INDEPENDENCE TESTS FOR LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

We consider the following problem of model provenance: can a third party verify whether two language models are trained independently or not given the weights of both models? We propose a family of statistical tests for models of any architecture that yield exact p-values with respect to the null hypothesis that the models are trained with independent randomness (e.g., independent random initialization). These p-values are valid regardless of the composition of either model's training data, and we obtain them by simulating independent copies of each model and comparing various measures of similarity in the weights and activations of the original two models to these independent copies. We evaluate the power of these tests on pairs of 21 open-weight models (210 total pairs) and find they reliably identify all 69 pairs of fine-tuned models. Notably, our tests remain effective even after substantial fine-tuning; we accurately detect dependence between Llama 2 and Llemma, even though the latter was finetuned on an 750B additional tokens (37.5% of the original Llama 2 training budget). Finally, we identify transformations of model weights that break the effectiveness of our tests without altering model outputs, and-motivated by the existence of these evasion attacks-we propose a mechanism for matching hidden activations between the MLP layers of two models that is robust to these transformations. Though we no longer obtain exact p-values from this mechanism, empirically we find it reliably distinguishes fine-tuned models and pruned models of different dimension and is even robust to completely retraining the MLP layers from scratch.

1 INTRODUCTION

Figure 1: Left: we give examples of model pairs with the Llama architecture and test for independence without knowledge of their origin. Right: we present the ground truth model lineage and highlight distinct cases.

Consider the ways in which two language models may be related (Figure 1): one might be a fine-tune of the other, or they might share a common ancestor, or they may be fully independent. Without knowing the details of either model's training process, what can a third party infer about this relationship from just the weights of both models? Answering this question would better enable independent third parties to track provenance of openweight models, which is especially important in light of intensifying concerns around intellectual property (IP) protection (Mensch, 2024) and regulatory scrutiny (Anderljung et al., 2023) as both the capabilities and

017

018

019

020

021

023

024

025

027 028

029 030 031

032

034 035 036

037 038

039

040 041

042

043

044

045 046

047

048

development costs of these models continue to grow (e.g., (Dubey et al., 2024; Team, 2024; GLM et al., 2024; Yang et al., 2024)).

In this paper, we focus specifically on the question of whether two models are independently trained versus not; we do not distinguish whether one is a fine-tune of the other or if the two models share a common ancestor. Casting the training of a language model as a randomized process (e.g., due to the initial model weights and batch ordering) we formalize this question as a hypothesis testing problem where the null hypothesis is that the weights of the two models are independent random variables. We seek a solution to this problem that admits tight control over false positives while also reliably distinguishing dependent models regardless of 1) design decisions such as the number of fine-tuning tokens or choice of optimizer and 2) the application of various adversarial evasion attacks, including any transformation of model weights that does not affect model output.

- 064 In the non-adversarial setting, we propose a family of exact tests for model independence based on identifying 065 similarities between model weights and hidden activations. The main idea is that we can compute p-values by 066 simulating T identically distributed copies of each model and comparing the value of some test statistic (e.g., 067 cosine similarity of model weights) on each of these resampled pairs with the original model pair, where higher 068 values of the test statistic indicate the two models are related. Crucially, we leverage symmetries in training 069 dynamics to simulate these copies without actually having to rerun the full training process, which would be computationally prohibitive. In particular, because the output of a feedforward neural network is invariant to 070 permuting the indices of its hidden units and therefore training dynamics are (typically) permutation equivariant, 071 we can obtain an exact p-value by simply permuting the hidden units of each model and comparing the rank 072 of the test statistic on the original pair to the permuted pairs. Under the null hypothesis that the original two 073 models are independent, the permuted pairs will be exchangeable with the original pair and thus the normalized 074 rank will be uniformly distributed in $\{1/(T+1), ..., 1\}$, yielding a valid p-value. 075
- We evaluate various test statistics-the most effective of which is cosine similarity over weights and 076 activations—on 21 models of the Llama 2 architecture Touvron et al. (2023), including 12 fine-tunes of Llama 077 2 and nine independently trained models, obtaining negligibly small p-values for all 69 non-independent model 078 pairs. Notably, our tests retain high power over different fine-tuning methods (e.g., different optimizers) and on 079 models extensively fine-tuned for many tokens from the base model such as Llemma Azerbayev et al. (2024), 080 which was fine-tuned on an additional 750B tokens from Llama 2 (i.e., 37.5% of the Llama 2 training budget). 081 These test statistics apply in principle to any model pair for which there exists a pair of layers sharing a com-082 mon architecture or even a pair of tensors sharing a common shape: thus, we are able to confirm that the leaked 083 Miqu 70B model from Mistral derives from Llama 2 70B and also identify which layers of Llama 3.1 8B are 084 incorporated into Llama 3.2 1B and 3B. 085

In the adversarial setting, our exact tests are ineffective since an adversary can easily evade them by randomly 086 permuting the hidden units of their model post-training. Moreover, our exact tests apply only to two models of 087 the same architecture; thus, slight changes to the architecture of either model also break these tests. Motivated by 088 these two shortcomings, we design a more robust test statistic that first aligns the hidden units of two models— 089 which may each have different activation types and hidden dimensions-and and then computes some measure 090 of similarity between the aligned models. Due to the alignment step, we can no longer obtain exact p-values 091 with non-trivial power using this test statistic; however, empirically we find we can still reliably distinguish 092 independent and non-independent model pairs. In particular, we find this test statistic empirically behaves like a p-value in the sense that it is close to uniformly distributed in [0, 1] for independent model pairs (and no smaller 093 than 0.024 across all 141 such pairs we test); meanwhile, it is at most 2.2e-308 (the threshold for numerical 094 underflow for a 64-bit float) for all dependent pairs we test (including those for which we simulate an adversary 095 by retraining entire layers from scratch). 096

097 098

2 RELATED WORK

100 The work most closely related to ours is due to Zeng et al. (2024), who consider a similar problem; they develop 101 various tests to determine whether a model is a fine-tune of another by computing the cosine similarity of the 102 products of certain weight matrices in both models. Their focus is on robustness to simple adversaries: these 103 matrix products are invariant to certain kinds of transformations of model weights that preserve model output, 104 and thus their tests are robust to these same transformations. However, we show by construction in D.1 that there exist other such transformations that break all of their tests. Additionally, unlike Zeng et al. (2024), in the non-105 robust setting we obtain exact p-values from our tests. Jin et al. (2024a) propose crafting specific queries that 106 are likely to produce different responses among independently trained models; their method does not require 107 access to weights but is incapable of producing exact p-values.

108 A separate line of work on model fingerprinting (Xu et al., 2024; Zhang et al., 2024; Jin et al., 2024b; Yang & 109 Wu, 2024) aims to plant a secret signal in the weights of a model so that anyone who knows the secret key can 110 detect the fingerprint from query access to the model (or derivatives thereof such as fine-tunes). For example, Xu 111 et al. (2024) propose fingerprinting a model by fine-tuning on some secret random string; fingerprint detection then resolves to prompting a putative fingerprinted model with a prefix of the string. Unlike Xu et al. (2024), we 112 do not intervene on the training process of the models we test; however, we do require access to model weights. 113 The fingerprint of Xu et al. (2024) is only detectable with the secret key yet is easily removable by anyone who 114 knows the key; thus, their work does not enable third-party testing of model provenance as do our methods. 115

Another separate line of work on text watermarking aims to attribute model-generated text by planting a watermark when sampling text from the model (Christ et al., 2023; Kirchenbauer et al., 2024; Kuditipudi et al., 2024; Aaronson & Kirchner, 2023). Because it intervenes on sampling, text watermarking is inapplicable to open-weight models, which are the focus of both model fingerprinting and our setting.

3 Methods

120 121

122 123

124

132

133 134 135

136

137 138

139 140 141

3.1 PROBLEM FORMULATION AND TESTING FRAMEWORK

125 Let $f: \Theta \times \mathcal{X} \to \mathcal{Y}$ denote a *model* mapping parameters $\theta \in \Theta$ and an input $X \in \mathcal{X}$ to an output $f(X; \theta) \in \mathcal{Y}$. 126 We represent a model training or fine-tuning process as a *learning algorithm* $A: \Theta \to \mathcal{P}(\Theta)$, which takes in 127 an initial parameter $\theta^0 \in \Theta$ (e.g., either a random initialization or, in the case of fine-tuning, a base model) 128 and induces a distribution over final parameters. In the context of deep learning, some examples of sources of 129 randomness in a learning algorithm (aside from initialization) include the ordering of minibatches and the use 130 of dropout. Note that A subsumes the choice of training data; our methods make no assumptions on the training 131 data, so we encapsulate it along with other design decisions in the learning algorithm.

Given two models $\theta_1 \sim A_1(\theta_1^0)$ and $\theta_2 \sim A_2(\theta_2^0)$ with initial parameters $\theta_1^0, \theta_2^0 \sim P$ for some joint distribution $P \in \mathcal{P}(\Theta \times \Theta)$, our goal is to test the null hypothesis

$$H_0: \theta_1 \perp \theta_2, \tag{1}$$

where \perp denotes statistical independence, or the standard definition of independence of two random variables. One example of a case where θ_1 and θ_2 might not be independent is if θ_2 is fine-tuned from θ_1 , since in this case we would have $\theta_2^0 = \theta_1$. Indeed, in practice we expect H_0 to obtain whenever θ_1 and θ_2 had independent random initializations, i.e., when $\theta_1^0 \perp \theta_2^0$.

Algorithm	1: Test	for comput	ing p-values	(PERMTEST)
-----------	---------	------------	--------------	------------

142Input: Model weights θ_1, θ_2 143Parameters: test statistic ϕ ; equivariant transformation class II; sample size T144Output: p-value $\hat{p} \in (0, 1]$ 1451 for $t \in 1, ..., T$ do1462 $\pi_t \sim \text{Unif}(\Pi)$;1473 $\phi_t \leftarrow \phi(\pi_t(\theta_1), \theta_2)$ 148 $\hat{p} \leftarrow \frac{1}{T+1}(1 + \sum_{t=1}^T \mathbf{1}\{\phi_t \le \phi(\theta_1, \theta_2)\});$ 1495 return $1 - \hat{p}$

150

160

We describe our testing framework for computing p-values against this null hypothesis in Algorithm 1 (PERMTEST), where we simulate *T* independent copies of a model by applying a collection of transformations to the model weights. The validity of these p-values rests on these transformations satisfying certain assumptions with respect to the learning algorithm and random initialization which produced the original model that we capture in the following two definitions.

Definition 1. Let $\Pi \subset \Theta \to \Theta$. A distribution $P \in \mathcal{P}(\Theta)$ is Π -invariant if for $\theta \sim P$ and any $\pi \in \Pi$, the parameters θ and $\pi(\theta)$ are identically distributed.

Definition 2. Let $\Pi \subset \Theta \to \Theta$. Consider any $\pi \in \Pi$ and $\theta^0 \in \Theta$, with $\bar{\theta} \sim A(\theta^0), \theta = \pi(\bar{\theta})$ and $\theta' \sim A(\pi(\theta_0))$. A learning algorithm A is Π -equivariant if and only if θ and θ' are identically distributed.

161 In principle, if we know the learning algorithm A and initialization distribution P that produced θ_1 , i.e., $\theta_1 \sim A(\theta_1^0)$ for $\theta_1^0 \sim P$, we could obtain an exact p-value with an arbitrary test statistic by repeating the training

162 process to obtain T independent copies of θ_1 and comparing the test statistic with the original θ_1 to these 163 independent copies; of course, this would be completely impractical in practice due to computational costs. The 164 main idea underlying PERMTEST is that if all we know is that A is Π -equivariant and P is a Π -invariant, then we can simulate an identically distributed copy θ'_1 of θ_1 by letting $\theta'_1 = \pi(\theta_1)$ for any $\pi \in \Pi$, which allows us to 165 efficiently compute an exact p-value without actually repeating the training process of θ_1 . In effect, Definitions 1 166 and 2 imply that π commutes with A: sampling $\theta'_1 = \pi(\theta_1)$ for $\theta_1 \sim A(\theta_1^0)$ is equivalent to $\theta'_1 \sim A(\pi(\theta_1^0))$. 167 We formalize this intuition in the following theorem and subsequently give a concrete toy example; importantly, 168 the result of the theorem holds (under the null hypothesis) without any assumptions on θ_2 , meaning that we can 169 have confidence in our test even if we do not trust the provider of θ_2 . 170

Theorem 1. Let $\phi : \Theta \times \Theta \to \mathbb{R}$ be a test statistic and $\Pi \subset \Theta \to \Theta$ be finite. Let A be a Π -equivariant learning algorithm and let P be a Π -invariant distribution. Let $\theta_1, \theta_2 \in \Theta$ be independent random variables, with $\theta_1 \sim A(\theta_1^0)$ for $\theta_1^0 \sim P_1$. Then $\hat{p} = \text{PERMTEST}(\theta_1, \theta_2)$ is uniformly distributed on $\{\frac{i}{T+1}\}_{i=1}^T$.

174

178

175 *Proof.* From our assumptions on A and P and the fact that $\{\pi_t\}_{t=1}^T$ are independently drawn, it follows that 176 the collection $\{\pi_t(\theta_1)\}_{t=1}^T$ comprises T independent copies of θ_1 . The independence of θ_1 and θ_2 thus implies 177 $\{(\pi_t(\theta_1), \theta_2)\}_{t=1}^T$ comprises T independent copies of (θ_1, θ_2) , and so the claim follows by symmetry. \Box

Standard initialization schemes for feedforward networks are symmetric over the hidden units of the network, and so one example of a class of transformations with respect to which any such initialization is invariant is the set of permutations over the hidden units of the network. Moreover, the gradient of the model's output with respect to the hidden units is permutation equivariant; thus, any learning algorithm whose update rule is itself a permutation equivariant function of gradients (e.g., SGD, Adam, etc.) satisfies Definition 2 with respect to these transformations. The following toy example makes these claims concrete by applying PERMTEST to a standard two-layer MLP to obtain an exact p-value.

Example 1: Let $\theta = (W_1, W_2) \in \Theta$ parameterize a two-layer m hidden unit MLP with $f(x; \theta) =$ 186 $W_2\sigma(W_1X)$, for some element-wise activation function $\sigma:\mathbb{R}\to\mathbb{R}$. Let $(x,y)\in\mathcal{X}\times\mathcal{Y}$ for $\mathcal{X}=\mathbb{R}^d$ 187 and $\mathcal{Y} = \mathbb{R}$ be a training example. Let $P \in \mathcal{P}(\theta)$ be the standard isotropic Gaussian distribution over Θ 188 with variance σ^2 , and let A denote running standard gradient descent on the loss $L(\theta) = \ell(f(X;\theta), y)$ for 189 some arbitrary $\ell : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$. Abusing notation, identify Π with the set of $m \times m$ permutation matrices 190 such that for $\pi \in \Pi$ we have $\pi(\theta) = (\pi W_1, W_2 \pi^T)$. Observe P is Π -invariant and also A is Π -equivariant 191 irrespective of ℓ : for any $\pi \in \Pi$ we have $\pi(\nabla_{\theta} f_{\theta}(X)) = \nabla_{\pi(\theta)} f_{\pi(\theta)}(X)$, which implies $\nabla_{\theta} L(\theta)$ is Π -equivariant. Let $\phi : \Theta \times \Theta \to \mathbb{R}$ be the negative ℓ_2 distance between the weights of the two models, i.e., 192 $\phi(\theta_1, \theta_2) = -\|\theta_1 - \theta_2\|_2$. Then if $\theta_1 \sim A(\theta_1^0)$ for some $\theta_1^0 \sim P$, for any random variable $\theta_2 \in \Theta$ the output $\hat{p} = \text{PERMTEST}(\theta_1, \theta_2)$ is a valid p-value. In particular, if θ_1 and θ_2 are independent then $-\|\theta_1 - \theta_2\|_2$ will be 193 194 identically distributed as $-\|\pi(\theta_1) - \theta_2\|_2$ for any $\pi \in \Pi$. If on the other hand θ_2 is a fine-tune of θ_1 , we might 195 expect $- \|\pi(\theta_1) - \theta_2\|_2 \ll - \|\theta_1 - \theta_2\|_2^2$. 196

3.2 TEST STATISTICS

We have shown PERMTEST produces a valid p-value regardless of the test statistic ϕ we use. The sole objective then in designing a test statistic is to achieve high statistical power: we would like $\hat{p} = \text{PERMTEST}(\theta_1, \theta_2)$ to be small when θ_1 and θ_2 are not independent. The test statistics we introduce in this section apply to any model pair sharing the same architecture. In particular, the test statistics all share the following form based on Algorithm 2 (MATCH): for $m, n \in \mathbb{N}$ and $M : \Theta \to \mathbb{R}^{n \times m}$, let

$$\phi_M(\theta_1, \theta_2) := \rho(\mathsf{MATCH}(M(\theta_1), M(\theta_2)), [1, \dots, h]).$$
(2)

205 206 207

197 198

199 200

201

202

203

204

208 Equation (2) is applicable to any model architecture Θ for which we can define a suitable matrix valued function 209 of model parameters. Taking various such functions M yields different test statistics. We focus our experiments on Transformer models consisting of a series of L Transformer blocks that each contain an MLP module, and we 210 take $M(\theta)$ to be either the first-layer (i.e., up projection) weights or the hidden-layer activations of one of these 211 MLP modules. In particular, let $U^{(\ell)}(\theta) \in \mathbb{R}^{h \times d}$ denote the first layer up projection weights of the MLP module 212 in the ℓ -th block, where h is the hidden dimension and d is the input dimension, and let $H^{(\ell)}(\theta) \in \mathbb{R}^{h \times (N \cdot n)}$ 213 denote the hidden activations that obtain from passing N input sequences of length $n, X \in \mathbb{R}^{N \times n \times d}$ to the 214 same MLP module (the test is valid for any X; we will specify later how we choose X in our experiments). The 215 two main test statistics we will employ in our experiments are $\phi_{U^{(\ell)}}$ and $\phi_{H^{(\ell)}}$. In both these cases, the idea is

to match the hidden units between the *l*-th MLP modules of the two models in a way that maximizes the cosine similarity of the corresponding row pairs and then return the Spearman correlation of this matching with the identity permutation. We describe matching in Algorithm 2, wherein cossim denotes cosine similarity function and LAP denotes the algorithm of Ramshaw & Tarjan (2012) we use to solve the matching problem.

