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Abstract
This paper considers the optimization problem
of the form minx∈Rd f(x) ≜ 1

n

∑n
i=1 fi(x),

where f(·) satisfies the Polyak–Łojasiewicz (PL)
condition with parameter µ and {fi(·)}ni=1 is L-
mean-squared smooth. We show that any gradient
method requires at least Ω(n+κ

√
n log(1/ϵ)) in-

cremental first-order oracle (IFO) calls to find an
ϵ-suboptimal solution, where κ ≜ L/µ is the con-
dition number of the problem. This result nearly
matches the upper bounds of IFO complexity for
best-known first-order methods. We also study
the problem of minimizing the PL function in
the distributed setting such that the individuals
f1(·), . . . , fn(·) are located on a connected net-
work of n agents. We provide lower bounds of
Ω(κ/

√
γ log(1/ϵ)), Ω((κ+ τκ/

√
γ ) log(1/ϵ))

and Ω
(
n + κ

√
n log(1/ϵ)

)
for communication

rounds, time cost and local first-order oracle calls
respectively, where γ ∈ (0, 1] is the spectral gap
of the mixing matrix associated with the network
and τ > 0 is the time cost of per communication
round. Furthermore, we propose a decentralized
first-order method that nearly matches above
lower bounds in expectation.

1. Introduction
We study the optimization problem of the form

min
x∈Rd

f(x) ≜
1

n

n∑
i=1

fi(x), (1)

where {fi(·)}ni=1 is L-mean-squared smooth but each fi(·)
is possibly nonconvex. The complexity of finding station-
ary points in Problem (1) has been widely studied in recent
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years (Allen-Zhu & Hazan, 2016; Reddi et al., 2016; Zhou
& Gu, 2019; Fang et al., 2018; Li et al., 2021). However,
finding the global solution is intractable for the general non-
convex smooth optimization (Nemirovskij & Yudin, 1983;
Roux et al., 2012). This paper focuses on the minimiza-
tion Problem (1) under the Polyak–Łojasiewicz condition
(PL) (Polyak, 1963; Łojasiewicz, 1963), i.e., the objective
function f : Rd → R satisfies

f(x)− inf
y∈Rd

f(y) ≤ 1

2µ
∥∇f(x)∥2

for any x ∈ Rd, where µ > 0 is a constant. This inequality
suggests the function value gap f(x)− f∗ is dominated by
the square of gradient norm, which leads to the gradient
descent (GD) method linearly converging to the global min-
imum without the convexity (Karimi et al., 2016). The PL
condition covers a lot of popular applications, such as deep
neural networks (Liu et al., 2022; Allen-Zhu et al., 2019;
Zeng et al., 2018), reinforcement learning (Fazel et al., 2018;
Agarwal et al., 2021; Mei et al., 2020; Yuan et al., 2022b),
optimal control (Bu et al., 2019; Fatkhullin & Polyak, 2021)
and matrix recovery (Hardt & Ma, 2016; Li et al., 2018; Bi
et al., 2022).

We typically solve the finite-sum optimization Problem (1)
by incremental first-order oracle (IFO) methods (Agarwal &
Bottou, 2015), which can access the pair {fi(x),∇fi(x)}
for given x ∈ Rd and i ∈ [n]. This class of methods can
leverage the structure of the objective (Johnson & Zhang,
2013; Defazio et al., 2014; Schmidt et al., 2017; Zhang et al.,
2013) to iterate with one or mini-batch individual gradient,
which is more efficient than the iteration with the full-batch
gradient. IFO methods have received a lot of attention in
recent years. For example, the stochastic variance reduced
gradient (SVRG) methods with negative momentum (Qian
et al., 2021; Allen-Zhu, 2017; Kovalev et al., 2020a; Wood-
worth & Srebro, 2016; Agarwal & Bottou, 2015) achieve
the (near) optimal IFO complexity for convex optimization;
the stochastic recursive gradient methods (Nguyen et al.,
2017; Fang et al., 2018; Li et al., 2021; Pham et al., 2020;
Wang et al., 2019; Zhou & Gu, 2019; Carmon et al., 2020)
achieve the optimal IFO complexity for finding approxi-
mate stationary points in general nonconvex optimization.
For the PL condition, Reddi et al. (2016); Lei et al. (2017)

1



On the Complexity of Finite-Sum Smooth Optimization under the Polyak–Łojasiewicz Condition

proposed SVRG-type methods that find the ϵ-suboptimal
solution within at most O((n+ n2/3κ) log(1/ϵ)) IFO calls,
where κ ≜ L/µ is the condition number. Later, Zhou et al.
(2019); Wang et al. (2019); Li et al. (2021) improved the up-
per bound to O((n+κ

√
n) log(1/ϵ)) by stochastic recursive

gradient estimator. Recently, Yue et al. (2023) established
a tight lower complexity bound of the full-batch gradient
methods for minimizing the PL function. However, the opti-
mality of existing IFO methods for the finite-sum setting is
still an open problem.

For large-scale optimization problems, we are interested in
designing distributed algorithms. Specifically, we allocate
individuals f1(·), . . . , fn(·) on n different agents and desire
the agents to solve the problem collaboratively. We focus
on the decentralized setting where agents are linked by a
connected network so that each agent can only access its
own local first-order oracle (LFO) and exchange messages
with its neighbours. Besides the LFO complexity, we also
require considering the communication complexity and the
time complexity. It is worth noting that the time complex-
ity in distributed optimization does not directly correspond
to the weighted sum of the LFO complexity and the com-
munication complexity, since some agents may skip the
computation of local gradient during the iterations (Maran-
jyan et al., 2022; Mishchenko et al., 2022). Most of the
work for decentralized optimization focus on the convex
case (Shi et al., 2015; Nedic & Ozdaglar, 2009; Qu & Li,
2017; Scaman et al., 2017; Kovalev et al., 2020b; Song et al.,
2023; Ye et al., 2023; Hendrikx et al., 2021; Li et al., 2022b)
or the general nonconvex case (Luo & Ye, 2022; Li et al.,
2022a; Xin et al., 2022; Sun et al., 2020; Lu & De Sa, 2021;
Zhan et al., 2022). Recently, Yuan et al. (2022a) studied
decentralized optimization under the PL condition in online
setting, but their result is not tight to condition number.

In this paper, we provide the nearly tight lower bounds for
the finite-sum optimization problem under the PL condition.
We summarize our contributions as follows:

• We provide the lower bound of Ω(n+ κ
√
n log(1/ϵ))

for IFO complexity, which nearly matches the upper
complexity bound of O((n + κ

√
n) log(1/ϵ)) (Zhou

et al., 2019; Wang et al., 2019; Li et al., 2021).
• We provide the lower bounds of Ω(κ/

√
γ log(1/ϵ)),

Ω((κ+τκ/
√
γ ) log(1/ϵ)) and Ω

(
n+κ

√
n log(1/ϵ)

)
for communication complexity, time complexity and
LFO complexity for decentralized setting, where γ is
the spectral gap of the mixing matrix for the network
and τ is the time cost of per communication round.

• We propose a decentralized first-order algorithm within
the communication complexity of Õ(κ/

√
γ log(1/ϵ)),

the time complexity of Õ((κ+τκ/
√
γ ) log(1/ϵ)) and

the LFO complexity of O
(
(n + κ

√
n ) log(1/ϵ)

)
in

expectation, nearly matching the lower bounds.
We compare our results with related work in Table 1-2.

2. Preliminaries
In this section, we formalize the problem setting and the
complexity of the finite-sum optimization.

2.1. Notation and Assumptions

Given vector x ∈ Rd, we denote xi as the i-th entry of x
for i ∈ [d] and denote supp(x) as the index set for nonzero
entries of x. Given matrix A ∈ Rm×n, we denote ai,j as
the (i, j)-th entry of A for i ∈ [m] and j ∈ [n]. We let 1 be
the vectors (or matrices) of all ones and 0 be the vector (or
matrix) of all zeros. Additionally, we let I be the identity
matrix and denote its i-th column as ei. We use ∥ · ∥ to
present the Euclidean norm of a vector or the Frobenius
norm of a matrix.

We consider the following assumptions for the finite-sum
optimization Problem (1).

Assumption 2.1. We suppose the objective function f(·) is
lower bounded, i.e, we have

f∗ = inf
y∈Rd

f(y) > −∞.

Assumption 2.2. We suppose the function set {fi(·)}ni=1 is
L-mean-squared smooth for some L > 0, i.e., we have

1

n

n∑
i=1

∥∇fi(x)−∇fi(y)∥2 ≤ L2 ∥x− y∥2 ,

for any x,y ∈ Rd.

Assumption 2.3. We suppose objective function f(·) is
µ-PL for some µ > 0, i.e., we have

f(x)− inf
y∈Rd

f(y) ≤ 1

2µ
∥∇f(x)∥22

for any x ∈ Rd.

Based on the above assumptions, we define condition num-
ber and ϵ-suboptimal solution of our problem.

Definition 2.4. We define κ ≜ L/µ as the condition number
of problem (1).

Definition 2.5. We say x̂ is an ϵ-suboptimal solution of
Problem (1) if it holds that f(x̂)− f∗ ≤ ϵ.

We use the notation Õ(·) to hide the logarithmic dependence
on condition number κ and individual number n.

For the decentralized setting, the individual fi(·) presents
the local function on the i-th agent. We define the aggregate
variable and the corresponding aggregated gradient as

X=

x(1)...
x(n)

∈Rn×d and ∇F(X)=

∇f1(x(1))
...

∇fn(x(n))

∈Rn×d
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Table 1. We present the IFO complexity for finding an ϵ-suboptimal solution of Problem (1) on single machine.

Algorithm IFO Reference

GD O
(
κn log(1/ϵ)

)
Karimi et al. (2016)

SVRG / SCSG O
(
(n+ κn2/3 ) log(1/ϵ)

)
Reddi et al. (2016); Lei et al. (2017)

SPIDER / PAGE O
(
(n+ κ

√
n ) log(1/ϵ)

)
Zhou et al. (2019); Wang et al. (2019); Li et al. (2021)

Lower Bound Ω
(
n+ κ

√
n log(1/ϵ)

)
Corollary 3.6

respectively, where x(i) ∈ R1×d is the local variable on
the i-th agent. For given X ∈ Rn×d, we also introduce the
mean vector x̄ = 1

n1
⊤X = 1

n

∑n
i=1 x(i) ∈ R1×d. For

ease of presentation, we let the input of a function can also
be organized as a row vector, such as f(x̄) and fi(x(i)).

We describe one communication round by multiplying the
mixing matrix W ∈ Rn×n on the aggregated variable. We
give the following assumption for matrix W.

Assumption 2.6. We suppose mixing matrix W ∈ Rn×n

has the following properties: (a) We have W = W⊤,
W1n = 1n and 0 ⪯ W ⪯ I; (b) The entry of W holds
that wi,j > 0 if and only if the i-th agent and the j-th agent
are connected or i = j, otherwise it holds that wij = 0.
(c) The spectral gap of W is lower bounded by γ ∈ (0, 1],
i.e., it holds that 1 − λ2(W) ≥ γ for some γ ∈ (0, 1],
where λ2(W) is the second-largest eigenvalue of W.

