
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AUTOADVEXBENCH:
BENCHMARKING AUTONOMOUS EXPLOITATION
OF ADVERSARIAL EXAMPLE DEFENSES

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce AutoAdvExBench, a benchmark to evaluate if large language mod-
els (LLMs) can autonomously exploit defenses to adversarial examples. We be-
lieve our benchmark will be valuable to several distinct audiences. First, it mea-
sures if models can match the abilities of expert adversarial machine learning re-
searchers. Second, it serves as a challenging evaluation for reasoning capabili-
ties that can measure LLMs’ ability to understand and interact with sophisticated
codebases. And third, since many adversarial examples defenses have been bro-
ken in the past, this benchmark allows for evaluating the ability of LLMs to re-
produce prior research results automatically. We then benchmark the ability of
current LLMs to solve this benchmark, and find most are unable to succeed. Our
strongest agent, with a human-guided prompt, is only able to successfully generate
adversarial examples on 6 of the 51 defenses in our benchmark. This benchmark
is publicly accessible at redacted for review.

1 INTRODUCTION

Language models are traditionally evaluated on knowledge-based tasks like MMLU (Hendrycks
et al., 2020) and reasoning tasks like GPQA (Rein et al., 2023). However, state-of-the-art models
have outgrown the usefulness of many of these benchmarks, as they now exhibit capabilities beyond
text understanding that require novel benchmarks (Jimenez et al., 2023). For example, language
models can now be used as agents that interact with an environment, plan their actions, test their
own outputs and refine their responses independently (Yang et al., 2024; Yao et al., 2022).

These advanced capabilities drive the need for evaluating capabilities beyond simple reasoning tasks,
and towards potential applications of these models, such as their ability to solve security-critical
tasks independently (e.g. penetration testing (Happe & Cito, 2023)). Towards this end, we introduce
AutoAdvExBench, a challenging but tractable benchmark for both AI security and AI agents. Au-
toAdvExBench evaluates the ability of large language models to autonomously generate exploits on
adversarial example defenses. Specifically, our benchmark consists of 51 defense implementations
from 37 papers published in the past decade, making it the largest collection of defenses ever studied
in one analysis. When solving this benchmark, we provide LLM agents with the paper detailing the
defense method and its corresponding implementation. The benchmark evaluates LLMs’ ability to
construct adversarial examples that bypass these defenses.

We believe AutoAdvExBench has broad interest beyond just measuring the security capabilities of
LLMs. For instance, it is a valuable benchmark for software engineering progress, as it evaluates
LLMs’ ability to reason over large, unstructured codebases. It also measures progress in research
automation and reproducibility, as most of these defenses have been exploited by researchers in the
past. Finally, it serves as a proxy to measure the growing concern of potential attacks mounted be-
tween competing LLM agents—whether intentional or not (Anwar et al., 2024). Since constructing
adversarial examples for image classifiers is significantly simpler than jailbreaking language models,
this task provides a lower bound for LLMs’ ability to exploit other AI systems.