Both $U^{(\ell)}$ and $H^{(\ell)}$ are equivariant with respect to permuting the hidden units of the corresponding MLP 221 module, and so we can use PERMTEST to compute p-values from both $\phi_{U^{(\ell)}}$ and $\phi_{H^{(\ell)}}$ by taking Π to be the 222 set of permutations over the hidden units of the ℓ -th MLP, similar to Example 1. Doing so would require 223 recomputing these test statistics T times to obtain a p-value less than 1/T. Instead, observe that if $\theta_1 \perp \theta_2$ then 224 letting $\pi = LAP(C)$ in MATCH is equivalent in distribution to sampling $\pi \sim Unif(\Pi)$. Thus, instead of running 225 **PERMTEST** itself, in our experiments we convert the output $\hat{\rho}$ to a p-value \hat{p} using scipy.stats for the 226 Spearman correlation coefficient (where $\hat{p} = 2\mathbb{P}(T > \hat{\rho})$ for a t-distribution T with h - 2 degrees of freedom). Doing so allows us to obtain an estimate of the exact p-value at a finer scale (as the null distribution of the 227 Spearman correlation coefficient is known) without incurring extra computational costs. We will still employ 228 **PERMTEST** in our experiments to compute p-values with other baselines from prior work (e.g., ℓ_2 distance 229 between weights), since unlike $\phi_{II}(\ell)$ and $\phi_{H}(\ell)$ the null distribution of these statistics will vary depending on 230 the specific model pair we are testing. 231

232 233

220

Algorithm 2: Cosine similarity matching (MATCH)

Input: Matrices W_1, W_2 with h rows **Output:** Correlation coefficient $\hat{\rho} \in [-1, 1]$ **Infor** $i \in 1, ..., h$ **do Infor** $j \in 1, ..., h$ **do Infor j \in 1, ..., h do**

240 241 242

243

244

245 246 Finally, because $\phi_{U^{(\ell)}}$ and $\phi_{H^{(\ell)}}$ are both functions of only the ℓ -th block of the model and we can independently permute the hidden units of the MLP in the ℓ -th block without affecting the inputs or outputs of the other blocks, the p-values we obtain from $\phi_{U^{(\ell)}}$ and $\phi_{H^{(\ell)}}$ are independent across blocks and thus we can aggregate them using Fisher's method (Mosteller & Fisher (1948)) to obtain a more powerful test in Algorithm 3 (FISHER).

Algorithm 3: Aggregating p-values (FISHER) 247 248 **Input:** Model weights θ_1, θ_2 **Parameters:** test statistics $\{\phi^{(i)}\}_{i=1}^{L}$; transformation classes $\{\Pi^{(i)}\}_{i=1}^{L}$; sample size T 249 250 **Output:** p-value $\hat{p} \in (0, 1]$ 251 1 for $i \in 1, ..., L$ do 2 | $\hat{p}^{(i)} \leftarrow \text{PERMTEST}(\theta_1, \theta_2; \phi^{(i)}, \Pi^{(i)}, T)$ 252 $\begin{array}{c|c} 2 & p \\ 3 & \xi \leftarrow \sum_{i=1}^{L} \log \hat{p}^{(i)}; \\ 4 & \hat{p} \leftarrow 1 - \mathbb{P}(\chi_{2L}^2 < -2\xi); \end{array}$ 253 254 255 5 return \hat{p}

256 257

258 259 260

261 262

263 264

269

Theorem 2. Let $i, j \in [L]$ with $i \neq j$. Suppose for $\ell \in \{i, j\}$ that

1.
$$M^{(\ell)}: \Theta \to \mathbb{R}^{h \times N}$$
 is equivariant with respect to $\Pi^{(\ell)}$, i.e., for any $\theta \in \Theta$ and $\pi^{(\ell)} \in \Pi^{(\ell)}$ we have
 $M(\pi^{(\ell)}(\theta)) = \pi^{(\ell)} M(\theta).$

2. *A* is a $\Pi^{(\ell)}$ -equivariant learning algorithm and $P \in \mathcal{P}(\Theta_{LM})$ is a $\Pi^{(\ell)}$ -invariant distribution.

Let
$$\theta_1, \theta_2 \in \Theta$$
. If $\theta_1 \perp \theta_2$ for $\theta_1 \sim A(\theta_1^0)$ with $\theta_1^0 \sim P$, then

$$MATCH(M^{(i)}(\theta_1), M^{(i)}(\theta_2)) \perp MATCH(M^{(j)}(\theta_1), M^{(j)}(\theta_2)).$$

Proof. Let $\theta'_1 \sim A(\pi_1^{(i)} \circ \pi_2^{(j)}(\theta_1^0))$ for $\pi_1, \pi_2 \stackrel{\text{i.i.d.}}{\sim} \text{Unif}(\Pi)$. Then θ'_1 is an independent copy of θ_1 since taking the composition $\pi_1^{(i)} \circ \pi_2^{(j)}(\theta_1)$ yields an independent copy of θ_1 for any $\pi_1, \pi_2 \in \Pi$. From $\theta_1 \perp \theta_2$, it follows

for $\ell \in \{i, j\}$ that MATCH $(M^{(\ell)}(\theta'_1), M^{(\ell)}(\theta_2))$ is identically distributed to MATCH $(M^{(\ell)}(\theta_1), M^{(\ell)}(\theta_2))$. The result then follows from the fact MATCH is equivariant with respect to permuting the rows of its arguments: in particular, for any $\pi \in \Pi$ we have MATCH $(\pi W_1, W_2) = \pi$ MATCH (W_1, W_2) .

Recall $\phi_{U^{(\ell)}}$ and $\phi_{H^{(\ell)}}$ are functions of MATCH $(M^{(\ell)}(\theta_1), M^{(\ell)}(\theta_2))$ respectively for $M^{(\ell)} = U^{(\ell)}$ and $M^{(\ell)} = H^{(\ell)}$, both of which satisfy the assumptions of the theorem. Thus, the result of the theorem applies to both these test statistics, and the independence of the p-values from these test statistics across blocks follows directly from the independence of the statistics themselves.

3.3 ROBUSTNESS TO ADVERSARIAL MANIPULATION

281 It is easy to fool the tests we have proposed thus far by applying simple transformations to model parameters 282 that do not change model output: in particular, an adversary can fool $\phi_{II}(\ell)$ and $\phi_{H}(\ell)$ by randomly permuting the 283 hidden units of the corresponding MLP.¹ Motivated by this shortcoming, we design a robust test that aligns the 284 hidden layer activations of a particular layer between the two models and evaluates the quality of the alignment. 285 Notably, we can compute the alignment between two layers with different numbers of hidden units; thus, unlike 286 the tests in Section 3.2, we can apply our robust test to any model pair regardless of whether the two models share the same architecture. This statistic is also robust to the transformation described in Appendix D.1 that 287 breaks the invariants proposed by Zeng et al. (2024). 288

We first describe a test specific to architectures with Gated Linear Units (GLUs) (Dauphin et al., 2016)—a category which includes the Llama model architecture among many other language models—and then describe a general extension of this test to any architecture involving hidden activations. We evaluate both the GLUspecific version and the more general extension in our experiments.

3.3.1 TESTING GLU MODELS

274

275

276

277

278 279

280

293 294

295

296

297 298 299

300 301 302

303 304 305

306

307

308

309 310

311

We first consider models of the following architecture (Definition 3).

Definition 3. (GLU MLP) Let $G, U \in \mathbb{R}^{h \times d}$ and $D \in \mathbb{R}^{d \times h}$. Let $\sigma : \mathbb{R} \to \mathbb{R}$ be an element-wise activation function. For $X \in \mathbb{R}^d =: \mathcal{X}_{mlp}$ and $\theta = (G, U, D) \in \Theta_{mlp}^h$, let $f_{mlp}(X; \theta) := D(\sigma(GX) \odot (UX))$.

Let $\theta_i = (G_i, U_i, D_i) \in \Theta_{mlp}^h$ for $i \in \{1, 2\}$, and for some $X \in \mathcal{X}_{mlp}^N$ let $H_{up}(\theta_i) = U_i X \in \mathbb{R}^{h \times N \times n}$ be the output of the up projection operation and let $H_{gate}(\theta_i) = G_i X \in \mathbb{R}^{h \times N \times n}$ be the output of the gate projection operation. Then define the test statistic by

$$\phi_{\text{MATCH}}(\theta_1, \theta_2) := \rho(\text{MATCH}(H_{\text{up}}(\theta_1), H_{\text{up}}(\theta_2)), \text{MATCH}(H_{\text{gate}}(\theta_1), H_{\text{gate}}(\theta_2))).$$

The main idea of ϕ_{MATCH} is that an adversary who permutes the output of the gate projection operation in some block must also permute the output of the up projection operation in the same way to preserve model output (due to the direct product operation); thus, high correlation between the best alignment of the two models' gate projection activations with that of the up projection activations suggests the two models may not be independent.

3.3.2 BEYOND GLU MODELS

So far we have given a test statistic ϕ_{MATCH} that we can compute for two GLU MLPs of the same width (i.e., number of hidden units). The MATCH algorithm works for two matrices with different column sizes, so we can straightforwardly extend ϕ_{MATCH} to apply to pairs $\theta_1 \in \Theta_{mlp}^{h_1}$, $\theta_2 \in \Theta_{mlp}^{h_2}$ with $h_1 \neq h_2$. We can also extend ϕ_{MATCH} to apply to models that call a GLU MLP as a sub-module. In particular, for $\theta \in \Theta_{mlp}^{h}$ consider a model of the form $f(x; \theta) = g(\{f_{mlp}(h_i(x); \theta)\}_{i=1}^n)$ for some $h_i : \mathcal{X} \to \mathcal{X}_{mlp}$ for $i \in [n]$ and $g : \mathbb{R}^{n \times d} \to \mathcal{Y}$.² We can apply ϕ_{MATCH} to such a model by obtaining activation matrices $H_{up}(\theta)$ and $H_{gate}(\theta)$ from passing multiple inputs $x \in \mathcal{X}$ to the model f and concatenating over $i \in [n]$. In the case that a model has multiple GLU MLPs, we also use FISHER to aggregate the statistics.

³²¹ ¹If an adversary randomly permutes the hidden units of each MLP layer of their model, then when we run PERMTEST ³²² with either $\phi_{U^{(\ell)}}$ or $\phi_{H^{(\ell)}}$ each of the resampled statistics $\{\phi_t\}_{t=1}^T$ will be identically distributed to the original statistic, in ³²³ which case the output will be uniform on [0, 1].

²This family of models includes the Llama 2 architecture, which broadcasts f_{mlp} across the sequence dimension.

Figure 2: We enumerate the public Llama-7B models and delineate the sets of dependent model pairs by color.

Finally, in principle we can even apply ϕ_{MATCH} to models that do not involve GLU MLPs at all. To this end, consider a model $f(x) = g(\{f(h_i(x))\}_{i=1}^n)$. Though f itself does not involve a GLU MLP, we can first learn parameters $\theta \in \Theta_{mlp}^h$ to minimize the expected difference between f(X) and $f(X;\theta)$ over some distribution on randomly sampled Gaussian inputs $X \in \mathbb{R}^{N \times n \times d_{embed}}$ and then apply ϕ_{MATCH} to these learned parameters. Perhaps surprisingly, we show this test is effective in practice at distinguishing independent versus non independent models. See Section 4.2 and Appendix H.3 for details.

4 EXPERIMENTAL RESULTS

4.1 NON-ADVERSARIAL SETTING

We now validate the effectiveness of our tests against public open-weight language models. We first consider 21 models trained with the Llama-7B architecture with public documentation on ground truth model independence, which we highlight in Figure 2. For these models, with architecture Θ_{LM} , have a GLU MLP component described in Section 3.3.1 and Appendix A. For $i \in \{1, 2\}$, we define our statistics $\phi_{U^{(\ell)}}$ and $\phi_{H^{(\ell)}}$ as follows. Let $U_i^{(\ell)} \in \mathbb{R}^{h \times d}$ be the up projection matrix in the ℓ -th block of $\theta_\ell \in \Theta_{\text{LM}}$, and

$$\phi_{U^{(\ell)}}(\theta_1, \theta_2) := \rho(\mathsf{MATCH}(U_1^{(\ell)}, U_2^{(\ell)}), [1, ..., h]),$$

And, let $H^{(\ell)}(\theta_i) \in \mathbb{R}^{h \times N \times n}$ be the input to the down projection operation, such that for $X \in \mathcal{X}^N$ we have $H^{(\ell)}(\theta_i)_{:,j,k} = \sigma(G_i^{(\ell)} X_{\theta_i}^{(\ell-1)}) \odot (U_i^{(\ell)} X_{\theta_i}^{(\ell-1)})$, and let $\phi_{H^{(\ell)}}$ be

$$\phi_{H^{(\ell)}}(\theta_1, \theta_2) := \rho(\text{MATCH}(H^{(\ell)}_{\theta_1}, H^{(\ell)}_{\theta_2}), [1, ..., h])$$

In addition to $\phi_{U^{(\ell)}}$ or $\phi_{H^{(\ell)}}$, we employ two test statistics from prior work as baselines: Jensen-Shannon divergence between next token output distributions (ϕ_{JSD} , Lin (2006)) and ℓ_2 distance between weights (ϕ_{ℓ_2} , from Xu et al. (2024)). Since the Jensen-Shannon divergence is (by definition) invariant to any transformation of weights that does not affect model output, we cannot compute meaningful p-values using PERMTEST; instead, in our experiments we report the raw value of the test statistic itself. As for ℓ_2 distance, to be consistent with prior work (Xu et al. (2024)), we define for $\theta_1, \theta_2 \in \Theta_{LM}$,

$$\phi_{\ell_2}(\theta_1, \theta_2) := -\sum_{i=1}^L \ell_2(\theta_1^{(\ell)}, \theta_2^{(\ell)})$$

where $\theta_1^{(\ell)}, \theta_2^{(\ell)}$ are the ℓ -th layers of θ_1, θ_2 , respectively (we assume their dimensions align). We take the negation due to the design of PERMTEST, in which higher values of the test statistic indicate dependence. We obtain p-values from ϕ_{ℓ_2} by running PERMTEST with Π as the set of permutations over both the hidden units of each MLP and the embedding dimension of the model (i.e., the inputs passed to the both the MLP and self-attention layers in each block); we defer the precise definition of Π in this case to Appendix B.

^{The 21 models we evaluate include 6 base models (trained from scratch), so we have six disjoint sets of the models based on Llama-2-7b-hf stemming from a diverse mix of industry labs and non-profits (Azerbayev et al., 2024; Sudalairaj et al., 2024; Liu et al., 2023; Li et al., 2023). We consider any pair of models in the same tree as dependent and all other pairs as independent. We include examples of further fine-tunes (e.g., llemma_7b) of fine-tunes (e.g., CodeLlama-7b-hf) among the models we test. We will mostly refer to models using by their Huggingface identifiers, without the organization names for clarity.}

379

380

381

382

383

384

397

398

416

417

425

426

We evaluate four test statistics: $\phi_{U^{(\ell)}}$ (cosine similarity of weights), $\phi_{H^{(\ell)}}$ (cosine similarity of hidden activations), ϕ_{ℓ_2} (ℓ_2 distance), and ϕ_{JSD} (Jensen-Shannon Divergence). As we describe in Section 3.2, for $\phi_{U^{(\ell)}}$ and $\phi_{H^{(\ell)}}$ we report aggregated p-values over all blocks using FISHER. We compute p-values for ϕ_{ℓ_2} using PERMTEST with T = 99, while for ϕ_{JSD} we simply report the raw values of the test statistic itself. We compute ϕ_{JSD} using input sequences sampled from WikiText-103 (Merity et al., 2016; Xu et al., 2024) (consistent with prior work), and we compute $\phi_{H^{(\ell)}}$ using inputs sequences of tokens sampled uniformly at random from the vocabulary. We report results for a subset of these pairs involving base model Llama-2-7b-hf in Table 1 while deferring the rest and the full experimental setup details to Appendix C.

				p-values	
$ heta_1 = t Llama - 2 - 7b - heta f, heta_2 =$	Independent?	$\phi_{\rm JSD}$ (log)	ϕ_{ℓ_2}	$\phi_{U^{(\ell)}}$	$\phi_{H^{(\ell)}}$
llama-7b-hf	\checkmark	-11.10	0.98	0.60	0.25
vicuna-7b-v1.1	\checkmark	-10.40	0.63	0.16	0.64
Amber	\checkmark	-10.69	0.75	0.36	0.88
open-llama-7b	\checkmark	-8.38	0.26	0.36	0.71
vicuna-7b-v1.5	X	-10.87	0.01	ε	ε
CodeLlama-7b-hf	×	-10.62	0.01	ε	ε
llemma-7b	×	-10.24	0.01	ε	ε
Orca-2-7b	×	-10.34	0.01	ε	ε

Table 1: Results of various test statistics with θ_1 as Llama-2-7b-hf and θ_2 ranging over the listed models. The "independent" column is the ground truth. Here, $\varepsilon = 2.2e$ -308 (numerical underflow for a 64-bit float).