2.2. The Finite-Sum Optimization

The complexity of first-order methods for solving the finite-
sum optimization Problem (1) on a single machine mainly
depends on the number of access to the incremental first-
order oracle (IFO), which is defined as follows (Agarwal &
Bottou, 2015; Woodworth & Srebro, 2016).

Definition 2.7. The incremental first-order oracle (IFO)
takes the input i ∈ [n] and x, and returns the pair
(fi(x),∇fi(x)).

We focus on the complexity of linear span methods and
formally define the IFO algorithm as follows.

Definition 2.8. An IFO algorithm for given initial point x0

is defined as a measurable mapping from functions
{fi(·)}ni=1 to an infinite sequence of point and index pairs
{(xt, it)}∞t=0 with random variable it ∈ [n], which satisfies

xt ∈ Lin
(
{x0, . . . ,xt−1,∇fi0(x0), . . . ,∇fit−1

(xt−1)}
)
,

where Lin(·) denotes the linear span and it denotes the
index of individual function chosen at the t-th step.

For the distributed optimization over a network of n agents,
the i-th agent can only perform the computation on its local
function fi(·) directly. Hence, we describe the complexity

of computational cost by the number of access to the local
first-order oracle (LFO).
Definition 2.9. The local first-order oracle (IFO) takes the
input i ∈ [n] and x , and returns the pair (fi(x),∇fi(x)).

Recall that agents on the network can only communicate
with their neighbours, which means the agent in decentral-
ized algorithms cannot arbitrarily establish the linear space
of all local gradients. Additionally, one iteration of the algo-
rithm allows a mini-batch of agents to compute their local
gradient in parallel. Therefore, besides the LFO complex-
ity, we also need to separately consider the communication
complexity and the time complexity. This motivates the
following definition for decentralized first-order oracle al-
gorithm (DFO) (Scaman et al., 2017).
Definition 2.10. A decentralized first-order oracle (DFO)
algorithm over a network of n agents satisfies the following
constraints:

• Local memory: Each agent i can store past values in a
local memory Mi,s at time s > 0. These values can be
accessed and used at time s by running the algorithm
on agent i. Additionally, for all i ∈ [n], we have

Ms
i ⊂ Ms

comp,i

⋃
Ms

comm,i,

where Ms
comp,i and Ms

comm,i are the values that come
from the computation and communication respectively.

• Local computation: Each agent i can access its local
first-order oracle {fi(x),∇fi(x)} for given x ∈ Mi,s

at time s. That is, for all i ∈ [n], we have

Ms
comp,i = Lin

(
{x,∇fi(x) : x ∈ Ms−1

i }
)
.

• Local communication: Each agent i can share its
value to all or part of its neighbors at time s. That is,
for all i ∈ [n], we have

Ms
comm,i = Lin

( ⋃
j∈nbr(i)

Ms−τ
j

)
,

where nbr(i) is the set consisting of the indices for the
neighbours of agent i and τ < s.

• Output value: Each agent i can specify one vector in
its memory as the local output of the algorithm at time
s. That is, for all i ∈ [n], we have xs

i ∈ Ms
i .
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Table 2. We present the complexity for finding an ϵ-suboptimal solution of Problem (1) in decentralized setting.

Algorithm Communication Time LFO Reference

DGD-GT Õ
(
κ/

√
γ log(1/ϵ)

)
Õ

(
κ
(
1 + τ/

√
γ
)
log(1/ϵ)

)
O
(
κn log(1/ϵ)

)
Theorem 5.1

DRONE Õ
(
κ/

√
γ log(1/ϵ)

)
Õ

(
κ
(
1 + τ/

√
γ
)
log(1/ϵ)

)
O
(
(n+ κ

√
n ) log(1/ϵ)

)
Corollary 5.3

Lower Bound Ω
(
κ/

√
γ log(1/ϵ)

)
Ω
(
κ
(
1 + τ/

√
γ
)
log(1/ϵ)

)
Ω
(
n+ κ

√
n log(1/ϵ)

)
Theorem 4.3, Corollary 4.4

3. The Lower Bound on IFO Complexity
This section provides the lower bound on IFO complexity to
show the optimality (up to logarithmic factors) of existing
first-order methods (Zhou et al., 2019; Wang et al., 2019; Li
et al., 2021). Without loss of generality, we always assume
the IFO algorithm iterates with the initial point x(0) = 0 in
our analysis for the lower bound. Otherwise, we can take
the functions {fi(x+ x(0))}ni=1 into consideration.

We first consider the case of n = O(κ2). We introduce the
functions ψθ :R → R, qT,t :RTt → R and gT,t :RTt → R
provided by Yue et al. (2023), that is

ψθ(x) =



1
2
x2, x ≤ 31

32
θ,

1
2
x2 − 16(x− 31

32
θ)2, 31

32
θ < x ≤ θ,

1
2
x2 − 1

32
θ2 + 16(x− 33

32
θ)2, θ < x ≤ 33

32
θ,

1
2
x2 − 1

32
θ2, x > 33

32
θ,

qT,t(x)=
1

2

t−1∑
i=0

((7
8
xiT −xiT+1

)2

+

T−1∑
j=1

(xiT+j+1−xiT+j)
2
)
,

and gT,t(x) = qT,t(b− x) +

Tt∑
i=1

ψbi(bi − xi),

where we define x0 = 0 and b ∈ RTt with bkT+τ = (7/8)k

for k ∈ {0} ∪ [T − 1] and τ ∈ [T ]. We can verify that

g∗T,t ≜ inf
y∈RTt

gT,t(y) = 0.

The following lemma shows the function gT,t holds the zero-
chain property (Nesterov, 2018; Carmon & Duchi, 2020)
and describes its smoothness, PL parameter and optimal
function value gap, which results the tight lower bound of
full-batch first-order methods (Yue et al., 2023, Section 4).
Lemma 3.1. The function gT,t : RTt → R holds that:
(a) For any x ∈ RTt satisfying supp(x) ⊆ {1, 2, · · · , k},

it holds supp(∇gT,t(x)) ⊆ {1, 2, · · · , k + 1}.

(b) The function gT,t is 37-smooth.

(c) The function gT,t is 1/(aT )-PL with a = 19708.

(d) The function gT,t satisfies that gT,t(0)− g∗T,t ≤ 3T .

(e) For any δ < 0.01, t = 2⌊log8/7 2/(3δ)⌋ and x ∈ RTt

satisfying supp(x) ⊆ {1, 2, · · · , T t/2}, it holds that
gT,t(x)− g∗T,t > 3Tδ.

We can establish the mean-squared smooth functions by the
composition of orthogonal transformation. Compared with
the study on convex and general nonconvex problem (Car-
mon et al., 2020; Zhou & Gu, 2019), we present the follow-
ing lemma by additionally considering the PL condition.
Lemma 3.2. Given a function g : Rm → R that is L̂-
smooth and µ̂-PL, define fi(x) = g(U(i)x) with x ∈ Rmn,
i ∈ [n] and U(i) = [e(i−1)m+1, · · · , eim]⊤ ∈ Rm×mn.
Then the function set {fi : Rmn → R}ni=1 is L̂/

√
n-mean-

squared smooth, and the function f(·) = 1
n

∑n
i=1 fi(·)

is µ̂/n-PL with f(0)− infy∈R f(y) = g(0)− infy∈R g(y).

To achieve the hard instance functions with the desired
smoothness and PL parameters, we also require the scaling
lemma as follows.
Lemma 3.3. Suppose the function g : Rm → R is L̂-
smooth, µ̂-PL and has lower bound g∗ = infy∈Rm g(y),
then the function ĝ(x) = αg(βx) is αβ2L̂-smooth, αβ2µ̂-
PL and satisfies that ĝ(0) − ĝ∗ = α(g(0) − g∗) for any
α, β > 0, where ĝ∗ = infy∈Rm ĝ(y).

Based on above lemmas 3.1, 3.2 and 3.3, we provide the
lower bound of Ω

(
κ
√
n log(1/ϵ)

)
on IFO complexity for

large κ.
Theorem 3.4. For any L, µ, n,∆ and ϵ with ϵ < 0.005∆
and L ≥ 37a

√
nµ, there exists L-mean-squared smooth

function set {fi : Rd → R}ni=1 with d = O(κ
√
n log(1/ϵ))

such that the function f(·) = 1
n

∑n
i=1 fi(·) is µ-PL

with f(x0) − f∗ ≤ ∆. In order to find an ϵ-suboptimal
solution of problem minx∈Rd f(x), any IFO algorithm
needs at least Ω

(
κ
√
n log(1/ϵ)

)
IFO calls.

We present the proof sketch of Theorem 3.4 as follows and
defer the details in Appendix A.3. Specifically, we take
the function gT,t : RTt → R with T = ⌊L/(37a

√
nµ)⌋

and t = 2⌊log8/7 ∆/(3ϵ)⌋, and let ĝ(x) = αgT,t(βx) with
α = ∆/(3T ) and β =

√
3
√
nLT/(37∆). We also define

function set {fi : RnTt → R}ni=1 by following Lemma 3.2
with g(x) = ĝ(x) and m = Tt. Then statements (b)-(d) of
Lemma 3.1 and the scaling property shown in Lemma 3.3
means such construction results that the condition number
of the problem is κ = L/µ and the optimal function value
is gap ∆. Finally, the statements (a) and (e) of Lemma 3.1
lead to the desired lower complexity bound.
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We then consider the case of n = Ω(κ2). Following the
analysis by Li et al. (2021, Theorem 2), we establish the
lower bound of Ω(n) for IFO complexity by introducing
{fi : Rd → R}ni=1 with fi(x) = c ⟨ui,x⟩+ L

2 ∥x∥
2, where

ui = [I(⌈1/(2n)⌉ = i), · · · , I(⌈2n2/(2n)⌉ = i)]⊤∈ R2n2

,
d = 2n2, c =

√
L∆ and I(·) is the indicator function. We

can verify {fi : Rd → R}ni=1 is L-mean-squared smooth
and f(·) = 1

n

∑n
i=1 fi(·) is µ-PL with the optimal function

value gap ∆. Additionally, each fi(·) holds zero-chain
property, which leads to the lower bound of Ω(n) on IFO
complexity. We formally present this result in the following
theorem and leave the detailed proof in Appendix A.4.
Theorem 3.5. For any L, µ, n,∆ and ϵ with ϵ < ∆/2
and L ≥ µ, there exists L-mean-squared smooth function
set {fi : Rd → R}ni=1 with d = O(n2) such that the func-
tion f(·) = 1

n

∑n
i=1 fi(·) is µ-PL with f(x0)− f∗ ≤ ∆.

In order to find an ϵ-suboptimal solution of problem
minx∈Rd f(x), any IFO algorithm needs at least Ω(n) IFO
calls.