Finally, we evaluate the efficacy of current state-of-the-art LLMs at solving our benchmark, and find
that AutoAdvExBench is (at present) challenging. In the best configuration, a human-guided agentic
LLM only generates adversarial examples for 11% of the defenses.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Authors Title Year
Papernot et al. (2015) Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks 2015
Madry et al. (2017) Towards Deep Learning Models Resistant to Adversarial Attacks 2017
Xu et al. (2017) Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks 2017
Meng & Chen (2017) MagNet: a Two-Pronged Defense against Adversarial Examples 2017
Kannan et al. (2018) Adversarial Logit Pairing 2018
Ma et al. (2018) Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality 2018
Dhillon et al. (2018) Stochastic Activation Pruning for Robust Adversarial Defense 2018
Buckman et al. (2018) Thermometer encoding: One hot way to resist adversarial examples 2018
Chen et al. (2019) Improving Adversarial Robustness via Guided Complement Entropy 2019
Pang et al. (2019) Rethinking Softmax Cross-Entropy Loss for Adversarial Robustness 2019
Hendrycks et al. (2019) Using Pre-Training Can Improve Model Robustness and Uncertainty 2019
Zhang et al. (2019) Theoretically Principled Trade-off between Robustness and Accuracy 2019
Sitawarin & Wagner (2019) Defending Against Adversarial Examples with K-Nearest Neighbor 2019
Shan et al. (2019) Gotta Catch ’Em All: Using Honeypots to Catch Adversarial Attacks on Neural Networks 2019
Raff et al. (2019) Barrage of random transforms for adversarially robust defense 2019
Wu et al. (2020) Adversarial Weight Perturbation Helps Robust Generalization 2020
Fu et al. (2020) Label Smoothing and Adversarial Robustness 2020
Sen et al. (2020) EMPIR: Ensembles of Mixed Precision Deep Networks for Increased Robustness Against Adversarial Attacks 2020
Wang et al. (2020) Improving Adversarial Robustness Requires Revisiting Misclassified Examples 2020
Xiao et al. (2020) Enhancing Adversarial Defense by k-Winners-Take-All 2020
Alfarra et al. (2021) Combating Adversaries with Anti-Adversaries 2021
Wu et al. (2021) Attacking Adversarial Attacks as A Defense 2021
Qian et al. (2021) Improving Model Robustness with Latent Distribution Locally and Globally 2021
Yoon et al. (2021) Adversarial purification with Score-based generative models 2021
Shi et al. (2021) Online Adversarial Purification based on Self-Supervision 2021
Mao et al. (2021) Adversarial Attacks are Reversible with Natural Supervision 2021
Kang et al. (2021) Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks 2021
Debenedetti et al. (2022) A Light Recipe to Train Robust Vision Transformers 2022
Lorenz et al. (2022) Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness? 2022
Wang et al. (2023) New Adversarial Image Detection Based on Sentiment Analysis 2023
Frosio & Kautz (2023) The Best Defense is a Good Offense: Adversarial Augmentation against Adversarial Attacks 2023
Cui et al. (2023) Decoupled Kullback-Leibler Divergence Loss 2023
Li & Spratling (2023) Improved Adversarial Training Through Adaptive Instance-wise Loss Smoothing 2023
Chen et al. (2023) Stratified Adversarial Robustness with Rejection 2023
Chang et al. (2023) BAARD: Blocking Adversarial Examples by Testing for Applicability, Reliability and Decidability 2023
Diallo & Patras (2024) Sabre: Cutting through adversarial noise with adaptive spectral filtering and input reconstruction 2024

Table 1: The 37 defense papers included in our benchmark constitute the largest evaluation dataset of
reproducible defenses. We include defenses that are diverse, and avoid considering many defenses
that repeat the same general defense approach with slight improvements.

2 BACKGROUND

2.1 LARGE LANGUAGE MODEL EVALUATIONS

Benchmarking language models is a challenging task for many reasons. Unlike classical machine
learning tasks that measure the accuracy of some classifier on a specific test set, language models
are meant to be “general purpose”. This means that there is often a difference between the training
objective (reduce loss when predicting the next token), and testing objective (“be helpful”).

As a result, LLMs are often benchmarked on generic tasks that serve as a proxy for overall model
capabilities. Yet, the rapid advancement of LLM capabilities makes it difficult to design bench-
marks that stand the test-of-time. Early language understanding evaluations such as GLUE (Wang,
2018) and SuperGLUE (Wang et al., 2019), were effectively solved within a year of their intro-
duction (Raffel et al., 2020; Chowdhery et al., 2022). Similarly, MMLU (a collection of multiple-
choice questions (Hendrycks et al., 2020)) has seen performance increased from 43% (marginally
above random guessing) to 90% (surpassing human performance) in just three years (OpenAI). Even
datasets specifically designed to address these challenges and evaluate more advanced knowledge,
such as GPQA (Rein et al., 2023), have progressed remarkably quickly. In November 2023, GPT-
4 achieved a (then) state-of-the-art accuracy of 39% on GPQA. Less than a year later, OpenAI’s
o1-preview model reached 77% accuracy, outperforming human domain experts (OpenAI).

To make matters worse, since LLMs are trained on a large fraction of the public Internet, it is chal-
lenging to distinguish performance gains due to improved capabilities from unintentional leakage of
benchmarks into a model’s training set (Deng et al., 2023a; Golchin & Surdeanu, 2023).