Consistent with prior work Xu et al. (2024), we find that ϕ_{JSD} does not reliably distinguish independent versus dependent model pairs. For example, CodeLlama-7b-hf exhibits a larger divergence with Llama-2-7b-hf than the independently-trained models llama-7b-hf and Amber.

All other test statistics reliably distinguish independent versus dependent pairs; in particular, the p-values we 403 obtain using the other test statistics are negligible for all dependent pairs (for ϕ_{ℓ_2} , because we run PERMTEST 404 with T = 99 for computational reasons, we cannot obtain a p-value less than 0.01.³). Notably, in contrast to 405 our findings, prior work (Xu et al., 2024) argued that the ℓ_2 distance between model parameters is not a reliable 406 indicator of independence, in the sense that the ℓ_2 distance between dependent pairs is sometimes larger than 407 that of independent pairs (similar to the case of ϕ_{ISD}); the key difference is that Xu et al. (2024) report the raw ℓ_2 408 distance whereas we obtain p-values from the raw distances using PERMTEST. We hypothesize that PERMTEST 409 effectively standardizes the raw distances. 410

At the finetune level, consistent with our problem formulation, we treat any two finetunes of the same base model as dependent (i.e. the last scenario in Figure 1). Table 5 in Appendix C.1 reports p-values between vicuna-7b-v1.5 (a finetune of Llama-2-7b-hf) and other models, and consequently we find that the p-values for all tests are low between vicuna-7b-v1.5 and other finetunes of Llama-2-7b-hf, even though they are not direct fine-tunes of each other.

4.2 ADVERSARIAL SETTING

418 We evaluate the robust statistic ϕ_{MATCH} on the same model pairs, using input sequences sampled from WikiText-419 103, except that we randomly permute and rotate the weight matrices of the second model (with the output pre-420 served) to simulate an adversary, and report the results in Appendix C.2. We find that the distribution of ϕ_{MATCH} 421 on independent model pairs is close to uniform on [0, 1] (Figure 3), whereas across all non-independent model 422 pairs the statistic is at most ε . Unlike the non-adversarial setting, where the p-values are valid by construction, 423 the output of the robust test does not enjoy such theoretical guarantees; however, Figure 3 suggests that even in 424 the adversarial setting that we can treat ϕ_{MATCH} as a p-value.

4.2.1 MLP RETRAINING

427 Since these robust tests rely on the intermediate MLP activations, an adversary could attempt to retrain only the 428 MLP layers while fixing the rest of the model to fool these tests. We tried such MLP retraining by re-initializing 429 the gate, up, and down projection matrices and feeding random inputs $x \in \mathbb{R}^{N \times n \times d_{embed}}$ through the original 430 and new MLP blocks and minimizing MSE loss of the outputs (retraining one MLP at a time). To ensure low 431

³Though computing $\phi_{\ell_2}^{(i)}$ over each MLP block and aggregating with **FISHER** yields p-values less than 1e-30 as well.

(a) Plot of $x \in [0, 1)$ vs. the fraction of $\phi_{\text{MATCH}}^{(i)}$ (b) Plot of $x \in [0, 1)$ vs. the fraction of ϕ_{MATCH} (across all MLP blocks) of independent model ($\phi_{\text{MATCH}}^{(i)}$ aggregated with FISHER across all MLP pairs less than x.

Figure 3: We find that ϕ_{MATCH} empirically acts as a p-value, as both plots roughly follow the line y = x.

 $\begin{array}{c|c} \theta_1 = \texttt{Llama-2-70b-hf}, \theta_2 = & \phi_{U^{(\ell)}} \\ \hline \texttt{miqu-1-70b-pytorch} & \varepsilon \\ \texttt{Llama-3.1-70B} & \texttt{0.571} \\ \texttt{Palmyra-Fin-70B-32K} & \texttt{0.539} \end{array}$

Table 2: Results of $\phi_{U^{(\ell)}}$ (aggregated with FISHER) with θ_1 as meta-llama/Llama-2-70b-hf and θ_2 ranging over the listed models.

loss, we double the width of the MLP layers and compute the cosine similarity matrices and matchings the same way.

We individually retrain each of the 32 MLP layers (keeping other layers fixed) of vicuna-7b-v1.5 (a fine-tune of Llama-2-7b-hf) for 10k gradient steps (until the loss curve plateus). (Additional hyperparameters and a learning curve are in Appendix F.) For all 32 runs, we compare the robust statistic of the retrained model with original Llama-2-7b-hf and find our tests are robust to MLP retraining. For example, retraining the first MLP layer (with a final train loss of 0.0048), the value of the statistic $\phi_{\text{MATCH}}^{(1)}$ on the first MLP was less than $\varepsilon = 2.2e$ -308, indicating that the two models are not independent. We find the same is true for the other MLP layers as well (i.e. $\phi_{MATCH}^{(\ell)}$ when evaluated on retrained layer ℓ), with full results in Table 8 of Appendix F. Retraining the MLP layers could lead to a more expressive transformation of the model weights over simple permutations or rotations, and yet $\phi_{\text{MATCH}}^{(\ell)}$ remains small on the retrained non-independent models suggesting that the statistic is robust to retraining.

4.2.2 INDEPENDENT, IDENTICALLY DISTRIBUTED MODELS

We further evaluate the efficacy of our tests through ablations by training two near-identical models that only differ on select sources of randomness. We train two OLMo (7B) architecture models (Groeneveld et al. (2024)) on the same Dolmo dataset (Soldaini et al. (2024)), but with independently chosen initialization and data ordering, so we have two models that are essentially as similar as two independent models can be. We evaluate the statistics $\phi_{U(\ell)}$, $\phi_{H(\ell)}$, and ϕ_{MATCH} on the two models at four different training checkpoints, reported in Table 9 of Appendix G. We find that p-values for all statistics and checkpoints are broadly distributed, validating our tests can support independence even on two similarly-trained but independent models.

4.3 VARYING MODEL ARCHITECTURES

We evaluate our tests on models with different architectures—including between model pairs with different dimensions. First, we run $\phi_{U^{(\ell)}}$ on four 70B parameter models with the Llama 2-70B architecture shown in Table 2, and in particular, we verify that Miqu-70B is not independent from Llama 2-70B.

485 We also validate our tests on the Mistral architecture—we compare the weights of StripedHyena-Nous-7B (Poli et al. (2023)) with Mistral-7B-v0.1 and find non-independent parameters via $\phi_{IJ(\ell)}$. (We run $\phi_{IJ(\ell)}$)

Figure 4: Matched Transformer blocks between Llama3.1-8B and Llama3.2-3B using ϕ_{MATCH} , with arrows indicating if $\phi_{\text{MATCH}}^{(i,j)} < 1e-4$.

on all parameters, not just the gate projection matrix of the MLPs; this allows us to identify similarity between specific layers.) Values of $\phi_{II}(\ell)$ among parameters of the embedding layer and first Transformer block are shown in Table 10 in Appendix H.1. From the low p-values, some parameters, including the embedding layer and self-attention matrices of the first block were likely shared between the two models.

We also run the test on encoder-only models, e.g. BERT models, and on smaller models, like the 3B-parameter Phi-3 models. In these different architectures, the tests still provide strong signal for two non-independent models. Both $\phi_{H^{(\ell)}}$ and ϕ_{MATCH} return a statistic of ε on the fine-tuned pair Phi-3.5-mini-instruct and NuExtract-v1.5. Similarly, $\phi_{H^{(\ell)}}$ on bert-base-uncased and finetune tweets-gender-classifier-distilbert yields a p-value less than ε as well.

4.3.1 FINEGRAINED FORENSICS

The robust test can be run on a model pair of different architecture or dimension, as LAP can match a per-508 mutation for matrices $H_{up}(\theta_1)$ and $H_{up}(\theta_2)$ of different dimension (and returns a permutation of the smaller 509 dimension). We run the robust test on all pairs of MLP blocks, i.e. computing 510

$$\phi_{\text{MATCH}}^{(i,j)} := \rho(\text{MATCH}(H_{\text{up}}^{(i)}(\theta_2), H_{\text{up}}^{(j)}(\theta_1)), \text{MATCH}(H_{\text{gate}}^{(i)}(\theta_2), H_{\text{gate}}^{(j)}(\theta_1))).$$

for all $i \in \{1, \dots, L_1\}, j \in \{1, \dots, L_2\}$ of models θ_1, θ_2 The flexibility of ϕ_{MATCH} for varying dimension, and running ϕ_{MATCH} on all pairs of MLP blocks, is significant because it prevents adversaries that may take only certain layers, or even only certain activations, of a pre-trained model and inject other layers. 516

In particular, we were able to identify the specific Transformer blocks of Llama-3.1-8B whose weights were 517 likely used in initializing Llama-3.2-3B and Llama-3.2-1B, as Meta reported that the first two models 518 were pruned from the third (MetaAI (2024)). We use ϕ_{MATCH} on all pairs of MLP blocks, and report the matched 519 layers (identifying when $\phi_{MATCH}^{(i,j)}$ less than 1e-4) in Figure 4 and in Appendix H.2. 520

521 By comparing the aligned permutation returned from ϕ_{MATCH} , we can even identify which hidden units were 522 most likely shared between the blocks when MLP dimension is reduced from 14336 to 8192, for example (dur-523 ing the pruning process), shown in Appendix H.2.1. We also run this pairwise layer matching on the ShearedL-524 lama (Xia et al. (2024)) models, which were the Llama 2-7B models pruned down to 1.3B and 2.7B parameters and find matching blocks, as well as on the pruned nvidia/Llama-3.1-Minitron-4B-Depth-Base 525 model (Muralidharan et al. (2024)) from Llama 3.1, which we report in Appendix H.2. 526

527 528

486

487

488

489

490 491

492

497

498

499 500

501

502

503

504 505 506

507

511 512

513

514

515

5 **CONCLUSION AND FUTURE WORK**

529 530

In this paper, we propose and analyze various methods for detecting model independence in open-weight lan-531 guage models. Our robust method accurately predicts model relationships without training-time interventions 532 while allowing some robustness to adversarial attacks with strong results within the Llama model family. Our 533 methods demonstrate resilience to certain adversarial techniques, and we also investigate these methods across 534 diverse model architectures. We demonstrate how our techniques provide fine-grain information about how one 535 model may be derived from another and how they are robust to adversarial attacks. Yet, we do not exhaustively 536 disprove the existence of a successful adversarial attack, and note that our tests are susceptible to false negatives. There is also an open question as to whether reliably differentiating between fine-tunes of the same base 537 model to reconstruct a complete "family tree" of model lineage is possible (e.g. infer Llemma is a direct fine-538 tune of CodeLlama) (Yax et al., 2024). Furthermore, the fundamental question of whether robustness against 539 adversarial attacks is solvable with exact guarantees warrants further exploration.

540 REFERENCES

542 543

544

545

546

547

548 549

550

551 552

553

554 555

556

557

- Scott Aaronson and Hendrik Kirchner. Watermarking gpt outputs, 2023.
- Markus Anderljung, Joslyn Barnhart, Anton Korinek, Jade Leung, Cullen O'Keefe, Jess Whittlestone, Shahar Avin, Miles Brundage, Justin Bullock, Duncan Cass-Beggs, Ben Chang, Tantum Collins, Tim Fist, Gillian Hadfield, Alan Hayes, Lewis Ho, Sara Hooker, Eric Horvitz, Noam Kolt, Jonas Schuett, Yonadav Shavit, Divya Siddarth, Robert Trager, and Kevin Wolf. Frontier ai regulation: Managing emerging risks to public safety, 2023. URL https://arxiv.org/abs/2307.03718.
- Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer, Albert Q. Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model for mathematics, 2024. URL https://arxiv.org/abs/2310.10631.
- Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language models, 2023. URL https: //arxiv.org/abs/2306.09194.

Yann Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated convolutional networks. In *International Conference on Machine Learning*, 2016.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 558 Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, 559 Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien 560 Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, 561 Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe 562 Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel 563 Song, Danielle Pintz, Danny Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-564 Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, 565 Eric Michael Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis An-566 derson, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, 567 Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der 568 Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie 569 Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Jun-570 teng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, 571 Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens 572 van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas 573 Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar 574 Paluri, Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min 575 Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-576 chev, Niladri Chatterji, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar 577 Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing 578 He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sum-579 baly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, 580 Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng 581 Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, 582 Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek 583 Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal 584 Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, 585 Vish Vogeti, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, 586 Xiaodong Wang, Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh 587 Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coud-588 ert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aaron Grattafiori, Abha Jain, Adam Kelsey, 589 Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boe-590 senberg, Alex Vaughan, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit 591 Ramchandani, Annie Franco, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, 592 Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, 593 Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon

594 Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Chang-595 han Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph 596 Feichtenhofer, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, Danny Wyatt, David Adkins, David 597 Xu, Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily 598 Wood, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, 599 Firat Ozgenel, Francesco Caggioni, Francisco Guzmán, Frank Kanayet, Frank Seide, Gabriela Medina Flo-600 rez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Govind Thattai, Grant Herman, Grigory 601 Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen 602 Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Igor Molybog, Igor 603 Tufanov, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Japhet Asher, Jean-604 Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, 605 Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan 606 Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik Prasad, Kartikay Khan-607 delwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kun Huang, 608 Kunal Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav 609 Avalani, Manish Bhatt, Maria Tsimpoukelli, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias 610 Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Michael L. Seltzer, Michal Valko, 611 Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, 612 Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha 613 Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich 614 Laptev, Ning Dong, Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem 615 Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, 616 Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel 617 Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah Hogan, 618 Robin Battey, Rocky Wang, Rohan Maheswari, Russ Howes, Ruty Rinott, Sai Jayesh Bondu, Samyak Datta, 619 Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Verma, Seiji Yamamoto, 620 Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith 621 Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit 622 Gupta, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar 623 Glaser, Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timo-624 thy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish 625 Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, 626 Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaofang Wang, Xiaojian 627 Wu, Xiaolan Wang, Xide Xia, Xilun Wu, Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin 628 Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait, 629 Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd of models, 630 2024. URL https://arxiv.org/abs/2407.21783.

631 632

633

634

635

636

637

638

639

640

Team GLM, :, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Dan Zhang, Diego Rojas, Guanyu Feng, Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, Jiajie Zhang, Jiale Cheng, Jiayi Gui, Jie Tang, Jing Zhang, Jingyu Sun, Juanzi Li, Lei Zhao, Lindong Wu, Lucen Zhong, Mingdao Liu, Minlie Huang, Peng Zhang, Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shudan Zhang, Shulin Cao, Shuxun Yang, Weng Lam Tam, Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan Zhang, Xiaotao Gu, Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue Yang, Xixuan Song, Xunkai Zhang, Yifan An, Yifan Xu, Yilin Niu, Yuantao Yang, Yueyan Li, Yushi Bai, Yuxiao Dong, Zehan Qi, Zhaoyu Wang, Zhen Yang, Zhengxiao Du, Zhenyu Hou, and Zihan Wang. Chatglm: A family of large language models from glm-130b to glm-4 all tools, 2024. URL https://arxiv.org/abs/2406.12793.

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord, Ananya Harsh
Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, Shane Arora, David Atkinson, Russell Authur, Khyathi Raghavi Chandu, Arman Cohan, Jennifer Dumas, Yanai Elazar, Yuling Gu, Jack Hessel, Tushar Khot,
William Merrill, Jacob Morrison, Niklas Muennighoff, Aakanksha Naik, Crystal Nam, Matthew E. Peters,
Valentina Pyatkin, Abhilasha Ravichander, Dustin Schwenk, Saurabh Shah, Will Smith, Emma Strubell, Nishant Subramani, Mitchell Wortsman, Pradeep Dasigi, Nathan Lambert, Kyle Richardson, Luke Zettlemoyer,
Jesse Dodge, Kyle Lo, Luca Soldaini, Noah A. Smith, and Hannaneh Hajishirzi. Olmo: Accelerating the
science of language models, 2024. URL https://arxiv.org/abs/2402.00838.