We combine Theorem 3.4 and 3.5 to achieve the lower bound
on IFO complexity for the first-order finite-sum optimization
under the PL condition.
Corollary 3.6. For any L, µ, n,∆ and ϵ with ϵ < 0.005∆
and L ≥ µ. there exists L-mean-squared smooth function
set {fi : Rd → R}ni=1 with d = O(n2+κ

√
n log(1/ϵ) such

that the function f(·) = 1
n

∑n
i=1 fi(·) is µ-PL and satisfies

f(x0)− f∗ ≤ ∆. In order to find an ϵ-suboptimal solution
of problem minx∈Rd f(x), any IFO algorithm needs at least
Ω
(
n+ κ

√
n log(1/ϵ)

)
IFO calls.

Noticing that the lower bound of Ω
(
n + κ

√
n log(1/ϵ)

)
on IFO complexity shown in Corollary 3.6 nearly matches
the upper bound of O

(
(n + κ

√
n ) log(1/ϵ)

)
achieved by

stochastic recursive gradient algorithms (Zhou et al., 2019;
Wang et al., 2019; Li et al., 2021).

4. Lower Bounds in Decentralized Setting
This section provides lower bounds for the decentralized
setting. The main idea of our construction is splitting the
function gT,t : RTt → R (defined in Section 3) as follows

gT,t(x) = q1(b− x) + q2(b− x) + r(x),

where we define the functions q1 : RTt → R, q2 : RTt → R
and r : RTt → R as

q1(x)=
1

2

Tt/2∑
i=1

(x2i−1−x2i)2,

q2(x)=
1

2

t−1∑
i=0

(7
8
xiT −xiT+1

)2

+

(i+1)T/2−1∑
j=iT/2+1

(x2j−x2j+1)
2

,
and r(x)=

Tt∑
i=1

ψbi(bi−xi),

Based on the above decomposition for gT,t, we can establish
a hard instance of n individual functions for communication
complexity and time complexity. We let G = {V, E} be the
graph associated to the network of the agents, where the
node set V = {1, . . . , n} corresponds to the n agents and
the edge set E = {(i, j) : node i and node j are connected}
describes the topology for the network of agents. For given
a subset C ⊆ V , we define the function hCi (x) : RTt → R as

hCi (x) =


r(x)
n + q1(b−x)

|C| , i ∈ C,
r(x)
n + q2(b−x)

|Cσ| , i ∈ Cσ,
r(x)
n , otherwise,

where Cσ = {v ∈ V : dis(C, v) ≥ σ} and dis(C, v) is the
distance between set C and node v.

We can verify the function sets {hCi : RTt → R}ni=1 has the
following properties.
Lemma 4.1. We define h(·) = 1

n

∑n
i=1 h

C
i (·), then we

have:
(a) The function sets {hCi : RTt → R}ni=1 is mean-squared

smooth with parameter 33/n+max {2/|C|, 2/|Cσ|}.

(b) The function h : RTt → R is 1/ (anT )-PL.

(c) The function holds h(0)− infy∈RTt h(y) ≤ 3T/n.

Now we provide the lower bounds for communication
complexity and time complexity based on the scaling on
the functions {hCi : RTt → R}ni=1.
Lemma 4.2. We let fi(x) = αhCi (βx) with x ∈ RTt and
t = 2⌊log8/7(2/3δ)⌋ for any i ∈ [n] and some α, β > 0.
For given δ < 0.01, any DFO algorithm takes at least
Ttσ/2 communication complexity and Tt(1 + στ)/2 time
complexity to achieve an 3αTδ/n-suboptimal solution of
problem minx∈RTt

1
n

∑n
i=1 fi(x).

For given spectral gap γ ∈ (0, 1], we consider the linear
graph G = {V, E} with the node set V = {1, . . . , n} and
the edge set E = {(i, j) : |i − j| = 1, i ∈ V and j ∈ V}.
Combining with the function fi(x) = αhCi (βx) defined in
Lemma 4.2, we achieve the lower bounds of communication
complexity and time complexity as follows.
Theorem 4.3. For any L, µ,∆, γ and ϵ with L ≥ 194aµ,
γ ∈ (0, 1] and ϵ < 0.01∆, there exist matrix W ∈ Rn×n

with 1 − λ2(W) ≥ γ and L-mean-squared smooth func-
tion set {fi : Rd → R}ni=1 with d = O(κ log(1/ϵ)) such
that f(·) = 1

n

∑n
i=1 fi(·) is µ-PL with f(0)− f∗ ≤ ∆

and γ(W) = γ. In order to find an ϵ-suboptimal
solution of problem minx∈Rd f(x), any DFO algorithm
needs at least Ω

(
κ/

√
γ log(1/ϵ)

)
communication rounds

and Ω
(
κ log(1/ϵ)(1 + τ/

√
γ)
)

time cost.

The lower complexity bound on LFO complexity for the
decentralized setting can be achieved by applying Corollary
3.6 on a fully connected network.
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Algorithm 1 GD
1: Input: initial point x0 ∈ Rd, iteration number T and

stepsize η > 0

2: for t = 0, 1, . . . , T − 1 do
3: xt+1 = xt − η∇f(xt)

4: end for
5: Output: xT

Algorithm 2 AccGossip(Y0,W,K)

1: Initialize: Y−1 = Y0

2: ηy = 1/
(
1 +

√
1− λ22(W)

)
3: for k = 0, 1, . . . ,K do
4: Yk+1 = (1 + ηy)WYk − ηyY

k−1

5: end for
6: Output: YK

Corollary 4.4. For any L,µ,n,∆,γ and ϵ with ϵ<0.005∆,
L ≥ µ and γ ∈ (0, 1] , there exist mixing matrix W∈Rn×n

with 1−λ2(W) ≥ γ and L-mean-squared smooth function
set {fi : Rd → R}ni=1 with d = O(n2+κ

√
n log(1/ϵ) such

that the function f(·) = 1
n

∑n
i=1 fi(·) is µ-PL and satisfies

f(x0)− f∗ ≤ ∆. In order to find an ϵ-suboptimal solution
of problem minx∈Rd f(x), any DFO algorithm needs at
least Ω

(
n+ κ

√
n log(1/ϵ)

)
LFO calls.

5. Decentralized First-Order Algorithms
It is well-known that GD achieves the linear convergence for
minimizing the PL function (Karimi et al., 2016) on a single
machine. For decentralized optimization, it is natural to
integrate GD with gradient tracking (Shi et al., 2015; Nedic
& Ozdaglar, 2009; Qu & Li, 2017) and Chebyshev accel-
eration (Arioli & Scott, 2014; Scaman et al., 2017; Song
et al., 2023; Ye et al., 2023), leading to Algorithm 3 which is
called decentralized gradient descent with gradient tracking
(DGD-GT). The following theorem shows that the commu-
nication complexity and the time complexity of DGD-GT
nearly match the lower bounds shown in Corollary 4.3.

Theorem 5.1. We suppose that Assumption 2.1–2.6 hold,
then running Algorithm 3 (DGD-GT) with appropriate
parameters setting achieves E[f(xout) − f∗] ≤ ϵ within
communication complexity of Õ

(
κ/

√
γ log(1/ϵ)

)
, time

complexity of Õ
(
κ(1 + τ/

√
γ ) log(1/ϵ)

)
and LFO com-

plexity of O
(
nκ log(1/ϵ)

)
in expectation.

However, the upper bound on LFO complexity of DGD-GT
(Algorithm 3) shown in Theorem 5.1 does not match the
lower bound of Ω

(
n+ κ

√
n log(1/ϵ)

)
provided by Corol-

lary 4.4. Recall that the optimal IFO methods for the non-
distributed setting are based on the stochastic recursive ‘gra-

Algorithm 3 DGD-GT
1: Input: initial point x̄0 ∈ R1×d, iteration number T ,

stepsize η > 0 and communication numbers K
2: X0 = 1x̄0

3: S0 = ∇F(X0)

4: for t = 0, . . . , T − 1 do
5: Xt+1 = AccGossip(Xt − ηSt,W,K)

6: St+1 = AccGossip(St+∇F(Xt+1)−∇F(Xt),W,K)

7: end for
8: Output: uniformly sample xout from {xT (i)}ni=1

Algorithm 4 DRONE
1: Input: initial point x̄0 ∈ R1×d, mini-batch size b, iteration

number T , stepsize η > 0, probability p, q ∈ (0, 1] and
communication numbers K.

2: X0 = 1x̄0

3: S0 = G0 = ∇F(X0)

4: for t = 0, . . . , T − 1 do
5: ζt ∼ Bernoulli(p)

6: [ξt1, · · · , ξtn]⊤ ∼ Multinomial(b, q1)

7: Xt+1 = AccGossip(Xt − ηSt,W,K)

8: parallel for i = 1, . . . , n do
9: if ζt = 1 then

10: gt+1(i) = ∇fi(xt+1(i))

11: else
12: gt+1(i) = gt(i)+

ξti
bq

(
∇fi(xt+1(i))−∇fi(xt(i))

)
13: end if
14: end parallel for
15: St+1 = AccGossip(St +Gt+1 −Gt,W,K)

16: end for
17: Output: uniformly sample xout from {xT (i)}ni=1

dient (Li et al., 2021; Zhou et al., 2019; Wang et al., 2019).
We borrow this idea to construct the recursive gradient with
respect to local agents, i.e., we update the local gradient
estimator by

gt+1(i)=


∇fi(xt+1(i)), ζt = 1,

gt(i) +
ξti
bq

(
∇fi(xt+1(i))−∇fi(xt(i))

)
, ζt = 0,

where we introduce random variables ζt ∼ Bernoulli(p)
and [ξt1, · · · , ξtn]⊤ ∼ Multinomial(b, q1) with some small
probabilities p and q which encourage only few of agents
compute local gradients in most of iterations. Similar to the
procedure of DGD-GT (Algorithm 3), we can also introduce
steps of gradient tracking and Chebyshev acceleration to
improve communication efficiency. Finally, we achieve
decentralized recursive local gradient descent (DRONE)
method, which is formally presented in Algorithm 4.
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We analyze the complexity of DRONE by the following
Lyapunov function

Φt = E[f(x̄t)− f∗] + αU t + βV t + LCt,

where α = 2η/p, β = 8Lρ2nη2,

U t = E

∥∥∥∥∥ 1n
n∑

i=1

(
gt(i)−∇fi(xt(i))

)∥∥∥∥∥
2

,

V t =
1

n
E∥Gt −∇F(Xt)∥2,

and Ct = E∥Xt − 1x̄t∥2 + η2E∥St − 1s̄t∥2.

Compared with the analysis of Luo & Ye (2022); Li et al.
(2022a); Xin et al. (2022) for general nonconvex case, we
additionally introduce the term of f∗ into our Lyapunov
function to show the desired linear convergence under the
PL condition, i.e., we can show that

ΦT ≤ (1− µη)TΦ0

by taking η = Θ(1/L). We present the convergence result
of DRONE formally in the following theorem and corollary.