Agentic benchmarks. For all of these reasons, recent benchmarks have shifted focus from evalu-
ating models on specific (often multiple-choice) questions to measuring their ability to solve open-
ended tasks like software engineering. For example, SWE-Bench (Jimenez et al., 2023) measures
a model’s ability to independently update a codebase to solve GitHub issues; CORE-Bench (Siegel

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

et al., 2024) measures the ability of a model to reproduce research code; AgentBench (Liu et al.,
2023) benchmarks how agentic LLMs perform in a suite of environments that range from an OS
to a digital card game. WebArena (Zhou et al., 2023) evaluates models’ interactions with realistic
websites to complete tasks; and AgentDojo (Debenedetti et al., 2024) benchmarks whether models
can solve complex tasks in realistic adversarial environments (e.g. handling an e-mail client).

Security benchmarks. Although there are several recent benchmarks for open-ended security
tasks (Deng et al., 2023b; Shao et al., 2024; Zhang et al., 2024; Fang et al., 2024; Bhatt et al.,
2024), these rely on simplified environments that have well-defined solutions, like capture-the-flag
challenges. These benchmarks simplify some of the common difficulties that LLMs will face when
interacting with real-world environments (e.g. poorly documented and written codebases) or when
reproducing research (e.g. relating details in academic papers to specific implementations).

2.2 ADVERSARIAL EXAMPLES DEFENSES

Our benchmark will focus on so-called adversarial examples. For an image classifier f , an adversar-
ial example is an image x belonging to a class y to which we added a carefully crafted perturbation
δ (usually of `p norm bounded by some threshold ε) so that the classifier f misclassifies the image
with a class ŷ 6= y. That is, f(x+ δ) = ŷ.

A defense to adversarial examples is a classifier f̂ that is designed to correctly classify any image
x + δ. Most defenses follow one of three common approaches: 1) they are explicitly trained to
classify adversarial examples correctly (Madry et al., 2017; Papernot et al., 2015), 2) they employ
a separate classifier to detect whether an image is an adversarial example and reject it (Sitawarin &
Wagner, 2019; Xu et al., 2017), or 3) they apply some form of “purification” to the input image that
aims at removing the perturbation δ at inference time (Li & Li, 2017; Guo et al., 2017).

3 AUTOADVEXBENCH

Overview. AutoAdvExBench evaluates the ability of LLMs to automatically implement adversar-
ial attack algorithms that break defenses designed to be robust to adversarial examples. The LLM
is provided a description of the defense (e.g., the paper that introduces it), an implementation of the
defense (e.g., from the original author’s code release, or a re-implementation), and must generate a
program that outputs adversarial examples that evade the defense.

3.1 MOTIVATION

Before describing our benchmark in detail, we begin with a motivation for why we believe this
benchmark is worth constructing and analyzing.

Difficulty. Benchmarks should be appropriately difficult to warrant further study. We believe au-
tonomously breaking adversarial example defenses is of an appropriate difficulty level for current
models. This is because analyzing the robustness of adversarial example defenses is challenging
even for expert researchers. For example, over thirty peer-reviewed and published adversarial ex-
ample defenses have been shown to be ineffective under subsequent analysis (Carlini & Wagner,
2017a; Tramer et al., 2020; Croce et al., 2022; Carlini, 2020; 2023).

And yet breaking adversarial example defenses is typically viewed as much easier than breaking
“traditional” security systems, and within reach of many machine learning researchers. To illustrate,
the academic community typically does not see a break of any one individual defense as a “research
contribution”; instead, published attack research tends to identify new failure modes that break many
(e.g., eight Athalye et al. (2018), nine Croce et al. (2022), ten Carlini & Wagner (2017a), or thirteen
Tramer et al. (2020)) defenses at the same time. And so we believe that breaking adversarial example
defenses is a hard, but not intractably hard, challenge for language models today.

Security relevance. Our primary motivation for constructing this benchmark is to evaluate to what
extent it may be possible to automate security tasks with LLMs. AutoAdvExBench measures LLMs’

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

612,495
Papers on arXiv
cs.LG/AI/ML/CR

11,040
Adversarial ML

Papers

1,652
AdvEx

Defense Papers

211
Defenses with
Code Available

37
Reproducible

DefensesNaive
Bayes

LLM Manual Manual

Figure 1: We collect 51 defense implementations by crawling arXiv papers, filtering to just those
on adversarial machine learning using a simple Naive Bayes classifier, further filtering this down to
a set of 1,652 potential defenses to adversarial examples by few-shot prompting GPT-4o, manually
filtering this down to defenses with public implementations, and further manually filtering this down
to 37 unique reproducible papers. Because some papers describe multiple defenses, and some papers
are implemented multiple times, this increases slightly to 51 total defense implementations.

ability to understand a complex system (often made up of several components), identify vulnerabil-
ities, and automatically exploit them through a coding interface.