- Heng Jin, Chaoyu Zhang, Shanghao Shi, Wenjing Lou, and Y. Thomas Hou. Proflingo: A fingerprinting-based intellectual property protection scheme for large language models, 2024a. URL https://arxiv.org/abs/2405.02466.
 - Heng Jin, Chaoyu Zhang, Shanghao Shi, Wenjing Lou, and Y. Thomas Hou. Proflingo: A fingerprinting-based intellectual property protection scheme for large language models. In 2024 IEEE Conference on Communications and Network Security (CNS), pp. 1–9, 2024b. doi: 10.1109/CNS62487.2024.10735575.
 - John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A watermark for large language models, 2024. URL https://arxiv.org/abs/2301.10226.
 - Rohith Kuditipudi, John Thickstun, Tatsunori Hashimoto, and Percy Liang. Robust distortion-free watermarks for language models, 2024. URL https://arxiv.org/abs/2307.15593.
 - Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel: Communicative agents for "mind" exploration of large language model society, 2023. URL https:// arxiv.org/abs/2303.17760.
 - J. Lin. Divergence measures based on the shannon entropy. *IEEE Trans. Inf. Theor.*, 37(1):145–151, September 2006. ISSN 0018-9448. doi: 10.1109/18.61115. URL https://doi.org/10.1109/18.61115.
 - Zhengzhong Liu, Aurick Qiao, Willie Neiswanger, Hongyi Wang, Bowen Tan, Tianhua Tao, Junbo Li, Yuqi Wang, Suqi Sun, Omkar Pangarkar, Richard Fan, Yi Gu, Victor Miller, Yonghao Zhuang, Guowei He, Haonan Li, Fajri Koto, Liping Tang, Nikhil Ranjan, Zhiqiang Shen, Xuguang Ren, Roberto Iriondo, Cun Mu, Zhiting Hu, Mark Schulze, Preslav Nakov, Tim Baldwin, and Eric P. Xing. Llm360: Towards fully transparent open-source llms, 2023.
 - Arthur Mensch. Mistral ceo confirms miqu model leak, August 2024. URL https://x.com/ arthurmensch/status/1752737462663684344. Accessed: 2024-08-15.
 - Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models, 2016. URL https://arxiv.org/abs/1609.07843.
 - MetaAI. Llama 3.2: Revolutionizing edge ai and vision with open, customizable models, 2024. URL https: //ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/.
 - Frederick Mosteller and R. A. Fisher. Questions and answers. *The American Statistician*, 2(5):30–31, 1948. ISSN 00031305. URL http://www.jstor.org/stable/2681650.
 - Saurav Muralidharan, Sharath Turuvekere Sreenivas, Raviraj Joshi, Marcin Chochowski, Mostofa Patwary, Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo Molchanov. Compact language models via pruning and knowledge distillation, 2024. URL https://arxiv.org/abs/2407.14679.
 - Michael Poli, Jue Wang, Stefano Massaroli, Jeffrey Quesnelle, Ryan Carlow, Eric Nguyen, and Armin Thomas. StripedHyena: Moving Beyond Transformers with Hybrid Signal Processing Models, 12 2023. URL https://github.com/togethercomputer/stripedhyena.
 - Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are unsupervised multitask learners. 2019.
 - Lyle Ramshaw and Robert Endre Tarjan. On minimum-cost assignments in unbalanced bipartite graphs. 2012. URL https://api.semanticscholar.org/CorpusID:6964149.
 - Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Authur, Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann, Ananya Harsh Jha, Sachin Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson, Jacob Morrison, Niklas Muennighoff, Aakanksha Naik, Crystal Nam, Matthew E. Peters, Abhilasha Ravichander, Kyle Richardson, Zejiang Shen, Emma Strubell, Nishant Subramani, Oyvind Tafjord, Pete Walsh, Luke Zettlemoyer, Noah A. Smith, Hannaneh Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge, and Kyle Lo. Dolma: an open corpus of three trillion tokens for language model pretraining research, 2024. URL https://arxiv.org/abs/2402.00159.
 - Shivchander Sudalairaj, Abhishek Bhandwaldar, Aldo Pareja, Kai Xu, David D. Cox, and Akash Srivastava. Lab: Large-scale alignment for chatbots, 2024. URL https://arxiv.org/abs/2403.01081.

720 721

722

723

724

725

726

727

728

729 730

731

732

733

734

735

736

737 738

739

740

741 742 743

744 745

746

The Mosaic Research Team. Introducing dbrx: A new state-of-the-art open llm, 2024. URL https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bash-705 lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Fer-706 rer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, 707 Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan 708 Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, 709 Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-710 tinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, 711 Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiao-712 qing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, 713 Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models, 2023. URL 714 https://arxiv.org/abs/2307.09288. 715

- Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared Ilama: Accelerating language model pre-training via structured pruning, 2024. URL https://arxiv.org/abs/2310.06694.
 - Jiashu Xu, Fei Wang, Mingyu Derek Ma, Pang Wei Koh, Chaowei Xiao, and Muhao Chen. Instructional fingerprinting of large language models, 2024. URL https://arxiv.org/abs/2401.12255.
 - An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report, 2024. URL https://arxiv.org/abs/2407.10671.
 - Zhiguang Yang and Hanzhou Wu. A fingerprint for large language models, 2024. URL https://arxiv.org/abs/2407.01235.
 - Nicolas Yax, Pierre-Yves Oudeyer, and Stefano Palminteri. Phylolm : Inferring the phylogeny of large language models and predicting their performances in benchmarks, 2024. URL https://arxiv.org/ abs/2404.04671.
 - Boyi Zeng, Chenghu Zhou, Xinbing Wang, and Zhouhan Lin. Human-readable fingerprint for large language models, 2024. URL https://arxiv.org/abs/2312.04828.
 - Jie Zhang, Dongrui Liu, Chen Qian, Linfeng Zhang, Yong Liu, Yu Qiao, and Jing Shao. Reef: Representation encoding fingerprints for large language models, 2024. URL https://arxiv.org/abs/2410. 14273.

A TRANSFORMER ARCHITECTURE AND NOTATION

We consider models with the Llama Transformers architecture and define the notation henceforth, although this can easily be extended to other Transformer architectures.

747 Following the definition of f_{mlp} in 3, we can define an abstraction of the full Llama language model architecture 748 consisting of L Transformer blocks sandwiched between an input and output layer. For the sequel, we will abuse notation in applying $f_{\rm mlp}$ to multi-dimensional tensors by broadcasting along the last axis. We use $d, n \in \mathbb{N}$ to 749 respectively denote the model dimension and sequence length, where $\Theta_{LM} = \Theta_{in} \times \Theta_{block}^{\times L} \times \Theta_{out}$ with Θ_{block} denoting the parameter space of each Transformer block and Θ_{in} , Θ_{out} denoting the parameter spaces the input and output layers. We decompose $\Theta_{block} = \Theta_{attn} \times \Theta_{mlp}$ and use $f_{rest} : \Theta_{attn} \times \mathbb{R}^{n \times d} \to \mathbb{R}^{n \times d}$ to denote all remaining parts of the Transformer besides the MLP. The inputs to f_{rest} are the input and output of the MLP, 750 751 752 753 and the output of f_{rest} is fed directly to the MLP of the next layer. In particular, f_{rest} takes the input and output 754 to the MLP of layer i, and first performs the residual connection following the MLP of layer i, then the self-755 attention and normalization components of layer i + 1, and returns the input to the MLP of layer i + 1. We use

756	Parameter name	Notation
757	embedding	$E \in \mathbb{R}^{V \times d_{\text{emb}}}$
758	input layernorm	$\gamma_{\text{input},i} \in \mathbb{R}^{1 \times d_{\text{emb}}}$
759	attention query matrix	$W_{Q,i} \in \mathbb{R}^{d_{\text{emb}} \times d_{\text{emb}}}$
760	attention key matrix	$W_{K,i} \in \mathbb{R}^{d_{\text{emb}} \times d_{\text{emb}}}$
761	attention value matrix	$W_{V,i} \in \mathbb{R}^{d_{\mathrm{emb}} \times d_{\mathrm{emb}}}$
762	attention output matrix	$W_{O,i} \in \mathbb{R}^{d_{\text{emb}} \times d_{\text{emb}}}$
763	post-attention layernorm	$\gamma_{\text{post-attn, }i} \in \mathbb{R}^{1 \times d_{\text{emb}}}$
764	MLP gate projection	$G_i \in \mathbb{R}^{d_{\mathrm{mlp}} \times d_{\mathrm{emb}}}$
765	MLP up projection	$U_i \in \mathbb{R}^{d_{\mathrm{mlp}} \times d_{\mathrm{emb}}}$
766	MLP down projection	$D_i \in \mathbb{R}^{d_{ ext{emb}} imes d_{ ext{mlp}}}$
767	final layernorm	$\gamma_{\text{final}} \in \mathbb{R}^{1 \times d_{\text{emb}}}$
768	linear output	$O \in \mathbb{R}^{d_{\mathrm{emb}} \times V}$
	-	1

Table 3: Llama model architecture and dimensions.

 $f_{\text{in}}: \Theta_{\text{in}} \times \mathcal{X} \to \mathbb{R}^{n \times d}$ and $f_{\text{out}}: \Theta_{\text{block}}^{(L)} \times \mathbb{R}^{n \times d} \to \mathcal{Y}$ to respectively denote the input and output layers, i.e. the elements before the first MLP and after the last MLP. Putting everything together gives the following definition of the model; we introduce the notation $X_{\theta}^{(i)}$ in the definition as a matter of convenience to track intermediate activations.

Definition 4. (GLU Transformer model) Let $\theta = (\theta_{in}, \{\theta_{block}^{(i)}\}_{i=1}^{L}, \theta_{out}) \in \Theta_{LM}$ and $X \in \mathcal{X}$, with $\theta_{block}^{(i)} = (\theta_{attn}^{(i)}, \theta_{mlp}^{(i)})$. Then $f_{LM}(X; \theta) = f_{out}(X_{\theta}^{(L)}; \theta_{out})$ for $X_{\theta}^{(0)} = f_{in}(X; \theta_{in})$ and

$$X_{\theta}^{(i)} = f_{\text{rest}}(X_{\theta}^{(i-1)}, f_{\text{mlp}}(X_{\theta}^{(i-1)})).$$

$$(3)$$

For a Llama model, table 3 describes the shapes of the model weight matrices for i = 1, ..., L, for V (vocab size), d_{emb} (the hidden dimension), and d_{mlp} (MLP hidden dimension). Following Definition 4, we have $\theta_{\text{in}} = (E), \theta_{\text{block}}^{(i)} = (\theta_{\text{attn}}^{(i)}, \theta_{\text{mlp}}^{(i)})$ where $\theta_{\text{attn}}^{(i)} = (\gamma_{\text{input},i}, W_{Q,i}, W_{K,i}, W_{V,i}, W_{O,i}, \gamma_{\text{post-attn}}^{(i)}), \theta_{\text{mlp}}^{(i)} = (G_i, U_i, D_i)$, and $\theta_{\text{out}} = (\gamma_{\text{final}}, L)$. We now describe a forward pass of the model.

We define the softmax function on a vector $v = (v_1, \ldots, v_n)$, softmax(v), as

softmax
$$(v)_i = \frac{e^{v_i}}{\sum_{k=1}^n e^{v_k}}$$

On batched input $X \in \mathbb{R}^{N \times n \times m}$ where each $X^{(b)} = [w_1| \dots |w_m] \in \mathbb{R}^{n \times m}$ with column vectors w_i , we define the softmax as $\operatorname{stmax}(X^{(b)}) = [\operatorname{softmax}(w_{1})]$

$$\operatorname{softmax}(X^{(b)}) = [\operatorname{softmax}(w_1)| \dots |\operatorname{softmax}(w_m)],$$
$$\operatorname{softmax}(X) = [\operatorname{softmax}(X^{(1)})| \dots |\operatorname{softmax}(X^{(N)})]$$

softmax
$$(X) = [softmax(X^{(1)})| \dots |softmax(X^{(N)})|$$

For a forward pass of the model $f_{LM}(X; \theta)$, consider an input sequence of tokens $X \in \{0, 1\}^{N \times V}$ as one-hot vectors where n is sequence length. Then

We feed the input through:

1. (f_{in}) Embedding layer:

$$X_{\theta}^{(0)} = f_{\rm in}(X; \theta_{\rm in}) = XE \in \mathbb{R}^{N \times d_{\rm em}}$$

2. $(f_{\text{attn}}, f_{\text{mlp}}, f_{\text{post}})$ For each Transformer block $i = 0, 1, \dots, L$, through $f_{\text{attn}}, f_{\text{mlp}}$, and f_{post} :

(a) Input layernorm:

$$X_{\mathsf{LN}_1}^{(i)} = rac{X_{ heta}^{(i)}}{\sqrt{\mathsf{Var}(X_{ heta}^{(i)}) + arepsilon}} \odot \gamma_{\mathsf{input}, \mathbf{v}}$$

(with variance over the last axis) for some offset ε (typically 1e-6).

(b) Causal multi-head self-attention: Split $X_{LN_1}^{(i)}$ on the first axis into nheads $X_{LN_1,i}^{(i)}, \ldots, X_{LN_1,nheads}^{(i)}$ On each head $X_{\text{LN}_1,i}^{(i)}$, $X_{\text{SA},j}^{(i)} = \text{self-attn}(X_{\text{LN}_{1},j}^{(i)}) = \text{softmax}\left(\frac{X_{\text{LN}_{1},j}^{(i)}W_{Q,i}^{T}(X_{\text{LN}_{1},j}^{(i)}W_{K,i}^{T})^{T}}{\sqrt{d_{\text{emb}}}}\right) X_{\text{LN}_{1},j}^{(i)}W_{V,i}^{T}W_{Q,i}^{T}$ and concatenate $X_{SA}^{(i)}$ along the first axis again as $X_{SA}^{(i)}$ (c) Dropout and residual connection: $X_{DR_1}^{(i)} = X_{LN_1}^{(i)} + Dropout(X_{SA}^{(i)})$ (d) Post-attention layernorm: $X_{\text{LN}_2}^{(i)} = \frac{X_{\text{DR}_1}^{(i)}}{\sqrt{\text{Var}(X_{\text{DR}_1}^{(i)}) + \varepsilon}} \odot \gamma_{\text{post-attn},i}$ (with variance over the last axis) for some offset ε . Then we have $f_{\text{attn}}(X_{\theta}^{(i-1)}; \theta_{\text{attn}}^{(i)}) = X_{\text{LN}_2}^{(i)}$ (e) Next, we feed through f_{mlp} , the multi-layer perceptron: $f_{\mathrm{mlp}}(X_{\mathrm{LN}_2}^{(i)}; \theta_{\mathrm{mlp}}^{(i)}) = X_i^{\mathrm{MLP}} = [\sigma(X_i^{\mathrm{LN}_2} G_i^T) \odot (X_i^{\mathrm{LN}_2} U_i^T)] D_i^T$ for some activation σ (e.g., SiLU). (f) Finally, we feed through f_{post} , dropout and the residual connection: $f_{\text{post}}(\boldsymbol{\theta}_{\text{mlp}}^{(i)}) = X_{\boldsymbol{\theta}}^{(i+1)} = X_{i}^{\text{DR}_{1}} + \text{Dropout}(X_{i}^{\text{MLP}})$ 3. (f_{out}) Final layernorm on the output $X_{\theta}^{(N+1)}$ from the final Transformer block: $X_{\rm LN}^{(L)} = \frac{X_{\theta}^{(L)}}{\sqrt{{\rm Var}(X_{\theta}^{(L)}) + \varepsilon}} \odot \gamma_{\rm final}$ (with variance over the last axis) for some offset ε . Then, linear output embedding and softmax map-ping to output probabilities: $f_{\text{out}}(X^{(L)}_{\varrho}) = \operatorname{softmax}(X^{(L)}_{\text{LN}}O^T),$ which defines the entire forward pass $f_{LM}(X; \theta)$. MODEL PERMUTATION В We describe two sets of equivariant transformations Π on a Transformer model as described in Appendix A. (Abusing notation), the first set, Π_{emb} , consists of elements π_{emb} where $\pi_{emb} \in \mathbb{R}^{d_{emb} \times d_{emb}}$ is a permutation matrix. The second set, Π_{mlp} , consists of elements π_{mlp} where $\pi_{mlp} \in \mathbb{R}^{d_{mlp} \times d_{mlp}}$ is a permutation matrix.

- 1. $\pi_{\text{emb}}(\theta)$: Applying an embedding permutation $\pi_{\text{emb}} \in \mathbb{R}^{d_{\text{emb}} \times d_{\text{emb}}}$ by left or right multiplying all relevant matrices by ξ_{embed} (permuting rows or columns).
- 2. $\pi_{\text{mlp}}(\theta)$: Applying MLP permutations $\pi_{\text{mlp},i} \in \mathbb{R}^{d_{\text{mlp}} \times d_{\text{mlp}}}$ to MLP layers.

These permutations are applied such that the outputs of the original model θ and the permuted model $\Pi(\theta)$ remain aligned. We describe the details in Table 4.