Theorem 5.2. We suppose that Assumption 2.1–2.6 hold,
then running DRONE (Algorithm 4) with parameters setting

p ∈
[

1

n+ 1
,
1

2

]
, b ∈

[
1− p

p
, n

]
, η ≤ min

{
1

20L
,
p

2µ

}
,

q =
1

n
, K =

⌈√
2 (4 + logn)

(
√
2− 1)

√
γ

⌉
and T ≥

⌈
1

µη
log

Φ0

ϵ

⌉

achieves output satisfying E[f(xout)− f∗] ≤ ϵ.

Corollary 5.3. Under the setting of Theorem 5.2, running
DRONE (Algorithm 4) by specifically taking

p =
1

min{
√
n, κ}+ 1

, b =

⌈
1− p

p

⌉
, η = min

{
1

20L
,
p

2µ

}
,

q =
1

n
, K =

⌈√
2 (4 + logn)

(
√
2− 1)

√
γ

⌉
and T =

⌈
1

µη
log

Φ0

ϵ

⌉

achieves output satisfying E[f(xout)− f∗] ≤ ϵ within com-
munication complexity of Õ

(
κ/

√
γ log(1/ϵ)

)
, time com-

plexity of Õ
(
κ(1 + τ/

√
γ ) log(1/ϵ)

)
and LFO complexity

of O
(
(n+ κ

√
n ) log(1/ϵ)

)
in expectation.

Note that the setting of p = 1/(min{
√
n, κ}+ 1) leads to

b=O(min{
√
n,κ}), η=Θ(1/L) and T =Θ(κ log(1/ϵ)),

guarantees the algorithm nearly match the LFO lower bound
(Corollary 4.4) in both cases of n = O(κ2) and n = Ω(κ2).

As a comparison, the analysis of PAGE (Li et al., 2021) (for
single machine optimization) takes p = Θ(1/

√
n ), which

leads to that b = Θ(
√
n ), η = Θ(min{1/L, 1/(µ

√
n )})

and T = Θ((κ +
√
n ) log(1/ϵ)). If we directly apply

these parameters to DRONE, it will result LFO complexity
of O

(
(n + κ

√
n ) log(1/ϵ)

)
, communication complexity

of Õ
(
(κ +

√
n ) log(1/ϵ)/

√
γ
)

and time complexity of
Õ
(
(κ+

√
n )(1 + τ/

√
γ ) log(1/ϵ)

)
in expectation. In the

case of n = Ω(κ2), such communication complexity and
time complexity do not match the corresponding lower
bounds (Theorem 4.3). Intuitively, our analysis for DRONE
considers the larger stepsize η = Θ(1/L) ≥ Θ(1/(µ

√
n ))

than PAGE when n = Ω(κ2), which is important to reduce
the iteration numbers T = ⌈(1/µη) log(Φ0/ϵ)⌉, also reduce
the overall communication rounds KT and the overall time
cost (1 +Kτ)T .

6. Numerical Experiments
We conduct numerical experiments to compare DRONE
with centralized gradient descent (CGD) and DGD-GT,
where CGD is a distributed extension of GD in client-server
networks. Please see Appendix D for details.

We test the algorithms on the following three problems:
• Hard instance: We follow the instance in the proof of

Theorem 4.3 (Appendix B.3) and specifically let

fi(x) =
16

3
hCi
(√

12ax
)

for formulation (1). We set T = 2, t = 72, C = {1}
and σ = 29 for hCi : RTt → R.

• Linear regression: We consider the problem

min
x∈Rd

f(x) =
1

m

m∑
j=1

ℓj(x) with ℓj(x) = (a⊤
j x− bj)

2 (2)

where aj ∈ Rd is the feature vector of the j-th sample
and bj ∈ R is its label. We allocate the m individual
loss on the n agents, which leads to

fi(x) =
n

m

min{⌈m/n⌉i,m}∑
j=⌈m/n⌉(i−1)+1

(a⊤j x− bj)
2. (3)

We evaluate the algorithms on dataset “DrivFace”
(m = 606, d = 921, 600) (Diaz-Chito et al., 2016)
for this problem.

• Logistic regression: The objective function and local
functions of this problem are similar to the counterparts
in formulation (2)–(3), but replace the loss function by

ℓ̂j(x) = log
(
1 + exp(−bja⊤j x)

)
.

and require bj ∈ {1,−1}. We evaluate the algorithms
on dataset “RCV1” (m = 20, 242, d = 47, 236) (Diaz-
Chito et al., 2016) for this problem.

For all the above problems, we set n = 32 and use a linear
graph for the network of DGD-GT and DRONE, leading to
that γ = (1− cos(π/32)) / (1 + cos(π/32)) ≈ 0.0024.
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Figure 1. The results for the hard instance in the proof of Theorem 4.3.
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Figure 2. The results for linear regression on dataset “DrivFace”.
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Figure 3. The results for logistic regression on dataset “RCV1”.

We present empirical results for CGD, DGD-GT and
DRONE on problems of hard instance, linear regression
and logistic regression in Figure 1, 2 and 3, which includes
the comparisons on LFO calls, communication rounds and
running time.

We can observe that DRONE requires significantly fewer
LFO calls, since we have shown only DRONE matches the
lower complexity bound on LFO calls. We also observed
CGD needs much fewer communication rounds than DGD-
GT and DRONE, which also leads to less running time. This
is because the client-server framework in CGD does not
suffer from the consensus error which cannot be avoided in
decentralized optimization. It also validates our theoretical
analysis that the linear graph heavily affects the convergence
rate of decentralized algorithms. Additionally, DGD-GT
and DRONE have comparable communication rounds and
running time for all of these problems, which also supports
our theoretical results (see Table 2).

7. Conclusion
We provide the lower complexity bound for smooth finite-
sum optimization under the PL condition, which implies the
upper bound of IFO complexity archived by existing first-
order methods (Wang et al., 2019; Li et al., 2021; Zhou et al.,
2019) is nearly tight. We also construct the lower bounds
of communication complexity, time complexity and LFO
complexity for minimizing the PL function in the distributed
setting and verify their tightness by proposing decentralized
recursive local gradient descent.

In future work, we would like to study the lower bound
in more general stochastic settings where the objective (or
local functions) has the form of expectation (Yuan et al.,
2022a; Arjevani et al., 2022). We are also interested in
extending our results to address the functions that satisfy the
Kurdyka–Łojasiewicz inequality (Bolte et al., 2014; 2007;
Attouch & Bolte, 2009; Zhou et al., 2018; Fatkhullin et al.,
2022; Jiang & Li, 2022).
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We provide the proofs for results of Section 3, 4 and 5 in Appendix A, B and C respectively. In Section D, we present more
details for our experiments.

A. The Proofs for Section 3
Without the loss of generality, we always assume the IFO algorithm iterates with initial point x(0) = 0. Otherwise, we can
take functions {fi(x+ x(0)}ni=1 into consideration.

Recall that we have defined the functions ψθ : R → R, qT,t : RTt → R and gT,t : RTt → R as (Yue et al., 2023)

ψθ(x) =



1
2x

2, x ≤ 31
32θ,

1
2x

2 − 16(x− 31
32θ)

2, 31
32θ < x ≤ θ,

1
2x

2 − 1
32θ

2 + 16(x− 33
32θ)

2, θ < x ≤ 33
32θ,

1
2x

2 − 1
32θ

2, x > 33
32θ,

(4)

qT,t(x) =
1

2

t−1∑
i=0

(7

8
xiT − xiT+1

)2

+

T−1∑
j=1

(xiT+j+1 − xiT+j)
2

 ,

and

gT,t(x) = qT,t(b− x) +

Tt∑
i=1

ψbi(bi − xi). (5)

where x0 = 0 and b ∈ RTt with bkT+τ = (7/8)k for k ∈ {0} ∪ [t− 1] and τ ∈ [T ]. We can verify that

g∗T,t ≜ inf
y∈RTt

gT,t(y) = 0.

A.1. The Proof of Lemma 3.2

Proof. For any x,y ∈ Rmn, the smoothness of g : Rm → R implies

∥∇fi(x)−∇fi(y)∥ =
∥∥∥(U(i))⊤∇g(U (i)x)− (U(i))⊤∇g(U (i)y)

∥∥∥
=
∥∥∇g(U(i)x)−∇g(U(i)y)

∥∥
≤L̂
∥∥U(i)(x− y)

∥∥
≤L̂∥x− y∥,

and

1

n

n∑
i=1

∥∇fi(x)−∇fi(y)∥2 =
1

n

n∑
i=1

∥∥∥(U(i))⊤∇g(U(i)x)− (U(i))⊤∇g(U(i)y)
∥∥∥2

=
1

n

n∑
i=1

∥∥∇g(U(i)x)−∇g(U(i)y)
∥∥2

=
L̂2

n

n∑
i=1

∥∥U(i)(x− y)
∥∥2

≤ L̂
2

n
∥x− y∥2.

This implies each fi : Rmn → R is L̂-smooth and {fi : Rmn → R}ni=1 is L̂/
√
n-average smooth.
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For any x ∈ Rmn, the PL condition of g : Rm → R implies

∥∇f(x)∥2 =
1

n2

∥∥∥ n∑
i=1

∇fi(x)
∥∥∥2

=
1

n2

∥∥∥ n∑
i=1

(U(i))⊤∇g(U(i)x)
∥∥∥2

=
1

n2

n∑
i=1

∥∥∇g(U(i)x)
∥∥2

≥ µ̂

n2

n∑
i=1

(
g(U(i)x)− inf

x∈Rmn
g(U(i)x)

)
=
µ̂

n
(f(x)− f∗),

which means f : Rmn → R is µ̂/n-PL.

Consider the facts f(0) = g(0) and

inf
x∈Rmn

n∑
i=1

g(U(i)x) =

n∑
i=1

inf
x∈Rmn

g(U(i)x) = n inf
x∈Rm

g(x),

then we have

f(0)− inf
y∈R

f(y) = g(0)− inf
y∈R

g(y).

A.2. The Proof of Lemma 3.3

Proof. For any x,y ∈ Rmn, the smoothness of g : Rm → R implies

∥∇ĝ(x)−∇ĝ(y)∥ = αβ ∥∇g(βx)−∇g(βy)∥
≤ αβL̂ ∥βx− βy∥
≤ αβ2L̂ ∥x− y∥ ,

which means ĝ is αβ2L̂-smooth.

For any x ∈ Rmn, the PL condition of g : Rm → R implies

∥∇ĝ(x)∥2 =α2β2 ∥∇g(βx)∥2

≥2α2β2µ̂(g(βx)− g∗)

=2αβ2µ̂(ĝ(x)− ĝ∗),

which means ĝ is αβ2µ̂-PL.

We can verify that ĝ(0) = αg(0) and ĝ∗ = αg∗, which means

ĝ(0)− ĝ∗ = α(g(0)− g∗).

A.3. The Proof of Theorem 3.4

Proof. We first take gT,t : RTt → R by following equation (5) with

T =

⌊
L

37a
√
nµ

⌋
and t = 2

⌊
log7/8

3ϵ

∆

⌋
.
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The statements (b), (c) and (d) of Lemma 3.1 means the function gT,t is 37-smooth, 1/(aT )-PL and satisfies

gT,t(0)− g∗T,t ≤ 3T.

