matrix, such that the repeated eigenvalues are
guaranteed to be separated while the eigenvectors remain unchanged.
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To achieve this, we must first define a minimum eigenvalue distance hyperparameter ε, which we
set to 10−4 in our experiments. Then we define eigenvalue separation such that for all perturbed
Laplacian eigenvalues |λ̂i − λ̂j | ≥ ε must hold. Furthermore, we can define a vector o ∈ Rn such
that each entry represents the offset of the perturbed eigenvalue in relation to the true value:

Λ̂ =

λ1 + o1

. . .
λn + on

 = Λ+ diag(o) (28)

In order for the perturbed matrix to have the same eigenvectors as the unperturbed Laplacian, we
can define it by its eigendecomposition:

L̂sym = UΛ̂UT

= U(Λ+ diag(o))UT

= UΛUT +Udiag(o)UT

= Lsym +Udiag(o)UT

(29)

Consequently, the additive perturbation has the form P = Udiag(o)UT, such that it shares the
same eigenvectors as the original Laplacian, and its eigenvalues are exactly the offsets.

Since the Frobenius norm can also be computed using the singular values, finding the perturbation
with minimum norm is equivalent to minimizing the Euclidean norm of the offset vector ∥P ∥F =√∑

i oi
2 = ∥o∥2. To ensure that the order of the eigenvalues is not changed we can define the

separation constraints for the consecutive pairs of the perturbed eigenvalues λ̂i+1 − λ̂i = (λi+1 +
oi+1)− (λi − oi) ≥ ε. The total constrained optimization problem can be written as:

min
o

1

2
∥o∥22

subject to oi+1 − oi ≥ ε− (λi+1 − λi)
(30)

The (n − 1) inequality constraints are linear and can be written in matrix-vector form. To further
ensure that the total range of the eigenvalues is not changed, the equality constraints o0 = on = 0
can be added. As an initial guess, the offsets can be set to equally separate the eigenvalues in their
range, which is guaranteed to satisfy all constraints. The optimal solution o∗ can be calculated
efficiently using constrained optimization.

In conclusion, using the slightly perturbed Laplacian L̂sym = Lsym+Udiag(o∗)UT as input to the
eigendecomposition in the forward pass results in usable gradient via back-propagation. Note that to
get the perturbation, the eigendecomposition of the original Laplacian has to be computed. Thus, it
can be checked for the presence of repeated eigenvalues, and a second perturbed eigendecomposition
is only computed when necessary. Tab. 3 includes results using this approach, which seems to work
about as well as the perturbation approximation.
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