Messiness. The code we study here is deliberately “messy”. When performing attacks on real-
world systems, code is rarely presented in a clean, minimal format ready for study by the analyst.
This is especially true for research codebases since they are not designed to be used in a production
environment, and are often less documented.

Mechanistic verifiability. Solutions in this benchmark can be automatically evaluated by check-
ing whether adversarial attacks generated by the LLM can effectively fool the target defense. This
evaluation avoids common problems with automated evaluations that rely on other LLMs to judge
solutions (Zheng et al., 2023).

Broader relevance to utility and safety of AI agents. We believe AutoAdvExBench will be
valuable beyond its direct application to adversarial defense exploitation. Its potential extends to
measuring progress in software engineering, research reproduction, and as a warning signal for
capabilities in automatic AI exploitation:

1. Software engineering: successfully breaking these defenses requires models to process
large and diverse research codebases and extend them in novel ways.

2. Research reproduction: models must understand, reproduce and improve upon previous
research artifacts.

3. Automatic AI exploitation: crafting adversarial examples is a simple security task that
serves as a lower bound for LLMs’ ability to independently exploit other AI systems. Such
capabilities have been speculated for powerful AI systems (Hendrycks et al., 2023), but in
order for this to be even remotely possible, AI models should first be able to understand
and exploit comparatively simpler systems. We hope that AutoAdvExBench can act as an
early indicator that models have developed some of the necessary capabilities for exploiting
advanced AI systems.

Smooth measure of capability advancements. A key advantage of our benchmark is its ability
to provide a more fine-grained measurement of success compared to many other security capability
benchmarks. Most current benchmarks often rely on binary success or failure metrics, such as the
number of vulnerabilities found or the number of challenges solved. In contrast, AutoAdvExBench
offers a continuous measurement of the attack success rate for adversarial examples on each defense,
ranging from 0% to 100%. This allows us to discern subtle differences in model capabilities, as the
benchmark can capture intermediate solutions and incremental improvements.

3.2 DESIGN METHODOLOGY

We aim to build the largest collection of adversarial examples defenses studied in a single research
paper. Towards that end, we begin by crawling (almost) all 612,495 papers uploaded to arXiv in
the past ten years, and training a simple Naive Bayes model to detect papers related to the topic of
adversarial machine learning. We filter this set of papers down by a factor of 60× to a collection of
just over 10,000 papers potentially related to adversarial examples. From here, we reduce this list

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

to a set of 1,652 papers (potentially) related to defending against adversarial examples, by few-shot
prompting GPT-4o. Here we aim to be conservative, and tolerate a (relatively high) false positive
rate, to ensure that we do not miss many defenses.

We then extract the text of each of these papers, and filter out any papers that do not link to GitHub
(or other popular code hosting repositories). We then manually filter these papers down to a set of
211 papers that are certainly (a) defenses to adversarial examples with code available, and (b) are
diverse from each other.

Choosing diverse defenses is an important step that requires some manual analysis. There are dozens
of variants of adversarial training (Madry et al., 2017) that differ only in particular details that are in-
teresting from a training perspective, but which make no difference from an evaluation perspective.
Therefore, it is highly likely that an attack on any one of these schemes would constitute an attack on
any of the others—and so we aim to introduce only one (or a few) defenses of this type. However,
in several cases, we have also included the same defense multiple times if there is a significantly
different version of that defense (e.g., implemented in a different framework or using very different
techniques).

Finally, we then try to actually run each of these defense implementations. The vast majority do
not reproduce after a few hours of manual effort.1 Most reproduction failures are due to the use of
outdated libraries (e.g., TensorFlow version 0.11), missing documentation for how to train a new
model, missing documentation on how to install dependencies, etc. Nevertheless, we are able to
identify a set of 37 papers that we could reproduce.

These papers correspond to 51 unique defense implementations. This number is larger than the
number of papers primarily because many papers are implemented both by the original authors and
also by other third-party researchers—in which case we include both—or because a single defense
paper may propose multiple (different) defenses.