We apply Lemma 3.3 with

g(x) = gT,t(x), m = Tt, α =
∆

3T
and β =

√
3
√
nLT

37∆
,

which means the function ĝ(x) = αgT,t(βx) is 37αβ2-smooth, αβ2/(aT )-PL and satisfies

αgT,t(0)− αg∗T,t ≤ 3αT.

Then we apply Lemma 3.2 with

g(x) = ĝ(x) = αgT,t(βx) and m = Tt,

which achieves fi(x) = αgT,t(βU
(i)x) and f(x) = 1

n

∑n
i=1 fi(x) such that

{
fi : RnTt → R

}n
i=1

is 37αβ2/
√
n-mean-

squared smooth and f : nTt is αβ2/(anT )-PL with

f(x0)− f∗ = αgT,t(0)− αg∗T,t ≤ 3αT.

The choice of α = ∆/(3T ) and β =
√
3
√
nLT/(37∆) and condition L ≥ 37a

√
nµ implies

37αβ2

√
n

= L,
αβ2

anT
≥ µ and 3αT = ∆.

Therefore, the function set {fi}ni=1 is L-average smooth and the function f is µ-PL with f(x0)− f∗ ≤ ∆.

Let δ = 2ϵ/∆, then we can write t = 2⌊log8/7 2/(3δ)⌋. Moreover, the assumption ϵ < 0.005∆ means δ < 0.01. Then the
statement (e) of Lemma 3.1 and definition fi(x) = αgT,t(βU

(i)x) implies if x ∈ RnTt satisfies

supp(U(i)x) ⊆ {1, 2, · · · , T t/2} ,

then

fi(x)− αg∗T,t = αgT,t(βU
(i)x)− αg∗T,t

> 3αTδ

= 2ϵ.

Now we show that any IFO algorithm require at least ⌊nTt/4⌋+1 = Ω(κ
√
n log(1/ϵ)) IFO calls to achieve an ϵ-suboptimal

solution x̂ of the problem. We consider the vector x ∈ RnTt achieved by an IFO algorithm with at most ⌊nTt/4⌋ IFO
calls. The zero-chain property of gTt (statement (a) of Lemma 3.1) means the vector x has at most ⌊nTt/4⌋ non-zero
entries. We partition x ∈ RnTt into n vectors y(1), . . . ,y(n) ∈ RTt such that y(i) = U(i)x ∈ RTt. Then there at least
⌈n/2⌉ vectors in {y(i)}ni=1 such that each of them has at least Tt/2 zero entries. The zero-chain property means there exists
index set I ⊆ [n] with |I| ≥ ⌈n/2⌉ such that each i ∈ I satisfies y(i)Tt/2+1 = · · · = y

(i)
Tt = 0. Therefore, the statement (e) of

Lemma 3.1 implies

fi(x)− αg∗T,t > 2ϵ,

which leads to

1

n

n∑
i=1

fi(x)− f∗ =
1

n

n∑
i=1

fi(x)− αg∗T,t

≥ 1

n

∑
i∈I

(fi(x)− αg∗T,t)

>
1

n
· ⌈n

2
⌉ · 2ϵ

≥ϵ.

Hence, finding an ϵ-suboptimal solution of the problem requires at least ⌊nTt/4⌋+ 1 = Ω(κ
√
n log(1/ϵ)) IFO calls.
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A.4. The Proof of Theorem 3.5

Proof. We prove this theorem by following Li et al. (2021, Theorem 2). For any i ∈ [n], we define fi : Rd → R as

fi(x) = c ⟨ui,x⟩+
L

2
∥x∥2,

where

c =
√
L∆, d = 2n2, ui =

[
I
(⌈ 1

2n

⌉
= i
)
, I
(⌈ 2

2n

⌉
= i
)
· · · , I

(⌈2n2
2n

⌉
= i
)]⊤

∈ Rd

and I(·) is the indicator function.

For any x,y ∈ Rd, we have

∇fi(x) = cui + Lx

for any i ∈ [n], which implies

1

n

n∑
i=1

∥∇fi(x)−∇fi(y)∥2 =
1

n

n∑
i=1

∥(cui + Lx)− (cui + Ly)∥2

=
1

n

n∑
i=1

∥L(x− y)∥2

= L2∥x− y∥2.

Hence, we conclude {fi : Rd → R}ni=1 is L-mean-squared smooth.

We also have ∇2f(x) = LI ⪰ µI for any x ∈ Rd. Hence, the function ∇2f(x) is µ-strongly convex, also is µ-PL.

We have

f∗ =
1

n

n∑
i=1

(
c⟨ui,x

∗⟩+ L

2
∥x∗∥2

)

=
c

n

n∑
i=1

⟨ui,x
∗⟩+ L

2
∥x∗∥2

=− c2

2Ln2

∥∥∥∥ n∑
i=1

ui

∥∥∥∥2
=− c2

L
,

where x∗ = −(c/Ln)1 is the minima of f : Rd → R. Then the optimal function value gap holds

f(x0)− f∗ = 0− f∗ =
c2

L
= ∆.

We consider any IFO algorithm with initial point x0 = 0. After t IFO calls, Definition 2.8 implies

xt ∈ Lin
(
{∇fi0(x0), . . . ,∇fit−1

(xt−1)}
)
= Lin

(
{ui0 , . . . ,uit−1

}
)
,

where iτ ∈ [n] is the index of individual which is accessed at the τ -th IFO calls. Since each uiτ has 2n nonzero entries, any
vector x ∈ Rd achieved by at most n/2 IFO calls has at least

d− n

2
· 2n = 2n2 − n2 = n2
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zero entries. Let I0 = {j ∈ [2n2] : xj = 0}, then we have |I| ≥ n2. Based on the construction of fi and ui, we have

f(x)− f∗ =
1

n

n∑
i=1

(
c⟨ui,x⟩+

L

2
∥x∥2

)
−
(
−c

2

L

)

=

2n2∑
j=1

(
c

n
xj +

L

2
x2j +

c2

2Ln2

)

=
∑
j∈I0

(
c

n
xj +

L

2
x2j +

c2

2Ln2

)
+
∑
j ̸∈I0

(
c

n
xj +

L

2
x2j +

c2

2Ln2

)

≥n2 · c2

2Ln2
+
∑
j ̸∈I0

(
xj +

c

nL

)2
≥∆

2
> ϵ,

Hence, achieving an ϵ-suboptimal solution requires at least n/2 + 1 = Ω(n) IFO calls.

A.5. The Proof of Corollary 3.6

Proof. This result can be achieved by directly combining Theorem 3.4 and 3.5.

B. The Proofs for Section 4
Without loss of generality, we always assume that all agents start with the internal memory of null space, i.e., we
have M0

i = {0} for any i ∈ [n].

The main idea in our lower bound analysis splitting the function gT,t : RTt → R defined in equation (5) by introducing the
functions q1 : RTt → R, q2 : RTt → R and r : RTt → R as

q1(x) =
1

2

Tt/2∑
i=1

(x2i−1 − x2i)
2, (6)

q2(x) =
1

2

t−1∑
i=0

(7
8
xiT − xiT+1

)2
+

(i+1)T/2−1∑
j=iT/2+1

(x2j − x2j+1)
2

 , (7)

r(x) =

Tt∑
i=1

ψbi(bi − xi), (8)

where we suppose T is even and let x0 = 0. Then we can verify that the function gT,t(·) can be written as

gT,t(x) = q1(b− x) + q2(b− x) + r(x).

We let G = {V, E} be the graph associated to the network of the agents in decentralized optimization, where the node
set V = {1, . . . , n} corresponds to the n agents and the edge set E = {(i, j) : node i and node j are connected} describes
the topology of the agents network.

For given a subset C ⊆ V , we define the function hCi (x) : RTt → R as

hCi (x) =


r(x)
n + q1(b−x)

|C| i ∈ C,
r(x)
n + q2(b−x)

|Cσ| i ∈ Cσ,
r(x)
n , otherwise,

(9)

where Cσ = {v ∈ V : dis(C, v) ≥ σ} and dis(C, v) is the distance between set C and node v.

We introduce the following property (Yue et al., 2023, Lemma 4) of function ψθ : R → R to analyze the smoothness of
hCi (·) and the communication complexity for hard instance.
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Lemma B.1. For any θ > 0, the function ψθ : R → R defined in equation (4) is 33-smooth and holds ψ′
θ(θ) = 0.

Now we present the proofs for lower bounds in decentralized setting, which is based on our construction (6)–(8).

B.1. Proof of Lemma 4.1

Proof. We can observed that the function q1(x) is quadratic and holds q1(x) ≤ 1 for any x ∈ RTt, then it is 2-smooth.
Similarly, the function q2(x) is also 2-smooth.

For any x,y ∈ RTt, we have

∥∇r(x)−∇r(y)∥2 =

Tt∑
i=1

(
v′bi(bi − xi)− v′bi(bi − yi)

)2
≤

Tt∑
i=1

(33(xi − yi))
2

= 332 ∥x− y∥2 ,

where inequality is based on the Lemma B.1. This implies the function r : RTt → R is 33-smooth.

Combing above smoothness properties and the definition of hCi (·), we conclude each hCi is (33/n+max {2/|C|, 2/|Cσ|})-
smooth and thus

{
hCi : RTt → R

}n
i=1

is (33/n+max {2/|C|, 2/|Cσ|})-mean-squared smooth.

The definition of h(·) and hCi (·) implies

h(x) =
1

n

n∑
i=1

hCi (x) =
q1(b− x) + q2(b− x) + r(x)

n
=
gT,t(x)

n
. (10)

Then applying statements (c) and (d) of Lemma 3.1 and Lemma 3.3 finish the proof for the last two statements.

B.2. Proof of Lemma 4.2

Proof. The definitions fi(x) = αhCi (βx) and f(x) = 1
n

∑n
i=1 fi(x) and equation (10) implies f(x) = αgT,t(βx)/n.

Then the statement (e) of Lemma 3.1 implies when supp(x) ⊆ {1, 2, · · · , T t/2}, we have

f(x)− f∗ =
α

n
(gT,t(βx)− g∗T,t) >

3αTδ

n
, (11)

since we have assumed δ < 0.01 and t = 2⌊log8/7(2/3δ)⌋.

We define

nnz(s, i) ≜ max {m ∈ N : there exists y ∈ Ms
i such that ym ̸= 0} .

Then statements (a) of Lemma 3.1 implies achieving an 3αTδ/n-suboptimal solution requires

max
i∈[n]

{nnz(s, i)} ≥ Tt

2
+ 1. (12)

Now we consider how much local computation steps and local communication steps we need to attain the condition (12).

