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Abstract

In Sign Language Production (SLP) tasks, a common approach is to have indi-
vidual sign language words and then concatenate their motion representation to
form complete sentences. However, this process poses challenges due to missing
frames in the middle, which lead to abrupt transitions and reduced smoothness,
making the resulting sequences difficult to interpret. To address this issue, this
paper presents a Residual Vector Quantized Variational Autoencoder (RVQVAE)
model for interpolating 2D keypoint motion in videos. Our experiments simulate
individual sign transitions by randomly hiding groups of frames within a sequence
of video keypoints. The proposed model is evaluated by comparing its performance
to a baseline method on frames hidden. Improvements in matrix distance errors
and dynamic time-warping metrics demonstrate that the RVQVAE model produces
promising results for generating intermediate frames. These findings highlight
the potential for developing applications that enhance sign language production to
benefit the deaf community.

1 Introduction

Research in Sign Language has gained significant attention in recent years, particularly in applications
such as Sign Language Recognition and Transcription. However, progress in Sign Language Produc-
tion (SLP) approaches remains limited. Current techniques include generating full skeleton sequences
from a textual vocabulary (text-to-pose) Fang et al. [2024, 2023], Saunders et al. [2020], Zelinka and
Kanis [2020] or incorporating intermediate steps like glosses. With over 100 different sign languages
worldwide, these techniques face challenges due to the specificity of large datasets for each language
Fang et al. [2024], Camgoz et al. [2018], Duarte et al. [2021], making it difficult to generalize motion
generation across languages (e.g., using a model trained on American Sign Language to generate
motions for German Sign Language). Another common approach involves constructing a vocabu-
lary of words with their corresponding frame sequences, which are then stitched together to form
complete sentences Saunders et al. [2022], Walsh et al. [2024]. This method leverages pre-prepared,
co-articulated motion, requiring only the generation of missing intermediate frames between stitched
segments.

In this context, motion interpolation plays a crucial role in generating transition frames between two
discrete movements. Traditional methods for producing sparse keypoints, such as linear interpolation
or spherical linear interpolation Iyer et al. [2021], Naert et al. [2021], treat each joint as an independent
variable, overlooking the relationships between connected joints and resulting in unnatural movements.
To address this limitation, deep learning-based approaches consider the relationships among keypoints
and the complex patterns of motion to enhance the expressiveness of the sequences Zeng et al. [2020],
Gil-Martín et al. [2023].
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In this paper, we present a Residual Vector Quantized Variational Autoencoder (RVQ-VAE) model
to effectively generate intermediate frames in motion. This RVQ technique encodes data with
missing frames into discrete representations and employs iterative rounds of residual quantization to
progressively reduce quantization errors Guo et al. [2024], Lee et al. [2022]. Subsequently, a decoder
is then used to reconstruct the data, completing the missing frames. To evaluate the robustness of the
method, we conduct experiments on videos with randomly hidden frames, introducing challenging
scenarios where the missing frames may occur in the middle of an action rather than just during
transition movements. Additionally, we train and test our model using the How2Sign dataset Duarte
et al. [2021]. However, since the method focuses on motion interpolation, it is not limited to any
specific sign language and can be applied across different sign languages.

2 Related Work

Sign language has been a subject of study for many years Bauer et al. [2000], and advancements
in AI, particularly with encoder-decoder architectures Vaswani [2017], Kingma et al. [2019] and
generative models Goodfellow et al. [2020], Ho et al. [2020], have driven significant progress in sign
language production (SLP) research.

2.1 Sign Language Production

The state of the art has approached this problem in diverse ways. Some methods focus on generating
continuous skeleton pose sequences or photorealistic videos from text Fang et al. [2024, 2023],
Saunders et al. [2020], Zelinka and Kanis [2020], while others use sign language videos as input
Dong et al. [2024], Suo et al. [2024]. Most of these approaches adopt an end-to-end pipeline, although
some work introduce intermediate steps such as translating text to glosses before producing final
outputs Saunders et al. [2022], Walsh et al. [2024]. Alongside these novel techniques, new datasets
have been developed to support SLP research Fang et al. [2024], Camgoz et al. [2018], Duarte et al.
[2021].

2.2 Motion Generation

Whether starting from an initial pose Wang et al. [2020] or a text description Ahuja and Morency
[2019], Ghosh et al. [2021], generating 2D or 3D motion sequences has long been a challenging
task due to the diversity of dynamic movement patterns. In recent years, generative models, such
as VAE, have demonstrated impressive results in the field of 3D human motion generation Guo
et al. [2022], Petrovich et al. [2021], Guo et al. [2024]. In particular, VAEs have also been utilized
for SLP applications, enabling the generation of complete movement sequences Xie et al. [2023].
Although generating an entire motion sequence from scratch is difficult, it is not always necessary.
Motion interpolation, which creates sequences by iteratively predicting intermediate frames based
on previously observed ones, presents a practical alternative. This technique can be applied using
mathematical approaches Iyer et al. [2021], Naert et al. [2021] or deep learning-based methods Zeng
et al. [2020], Gil-Martín et al. [2023], making it a valuable tool to produce accurate motion sequences.