- C ADDITIONAL EXPERIMENTAL RESULTS ON LLAMA MODELS
- C.1 NON-ADVERSARIAL SETTING
- First, we report statistics on various model pairs involving the base model Llama-2-7b-hf in Table 1 and various pairs involving vicuna-7b-v1.5 in Table 5. Note vicuna-7b-v1.5 is itself a finetune

Parameter name	θ	$\pi_{\rm emb}(\theta)$	$\pi_{\mathrm{mlp}}(\theta)$
embedding	E	$E\pi_{\rm emb}$	E
input layernorm	$\gamma_{\mathrm{input},i}$	$\gamma_{\mathrm{input},i}\pi_{\mathrm{emb}}$	$\gamma_{\mathrm{input},i}$
attention query matrix	$W_{Q,i}$	$W_{Q,i}\pi_{\rm emb}$	$W_{Q,i}$
attention key matrix	$W_{K,i}$	$W_{K,i}\pi_{\rm emb}$	$W_{K,i}$
attention value matrix	$W_{V,i}$	$W_{V,i}\pi_{\rm emb}$	$W_{V,i}$
attention output matrix	$W_{O,i}$	$\pi_{\mathrm{emb}}^T W_{O,i}$	$W_{O,i}$
post-attention layernorm	$\gamma_{ m post-attn, }$ i	$\gamma_{\text{post-attn, }i}\pi_{\text{emb}}$	$\gamma_{\mathrm{post-attn,}\ i}$
MLP gate projection	G_i	$G_i \pi_{\text{emb}}$	$\pi_{\mathrm{mlp},i}G_i$
MLP up projection	U_i	$U_i \pi_{\text{emb}}$	$\pi_{\mathrm{mlp},i}U_i$
MLP down projection	D_i	$\pi_{\mathrm{emb}}^T D_i$	$D_i \pi_{\mathrm{mlp},i}^T$
final layernorm	$\gamma_{ ext{final}}$	$\gamma_{\text{final}} \pi_{\text{emb}}$	$\gamma_{ ext{final}}$
linear output	0	$\pi^T_{\rm emb}O$	0

Table 4: Transformations π_{emb} and π_{mlp} applied to a Llama-architecture model.

				p-values	
$ heta_1 = t vicuna - 7b - t v1.5, heta_2 =$	Independent?	$\phi_{\rm JSD}$ (log)	ϕ_{ℓ_2}	$\phi_{U^{(\ell)}}$	$\phi_{H^{(\ell)}}$
llama-7b-hf	✓	-10.39	0.40	0.29	0.59
vicuna-7b-v1.1	\checkmark	-10.41	0.63	0.12	0.29
Amber	\checkmark	-10.17	0.75	0.18	0.31
Llama-2-7b-hf	X	-10.87	0.01	ε	ε
CodeLlama-7b-hf	×	-10.10	0.01	ε	ε
llemma-7b	×	-9.87	0.01	ε	ε

Table 5: Results of various test statistics with θ_1 as lmsys/vicuna-7b-v1.5 and θ_2 ranging over the listed models. Once again, $\varepsilon = 2.2e-308$.

of Llama-2-7b-hf. Consistent with our problem formulation (Section 3.1), we treat any finetune of
 Llama-2-7b-hf as dependent with vicuna-7b-v1.5, even in cases where neither model is a finetune
 of the other (i.e., the last scenario in

Next, we report p-values from the statistics ϕ_{ℓ_2} , $\phi_{U^{(\ell)}}$, and $\phi_{H^{(\ell)}}$ on all 210 model pairs (from 21 Llama 2-architecture models) in Figures 5, 6, and 7, where the model names are colored by base model (ground truth). For all statistics, the p-values on independent model pairs are uniformly distributed, while they are all significant at 0.01 (smaller for $\phi_{U^{(\ell)}}$ and $\phi_{H^{(\ell)}}$) for fine-tuned model pairs.

C.2 ADVERSARIAL SETTING

We report values of ϕ_{MATCH} on all model pairs in Figure 8. The statistic is low ($\epsilon = 10^{-308}$) for all non-independent model pairs, and uniformly distributed for independent model pairs, empirically acting as a p-value.

D ROBUST PROBLEM FORMULATION ADDENDUM

An adversary could apply a particular rotation scheme by multiplying weight matrices by an orthogonal rotation matrix U that will also preserve outputs. We describe such a transformation which breaks the invariants proposed by Zeng et al. (2024) by manipulating layernorms. While this list may not be exhaustive, the following six transformations (with the first two described previously) "camouflage" the language model while preserving outputs:

- T1. Permuting the rows of the embedding matrix (and subsequent matrices due to residual connections) by a permutation $\xi_{\text{emb}} \in \mathbb{R}^{d_{\text{emb}} \times d_{\text{emb}}}$
- T2. Permuting the MLP matrices (N different permutations for each Transformer block) by permutations $\xi_1, \ldots, \xi_N \in \mathbb{R}^{d_{mlp} \times d_{mlp}}$
- 917 T3. Rotating the embedding matrix (and subsequent matrices due to residual connections) by an orthogonal rotation matrix $R_{\text{emb}} \in \mathbb{R}^{d_{\text{emb}} \times d_{\text{emb}}}$

1134		Parameter name	heta	$\operatorname{Rot}(\theta) = \theta'$
1135	-	embedding	E	ER_{emb}
1136		input layernorm	$\gamma_{ ext{input, }i}$	$\gamma'_{ ext{input, }i}$
1137		attention query matrix	$W_{Q,i}$	$R_i W_{Q,i} \operatorname{diag}(\gamma_{\operatorname{input},i}) R_{\operatorname{emb}} \operatorname{diag}(\frac{1}{\gamma'_{\operatorname{input},i}})$
1138		attention key matrix	$W_{K,i}$	$R_i W_{K,i} \operatorname{diag}(\gamma_{\operatorname{input},i}) R_{\operatorname{emb}} \operatorname{diag}(\frac{\gamma_{\operatorname{input},i}}{\gamma_i})$
1139		attention value matrix	$W_{V,i}$	$W_{V,i} \operatorname{diag}(\gamma_{\operatorname{input},i}) R_{\operatorname{emb}} \operatorname{diag}(\frac{1}{2})$
1141		attention output matrix	Woi	$B_{imple}^T W_{O,i}$
1142		post-attention layernorm	$\gamma_{\text{post-attn.}i}$	$\gamma_{\text{post-attr}}^{\text{reg}}$
1143		MLP gate projection	G_i	$G_i \operatorname{diag}(\gamma_{\operatorname{post-attn},i}) R_{\operatorname{emb}} \operatorname{diag}(\frac{1}{\gamma'})$
1144		MLP up projection	U_i	$c_i U_i \operatorname{diag}(\gamma_{\text{post-attn},i}) R_{\text{emb}} \operatorname{diag}(\frac{1}{\gamma'})$
1145		MLP down projection	D_i	$\frac{1}{2} B^T$, D_i
1146		final lavernorm	γ_{final}	$c_i \sim c_{\rm mb} \sim i$
1147		linear output	O	$O \operatorname{diag}(\gamma_{\text{final}}) \overset{\text{(nnal)}}{R_{\text{emb}}} \operatorname{diag}(\frac{1}{L})$
1148				γ_{final}
1149		Table 6: Output-preserv	ving rotation	applied to a Llama-architecture model.
1150			0	
1151				
1152 1153	T4. Rotat	ting the query and key atten gonal rotation matrices R_1 ,	ntion matric $\dots, R_N \in \mathbb{R}$	es (N different rotations for each Transformer block) by $\mathbb{R}^{d_{emb} \times d_{emb}}$
1154	T5. Repla	acing all layernorms (input,	post-attenti	on, final) with vectors in $\mathbb{R}^{1 \times d_{emb}}$ with non-zero elements
1155	T6 Scali	ng the MIP matrices by a c	- constant non	zero factor
1150	10. Scall	ing the MET matrices by a c	onstant non-	
1158	Consider a m	odel θ of Llama architectu	re (Appendi	x A). Consider orthogonal matrices $R_{emb}, R_1, \ldots R_{32}$ as
1150	described, as	well as new layernorms γ'_{in}	$\gamma_{\mathrm{int}}^{\prime}$	put 32, $\gamma'_{\text{post-attn}}$, $\gamma'_{\text{post-attn}}$ in $\mathbb{R}^{1 \times d_{\text{emb}}}$ with non-zero
1160	elements. Fir	ally, consider non-zero con	nstants c_1 ,.	\ldots, c_{32} , which we use to transform the layernorms. We
1161	apply the rota	tion with these parameters	to θ , to get	a new "rotated" model, $Rot(\theta)$. We generalize the set of
1162	transformation	is above as applying $Rot(\theta)$	to a model	θ".
1163	We transform	all the original matrices of	θ as in Tabl	e 6 (for $i = 1, \dots, 32$). Note that the transformations T1
1164	and T2 are ele	ements of Π_{emb} and Π_{mlp} and	d the remain	ing transformations T3 to T6 are described in Table 6.
1165	Theorem 3	For any input sequence $X \in$	$\{0,1\}^{n\times V}$	the outputs of models θ and $Rot(\theta) = \theta'$ are aligned i.e.
1166	$f_{\rm IM}(X;\theta) =$	$f_{IM}(X;\theta').$	- (^v , - j)	= 0 are unputs 0 models 0 und 101(0) = 0 ure unspect, i.e.
1167	J LIVI () ~)			

Proof. First, note that an element-wise product of two one-dimensional vectors is equivalent to multiplying by the diagonal matrix of the second vector, i.e. for $v, \gamma \in \mathbb{R}^{1 \times m}$,

 $v * \gamma = v \operatorname{diag}(\gamma).$

We use this in our layernorm calculations.

Let the output from the unrotated embedding layer be $y = f_{in}(X, E) = EX$ (for $X \in \{0, 1\}^{n \times V}$). Then the output from the rotated embedding layer is $y' = f_{in}(X, E') = (ER_{emb})(x) = yR_{emb}$. Now consider Transformer block *i* with input *y* and the rotated Transformer block with input yR_{emb} . *y* is passed into the input layernorm, which returns

$$z = LN_i(y) = \frac{y}{\sqrt{\mathsf{Var}(y) + \varepsilon}} \odot \gamma_{\mathsf{input},i} = \frac{y}{\sqrt{\mathsf{Var}(y) + \varepsilon}} \mathsf{diag}(\gamma_{\mathsf{input},i}).$$

The rotated input layernorm on y' returns

$$z' = LN'_i(y') = \frac{y'}{\sqrt{\mathsf{Var}(y') + \varepsilon}} \odot \gamma'_{\mathsf{input},i} = \frac{yR_{\mathsf{emb}}}{\sqrt{\mathsf{Var}(yR_{\mathsf{emb}}) + \varepsilon}} \odot \gamma'_{\mathsf{input},i}$$

1186
1187
$$= \frac{y}{\sqrt{\operatorname{Var}(y) + \varepsilon}} R_{\operatorname{emb}} \operatorname{diag}(\gamma'_{\operatorname{input},i}) = z \operatorname{diag}(\frac{1}{\gamma_{\operatorname{input},i}}) R_{\operatorname{emb}} \operatorname{diag}(\gamma'_{\operatorname{input},i}),$$

which follows from R_{emb} being orthogonal. Then we have the output from the unrotated self-attention is

$$w = \operatorname{softmax}\left(\frac{zW_{Q,i}^{T}(zW_{K,i}^{T})^{T}}{\sqrt{d_{\text{key}}}}\right) zW_{V,i}^{T}W_{O,i}^{T},$$

and the output from the rotated self-attention with input z' is

$$\operatorname{softmax}\left(\frac{z'(R_iW_{Q,i}\operatorname{diag}(\gamma_{\operatorname{input},i})R_{\operatorname{emb}}\operatorname{diag}(\frac{1}{\gamma'_{\operatorname{input},i}}))^T(z'(R_iW_{K,i}\operatorname{diag}(\gamma_{\operatorname{input},i})R_{\operatorname{emb}}\operatorname{diag}(\frac{1}{\gamma'_{\operatorname{input},i}}))^T)^T}{\sqrt{d_{\operatorname{key}}}}\right)$$

$$z'(W_{V,i} \operatorname{diag}(\gamma_{\operatorname{input}, i}) R_{\operatorname{emb}} \operatorname{diag}(\frac{1}{\gamma'_{\operatorname{input}, i}}))^T (R_{\operatorname{emb}}^T W_{O,i})^T$$

$$= \operatorname{softmax} \left(\frac{z' \operatorname{diag}(\frac{1}{\gamma'_{\operatorname{input}, i}}) R_{\operatorname{emb}}^T \operatorname{diag}(\gamma_{\operatorname{input}, i}) W_{Q,i}^T R_i^T (z' \operatorname{diag}(\frac{1}{\gamma'_{\operatorname{input}, i}}) R_{\operatorname{emb}}^T \operatorname{diag}(\gamma_{\operatorname{input}, i}) W_{K,i}^T R_i^T (z' \operatorname{diag}(\gamma_{\operatorname{input}, i}) R_{\operatorname{emb}}^T \operatorname{diag}(\gamma_{\operatorname{input}, i}) W_{K,i}^T R_i^T (z' \operatorname{diag}(\gamma_{\operatorname{input}, i}) R_{\operatorname{input}, i}) W_{K,i}^T (z' \operatorname{diag}(\gamma_{\operatorname{input}, i}) R_{\operatorname{input}, i}) W_{K,i}^T (z' \operatorname{diag}(\gamma_{\operatorname{input}, i}) R_{\operatorname{input}, i}) R_{\operatorname{input}, i}) H_{K,i}^T (z' \operatorname{diag}(\gamma_{\operatorname{input}, i}) R_{\operatorname{input}, i}) H_{K,i}^T (z' \operatorname{diag}(\gamma_{\operatorname{input}, i}) R_{input}, i) H_{K,i}^T (z' \operatorname{diag}(\gamma_{\operatorname{input}, i}) R_{input}, i)) H_{K,i}^T (z' \operatorname{diag}(\gamma_{\operatorname{input}, i}) R_{inp$$

$$= wR_{\rm emb} = w'$$

Then y and y' respectively from before the layernorm are added as residual connections as v = y + w and $v' = y' + w' = vR_{emb}$. v is passed into the post-attention layernorm, which returns

$$u = LN_i(v) = \frac{v}{\sqrt{\mathsf{Var}(v) + \varepsilon}} \odot \gamma_{\mathsf{post-attn},i} = \frac{v}{\sqrt{\mathsf{Var}(v) + \varepsilon}} \mathsf{diag}(\gamma_{\mathsf{post-attn},i}).$$

Similar to the input layernorm, the rotated post-attention layernorm on v' returns

$$\begin{split} u' &= LN'_{i}(v') = \frac{v'}{\sqrt{\mathsf{Var}(v') + \varepsilon}} \odot \gamma'_{\mathsf{post-attn},i} = \frac{vR_{\mathsf{emb}}}{\sqrt{\mathsf{Var}(vR_{\mathsf{emb}}) + \varepsilon}} \odot \gamma'_{\mathsf{post-attn},i} \\ &= \frac{v}{\sqrt{\mathsf{Var}(v) + \varepsilon}} R_{\mathsf{emb}} \mathsf{diag}(\gamma'_{\mathsf{post-attn},i}) = u \operatorname{diag}(\frac{1}{\gamma_{\mathsf{post-attn},i}}) R_{\mathsf{emb}} \mathsf{diag}(\gamma'_{\mathsf{post-attn},i}). \end{split}$$

Then the output from the unrotated MLP layer on u is

$$t = [\sigma(uG_i^T) \odot (uU_i^T)]D_i^T$$

and the output from the rotated MLP on u' is

$$\begin{split} t' &= [\sigma(u'(G_i \operatorname{diag}(\gamma_{\text{post-attn},i})R_{\text{emb}}\operatorname{diag}(\frac{1}{\gamma'_{\text{post-attn},i}}))^T \odot (u'(c_i U_i \operatorname{diag}(\gamma_{\text{post-attn},i})R_{\text{emb}}\operatorname{diag}(\frac{1}{\gamma'_{\text{post-attn},i}}))^T)](\frac{1}{c_i}R_{\text{emb}}^T D_i)^T \\ &= [\sigma(u\operatorname{diag}(\frac{1}{\gamma_{\text{post-attn},i}})R_{\text{emb}}\operatorname{diag}(\gamma'_{\text{post-attn},i})\operatorname{diag}(\frac{1}{\gamma'_{\text{post-attn},i}})R_{\text{emb}}^T\operatorname{diag}(\gamma_{\text{post-attn},i})G_i^T) \odot \\ &(c_i u\operatorname{diag}(\frac{1}{\gamma_{\text{post-attn},i}})R_{\text{emb}}\operatorname{diag}(\gamma'_{\text{post-attn},i})\operatorname{diag}(\frac{1}{\gamma'_{\text{post-attn},i}})R_{\text{emb}}^T\operatorname{diag}(\gamma_{\text{post-attn},i}))U_i^T]\frac{1}{c_i}D_i^T R_{\text{emb}} \\ &= [c_i \sigma(uG_i^T) \odot (uU_i^T)]\frac{1}{c_i}D_i^T R_{\text{emb}} = tR_{\text{emb}}. \end{split}$$

Then the output from the self-attention is added as a residual connection, and the final output from the unrotated Transformer block is
$$s = t + v$$
, and the output from the rotated Transformer block is $s' = t' + v' = sR_{emb}$.

Suppose a is the output after all Transformer layers in θ and a' is the output after all Transformer layers in θ' . Then the outputs after the final layernorms are

$$b = \frac{v}{\sqrt{\mathsf{Var}(a) + \varepsilon}} \mathsf{diag}(\gamma_{\mathsf{final}})$$

$$b' = b \operatorname{diag}(\frac{1}{\gamma_{\text{final}}}) R_{\text{emb}} \operatorname{diag}(\gamma'_{\text{final}}),$$

and the logits from the linear output layer are

$$bO^{T} = b \operatorname{diag}(\frac{1}{\gamma_{\text{final}}})R_{\text{emb}}\operatorname{diag}(\gamma_{\text{final}}')\operatorname{diag}(\gamma_{\text{final}})R_{\text{emb}}^{T}\operatorname{diag}(\frac{1}{\gamma_{\text{final}}'})O^{T} = b'(O')^{T},$$

which are the same for both models.

 We attempted to undo such a transformation that an adversary may apply by solving the least squares problem: We solve for a rotation A that minimizes |AX - Y| where X is a weight matrix of the first model and Y is the corresponding weight matrix of the second model. Although this will provide a potential rotation to undo this transformation, we find that this solution will also find a matrix A that aligns two independent model pairs as well. This makes undo-ing the rotation this way unreliable. The same holds for X and Y that are activations over multiple inputs.