According to Lemma B.1 and equation (8), for any x ∈ Ms
i , we have

(∇r(x))k = 0, for any k > nnz(s, i). (13)

According to equation (6), for any x ∈ Ms
i , we have

(∇q1(b− x))k = 0, for any k > nnz(s, i) + I {nnz(s, i) ≡ 1 (mod 2)} . (14)

According to equation (7), for any x ∈ Ms
i , we have

(∇q2(b− x))k = 0, for any k > nnz(s, i) + I {nnz(s, i) ≡ 0 (mod 2)} . (15)

Combining (9), (13), (14), (15) and Definition 2.10, we know that for any DFO algorithm:
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1. If i ∈ C and nnz(s, i) is odd, one step of local computation can increase at most one dimension for memory of node i.

2. If i ∈ Cσ and nnz(s, i) is even, one step of local computation can increase at most one dimension for memory of node i.

3. Otherwise, one step of local computation cannot increase the dimension for memory of node i.

In summary, we have

nnz(s+ 1, i) ≤


nnz(s, i) + 1, if i ∈ C, nnz(s, i) ≡ 1 (mod 2),

nnz(s, i) + 1, if i ∈ Cσ, nnz(s, i) ≡ 0 (mod 2),

nnz(s, i), otherwise.
(16)

We consider the cost to reach the second coordinate from the initial status that M0
i = {0} for all i ∈ [n]. According to

equation (16), we need to let a node in C reach the first coordinate, which requires at least one local computation step on
some node in Cσ first. Then, according to definitions of DFO algorithm (Definition 2.10) and Cσ , one must perform at least
σ local communication steps for a node in C to receive the information of the first coordinate from some node in Cσ . After
above steps, we can perform at least 1 computation on nodes in C to reach the second coordinate. In summary, to reach the
second coordinate requires at least 2 local computation step and σ local communication step.

Similarly, to reach the k-th coordinate, a DFO algorithm must perform at least k local computation steps and (k − 1)σ local
communication steps. Thus, to attain the condition (12), one needs at least Tt/2 + 1 local computation steps and Ttσ/2
local communication steps, which corresponds to Ttσ/2 communications round and Tt(1 + στ)/2 time cost.

Remark B.2. Noticing that one computation step corresponds to one unit of time cost. However, some of agents (maybe not
all agents) can parallel compute their local gradient, which means the computational time cost may be not proportion to the
number of local gradient oracle calls.

B.3. Proof of Theorem 4.3

Proof. We consider the instance graph provided by Scaman et al. (2017), which associated to the specific spectral gap.
Concretely, we let ιm = (1− cos(π/m)) / (1 + cos(π/m)). For given γ ∈ (0, 1], let m =

⌊
π/arccos ((1− γ)/(1 + γ))

⌋
,

then we have m ≥ 2 and ιm+1 < γ ≤ ιm. We study the cases of m ≥ 3 and m = 2 separately.

We first consider the case of m ≥ 3. Let the agent number n = m, take G = {V, E} be the undirected linear graph of
size n ordered from node 1 to node n such that V = {1, . . . , n} and E = {(i, j) : |i − j| = 1, i ∈ V and j ∈ V}. We
define a weighted matrix Ŵl ∈ Rn×n for G such that ŵi+1,i = ŵi,i+1 = 1 − lI(i = 1) and ŵij = 0 for other entries.
Let R̂l ∈ Rn×n be the Laplacian matrix of graph G associated to weighted matrix Ŵl. We define λ1(R̂l), . . . , λn(R̂l) be
eigenvalues of R̂l such that 0 = λn(R̂l) ≤ λn−1(R̂l) ≤ · · · ≤ λ1(R̂l). A simple calculation gives that

λn−1(R̂0) = 2 (1− cos(π/m)) , λ1(R̂0) = 2 (1 + cos(π/m)) , λn−1(R̂1) = 0 and λ1(R̂l) > 0

for any l ∈ [0, 1], then we have λn−1(R̂0)/λ1(R̂0) = ιm and λn−1(R̂1)/λ1(R̂1) = 0. By the continuity of the eigenvalues
of a matrix and the fact 0 < γ ≤ ιm, there exists some l ∈ [0, 1) such that λn−1(R̂l)/λ1(R̂l) = γ. Let W = 1−R̂l/λ1(R̂l),
then the spectral gap satisfies γ(W) = λn−1(R̂l)/λ1(R̂l) = γ. According to basic properties of Laplacian matrix, the
matrix W ∈ Rn×n is a mixing matrix satisfies Assumption 2.6.

We take
{
hCi : RTt → R

}n
i=1

by following equation (9) with

C =
{
1, . . . ,

⌈ n
32

⌉}
, σ =

⌈
15n

16

⌉
− 1, T = 2

⌊ κ

194a

⌋
and t = 2

⌊
log 8

7

2∆

3ϵ

⌋
.

Let h(·) = 1
n

∑n
i=1 h

C
i (·). Lemma 4.1 means the function set

{
hCi : RTt → R

}n
i=1

is (33/n+max {2/|C|, 2/|Cσ|})-mean-
squared smooth, and the function h is 1/ (anT )-PL and satisfies

h(0)− h∗ ≤ 3T

n
.
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Let fi(x) = αhCi (βx), f(x) =
∑n

i=1 fi(x)/n and apply Lemma 3.3 with α = n∆/(3T ) and β =
√
3LT/(97∆),

then the function set
{
fi : RTt → R

}n
i=1

is αβ2(33/n + max {2/|C|, 2/|Cσ|})-mean-squared smooth, and the function
f : RTt → R is αβ2/ (anT )-PL and satisfies

f(0)− f∗ ≤ 3αT

n
.

The values of α and β means

αβ2

(
33

n
+

2

|Cσ|

)
≤ αβ2

(
33

n
+

2

|C|

)
≤ nL

97

(
33

n
+

64

n

)
= L,

αβ2

anT
=

L

97aT
≥ µ and

3αT

n
= ∆.

According to Lemma 3.3 and Lemma 4.1, we conclude
{
fi : RTt → R

}n
i=1

is L-mean-squared smooth and f : Rd → R is
µ-PL with f(0)− f∗ ≤ ∆.

Applying Lemma 4.2 with δ = ϵ/∆ < 0.01, any DFO algorithm needs at least Ttσ/2 communication steps and Tt(1+στ)/2
time cost to achieve an ϵ-suboptimal solution since 3αTδ/n = ϵ. The setting n = m implies

2

(n+ 1)2
≤ ιn+1 < γ ≤ ι3 =

1

3
,

which means

σ =

⌈
15n

16

⌉
− 1 ≥ 15

16

(√
2

γ
− 1

)
− 1 ≥ 1

5
√
γ
.

Hence, we achieve the lower bounds for communication complexity and time complexity of Ttσ/2 = Ω
(
κ/

√
γ log(1/ϵ)

)
and Tt(1 + στ)/2 = Ω

(
κ(1 + τ/

√
γ) log(1/ϵ)

)
respectively.

We then consider the case of m = 2. We let the agent number be n = 3 and take G = {V, E} be the totally connected graph
of size n such that V = {1, . . . , n} and E = {(i, j) : i ∈ V and j ∈ V}. We define a weighted matrix Ŵl ∈ Rn×n for G
such that ŵ1,3 = ŵ3,1 = l and wij = 1 for other entries. Let R̂l ∈ Rn×n be the Laplacian matrix of graph G associated to
weighted matrix Ŵl. We define λ1(R̂l), . . . , λn(R̂l) be eigenvalues of R̂l such that 0 = λn(R̂l) ≤ λn−1(R̂l) ≤ · · · ≤
λ1(R̂l). A simple calculation gives that

λn−1(R̂1) = λ1(R̂1) = 3, λn−1(R̂0) = 2 (1− cos(π/n)) , λ1(R̂0) = 2 (1 + cos(π/n)) and λ1(R̂l) > 0

for any l ∈ [0, 1]. Then we have λn−1(R̂0)/λ1(R̂0) = ιn = ι3 and λn−1(R̂1)/λ1(R̂1) = 1. By continuity of
the eigenvalues of a matrix and the fact ι3 < γ ≤ 1, there exists some l ∈ (0, 1] such that λn−1(R̂l)/λ1(R̂l) = γ.
Let W = 1− R̂l/λ1(R̂l), then the spectral gap satisfies γ(W) = λn−1(R̂l)/λ1(R̂l) = γ. According to basic properties
of Laplacian matrix, the matrix W ∈ Rn×n is a mixing matrix satisfies Assumption 2.6.

We take
{
hCi : RTt → R

}n
i=1

by following equation (9) with

C = {1} , σ = 1, T = 2
⌊ κ

78a

⌋
and t = 2

⌊
log 8

7

2∆

3ϵ

⌋
.

Let h(·) = 1
n

∑n
i=1 h

C
i (·). Lemma 4.1 means the function set

{
hCi : RTt → R

}n
i=1

is (33/n+max {2/|C|, 2/|Cσ|})-mean-
squared smooth, h is 1/ (anT )-PL and satisfies

h(0)− h∗ ≤ 3T/n.

Let fi(x) = αhCi (βx), f(x) =
∑n

i=1 fi(x)/n and apply Lemma 3.3 with α = n∆/(3T ) and β =
√
LT/(13∆), then

we conclude
{
fi : Rd → R

}n
i=1

is αβ2(33/n+max {2/|C|, 2/|Cσ|})-mean-squared smooth and f is αβ2/ (anT )-PL and
satisfies

f(0)− f∗ ≤ 3αT

n
.
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The values of α and β means

αβ2

(
33

n
+

2

|Cσ|

)
< αβ2

(
33

n
+

2

|C|

)
=
nL

39

(
33

n
+

6

n

)
= L,

αβ2

anT
=

L

39aT
≥ µ and

3αT

n
= ∆.

According to Lemma 3.3 and Lemma 4.1, we conclude
{
fi : RTt → R

}n
i=1

is L-mean-squared smooth, and f : Rd → R is
µ-PL with f(0)− f∗ ≤ ∆.

Applying Lemma 4.2 with δ = ϵ/∆ < 0.01, any DFO algorithm needs at least Ttσ/2 communications and Tt(1 + στ)/2
time to reach an ϵ-suboptimal solution since 3αTδ/n = ϵ. The setting n = 3 means γ > ι3 = 1/3 and σ = 1 > 1/

√
3γ,

which results the lower bounds for communication complexity and time complexity of Ttσ/2 = Ω
(
κ/

√
γ log(1/ϵ)

)
and Tt(1 + στ)/2 = Ω

(
κ(1 + τ/

√
γ) log(1/ϵ)

)
respectively.

C. The Proofs in Section 5
Recall that we define the Lyapunov function

Φt = E[f(x̄t)− f∗] + αU t + βV t + LCt,

where α = 2η/p, β = 8Lρ2nη2,

U t = E
∥∥∥ 1
n

n∑
i=1

(
gt(i)−∇fi(xt(i))

)∥∥∥2, V t =
1

n
E∥Gt −∇F(Xt)∥2 and Ct = E∥Xt − 1x̄t∥2 + η2E∥St − 1s̄t∥2.

Compared with the analysis of Luo & Ye (2022); Li et al. (2022a) for general nonconvex case, we introduce the term of f∗

into the Lyapunov function to show the linear convergence under the PL condition. Different with previous work (Luo &
Ye, 2022; Li et al., 2022a) suppose each fi(·) is L-smooth, our analysis only require {fi(·)}ni=1 is L-smooth that allows
each fi(·) to be

√
nL-smooth (see Lemma C.3).