3 Methodology

3.1 Residual Quantized VAE Model

A Variational Autoencoder (VAE) consists of a neural network architecture where the encoder
approximates the posterior distribution over latent random variables, which is then used by the
decoder to reconstruct the input Kingma et al. [2019]. In contrast, the Vector Quantization (VQ)
approach replaces the continuous latent space with discrete latent variables, converting the posterior
and prior distributions into discrete categories Van Den Oord et al. [2017]. This transformation is
presented in MoMask Guo et al. [2024], which enables the conversion of motion sequences into
discrete motion tokens.

First, given a sequence of motion keypoints m1:N ∈ RN×D , where N is the number of frames and D
is the dimension of the vector representation containing the keypoints, the sequence is encoded with
encoder E into a latent vector z(x) . This vector is then replaced with the nearest point from a finite

2



Figure 1: RVQ-VAE architecture

codebook C = {ck}Kk=1 and code embedding e(k) , resulting in a discrete latent representation ẑ of
the input, where:

b = Q(z;C) = argmink∈[K] ∥z − e(k)∥22
However, quantization introduces lossy compression during the transformation to discrete space. To
address this, residual quantization (RQ) is used to approximate a more precise latent vector without
expanding the embedding space. RQ employs V layers of depth, each iteratively calculating an
approximation of the residual rv as follows:

For the v = 0 :
r0 = z

For v = 1, ..., V :
bv = Q(rv), rv = rv−1 − bv

After computing across all V layers, the final discrete representation b̂ is obtained by summing
the quantized residuals, resulting in a discrete code map that provides a finer approximation. The
codebook can be shared across layers, though it’s also possible to construct separate embedding
spaces for each depth v .

Finally, the decoder D reconstructs the motion input, filling the missing intermediate frames, yielding
the motion vector m̂1:N ∈ RN×D. During training, the weighted sum of reconstruction loss and
commitment loss is used in the gradient descent process, defined as:

LossRVQ = ∥m− m̂∥1 + β
∑V

v=1 ∥rv − sg[bv]∥22
where sg[·] represents the stop-gradient operator, and β is a weighting factor that constrains the
embedding.
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3.2 Preprocessing Strategy

During training Each video in the training set, containing T frames, is processed using sliding
windows of size N , resulting in T −N motion samples of constant length N per video. To simulate
missing intermediate frames, we randomly select g ∈ [2, 4] groups, where each group corresponds
to h intermediate frames to be hidden within the motion sequence, which are used to prevent the
model from learning to predict a fixed range of missing frames. This results in a total number of
hidden frames fhidden ranging from 2h to 4h, constrained by the motion length. We experimented
with different values of h from the set [5, 10, 15, 20] to evaluate interpolation performance for both
short-term and long-term missing frames. This analysis helps identify the most suitable h values for
real-world interpolation scenarios, offering insights for future methods. To simulate a hidden frame,
all keypoint values for that frame are replaced with a constant. Before the motion data are input into
the model, the data is normalized using the mean and standard deviation computed from the entire
training set.

During testing The full sequence length of each video in the test set is used without applying sliding
windows, i.e., T = N . For model evaluation, the same frame-hiding strategy and normalization are
applied to the input sequences to ensure consistency between training and testing phases.

3.3 Baseline Model

To enable the comparison of our evaluation results, we construct a baseline model. This rule-based
model processes the motion input with grouped hidden frames by replacing all hidden values with
the corresponding values from the last visible keypoint vector. This approach serves as a useful
benchmark, as it maintains continuity in the motion sequence while simplifying the reconstruction of
hidden frames by using the last observed keypoint values and mimicking a motion flow

4 Experiments

4.1 Experimental Setup

Dataset Our training and testing were conducted using the widely adopted How2Sign dataset
Duarte et al. [2021], an American Sign Language dataset released in 2021. We utilized 2,343 video
recordings, with 1,897 allocated to the training set, 93 for validation, and 353 for testing. The
How2Sign dataset was generated by applying the OpenPose framework Cao et al. [2017] to extract
keypoints from sign language videos, providing 2D joint positions for the body, hands, and face.
These keypoint estimations, released by the dataset authors, serve as ground-truth labels in our study.
Since the How2Sign dataset does not contain individual words to concatenate into sentences, but
rather complete phrases, we simulate sign transitions by applying the preprocessing hide strategy
described in Section 3.2. In our experiments, we specifically focused on the body and hands, resulting
in 67 keypoints (25 for the body and 21 for each hand), which were reshaped into a tensor of size (N,
134). Furthermore, to ensure data is prepared for sliding windows, only videos with more than 32
frames were included in both the training and validation sets.