It is important to note that while our collection of defenses creates a diverse benchmark, the success
of an attack against any particular defense should not be interpreted as a definitive break of that
defense. Due to the practical constraints of our large-scale implementation, we may have chosen
sub-optimal hyperparameters or implemented simplified versions of some defenses. Thus, while
our results provide valuable insights for benchmarking purposes, they should not be considered as
conclusive evidence against the efficacy of any specific defense method in its optimal form.

3.3 LIMITATIONS

Our dataset has several limitations that may make it an imperfect proxy for measuring LLM capa-
bilities. We feel it is important to be upfront with these limitations, so that the success (or failure) of
LLMs at solving our benchmark will not be generalized beyond what can be reasonably inferred.

Several of these defenses have published breaks. One potential limitation of AutoAdvExBench
is the risk of benchmark contamination. Since some of the defenses included in our dataset have
been previously broken in published papers, it is possible that a language model—which has been
pre-trained on a large fraction of the internet—has already seen the attack paper, or corresponding
attack code if it exists. In principle this could artificially inflate the success of a language model
agent on our dataset.

However, we do not believe this is a major concern at the moment for two reasons. First, the attack
success rate of even our best agent is very low, suggesting that even if benchmark contamination did
occur, it was not enough for the models to perform well on this task. Second, we found that even if
we explicitly place the previously-written attack paper in the language model’s context, the success
rate does not significantly improve. This indicates that the models are currently not sophisticated
enough to fully leverage such information, even when it is directly available.

Finally, while this dataset in particular may (in the future) become even more contaminated as others
break the defenses here, so too are new defenses being rapidly developed. This should, in principle,
allow us to create updated versions of our dataset that contains new defenses as they are published.

1Importantly, we are not claiming these papers are incorrect, unreproducible, or otherwise have made any
errors. In many cases we simply failed to create a correct Python environment for old dependencies.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Gradient-free optimization can break many defenses. It is often possible to break an adversarial
example defense through gradient-free optimization alone (Croce et al., 2020). This means for some
defenses it is not necessary to implement white-box attacks at all, which is the entire purpose of the
benchmark here. Nevertheless, white-box attacks often out-perform black-box attacks, and so in the
limit we believe this will not be a significant concern.

Research code is not representative of production code. There are two key reasons for this.
First, since research code is not designed to be used in a production environment, research code is
often significantly more “messy” (e.g., without a consistent style of structure) and less well docu-
mented. Therefore LLMs may find it more challenging to process this kind of code than they would
with better-structured, well-commented production code. On the other hand, research code tends to
be much smaller in scale. Unlike production code, which can span hundreds of thousands of lines,
research projects are usually more concise, making it easier for models to work with.

Put differently, research code comes from a slightly different data distribution than the types of
code typically studied for security attacks. This makes it neither strictly harder nor easier to work
with. The smaller size of research code generally makes it easier, but its lack of structure and
documentation can present added challenges.

Adversarial examples attacks are not representative of common security exploits. Related to
the prior consideration, another potential limitation of this dataset is that the distribution of attacks
used in adversarial example evaluations is very different from the standard distribution of attacks
commonly found on the internet (and in the wild). For example, there are likely thousands of
tutorials and examples online about web security exploits or memory corruption exploits. As a
result, models might be (much) better at performing these types of attacks, even if they struggle with
generating adversarial examples due to a lack of comparable educational resources online. However,
we do not see this as a significant consideration for two key reasons.

First, when exploits are common and relatively easy to implement, it is unlikely that adversaries
would need to use advanced language models for their development. For example, Metasploit
(Kennedy et al., 2011) already contains pre-built exploits for many common vulnerabilities out-of-
the-box. In such cases, leveraging a LLM adds little value since these tasks are already automated.

And second, adversarial example evaluations test the ability of the model to generalize to new forms
of attack, which allows us to assess the model’s “intelligence” and ability to “reason” about unfa-
miliar problems, rather than simply its ability to recall prior attacks that have been well-documented
on the Internet.

4 EVALUATING UTILITY ON AUTOADVEXBENCH

Unlike question answering benchmarks, where it is obvious2 how to evaluate utility on the bench-
mark, there are many more degrees of freedom in evaluating accuracy for attacks on adversarial
examples defenses. We broadly support any approach that aligns with the goals of measuring the
progress of capabilities and follows the following API.