D.1 HUREF INVARIANTS

We also test and break the invariants from Zeng et al. (2024) with our transformation. We have that for rotated M, M', and layer *i*, their first invariant is

$$M_a = E'(W'_{Q,i})^T ((W'_{K,i})^T)^T E'^T$$

$$\begin{split} M_{a}^{\prime} &= (ER_{\mathrm{emb}}) \left(\mathsf{diag}(\frac{1}{\gamma_{\mathrm{input},i}^{\prime}}) R_{\mathrm{emb}}^{T} \mathsf{diag}(\gamma_{\mathrm{input},i}) W_{Q,i}^{T} R_{i}^{T} \right) \left(R_{i} W_{K,i} \mathsf{diag}(\gamma_{\mathrm{input},i}) R_{\mathrm{emb}} \mathsf{diag}(\frac{1}{\gamma_{\mathrm{input},i}^{\prime}}) \right) (R_{\mathrm{emb}}^{T} E) \\ &= ER_{\mathrm{emb}} \mathsf{diag}(\frac{1}{\gamma_{\mathrm{input},i}^{\prime}}) R_{\mathrm{emb}}^{T} \mathsf{diag}(\gamma_{\mathrm{input},i}) W_{Q,i}^{T} W_{K,i} \mathsf{diag}(\gamma_{\mathrm{input},i}) R_{\mathrm{emb}} \mathsf{diag}(\frac{1}{\gamma_{\mathrm{input},i}^{\prime}}) R_{\mathrm{emb}}^{T} E, \end{split}$$

and in general $M_a \neq M'_a$ unless the layernorm weights are equal constants. The other two invariants also do not hold due to changing the layernorms. (Note that our notation for Transformers is different than theirs.) Assuming in their invariant M_f that W_1 and W_2 are the gate and down projection matrices of an MLP (this is not stated explicitly in the paper but can be inferred from experiments), the remaining invariants do not hold either.

Empirically, we compute the invariants between Llama2-7b and independently trained models and between Llama2-7b and rotated finetuned models (including Llama2-7b) in Table 7. We can see there is little distinction between the independent vs. non-independent model pairs.

1285	$ heta_1 = t Llama - 2 - 7b - hf, heta_2 = heta_2$	Independent?	M_a	M_b	M_c	ϕ_{MATCH}	$\phi_{U^{(\ell)}}$	$\phi_{H^{(\ell)}}$	$\phi_{\rm JSD}$
1286	vicuna-7b-v1.5	×	1.0	0.9883	0.9922	$< \varepsilon$	$< \varepsilon$	$< \varepsilon$	-10.874
1287	Nous-Hermes-llama-2-7b	×	1.0	1.0	1.0	$< \varepsilon$	$< \varepsilon$	$< \varepsilon$	-12.101
1288	llama-7b-hf	\checkmark	0.0884	0.0250	0.0400	0.049	0.595	0.253	-11.102
1200	AmberChat	\checkmark	0.1289	-0.0093	0.0198	0.941	0.460	0.279	-10.281
1209	Openllama-v1	\checkmark	0.1084	0.0076	0.0057	0.286	0.357	0.703	-8.381
1290	Rotated Llama-2-7b-hf	X	0.0767	0.0908	0.1011	$< \varepsilon$	0.517	0.323	$-\infty$
1291	Rotated vicuna-7b-v1.5	×	0.1553	0.0933	0.0977	$< \varepsilon$	0.688	0.857	-10.874
1292	Rotated Nous-Hermes-llama-2-7b	×	0.0332	0.0718	0.1060	$< \varepsilon$	0.772	0.240	-12.101
1293									

Table 7: Results for the three invariants M_a, M_b, M_c from Zeng et al. (2024) between Llama-2-7b-hf and independent and non-independent models.

E ADDITIONAL ROBUST STATISTIC

We describe another statistic robust to the described transformations that does not yield results like p-values.

(Median of max of cosine similarity of hidden activations:) Consider two models θ_1 and θ_2 defined with parameters as in 3 and their *i*-th MLP blocks, $\theta_{1,\text{mlp}}^{(i)}$, $\theta_{2,\text{mlp}}^{(i)}$. First we undo the random MLP permutation, by feeding the same input token sequences X through the gate projection matrices of layer *i*. We have the activation matrices (outputs from the gate projection operations) from the two models at layer *i*,

$$(H_{\theta_1,\text{gate}}^{(i)})_{:,j,k} = U_1^{(i)} f_{\text{attn}}(X_{\theta_1}^{(i-1)}; \theta_{\text{pre},1}^{(i)})_{j,k}$$

$$(H_{\theta_2,\text{gate}}^{(i)})_{:,j,k} = U_2^{(i)} f_{\text{attn}}(X_{\theta_2}^{(i-1)}; \theta_{\text{pre},2}^{(i)})_{j,k}$$

We find a permutation ξ_{match} using MATCH that best aligns $H_{\theta_{\ell},\text{gate}}^{(i)}$ and $H_{\theta_{\ell},\text{gate}}^{(i)}$:

$$\xi_{\text{match}} = \text{MATCH}(H_{\theta_1,\text{gate}}^{(i)}, H_{\theta_2,\text{gate}}^{(i)})$$

and undo the MLP permutation (of the *i*-th MLP block) on θ_2 by right-multiplying the *i*-th gate projection and up projection matrices $G_2^{(i)}$ and $U_2^{(i)}$ by ξ_{match} and right-multiplying the down projection $D_2^{(i)}$ by ξ_{match}^T :

$$(G_j^{(i)})' = G_j^{(i)} \xi_{\text{match}}, (U_j^{(i)})' = U_j^{(i)} \xi_{\text{match}}, (D_j^{(i)})' = \xi_{\text{match}} D_j^{(i)}$$

for j = 1, 2. Next, we fix the *i*-th post-attention layernorms for both models to have weights of 1, by changing for both M_1 and M_2 :

$$(G_j^{(i)})'' = (G_j^{(i)})' \operatorname{diag}(\gamma_{\text{post-attn},i}), (U_j^{(i)})'' = (U_j^{(i)})' \operatorname{diag}(\gamma_{\text{post-attn},i})$$
$$(\gamma_{\text{post-attn},i})'^{(i)} = 1 \in \mathbb{R}^{1 \times d_{\text{emb}}}$$

Next, consider $V \in \mathbb{R}^{n \times 1 \times d_{\text{mlp}}}$, *n* random vectors of size $(1, d_{\text{mlp}})$ with values sampled from $\mathcal{N}(0, 1)$. We use *V* to sample "rotated" inputs to the MLP gate layers for models θ_1 and θ_2 as linear combinations of the rows:

$$X_1^{(i)} = V(G_1^{(i)})'', X_2^{(i)} = V(G_2^{(i)})'',$$

For this section, we assume matrix multiplications are batched. Then we have $X_1, X_2 \in \mathbb{R}^{n \times 1 \times d_{emb}}$ and squeeze them to be in $\mathbb{R}^{n \times d_{emb}}$. Now, X_1 and X_2 will match the rotations of their respective models, and we compute the cosine similarity of the activation matrices after feeding X_1 and X_2 through the gate projection layers of the *i*-th MLP blocks of θ_1 and θ_2 , respectively:

$$A = \operatorname{cossim}(X_1((G_1^{(i)})'')^T, X_2((G_2^{(i)})'')^T)$$

 $A_{jk} = \frac{(X_1((G_1^{(i)})'')^T)^{(j)} \cdot (X_2((G_2^{(i)})'')^T)^{(k)}}{\left\| (X_1((G_1^{(i)})'')^T)^{(j)} \right\| \left\| (X_2((G_2^{(i)})'')^T)^{(k)} \right\|}$

(This will be invariant to an embedding permutation because the sampled inputs will match the embedding permutation applied to the MLP matrices.)

We find a threshold between the values from independent model pairs vs. non-independent model pairs for this statistic. For independent model pairs, we find the statistic is generally above 0.40 (often higher), and for fine-tuned pairs it is closer to 0.20. The histogram in Figure 9 shows the distribution of the statistic computed for the first MLP layer for independent (blue) vs. non-independent (green) model pairs.

F MLP RETRAINING EXPERIMENTS

We retrain each of the 32 MLP layers by feeding in random inputs through the original MLP (gate, up, and down projection matrices.) We train for 10000 gradient steps using MSE loss and an Adam Optimizer with a learning rate of 0.001 and batch size of 5000. A sample learning curve is in Figure 10.

1349 The MLP retraining results for all 32 MLP layers of vicuna-7b-v1.5, compared with Llama-2-7b-hf are in Table 8, showing that the statistic is robust to retraining of all layers.

Figure 9: Histogram of median-max for model pairs

Figure 10: Learning curve for MLP retraining.

INDEPENDENT, IDENTICALLY DISTRIBUTED MODELS G

As described in Section 4.2.2, we ensure the validity of our tests on independently initialized, but very similar models. We randomly initialized a model with the OLMo (7B) architecture (Groeneveld et al., 2024) and

1390	MLP	Loss	$\log_{10}(\phi_{\text{MATCH}}^{(i)})$	MLP	Loss	$\log_{10}(\phi_{\text{MATCH}}^{(i)})$	MLP	Loss	$\log_{10}(\phi_{\text{MATCH}}^{(i)})$
1302	1	0.0048	-479	12	0.0060	-342	23	0.0043	-593
1002	2	0.012	-485	13	0.0058	-330	24	0.0047	-542
1393	3	0.0026	-614	14	0.0066	-323	25	0.0050	-497
1394	4	0.0034	-580	15	0.0063	-414	26	0.0051	-534
1395	5	0.0030	-523	16	0.0061	-394	27	0.0052	-482
1396	6	0.0035	-513	17	0.0063	-445	28	0.0061	-477
1397	7	0.0041	-533	18	0.0055	-515	29	0.0065	-433
1398	8	0.0042	-464	19	0.0045	-571	30	0.0098	-361
1399	9	0.0050	-439	20	0.0045	-512	31	2.313	-26.4
1400	10	0.0050	-377	21	0.0047	-595	32	0.0114	-174
1401	11	0.0060	-365	22	0.0043	-555			

Table 8: ϕ_{MATCH} on individual blocks between Llama-2-7b-hf and vicuna-7b-v1.5 after retraining MLP layers.

# train tokens	$\phi_{U^{(\ell)}}$	$\phi_{H^{(\ell)}}$	ϕ_{ℓ_2}	ϕ_{MATCH}	$\phi_{\rm JSD}$ (log)
100M	0.641	0.119	0.07	0.809	-11.81
1 B	0.789	0.483	0.06	0.443	-11.05
10B	0.707	0.277	0.93	0.343	-11.28
18B	0.819	0.141	0.64	0.027	-11.03

Table 9: Results for $\phi_{U^{(\ell)}}, \phi_{H^{(\ell)}}$, and ϕ_{MATCH} evaluated on training checkpoints between two independently-trained OLMo models.

1/10			
1412	Parameter name	Notation	$\phi_{U^{(\ell)}}$
1413	embedding	E	1.61e-16
1414	attention query matrix	$W_{0}^{(1)}$	6.17e-190
1415	attention key matrix	$W^{(1)}$	1 470 7
1416	attention key matrix	VV K	1.4/6-/
1417	attention value matrix	$W_{V}^{(1)}$	1.56e-114
1418	attention query matrix	$W_{Q}^{(1)}$	6.17e-190
1419	attention output matrix	$W_{\Omega}^{(1)}$	0.010
1420	MLP gate projection	$G^{(1)}$	0 517
1421	MI P up projection	$U^{(1)}$	0.716
1422	MI D down projection	$D^{(1)}$	6.032.80
1423	MLP down projection	$D^{(\gamma)}$	0.056-80

Table 10: $\phi_{U^{(\ell)}}$ on parameters from StripedHyena-Nous-7B and Mistral-7B-v0.1, some with low p-values.

trained it on the Dolma dataset (Soldaini et al. (2024)) for up to 18B tokens. We trained a second model with
independently chosen initialization and data ordering. By only changing initialization and data ordering (i.e.
the two main sources of randomness), we have two models that are essentially as similar as two independent
models can be.

1432 We keep checkpoints for both seeds after 100M, 1B, 10B, and 18B train tokens. We evaluate the statistics 1433 $\phi_{U^{(\ell)}}, \phi_{H^{(\ell)}}$, and ϕ_{MATCH} on the two models at each training checkpoint, reported in Table 9. We highlight that 1434 the p-values are broadly distributed, validating our tests can support independence even on two similarly-trained 1435 but independent models. We find that all test statistics work well, and there is also little difference in the results 1436 at different training checkpoints.

We emphasize that for these experiments, the models are **independent** as the seeds for parameter initialization are manually set to be different. This is in contrast to the MLP retraining experiments, where the models were not independent.

H ROBUST TEST STATISTIC EXPERIMENTAL RESULTS

H.1 STRIPED HYENA EXPERIMENTS

1445 We report $\phi_{U^{(\ell)}}$ on specific parameters from StripedHyena-Nous-7B and Mistral-7B-v0.1 shown in 1446 Table 10. We no longer only evaluate $\phi_{U^{(\ell)}}$ on MLP up projection matrices, so that we can investigate similarity 1447 in other parameters as well. These p-values no longer satisfy the independence requirement of Theorem 2, so 1448 we do not aggregate them with FISHER.

1449 1450

1440 1441

1442 1443

1444

1410

1411

1424

1425

1426 1427

H.2 MODEL BLOCK MATCHING

As described in 4.4.2, we can run ϕ_{MATCH} on all pairs of Transformer blocks between two models (of different architecture), as long as they share the GLU structure. In addition to the Llama 3 results, we report results of matched blocks on the Sheared-LLaMa and Nvidia-Minitron models, which are both pruned from Llama models.

1456 In particular, we were able to identify the specific Transformer blocks of θ_{8B} = Llama-3.1-8B whose 1457 weights were likely used in initializing θ_{3B} = Llama-3.2-3B and θ_{1B} = Llama-3.2-1B, as 1457 Meta reported that the Llama-3.2-3B and Llama-3.2-1B models were pruned from Llama-3.1-8B