Implementation details The RVQ-VAE model is implemented using PyTorch. Both the encoder
and decoder employ 1D convolutional layers, ReLU activations between layers Agarap [2018], and a
downsampling rate of 2. The codebook consists of K ∈ R512×512. We use 3 quantizers layers, each
trained without shared codebooks, allowing for more precise latent encoding. A quantization dropout
ratio of 0.2 is applied to prevent overfitting. For training, a sliding window of size 32 frames is used.
Optimization is performed using the AdamW optimizer with a batch size of 256, and the learning rate
reach 2× 10−4 after 1,500 iterations with a linear warm-up schedule. Training runs for a maximum
of 60 epochs on a single NVIDIA A100 GPU.

4.2 Quantitative results

Error metrics L1, L2, and L3 are employed to evaluate the discrepancies between the original videos
and the motion sequences with predicted intermediate frames. Given that the predicted motion may
not perfectly align with the original, we also utilize the Dynamic Time Warping (DTW ) metric
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Figure 2: Qualitative comparison of (a) Example Sequence 1, and (b) Example Sequence 2. High-
lighted frames illustrate the model’s interpolation of the hidden frames.

Müller [2007] to determine the optimal alignment between the two sequences, allowing for a more
accurate computation of the distance error L2 after alignment. The results of these comparisons
are summarized in Table 1, which includes a test set consisting of 353 videos. Since no slicing of
frames is applied to these videos, the input and output shapes during inference remain consistent. The
results presented include both the mean and standard deviation for each distance metric. Additionally,
we experiment with the impact of varying the number of hidden frames, denoted by h, by training
separate models for each configuration. This approach allows us to assess how the increasing extent
of frame masking affects the quality of motion generation and to identify a range of values that can
be applied without significantly increasing the error.

Table 1: Comparison of error metrics (values scaled to 10−3)

h Model L1 ↓ L2 ↓ L3 ↓ DTW ↓

5 Baseline 82.95 ± 118.17 3.80 ± 4.37 1.63 ± 1.48 47.25 ± 82.06

VQ 38.75 ± 18.18 2.23 ± 1.23 1.20 ± 0.68 24.76 ± 10.96

10 Baseline 187.25 ± 245.10 5.86 ± 6.07 2.21 ± 1.80 106.41 ± 174.43

VQ 88.9 ± 39.00 3.27 ± 1.54 1.51 ± 0.75 55.07 ± 23.47

15 Baseline 289.70 ± 393.38 7.29 ± 7.35 2.57 ± 1.99 163.16 ± 281.07

VQ 144.80 ± 80.17 4.29 ± 2.07 1.83 ± 0.86 88.21 ± 49.03

20 Baseline 354.81 ± 416.02 8.05 ± 7.49 2.75 ± 1.99 196.00 ± 292.99

VQ 207.70 ± 104.89 5.36 ± 2.30 2.13 ± 0.92 124.83 ± 63.06

Table 1 demonstrates that the VQ model outperforms the baseline model across all error metrics, as
indicated by lower mean values. Additionally, the VQ model displays lower standard deviations in
most cases, indicating more consistent performance compared to the baseline model.
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4.3 Qualitative results

Figure 2 provides a qualitative comparison of motion interpolation with hidden frames. The results
demonstrate effective interpolation for body keypoints, with smooth transitions capturing the overall
motion trajectory. In Example Sequence 1, the model interpolates between two distinct signs,
highlighting its potential for generating complete sign language sequences. This capability allows
using ground truth from individual signs and interpolating missing frames, without requiring a large
dataset for training on a specific language.

For hand keypoints, while transitions between discrete movements are smooth, the model may not
accurately predict specific finger movements, particularly when hidden frames fall in the middle of
a sign gesture, as happens in Example Sequence 2. This is likely due to the complexity of finger
articulation during sign language. Additionally, we observe occasional anomalies, such as in Example
Sequence 2, where some head keypoints deviate from the expected alignment. This can be attributed
to the inherent limitations of the training dataset, which was generated using pose estimation inference
from OpenPose, resulting in some ground-truth data containing errors. Errors in the ground-truth
data caused by pose estimation inaccuracies may propagate during training, affecting the model’s
motion interpolation performance and highlighting the importance of high-quality individual signs
for effective interpolation.

5 Conclusion

This research introduced an RVQ-VAE model for sign language motion interpolation and evaluated its
performance using distance error metrics. Our model demonstrated strong qualitative and quantitative
results, outperforming the baseline rule-based model. Additionally, we tested the model’s ability to
handle varying numbers of hidden frames, showing that it can predict motion effectively, even when
larger sequence groups of frames are missing.

The impact of this experimentation highlights the model’s ability to interpolate smooth transitions
between frames, providing valuable insights for potential gloss-to-pose sign language production
(SLP) applications. By leveraging a dictionary of expressive gloss-poses, the model could facilitate
more natural and accurate sign language generation without needing large dataset per specific
language. In future work, we aim to further develop this approach by incorporating 3D predictions to
animate realistic human characters to build a fully SLP system that would benefit the deaf community.
Future evaluation metrics will also include back-translation of the generated poses, which will be
assessed to demonstrate that the generated poses preserve the meaning of individual signs within
complete sentences.
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