The remainder of this section first provide some technical Lemmas, then give the detailed proofs for the results in Section 4.

C.1. Some Technical Lemmas

We introduce some lemmas for our later analysis.

Lemma C.1 (Ye et al. (2023, Proposition 1)). Under Assumption 2.6, Algorithm 2 holds

1

n
1⊤YK = ȳ0 and

∥∥YK − 1ȳ0
∥∥ ≤

√
14

(
1−

(
1− 1√

2

)√
1− λ2(W)

)K ∥∥Y0 − 1ȳ0
∥∥,

where ȳ0 = 1
n1

⊤Y0 = 1
n

∑n
i=1 Y

0(i).

Lemma C.2 ((Ye et al., 2023, Lemma 3)). For any X ∈ Rn×d, we have ∥X− 1x̄∥ ≤ ∥X∥ where X = 1
n1

⊤X.

Lemma C.3. Under Assumption 2.2, the function f(·) = 1
n

∑n
i=1 fi(·) is L-smooth and each fi(·) is

√
nL-smooth.

Proof. For any x,y ∈ Rd, the mean-square smoothness of {fi : Rd → R}ni=1 implies

∥∇f(x)−∇f(y)∥22 =

∥∥∥∥∥ 1n
n∑

i=1

(∇fi(x)−∇fi(y))

∥∥∥∥∥
2

2

≤ 1

n

n∑
i=1

∥∇fi(x)−∇fi(y)∥22

≤L ∥x− y∥22 ,

which means f(·) is L-smooth.
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For any x,y ∈ Rd and i ∈ [n], the mean-square smoothness of {fi : Rd → R}ni=1 implies

∥∇fi(x)−∇fi(y)∥ ≤

√√√√ n∑
i=1

∥∇fi(x)−∇fi(y)∥2 ≤
√
nL2 ∥x− y∥2 ≤

√
nL ∥x− y∥ ,

which means fi(·) is
√
nL-smooth.

Lemma C.4 (Li et al. (2021, Lemma 2)). Suppose the function f : Rd → R is L-smooth and the vectors xt,xt+1,vt ∈ Rd

satisfy xt+1 = xt − ηvt for η > 0. Then we have

f(xt+1) ≤ f(xt)−
η

2
∥∇f(xt)∥2 −

(
1

2η
− L

2

)
∥xt+1 − xt∥2 +

η

2
∥vt −∇f(xt)∥2 . (17)

We establish the decrease of function value as follows.
Lemma C.5. Under Assumption 2.1-2.6, Algorithm 4 holds that

E[f(x̄t+1)− f∗] ≤ (1− µη)E[f(x̄t)− f∗] + ηU t + L2ηCt −
(

1

2η
− L

2

)
E∥x̄t+1 − x̄t∥2.

Proof. Lemma C.1 and the update Xt+1 = AccGossip(Xt − ηSt,W,K) means

x̄t+1 =
1

n
1⊤AccGossip(Xt − ηSt,W,K)

=
1

n
1⊤(Xt − ηSt)

=x̄t − ηs̄t.

(18)

Lemma C.3 shows the function f(·) is L-smooth, then Lemma C.4 with xt = x̄t, xt+1 = x̄t+1 and vt = s̄t means

f(x̄t+1) ≤ f(x̄t)− η

2

∥∥∇f(x̄t)
∥∥2 − ( 1

2η
− L

2

)∥∥x̄t+1 − x̄t
∥∥2 + η

2

∥∥s̄t −∇f(x̄t)
∥∥2 . (19)

We also have

E

∥∥∥∥∥ 1n
n∑

i=1

(
∇fi(xt(i))−∇fi(x̄t)

)∥∥∥∥∥
2

≤ 1

n

n∑
i=1

E
∥∥∇fi(xt(i))−∇fi(x̄t)

∥∥2
≤ 1

n

m∑
i=1

nL2E
∥∥xt(i)− x̄t

∥∥2
=L2E

∥∥xt − 1x̄t
∥∥2 ≤ L2Ct,

where we use the inequality
∥∥ 1
n

∑n
i=1 ai

∥∥2 ≤ 1
n

∑n
i=1 ∥ai∥

2 for a1, . . . ,an ∈ Rd and Lemma C.3. Consequently, we have

E
∥∥s̄t −∇f(x̄t)

∥∥2 =E

∥∥∥∥∥ 1n
n∑

i=1

(
gt(i)−∇fi(x̄t)

)∥∥∥∥∥
2

≤2E

∥∥∥∥∥ 1n
n∑

i=1

(
gt(i)−∇fi(xt(i))

)∥∥∥∥∥
2

+ 2E

∥∥∥∥∥ 1n
n∑

i=1

(
∇fi(xt(i))−∇fi(x̄t)

)∥∥∥∥∥
2

≤2U t + 2L2Ct.

(20)

Combining the results of (19) and (20), we have

E[f(x̄t+1)− f∗] ≤E
[
f(x̄t)− f∗ − η

2

∥∥∇f(x̄t)
∥∥2 + ηU t + L2ηCt −

(
1

2η
− L

2

)∥∥x̄t+1 − x̄t
∥∥2]

≤(1− µη)E[f(x̄t)− f∗] + ηU t + L2ηCt −
(

1

2η
− L

2

)
E∥x̄t+1 − x̄t∥2,

where the last step is based on the PL condition in Assumption 2.3.
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Then we provide the recursion for Ut, Vt and Ct in the following lemma.

Lemma C.6. Under the setting of Theorem 5.2, we have

Ct+1 ≤ 20ρ2n2Ct + 4ρ2npη2V t + 12ρ2n2E∥x̄t+1 − x̄t∥2,

U t+1 ≤ (1− p)U t + 4pL2Ct + 3pL2E
∥∥x̄t+1 − x̄t

∥∥2 ,
and

V t+1 ≤ (1− p)V t + 4pnL2Ct + 3pnL2E
∥∥x̄t+1 − x̄t

∥∥2 ,
where ρ =

√
14
(
1−

(
1− 1/

√
2
)√

1− λ2
)K

.

Proof. The setting Lemma C.1 implies

ρ2 ≤ 1

80n2
≤ 1

80
. (21)

We first consider Ct+1 = E∥Xt+1 − 1x̄t+1∥2 + η2E∥St+1 − 1s̄t+1∥2. For the term E∥Xt+1 − 1x̄t+1∥2, we have

E∥Xt+1 − 1x̄t+1∥2 ≤ ρ2E∥(Xt − ηSt)− 1(x̄t − ηs̄t)∥2

≤ 2ρ2
(
E∥Xt − 1x̄t∥2 + η2E∥St − 1s̄t∥2

)
= 2ρ2Ct,

(22)

where we use the definition of ρ and Lemma C.1 in the first inequality and Young’s inequality in the second inequality.

For the term η2∥St − 1s̄t∥2, we have

η2E∥St+1 − 1s̄t+1∥2 ≤ρ2η2E∥St +Gt+1 −Gt − 1(s̄t + ḡt+1 − ḡt)∥2

≤2ρ2η2E∥St − 1s̄t∥2 + 2ρ2η2E∥Gt+1 −Gt − 1(ḡt+1 − ḡt)∥2

≤2ρ2η2E∥St − 1s̄t∥2 + 2ρ2η2E∥Gt+1 −Gt∥2

≤2ρ2Ct + 2ρ2η2E∥Gt+1 −Gt∥2,

(23)

where we use the definition of ρ and Lemma C.1 in the first inequality, Young’s inequality in the second inequality, Lemma
C.2 in the third inequality and definition of Ct in the last inequality.

We bound the term ∥Gt+1 −Gt∥2 in inequality (23) as

E∥Gt+1 −Gt∥2

=pE∥∇F(Xt+1)−Gt∥2 + (1− p)

n∑
i=1

E
∥∥∥ ξti
bq

(
∇fi(xt+1(i))−∇fi(xt(i))

)∥∥∥2

≤2pE∥∇F(Xt+1)−∇F(Xt)∥2 + 2pE∥∇F(Xt)−Gt∥2 + (1− p)
n∑

i=1

E
∥∥∥ ξti
bq

(
∇fi(xt+1(i))−∇fi(xt(i))

)∥∥∥2

≤2pE∥∇F(Xt+1)−∇F(Xt)∥2 + 2pE∥∇F(Xt)−Gt∥2 + (1− p)(b+ n)

b

n∑
i=1

E∥∇fi(xt+1(i))−∇fi(xt(i))∥2

=2pnV t +
(
2p+

(1− p)(b+ n)

b

)
E∥∇F(Xt+1)−∇F(Xt)∥2

≤2pnV t +
(
2p+ p(b+ n)

)
E∥∇F(Xt+1)−∇F(Xt)∥2

≤2pnV t + 4pnE∥∇F(Xt+1)−∇F(Xt)∥2

(24)

where the first inequality is based on Cauchy–Schwarz inequality, the second inequality is based on

E
∥∥∥ ξti
bq

(
∇fi(xt+1(i))−∇fi(xt(i))

)∥∥∥2 ≤ E[(ξti)2]
b2q2

E∥∇fi(xt+1(i))−∇fi(xt(i))∥2
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and the fact ξti ∼ Binomial(b, q) that leads to

E[(ξti)2]
b2q2

=
b2q2 + bq(1− q)

b2q2
=
b+ n− 1

b
≤ b+ n

b
,

the third inequality is based on the fact b ≥ (1− p)/p and the last step is based on the fact that 1 ≤ b ≤ n.

We bound the term E∥∇F(Xt+1)−∇F(Xt)∥2 in inequality (24) as

E∥∇F(Xt+1)−∇F(Xt)∥2

=

n∑
i=1

E
∥∥∇fi(xt+1(i))−∇fi(xt(i))

∥∥2
≤3

n∑
i=1

E
( ∥∥∇fi(xt+1(i))−∇fi(x̄t+1)

∥∥2 + ∥∥∇fi(x̄t+1)−∇fi(x̄t)
∥∥2 + ∥∥∇fi(x̄t)−∇fi(xt(i))

∥∥2 )
≤3(

√
nL)2

n∑
i=1

E
∥∥xt+1(i)− x̄t+1

∥∥2 + 3nL2E
∥∥x̄t+1 − x̄t

∥∥2 + 3(
√
nL)2

n∑
i=1

E
∥∥xt(i)− x̄t

∥∥2
=3nL2

(
E
∥∥Xt+1 − 1x̄t+1

∥∥2 + E
∥∥Xt − 1x̄t

∥∥2 + E
∥∥x̄t+1 − x̄t

∥∥2 )
≤3nL2

(
2ρ2Ct + Ct + E

∥∥x̄t+1 − x̄t
∥∥2 )

≤4nL2Ct + 3nL2E
∥∥x̄t+1 − x̄t

∥∥2 ,

(25)

where the the second inequality is based on Lemma C.3, the third inequality is based on inequality (22) and last step is based
on the the fact ρ2 ≤ 1/6.