reported in Tables II																
<i>ii</i>		1	2	3	4	5	6	7	8	9	10	11	12	13	14	1
$j: \phi_{\text{MATCH}}^{(i,j)}(\theta_{8B}, \theta_3)$	$_B) < 1e - 4$	4 1	2	3	4	5	6	7	8	9	10		11	12	13	1
i		1'	7 18	8 19	20	21	22	23	24	25	26	27	28	29	30	3
$j: \phi_{\text{MATCH}}^{(i,j)}(\theta_{8B}, \theta_{3})$	$_B) < 1e - 4$	1	16	5 17	18	19	20		21	22	23	24	25		26	2
Table 11: $\theta_{8B} =$	Llama-3.	1-8E	B bloc	ks mat	ched v	with θ_3	$_{3B} =$	Llam	ia-3	.2-3	B blo	cks us	$\sin \phi$	MATCH	[
i		1	2	3	4	5	6	7	8	9	10	11	12	13	14	1
$j: \phi_{\text{MATCH}}^{(i,j)}(\theta_{8B}, \theta_1)$	$_B) < 1e - 4$	4 1	2	3	4	5	6			7			8			
i		1'	7 18	3 19	20	21	22	23	24	25	26	27	28	29	30	3
$j: \phi_{\text{MATCH}}^{(i,j)}(\theta_{8B}, \theta_1)$	$_B) < 1e - 4$	1	10)		11										1
Table 12: $\theta_{8B} =$	Llama-3.	1-8E	B bloc	ks mat	ched v	with θ_1	$_{1B} =$	Llam	ia-3	.2-1	B blo	cks us	$\sin \phi$	MATCH	[
			:41. 0	2 Tran	oform	er blo	cks h	idden	dime	nsion	2560	and M	ALP d	imen	sion	
Next, we have Sheard	ed-LLaMa 2	.7 B , 1	with 3		storm		CK5, 11									
Next, we have Sheard 6912. All 32 blocks	ed-LLaMa 2 align with t	7B, [.] he 32	block	s of L	lama 2	2 7B, a	althou	igh bo	th hic	dden a	and M	LP d	imens	ions h	ave	
Next, we have Sheard 6912. All 32 blocks been reduced through	ed-LLaMa 2 align with th h pruning.	.7B, ⁴ he 32	block	s of L	lama 2	2 7B, a	althou	igh bo	oth hic	dden a	and M	LP d	imens	ions h	ave	
Next, we have Sheard 6912. All 32 blocks been reduced through <i>i</i>	ed-LLaMa 2 align with th h pruning.	.7B, [•] he 32	block	3	lama 2	2 7B, a	althou	ıgh bo 7 ∣	oth hic 8	iden a	and M	ILP d	imens	ions h 13	ave	15
Next, we have Sheard 6912. All 32 blocks been reduced through $\frac{i}{j:\phi_{MATCH}^{(i,j)}(\theta_1,\theta_2)}$	ed-LLaMa 2 align with the pruning. < 1e - 90	2.7B, he 32	2 2 2	2 11an	ama 2 4 4	$\frac{5}{5}$	6 6	1gh bo 7 7	$\frac{8}{8}$	1 den a 9 9 9	10 10 10	11 11 11	12 12 12	ions h 13 13	14 14	15 15
Next, we have Sheard 6912. All 32 blocks been reduced through $\frac{i}{j:\phi_{MATCH}^{(i,j)}(\theta_1,\theta_2)}$ i	ed-LLaMa 2 align with th h pruning. < 1e - 90	2.7B, ⁻ he 32	2 2 18	2 11an as of L 3 19	4 4 4 20	$\begin{array}{c c} 1 & \text{DIO}\\ 2 & 7\text{B}, \\ \hline 5 \\ \hline 5 \\ \hline 21 \\ \end{array}$	6 6 22	7 7 23	8 8 24	9 9 9 25	10 10 26	11 11 27	12 12 12 28	13 13 13 29	14 14 14 30	15 15 31
Next, we have Sheard 6912. All 32 blocks been reduced through $\frac{i}{j:\phi_{MATCH}^{(i,j)}(\theta_1,\theta_2)}$ $\frac{i}{j:\phi_{MATCH}^{(i,j)}(\theta_1,\theta_2)}$	ed-LLaMa 2 align with th h pruning. < 1e - 90 < 1e - 90	2.7B, he 32 1 1 17 17	2 2 18 18	2 11a s of L 3 3 19 19	4 4 4 20 20	5 5 21 21	6 6 22 22	7 7 7 23 23 23	8 8 24 24	9 9 9 25 25 25	10 10 10 26 26 26	11 11 27 27	12 12 28 28	13 13 29 29	14 14 30 30	15 15 31 31
Next, we have Sheard 6912. All 32 blocks been reduced through $\frac{i}{j:\phi_{MATCH}^{(i,j)}(\theta_1,\theta_2)}$ $\frac{i}{j:\phi_{MATCH}^{(i,j)}(\theta_1,\theta_2)}$ Table 13: $\theta_1 = Sh$	ed-LLaMa 2 align with th h pruning. < 1e - 90 < 1e - 90 eared-LL	2.7B, [•] he 32 1 1 17 17 aMa	2 2 18 18 1.3F	2 11an s of L 3 3 19 19 19	$\begin{array}{c c} $	$\begin{array}{c c} 5 \\ \hline 5 \\ \hline \\ 21 \\ \hline \\ 21 \\ \hline \\ 21 \\ \hline \\ \hline \\ cched \\ y \end{array}$	$\begin{array}{c} 6 \\ \hline 6 \\ \hline 22 \\ \hline 22 \\ \hline \end{array}$ with θ	$\begin{array}{c c} 7 \\ \hline 7 \\ \hline 23 \\ \hline 23 \\ \hline 23 \\ \hline 2 \\ \hline $	8 8 24 24 .1 ama	$\frac{9}{9}$ $\frac{25}{25}$ $\frac{3}{2}$	10 10 10 26 26 26 7B blo 50	11 11 11 27 27 27	12 12 28 28 38	$\begin{array}{c c} 13 \\ \hline 13 \\ \hline 29 \\ \hline 29 \\ \hline \\ \hline \\ \phi_{MATC} \end{array}$	14 14 14 30 30	15 15 31 31
Next, we have Sheard 6912. All 32 blocks been reduced through $\frac{i}{j:\phi_{MATCH}^{(i,j)}(\theta_1,\theta_2)}$ $\frac{i}{j:\phi_{MATCH}^{(i,j)}(\theta_1,\theta_2)}$ Table 13: $\theta_1 = Sh$	ed-LLaMa 2 align with th h pruning. < 1e - 90 < 1e - 90 eared-LL	2.7B, he 32 1 1 17 17 aMa	2 2 18 18 1.3F	2 11an s of L 3 3 19 19 19 3 blocl	$\frac{4}{4}$ $\frac{20}{20}$ $\frac{20}{30}$ $\frac{1}{30}$	$\begin{array}{c c} 5 \\ \hline 5 \\ \hline 21 \\ \hline 21 \\ \hline 21 \\ \hline \end{array}$	$\begin{array}{c} 6 \\ \hline 6 \\ \hline 22 \\ \hline 22 \\ \hline \end{array}$ with θ	$\begin{array}{c c} 7 & \\ \hline 7 & \\ \hline 7 & \\ \hline 23 & \\ \hline 23 & \\ \hline 22 & \\ 22 & \\ \hline 22 & \\ 22 & \\ \hline 22 & \\ 2$	8 8 24 24 .1 ama	$\begin{array}{c c} 9 \\ \hline 9 \\ \hline 9 \\ \hline 25 \\ \hline 25 \\ \hline a-2- \end{array}$	10 10 26 26 7B black	11 11 11 27 27 000000000000000000000000000000000000	12 12 28 28 38 38	ions h 13 13 29 29 Фматс	14 14 30 30 30	15 15 31 31
Next, we have Sheard 6912. All 32 blocks been reduced through $\frac{i}{j:\phi_{MATCH}^{(i,j)}(\theta_1,\theta_2)}$ $\frac{i}{j:\phi_{MATCH}^{(i,j)}(\theta_1,\theta_2)}$ Table 13: $\theta_1 = Sh$ Next, we have Sheard	ed-LLaMa 2 align with th h pruning. < 1e - 90 < 1e - 90 eared-LL	.7B, he 32 1 1 17 17 aMa	with 3 block $\begin{vmatrix} 2 \\ 2 \end{vmatrix}$ $\begin{vmatrix} 18 \\ 1.31 \end{vmatrix}$ with 2	2 11an s of L <u>3</u> <u>19</u> <u>19</u> <u>3</u> blocl 4 Tran	$\frac{4}{4}$ $\frac{20}{20}$ as mat	$\begin{array}{c c} 5 \\ \hline 5 \\ \hline 21 \\ \hline 21 \\ \hline 21 \\ \hline \end{array}$	6 6 22 22 with θ cks. h	$\frac{7}{7}$ $\frac{23}{23}$ $\frac{23}{22} = 1$ idden	8 8 24 24 24 3 1ama 3	$\frac{9}{9}$ $\frac{25}{25}$ $\frac{1}{25}$ nsion	10 10 10 26 26 7B bla 2048	11 11 11 27 27 27 ocks u	12 12 28 28 using of	ions h <u>13</u> <u>13</u> <u>29</u> <u>29</u> Фматс	14 14 14 30 30 CH	15 15 31 31
Next, we have Sheard 6912. All 32 blocks been reduced through $\frac{i}{j:\phi_{MATCH}^{(i,j)}(\theta_1,\theta_2)}$ $\frac{i}{j:\phi_{MATCH}^{(i,j)}(\theta_1,\theta_2)}$ Table 13: $\theta_1 = Sh$ Next, we have Sheard 5504.	ed-LLaMa 2 align with th h pruning. < 1e - 90 < 1e - 90 eared-LL ed-LLaMa 1	.7B, he 32 1 1 17 aMa .3B,	<pre>with 3 block 2 2 2 18 1.3F with 2</pre>	2 11an 3 0 1 3 1 19 1 19 3 5 block 4 Tran	$\begin{array}{c c} 4 \\ 4 \\ 20 \\ 20 \\ \hline 3cs mat \\ sform \\ \end{array}$	$\begin{array}{c c} 5 \\ \hline 5 \\ \hline 27B, a \\ \hline 5 \\ \hline 21 \\ \hline 21 \\ \hline a \\ \hline cched \\ v \\ aer \\ bloc \\ \hline \end{array}$	$\frac{6}{6}$ $\frac{22}{22}$ with θ cks, h	$\begin{array}{c c} 7 & \\ \hline 7 & \\ \hline 7 & \\ \hline 23 & \\ \hline 23 & \\ \hline 22 & \\ \hline \end{array}$ idden	8 8 24 24 24 alama	$\frac{9}{9}$ $\frac{25}{25}$ $\frac{1}{25}$ nsion	10 10 10 26 26 7B bla 2048	11 11 11 27 27 27 ocks u and N	12 12 28 28 38ing d	ions h 13 13 29 29 29 Фматс	14 14 14 30 30 30 30	15 15 31 31
Next, we have Sheard 6912. All 32 blocks been reduced through $\frac{i}{j:\phi_{MATCH}^{(i,j)}(\theta_1,\theta_2)}$ $\frac{i}{j:\phi_{MATCH}^{(i,j)}(\theta_1,\theta_2)}$ Table 13: $\theta_1 = Sh$ Next, we have Sheard 5504.	ed-LLaMa 2 align with th h pruning. < 1e - 90 < 1e - 90 eared-LL ed-LLaMa 1 i	.7B, he 32 1 1 17 aMa .3B,	with 3 block $\begin{vmatrix} 2 \\ 2 \\ 18 \\ 1.3F \\ with 2 \\ 1 \end{vmatrix}$	2 11an 3 0 L 3 1 19 1 19 3 19 3 19 4 Tran 2 1	$\begin{array}{c c} 3 \\ 4 \\ 4 \\ 4 \\ 20 \\ 20 \\ 20 \\ 3 \\ 4 \\ 5 \\ 5 \\ 7 \\ 3 \\ \end{array}$	$\begin{array}{c c} 5 & \\ \hline 5 & \\ \hline 5 & \\ \hline 21 & \\ \hline 21 & \\ \hline 21 & \\ \hline \\$	6 6 22 22 with θ cks, h 5	$\begin{array}{c c} 7 & \\ \hline 7 & \\ \hline 7 & \\ \hline 23 & \\ \hline 23 & \\ \hline 22 & = 1 \\ \hline 1dden \\ \hline 6 & \\ \end{array}$	8 8 8 24 24 24 1ama dime 7	$\frac{9}{9} \frac{25}{25} \frac{25}{25} \frac{25}{25} \frac{1}{25} \frac{1}{25$	10 10 10 26 26 7B 2048 9	11 11 11 11 27 27 27 0 and N 10	12 12 12 28 28 using of MLP do 11	ions h <u>13</u> <u>13</u> <u>29</u> 29 Фматс limens	14 14 14 30 30 30 30	15 15 31 31
Next, we have Sheard 6912. All 32 blocks been reduced through $\frac{i}{j:\phi_{MATCH}^{(i,j)}(\theta_1,\theta_2)}$ $\frac{i}{j:\phi_{MATCH}^{(i,j)}(\theta_1,\theta_2)}$ Table 13: $\theta_1 = Sh$ Next, we have Sheard 5504. $\frac{j:\phi_{MATCH}^{(i,j)}(\theta)}{j:\phi_{MATCH}^{(i,j)}(\theta)}$	ed-LLaMa 2 align with th h pruning. < 1e - 90 < 1e - 90 eared-LL ed-LLaMa 1 $\frac{i}{1, \theta_2} < 1e$.7B, .7B, .12 he 32 1 1 17 17 17 aMa .3B, .	with 3 block $ 2 2 2 18 18 1.3F$ with 2 $\frac{1}{1} 1 1 1$	$\begin{array}{c c} 2 & \text{Iran} \\ \hline 3 & \text{of } L \\ \hline 3 & \text{of } L \\ \hline 3 & \text{of } L \\ \hline 19 & \text{of } L \\ 10 &$	$\frac{4}{4}$ $\frac{20}{20}$ $\frac{20}{20}$ $\frac{3}{3}$	$\begin{array}{c c} 5 \\ \hline 5 \\ \hline \\ \hline 5 \\ \hline \\ 21 \\ \hline \\ 21 \\ \hline \\ 21 \\ \hline \\ 21 \\ \hline \\ 1 \\ \hline \\ 1 \\ \hline \\ 1 \\ \hline \\ 21 \\ \hline \\ 1 \\ 1$	$\begin{array}{c c} 6 \\ \hline 6 \\ \hline 22 \\ \hline 22 \\ \hline 22 \\ \hline \\ cks, h \\ \hline 5 \\ \hline 5 \\ \hline \end{array}$	$\begin{array}{c c} \hline 3 \\ \hline 7 \\ \hline 7 \\ \hline 7 \\ \hline 23 \\ \hline 23 \\ \hline 23 \\ \hline 22 \\ \hline 1 \\ \hline 1 \\ \hline 23 \\ \hline 2 \\ \hline 2 \\ \hline 2 \\ \hline 2 \\ \hline 1 $	8 8 24 24 24 24 1 ama dime 7 7	$\begin{array}{c c} 9 \\ \hline 9 \\ \hline 9 \\ \hline 25 \\ \hline 25 \\ \hline 25 \\ \hline a-2-\\ nsion\\ \hline 8 \\ \hline 8 \\ \hline 8 \\ \hline \end{array}$	10 10 26 26 7B 2048 9 10	11 11 27 27 27 ocks u and N 10 12	12 12 12 28 28 using MLP d	$\frac{13}{13}$ $\frac{29}{29}$ $\frac{29}{10}$ $\frac{12}{16}$	14 14 14 30 30 30	15 15 31 31
Next, we have Sheard 6912. All 32 blocks been reduced through $\frac{i}{j:\phi_{MATCH}^{(i,j)}(\theta_1,\theta_2)}$ $\frac{i}{j:\phi_{MATCH}^{(i,j)}(\theta_1,\theta_2)}$ Table 13: $\theta_1 = Sh$ Next, we have Sheard 5504. $\frac{j:\phi_{MATCH}^{(i,j)}(\theta_1,\theta_2)}{j:\phi_{MATCH}^{(i,j)}(\theta_1,\theta_2)}$	ed-LLaMa 2 align with th h pruning. < 1e - 90 < 1e - 90 eared-LL ed-LLaMa 1 $\frac{i}{1, \theta_2} < 1e$.7B, · he 32 1 1 1 17 17 aMa .3B, ·	with 3 block $\begin{vmatrix} 2 \\ 2 \\ 2 \end{vmatrix}$ $\begin{vmatrix} 18 \\ 1.31 \end{vmatrix}$ with 2 $\begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix}$	2 11an 3 0 L 3 1 19 19 19 3 block 4 Tran 2 2 2 1 14 1	$\begin{array}{c c} $	$\begin{array}{c c} 5 \\ \hline 5 \\ \hline 5 \\ \hline \\ 27B, a \\ \hline 5 \\ \hline \\ 21 \\ \hline \\ 21 \\ \hline \\ 21 \\ \hline \\ acched \\ v \\ aer \\ bloc \\ \hline \\ 4 \\ \hline \\ 4 \\ \hline \\ 16 \\ \hline \\ 16 \\ \hline \end{array}$	6 6 22 22 with θ cks, h 5 5	$\begin{array}{c c} 7 \\ \hline 7 \\ \hline 7 \\ \hline 23 \\ \hline 23 \\ \hline 22 \\ \hline 23 \\ \hline 22 \\ \hline 13 \\ \hline 18 \\ \hline 18 \\ \hline 18 \\ \hline \end{array}$	8 8 8 24 24 24 1 ama dime 7 7 10	$\frac{9}{9}$ $\frac{25}{25}$ $a-2-$ nsion $\frac{8}{8}$ $\frac{20}{25}$	10 10 10 26 26 7B blo 2048 9 10	11 11 11 27 27 and N 10 12	12 12 12 28 28 using MLP d 11 12	ions f $ \frac{13}{13} \\ \frac{29}{29} \\ \phi_{MATC} \\ \frac{12}{16} \\ \frac{12}{16} \\ \frac{12}{24} \\ \frac{12}{24$	14 14 14 30 30 CH	15 15 31 31
Next, we have Sheard 6912. All 32 blocks been reduced through $\frac{i}{j:\phi_{MATCH}^{(i,j)}(\theta_1,\theta_2)}$ $\frac{i}{j:\phi_{MATCH}^{(i,j)}(\theta_1,\theta_2)}$ Table 13: $\theta_1 = Sh$ Next, we have Sheard 5504. $\frac{j:\phi_{MATCH}^{(i,j)}(\theta_1,\theta_2)}{j:\phi_{MATCH}^{(i,j)}(\theta_1,\theta_2)}$	ed-LLaMa 2 align with th h pruning. $\overline{< 1e - 90}$ $eared-LL$ $ed-LLaMa 1$ $\frac{i}{1, \theta_2} < 1e$ $\frac{i}{1, \theta_2} < 1e$	1.7B, 1.7B	with 3 block $\begin{vmatrix} 2 \\ 2 \\ 18 \\ 1.31 \\ with 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 13 \\ 17 \\ \end{vmatrix}$	$\begin{array}{c c} 3 \\ 3 \\ 19 \\ 19 \\ 19 \\ 3 \\ 10 \\ 4 \\ 17 \\ 2 \\ 14 \\ 18 \\ 18 \\ 18 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	$\begin{array}{c c} 4 \\ 4 \\ 4 \\ 20 \\ 20 \\ 20 \\ 3 \\ 15 \\ 19 \\ 3 \\ 19 \\ 3 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	$\begin{array}{c c} 5 \\ \hline 5 \\ \hline 5 \\ \hline 27B, a \\ \hline 5 \\ \hline 21 \\ \hline 21 \\ \hline 21 \\ \hline 21 \\ \hline a \\ \hline ched \\ v \\ \hline a \\ \hline 4 \\ \hline 4 \\ \hline 16 \\ \hline 12 \\ \hline 20 \\ \hline 2 $	$\begin{array}{c c} 6 \\ \hline 6 \\ \hline 22 \\ \hline 22 \\ \hline 22 \\ \hline \\ with \theta \\ \hline 5 \\ \hline 5 \\ \hline 17 \\ \hline 21 \\ \hline 2 \\ \hline 21 \\ \hline 2 $	7 7 7 7 7 23 23 23 22 23 idden 6 6 18 12 22	8 8 8 24 24 24 24 3 alama 3 dime 7 7 1 19 2 25 2	9 9 9 25 25 25 $a-2 a$ nsion 8 8 a 20 22 27 22	10 10 10 26 26 26 26 26 27 blo 2048 9 10 21 28	11 11 11 27 27 27 ocks u and N 10 12 22 29	12 12 12 28 28 using 6 MLP 6 11 23 23 23 23	$\frac{13}{13}$ $\frac{13}{29}$ $\frac{29}{29}$ $\frac{12}{16}$ $\frac{12}{16}$ $\frac{24}{32}$	14 14 14 30 30 30 Sion	15 15 31 31
Next, we have Sheard 6912. All 32 blocks been reduced through $\frac{i}{j:\phi_{MATCH}^{(i,j)}(\theta_1,\theta_2)}$ $\frac{i}{j:\phi_{MATCH}^{(i,j)}(\theta_1,\theta_2)}$ Table 13: $\theta_1 = Sh$ Next, we have Sheard 5504. $\frac{j:\phi_{MATCH}^{(i,j)}(\theta_1)}{j:\phi_{MATCH}^{(i,j)}(\theta_1)}$	ed-LLaMa 2 align with th h pruning. $< 1e - 90$ $< 1e - 90$ $eared-LL$ $ed-LLaMa 1$ $\frac{i}{1, \theta_2} < 1e - \frac{i}{1, \theta_2} < 1e - \frac{1}{1, \theta_2} < 1e - \frac{1}$	1.7B, -32 1 1 17 17 17 aMa .3B, -5 -5	with 3 block $ 2 2 2 2 18 1.3F 1.3F $	2 11an 3 0 L 3 1 19 19 19 19 3 block 4 Tran 2 1 2 1 14 1 18 1 19 1	$\begin{array}{c c} 4 \\ 4 \\ 4 \\ 20 \\ 20 \\ 3 \\ 15 \\ 19 \\ 3 \\ 15 \\ 19 \\ 3 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	$\begin{array}{c c} 5 \\ \hline 5 \\ \hline 5 \\ \hline \\ 27B, a \\ \hline 5 \\ \hline \\ 21 \\ \hline \\ 21 \\ \hline \\ 21 \\ \hline \\ 21 \\ \hline \\ ached y \\ \hline ac$	$\begin{array}{c c} 6 \\ \hline 6 \\ \hline 22 \\ \hline 22 \\ \hline 22 \\ \hline \\ 32 \\ \hline \\ 5 \\ \hline \\ 5 \\ \hline \\ 17 \\ \hline \\ 21 \\ \hline 2$	$\begin{array}{c c} 7 \\ \hline 7 \\ \hline 7 \\ \hline 7 \\ \hline 23 \\ \hline 23 \\ \hline 23 \\ \hline 22 \\ \hline 18 \\ \hline 18 \\ \hline 12 \\ \hline 22 \\ \hline 2 \\ 2 \\$	8 8 8 24 24 24 1 ama dime 7 19 25	9 9 9 25 25 25 $a-2 a$ nsion 8 8 20 27 2	10 10 10 26 26 7B 2048 9 10 2048 21 28 21	11 11 11 11 27 27 27 27 ocks u and N 10 12 22 2 29 2	12 12 12 28 28 using MLP d 11 12 23 23 23 23 31	$\frac{13}{13}$ $\frac{13}{29}$ $\frac{29}{29}$ $\frac{12}{16}$ $\frac{12}{16}$ $\frac{24}{32}$	14 14 14 30 30 30	15 15 31 31
Next, we have Sheard 6912. All 32 blocks been reduced through $\frac{i}{j:\phi_{MATCH}^{(i,j)}(\theta_1,\theta_2)}$ $\frac{i}{j:\phi_{MATCH}^{(i,j)}(\theta_1,\theta_2)}$ Table 13: $\theta_1 = Sh$ Next, we have Sheard 5504. $\frac{j:\phi_{MATCH}^{(i,j)}(\theta_1)}{j:\phi_{MATCH}^{(i,j)}(\theta_1)}$ Table 14: $\theta_1 = Sh$	ed-LLaMa 2 align with th h pruning. $\hline < 1e - 90$ $eared-LL$ $ed-LLaMa 1$ $\frac{i}{1, \theta_2} < 1e$ $\frac{i}{1, \theta_2} < 1e$ $eared-LL$	1.7B, 1.7B	with 3 block $\begin{vmatrix} 2 \\ 2 \\ 2 \\ 18 \\ 1.3F \\ with 2 \\ 1 \\ 1 \\ 1 \\ 17 \\ 1.3F \\ 1.3F$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} 4 \\ 4 \\ 4 \\ 20 \\ 20 \\ 20 \\ 3 \\ 15 \\ 19 \\ 3 \\ 3 \\ 3 \\ 3 \\ 15 \\ 19 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$	$\begin{array}{c c} 5 \\ \hline 5 \\ \hline 5 \\ \hline \\ 27B, a \\ \hline 5 \\ \hline \\ 21 \\ \hline \\ a \\ ched y$	$\begin{array}{c c} 6 \\ \hline 6 \\ \hline 22 \\ \hline 22 \\ \hline 22 \\ \hline 22 \\ \hline \\ with \theta \\ \hline 5 \\ \hline 17 \\ \hline 21 \\ \hline 2 \\ \hline 21 \\ \hline 2 \\ \hline 2 \\ \hline 4 \\ \hline 7 \\ \hline 7$	7 7 7 7 23 23 23 23 22 23 idden 6 6 18 122 22 22 22 22 22	8 8 24 24 24 24 1ama 3 dime 7 7 1 19 2 25 2 1ama	9 9 25 25 25 25 $a-2 a$ nsion 8 8 20 27 22 $a-2-$	10 10 10 26 26 7B bl 2048 9 10 2048 9 21 28 27 7B bl	11 11 11 11 27 27 ocks t and N 10 12 22 29 20 cocks t	12 12 12 28 28 31 31	$\frac{13}{13}$ $\frac{13}{29}$ $\frac{29}{29}$ $\frac{12}{16}$ $\frac{12}{16}$ $\frac{24}{32}$ $\frac{12}{9}$	14 14 14 30 30 30	15 15 31 31
Next, we have Sheard 6912. All 32 blocks been reduced through $\frac{i}{j:\phi_{MATCH}^{(i,j)}(\theta_1,\theta_2)}$ $\frac{i}{j:\phi_{MATCH}^{(i,j)}(\theta_1,\theta_2)}$ Table 13: $\theta_1 = Sh$ Next, we have Sheard 5504. $\frac{j:\phi_{MATCH}^{(i,j)}(\theta_1)}{j:\phi_{MATCH}^{(i,j)}(\theta_1)}$ Table 14: $\theta_1 = Sh$	ed-LLaMa 2 align with th h pruning. $\overline{< 1e - 90}$ $\overline{< 1e - 90}$ eared-LL ed-LLaMa 1 $\frac{i}{1, \theta_2) < 1e}$ $\frac{i}{1, \theta_2) < 1e}$ eared-LL	1.7B, 1.7B	with 3 block $\begin{vmatrix} 2 \\ 2 \\ 2 \\ 18 \\ 1.31 \\ 1.31 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1.31 \\ 1.31 \\ 1.31 \end{vmatrix}$	2 11an 3 0 L 3 1 19 19 19 19 3 block 4 Tran 2 2 14 18 3 block	$\begin{array}{c c} 4 \\ 4 \\ 4 \\ 20 \\ 20 \\ 20 \\ 3 \\ 15 \\ 19 \\ cs mat \end{array}$	$\begin{array}{c c} 5 \\ \hline 5 \\ \hline 5 \\ \hline \\ 27B, a \\ \hline \\ 27B, a \\ \hline \\ 21 \\ \hline \\ ached y \\ \hline \\ 4 \\ \hline \\ 4 \\ \hline \\ 20 \\ \hline \\ 2 \\ ached y \\ \hline \end{array}$	$\begin{array}{c c} 6 \\ \hline 6 \\ \hline 22 \\ \hline 22 \\ \hline 22 \\ \hline \\ with \theta \\ \hline \\ 5 \\ \hline \\ 5 \\ \hline \\ 17 \\ \hline \\ 21 \\ \hline \\ 2 \\ \hline \\ 21 \\ \hline \\ 2 \\ \hline \\ with \theta \\ \hline \end{array}$	7 7 7 23 23 23 22 23 22 23 idden 6 6 18 22 22 22 22 22 22 22 22	8 8 8 24 24 24 24 3 alama 3 dime 7 7 25 alama 3	9 9 9 25 25 25 $a-2 a-2-$ nsion 8 8 20 27 2 $a-2 20$	10 10 26 26 7B blo 2048 9 10 21 28 27 7B blo	11 11 11 11 27 27 27 27 ocks u and N 10 12 22 2 29 2 ocks u	12 12 28 28 using MLP d 11 23 23 31 sing	$\frac{13}{13}$ $\frac{13}{29}$ $\frac{29}{29}$ $\frac{12}{29}$ $\frac{12}{16}$ $\frac{12}{32}$ $\frac{24}{32}$	14 14 14 30 30 CH	15 15 31 31
Next, we have Sheard 6912. All 32 blocks been reduced through $\frac{i}{j:\phi_{MATCH}^{(i,j)}(\theta_1,\theta_2)}$ $\frac{i}{j:\phi_{MATCH}^{(i,j)}(\theta_1,\theta_2)}$ Table 13: $\theta_1 = Sh$ Next, we have Sheard 5504. $\frac{j:\phi_{MATCH}^{(i,j)}(\theta_1)}{j:\phi_{MATCH}^{(i,j)}(\theta_1)}$ Table 14: $\theta_1 = Sh$ Finally, we compare model by reducing fr	ed-LLaMa 2 align with th h pruning. $\overline{< 1e - 90}$ $\overline{< 1e - 90}$ eared-LL ed-LLaMa 1 $\frac{i}{1, \theta_2} < 1e$ $\frac{i}{1, \theta_2} < 1e$ eared-LL Llama 3.1 com 32 to 16	1.7B, 1.7B	with 3 block $\begin{vmatrix} 2 \\ 2 \\ 18 \\ 1.31 \\ 1.31 \\ 1.31 \\ 11 \\ 13 \\ 17 \\ 1.31 $	$\begin{vmatrix} 2 & 11a \\ s & of L \\ \hline s & of L \\ \end{vmatrix}$ $\begin{vmatrix} 3 & \\ 19 & \\ 19 & \\ 19 & \\ 19 & \\ 19 & \\ 19 & \\ 3 & \\ blocl \\ 4 & Tran \\ 2 & \\ 2 & \\ 14 & \\ 18 & \\ 3 & \\ blocl \\ vidia \\ er & bloc \\ \end{vmatrix}$	$\frac{4}{4}$ $\frac{4}{4}$ $\frac{20}{20}$ $\frac{20}{20}$ $\frac{3}{3}$ $\frac{15}{19}$ $\frac{15}{12}$ $\frac{15}{19}$ $\frac{11}{2}$	$\begin{array}{c c} 5 & \\ \hline 2 & 7B, \\ \hline 2 & 7B, \\ \hline 2 & \hline 5 & \\ \hline & 5 & \\ \hline & 21 & \\ \hline &$	$\begin{array}{c c} 6 \\ \hline \\ 6 \\ \hline \\ 22 \\ \hline \\ 22 \\ \hline \\ 22 \\ \hline \\ with \theta \\ \hline \\ 5 \\ \hline \\ 17 \\ \hline \\ 21 \\ \hline \\ 21 \\ \hline \\ 21 \\ \hline \\ 3 \\ 1 \\ -1 \\ \hline \\ able to \\ \hline \\ 3 \\ 1 \\ -1 \\ \hline \\ able to \\ \hline \\ 3 \\ 1 \\ -1 \\ \hline \\ able to \\ \hline \\ 3 \\ 1 \\ -1 \\ \hline \\ able to \\ \hline \\ 3 \\ 1 \\ -1 \\ \hline \\ able to \\ \hline \\ 3 \\ -1 \\ \hline \\ able to \\ \hline \\ 3 \\ -1 \\ \hline \\ able to \\ \hline \\ 3 \\ -1 \\ \hline \\ able to \\ \hline \\ 3 \\ -1 \\ \hline \\ able to \\ \hline \\ 3 \\ -1 \\ \hline \\ able to \\ \hline \\ 3 \\ -1 \\ \hline \\ able to \\ \hline \\ 3 \\ -1 \\ \hline \\ able to \\ \hline \\ 3 \\ -1 \\ \hline \\ able to \\ \hline \\ 3 \\ -1 \\ \hline \\ able to \\ \hline \\ 3 \\ -1 \\ \hline \\ able to \\ \hline \\ $	igh bo 7 7 23 23 23 23 23 23 23 23	8 8 8 24 24 24 24 3 alama 3 dime 7 7 25 25 2 alama 3 tron 3	9 9 9 25 25 25 $a-2-$ nsion 8 8 20 27 27 27 $a-2 a-2 a-2 a-4B-$ ne like	10 10 10 26 26 7B blo 2048 9 10 2048 9 21 28 21 28 21 28 21 28 21 28 21 28 2048	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12 12 12 28 28 using MLP d 11 23 23 31 sing ase, base,	ions fi $\frac{13}{13}$ $\frac{29}{29}$ $\frac{29}{7}$ $\frac{12}{16}$ $\frac{12}{16}$ $\frac{24}{32}$ $\frac{24}{7}$ $\frac{32}{7}$	14 14 14 30 30 30 CH Sion	15 15 31 31
Next, we have Sheard 6912. All 32 blocks been reduced through $\frac{i}{j:\phi_{MATCH}^{(i,j)}(\theta_1,\theta_2)}$ $\frac{i}{j:\phi_{MATCH}^{(i,j)}(\theta_1,\theta_2)}$ Table 13: $\theta_1 = Sh$ Next, we have Sheard 5504. $\frac{j:\phi_{MATCH}^{(i,j)}(\theta_1,\theta_2)}{j:\phi_{MATCH}^{(i,j)}(\theta_1,\theta_2)}$ Table 14: $\theta_1 = Sh$ Finally, we compare model by reducing fr	ed-LLaMa 2 align with th h pruning. $\hline < 1e - 90$ $eared-LL$ $ed-LLaMa 1$ $\frac{i}{1, \theta_2} < 1e$ $\frac{i}{1, \theta_2} < 1e$ $eared-LL$ Lama 3.1 rom 32 to 16	.7B, he 32 1 1 1 17 aMa .3B, -5 aMa 8B w 7Tran	with 3 block $\begin{vmatrix} 2 \\ 2 \\ 2 \\ 18 \\ 1.31 \\ 1.$	$\begin{vmatrix} 2 \\ 3 \\ 3 \\ \end{vmatrix}$ $\begin{vmatrix} 3 \\ 3 \\ \end{vmatrix}$ $\begin{vmatrix} 19 \\ 19 \\ 19 \\ \end{vmatrix}$ $\begin{vmatrix} 19 \\ 19 \\ 19 \\ \end{vmatrix}$ $\begin{vmatrix} 19 \\ 19 \\ 19 \\ \end{vmatrix}$ $\begin{vmatrix} 10 \\ 19 \\ 19 \\ \end{vmatrix}$ $\begin{vmatrix} 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $	$\frac{4}{4}$ $\frac{4}{4}$ $\frac{20}{20}$ $\frac{20}{20}$ $\frac{3}{3}$ $\frac{15}{19}$ $\frac{15}{20}$ $\frac{15}{19}$ $\frac{1}{20}$ $\frac{1}{20}$	$\begin{array}{c c} 5 \\ \hline 5 \\ \hline 5 \\ \hline 27B, a \\ \hline 5 \\ \hline 21 \\ \hline $	$\begin{array}{c c} 6 \\ \hline 6 \\ \hline 22 \\ \hline 22 \\ \hline 22 \\ \hline 22 \\ \hline \\ with \theta \\ \hline 5 \\ \hline 17 \\ \hline 21 \\ \hline 21 \\ \hline 2 \\ \hline 21 \\ \hline 2 \\ \hline 21 \\ \hline 2 \\ \hline$	$\begin{array}{c c} \hline \\ \hline $	8 8 24 24 24 24 24 24 alama dime 7 25 25 2 alama trong trong 10	9 9 25 25 25 25 25 25 27 20 27 27 27 27 27 27 27 21 21 227 21 227 21 21 21 21 21 21 22 21 <	10 10 26 26 26 7B bl 2048 9 10 2048 9 21 28 21 28 21 28 21 28 21 28 21 28 2048	11 11 11 11 27 27 27 27 ocks u and N 10 12 22 22 29 22 cocks u th-Eared b 12	12 12 12 28 28 28 using 31 23 23 31 3 sase, olocks	ions h 13 13 29 29 29 ϕ_{MATC} 12 16 24 32 ϕ_{MATC} a pru	14 14 14 30 30 30 30	15 15 31 31

Figure 11: Up projection activations aligned from first MLPs of Llama 3.1 8B and Llama 3.2 3B.

H.2.1 ACTIVATIONS MATCHING

1536 By using ϕ_{MATCH} on two MLPs from two models, we can examine the permutation π returned from just the gate or up projection matching, MATCH $(H_{\theta_1,up}^{(\ell)}, H_{\theta_2,up}^{(\ell)})$ from Section 3.3. This returns which rows of the activation matrices are best aligned. For pruned models where dimensions are reduced, this can provide insight into how activation rows were selected for the smaller MLPs.

The plot in Figure 11 shows the activation rows from the up projection matrix $U^{(1)}$ of the first MLP of Llama 3.2 3B (8192 total) (on the x-axis) matched with the rows from the up projection matrix of the first MLP of Llama 3.1 8B (out of 14336 total) (on the y-axis). In particular, we can see that the activations are not simply the first the first 8192 rows pruned from the 14336-dimensional MLP, rather they appear to be distributed across all 14336 rows.

H.3 DISTILLING MODELS WITHOUT A GLU MLP

Finally, we show it is possible to extend the robust statistic ϕ_{MATCH} to models that do not have a GLU MLP as well. In particular, we distill any other MLP or feedforward network with a GLU MLP. In principle, one could replace any series of layers mapping inputs to activations with a GLU MLP from Definition 3. We reinitialize the layers with a GLU MLP, G, U, D. Then with the same setup as the MLP retraining from Section 4.2.1, we sample inputs and compute the outputs from the original model layers, and minimize MSE loss over the outputs.

We retrain the first MLP of both manupande21/GPT2_PMC and openai-community/gpt2, where the former is a finetune of the latter (Radford et al. (2019)). These models use a standard 2-layer FFN (Example 1) rather than a GLU MLP. After 10K training steps, we run $\phi_{MATCH}^{(1)}$ on the first MLP, which yields a p-value of 7.955e-83, showing that ϕ_{MATCH} may be extended to other architectures as well via distilling.

- - .