Combining inequalities (22) – (25), we achieve

Ct+1 ≤ 20ρ2n2Ct + 4ρ2npη2V t + 12ρ2n2E∥x̄t+1 − x̄t∥2.

We then considerU t+1 = E
∥∥ 1
n

∑n
i=1

(
gt+1(i)−∇fi(xt+1(i))

)∥∥2. We let ξ be the random variable satisfyingP (ξ = i) = q.
The update rule for gt+1(i) implies

U t+1 = (1− p)E
∥∥∥ 1
n

n∑
i=1

(
gt(i) +

ξti
bq

(
∇fi(xt+1(i))−∇fi(xt(i))

)
−∇fi(xt+1(i))

)∥∥∥2
= (1− p)U t + (1− p)E

∥∥∥ 1
n

n∑
i=1

( ξti
bq

(
∇fi(xt+1(i))−∇fi(xt(i))

)
−
(
∇fi(xt+1(i)))−∇fi(xt(i))

))∥∥∥2
= (1− p)U t + (1− p)E

∥∥∥ n∑
i=1

(ξti
b

(
∇fi(xt+1(i))−∇fi(xt(i))

)
− 1

n

(
∇fi(xt+1(i)))−∇fi(xt(i))

))∥∥∥2
= (1− p)U t +

1− p

b
E
∥∥∥(∇fξ(xt+1(ξ))−∇fξ(xt(ξ))

)
− 1

n

n∑
i=1

(
∇fi(xt+1(i))−∇fi(xt(i))

)∥∥∥2
≤ (1− p)U t +

1− p

b
E
∥∥∥(∇fξ(xt+1(ξ))−∇fξ(xt(ξ))

)∥∥∥2
= (1− p)U t +

1− p

nb

n∑
i=1

E
∥∥∇fi(xt+1(i))−∇fi(xt(i))

∥∥2
≤ (1− p)U t +

p

n

n∑
i=1

E
∥∥∇fi(xt+1(i))−∇fi(xt(i))

∥∥2
≤ (1− p)U t + 4pL2Ct + 3pL2E

∥∥x̄t+1 − x̄t
∥∥2 ,

where the second equality is based on the property of Martingale (Fang et al., 2018, Proposition 1), the third equality is
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based on the choice of q, the fourth equality is based on the fact [ξt1, · · · , ξtn]⊤ ∼ Multinomial(b, 1
n1) and

E
[
∇fξ(xt+1(ξ))−∇fξ(xt(ξ))

]
=

1

n

n∑
i=1

(
∇fi(xt+1(i))−∇fi(xt(i))

)
, (26)

the first inequality is also based on (26), the second inequality is based on the setting of b ≥ (1− p)/p and the last step is
because of the following inequality.

1

n

n∑
i=1

E
∥∥∇fi(xt+1(i))−∇fi(xt(i))

∥∥2
≤ 3

n

n∑
i=1

(
E
∥∥∇fi(xt+1(i))−∇fi(x̄t+1)

∥∥2 + E
∥∥∇fi(x̄t+1)−∇fi(x̄t)

∥∥2 + E
∥∥∇fi(x̄t)−∇fi(xt(i))

∥∥2)
≤ 3

n

n∑
i=1

(
nL2E

∥∥xt+1(i)− x̄t+1
∥∥2 + E

∥∥∇fi(x̄t+1)−∇fi(x̄t)
∥∥2 + nL2E

∥∥x̄t − xt(i)
∥∥2)

≤3L2E
∥∥Xt+1 − 1x̄t+1

∥∥2 + 3L2E
∥∥x̄t+1 − x̄t

∥∥2 + 3L2E
∥∥Xt − 1x̄t

∥∥2
≤4L2Ct + 3L2E

∥∥x̄t+1 − x̄t
∥∥2 ,

(27)

where the second inequality is based on Lemma C.3, the third inequality is based on Assumption 2.2 and the last step is
based on inequalities (21) and (22).

We finally consider V t+1 = 1
nE∥G

t+1 −∇F(Xt+1)∥2. The update rule for gt+1(i) implies

V t+1 =
1− p

n

n∑
i=1

E
∥∥∥gt(i) +

ξti
bq

(
∇fi(xt+1(i))−∇fi(xt(i))

)
−∇fi(xt+1(i))

∥∥∥2
= (1− p)V t +

1− p

n

n∑
i=1

E
∥∥∥ ξti
bq

(
∇fi(xt+1(i))−∇fi(xt(i))

)
−
(
∇fi(xt+1(i))−∇fi(xt(i))

)∥∥∥2
≤ (1− p)V t +

1− p

n

n∑
i=1

Var[ξti ]

b2q2
E∥∇fi(xt+1(i))−∇fi(xt(i))∥2

= (1− p)V t +
1− p

n

n∑
i=1

bq(1− q)

b2q2
E∥∇fi(xt+1(i))−∇fi(xt(i))∥2

≤ (1− p)V t +
1− p

b

n∑
i=1

E∥∇fi(xt+1(i))−∇fi(xt(i))∥2

≤ (1− p)V t + p

n∑
i=1

E∥∇fi(xt+1(i))−∇fi(xt(i))∥2

≤ (1− p)V t + 4pnL2Ct + 3pnL2E
∥∥x̄t+1 − x̄t

∥∥2 ,
where the second equality is based on the property of Martingale (Fang et al., 2018, Proposition 1), the first inequality is based
on the fact ξti ∼ Binomial(b, q) and the independence between ξti and ∇fi(xt+1(i))−∇fi(xt(i)), the second and third
and inequalities are based on the settings q = 1/n and b ≥ (1− p)/p, and the last step is based on the inequality (27).

C.2. The Proof of Theorem 5.2

Proof. Recall that Lemma C.5 says

E[f(x̄t+1)− f∗] ≤ (1− µη)E[f(x̄t)− f∗] + ηU t + L2ηCt −
(

1

2η
− L

2

)
E∥x̄t+1 − x̄t∥2.
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Combining above inequality with Lemma C.6, we have

Φt+1 =E[f(x̄t+1)− f∗] + αU t+1 + βV t+1 + LCt+1

≤(1− µη)E[f(x̄t)− f∗] + ηU t + L2ηCt − (
1

2η
− L

2
)E∥x̄t+1 − x̄t∥2

+ α(1− p)U t + 4αpL2Ct + 3αpL2E
∥∥x̄t+1 − x̄t

∥∥2
+ β(1− p)V t + 4βpnL2Ct + 3βpnL2E

∥∥x̄t+1 − x̄t
∥∥2

+ 20Lρ2n2Ct + 4Lρ2npη2V t + 12Lρ2n2E∥x̄t+1 − x̄t∥2

≤(1− µη)E[f(x̄t)− f∗] +
(
η + α(1− p)

)
U t +

(
β(1− p) + 4Lρ2npη2

)
V t

+ (L2η + 4αpL2 + 4βpnL2 + 20Lρ2n2)Ct

−
(

1

2η
− L

2
− 3αpL2 − 3βpnL2 − 12Lρ2n2

)
E∥x̄t+1 − x̄t∥2.

The setting of p, η, b, ρ, α and β implies

η + α(1− p) ≤ α(1− µη),

β(1− p) + 4Lρ2npη2 ≤ β(1− µη),

L2η + 4αpL2 + 4βpnL2 + 20Lρ2n2 ≤ L(1− µη),

and

1

2η
− L

2
− 3αpL2 − 3βpnL2 − 12Lρ2n2 ≥ 0.

Therefore, we have

Φt+1 ≤ (1− µη)Φt,

and the setting

T ≥
⌈

1

µη
log

Φ0

ϵ

⌉
leads to

ΦT ≤ (1− µη)TΦ0 ≤ ϵ. (28)

The output xout holds that

E[f(xout)− f∗] = E[f(x̄T )− f∗] + E[f(xout)− f(x̄T )]

= E[f(x̄T )− f∗] +
1

n

n∑
i=1

E[f(xT (i))− f(x̄T )]

≤ E[f(x̄T )− f∗] +
1

n

n∑
i=1

(
E
[
⟨∇f(x̄T ),xT (i)− x̄T ⟩+ L

2
E
∥∥xT (i)− x̄T

∥∥2])

= E[f(x̄T )− f∗] +
L

2n

n∑
i=1

E
∥∥xT (i)− x̄T

∥∥2
≤ E[f(x̄T )− f∗] +

L

2n
CT

≤ ΦT ≤ ϵ,

where the first inequality is based on Lemma C.3, the second inequality is based on the definition of Ct, the third inequality
is based on the definition of Φt and the last step is based on inequality (28)
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Algorithm 5 Centralized GD

1: Input: initial point x̃0 ∈ Rd, iteration number T and stepsize η > 0

2: for t = 0, 1 · · ·T − 1 do
3: for i = 1, . . . , n do in parallel
4: i-th client:

5: receive x̃t

6: compute gt(i) = ∇fi(xt)

7: send gt(i)

8: end for
9: server:

10: receive gt(1), . . . ,gt(n)

11: compute x̃t+1 = x̃t − η · 1
n

∑n
i=1 g

t(i)

12: broadcast x̃t+1

13: end for
14: Output: x̃T

C.3. The Proof of Corollary 5.3

Proof. The parameters setting in this corollary means

p = Θ

(
max

{
1√
n
,
1

κ

})
, b = Θ

(
min{

√
n, κ}

)
, η = Θ

(
1

L

)
,

K = Θ

(√
2 (4 + log n)

(
√
2− 1)

√
γ

)
and T = Θ

(
κ log

(
1

ϵ

))
.

At each iteration, the algorithm takes pn+ (1− p)b = O
(
n/min{κ,

√
n}
)

LFO calls (in expectation), K communication
rounds and 1 +Kτ time cost. Multiplying the overall iteration numbers T on these quantities completes the proof.

Remark C.7. We omit the detailed proof of Theorem 5.1, since it can be easily achieved by following Theorem 5.2 and
Corollary 5.3 with p = 1, U t = V t = 0 and showing the linear convergence of E[f(x̄t)− f∗] + LCt.

D. More Details for Experiments
All of our experiments are performed on PC with Intel(R) Core(TM) i7-8550U CPU@1.80GHz processor and we implement
the algorithms by MPI for Python 3.9.

We formally present the details of centralized gradient descent (CGD) in Algorithm 5. The network in CGD has sever-client
architecture, which allows the server to communicate with all clients. The convergence of CGD can be described by gradient
descent step

x̃t+1 = x̃t − η∇f(x̃t),

which can find an ϵ-suboptimal solution within O(κ log(1/ϵ)) iterations (Karimi et al., 2016). Therefore, it requires
the LFO complexity of O(κn log(1/ϵ)). Since the sever-client architecture does not suffer from consensus error, it has
communication complexity of O (κ log(1/ϵ)) and time complexity of O (κ (1 + τ) log(1/ϵ)).

The objective functions for linear regression and logistic regression are not strongly convex when d > m, while they satisfy
the PL conditions. Please refer to Section 3.2 of Karimi et al. (2016).
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