Inputs. The model can receive access to (a) the paper describing the defense, (b) the source code
of the defense, (c) a correct forward pass implementation of the defense, (d) a perturbation bound,
and (e) 1,000 images that should be attacked. In our early experiments, we find that providing access
to the paper does not improve (and sometimes reduces) the model’s ability to break the defense.3

Output. The adversarial attack generated by the model should output 1,000 images that are per-
turbations of the original images under a given perturbation bound. We choose an `∞ perturbation
bound of 8/255 for CIFAR-10 and ImageNet, and 0.3 for MNIST—standard values from the liter-
ature (Carlini et al., 2019). The model is allowed to perform any action it wants on these inputs to

2Although, even benchmarks like MMLU can show significant (e.g., ±20% accuracy swings) based on the
exact evaluation methodology.

3While in our case this is because the model gets stuck early in the attack process before the description of
the defense would be useful, prior work (Tramer et al., 2020) has also argued that humans get better value from
looking at a defense’s code than at a research paper’s imperfect description of it.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 10 20 30 40 50
Defense

0.0

0.2

0.4

0.6

0.8

1.0

Ro
bu

st
 A

cc
ur

ac
y

No Attack
Claude 3.5-Sonnet
GPT-4o

Figure 2: Current models can successfully attack a few defenses. Each line plots the robust accuracy
of each defense, in sorted order (for each attack). Viewed differently, each line plots the number of
defenses that reduce the robust accuracy to a given level.

generate these outputs, including arbitrary tool use. We have found that it is most effective to ask
the model to write Python code that implements standard attacks like PGD (Madry et al., 2017),
and then iteratively improve on the attack by evaluating the defense on the current set of images.
However, in principle, a valid attack could ask the model to directly perturb the bits of the images,
or take any other approach.

Evaluation. We believe the most informative metric to evaluate an attacker LLM is to evaluate the
model’s attack success rate for every defense in our dataset, and then plot a “cumulative distribution
function” of the defense accuracies. That is, we plot the robust accuracy of each defense under
attack, in sorted order (see Figure 2).

We impose no time restriction, on the number of unsuccessful attempts an adversary makes, on the
runtime of the algorithm, or on the cost of the attack. However, we strongly encourage reporting
these numbers so that future work will be able to draw comparisons between methods that are
exceptionally expensive to run, and methods that are cheaper.

In cases where a single scalar number is absolutely necessary, we suggest reporting the average
robust accuracy across all defenses, and the number of defenses for which the robust accuracy is
below half of the clean accuracy. The base rate of an attack that does nothing (i.e., just returns the
original images un-perturbed) is 85.8% accuracy. We believe both numbers are interesting because
the former number is an “average case” metric that captures how well the attack does at making
slight improvements to various attacks, and the latter number measures how many defenses can
have their robustness significantly degraded. But, if at all possible, we encourage reporting the full
curve as we have done in our paper here in Figure 2.

5 BENCHMARKING CURRENT LLMS

The purpose of this paper is not to construct an agent that solves this benchmark. We believe
achieving this is a research result in and of itself, and is beyond what is possible with current LLMs.
Nevertheless, in order to establish a baseline for how well current LLMs are able to solve this
task, we perform a preliminary evaluation with some simple and common evaluation strategies. We
believe it should be possible to improve these results by using more advanced agentic systems.

We evaluate LLMs in two ways: first, we evaluate their ability to “zero-shot” generate solutions
without tool use by providing the model the code as input and ask for an attack implementation; and
second, we evaluate their ability to generate solutions in a simple “agentic” framework, where we
allow the model to iteratively fix bugs in its prior solutions.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Agent
Claude 3.5 Sonnet GPT 4o

Zero-shot 0 0
+ 8 attempts 0 0
+ Debugging 2 1

Table 2: Number of defenses that can be attacked even slightly, with a robust accuracy drop of
greater than 5%. Zero-shot, even after 8 attempts, no model can correctly produce code that breaks
the defenses in the specified format. With debugging too-use, we can increase the success rate to
two unique defenses.

5.1 END-TO-END EVALUATION

We begin by benchmarking current state-of-the-art models in a “zero-shot” approach, and evaluate
whether or not they are able to construct correct attacks in a single forward pass. We place in context
the source code for the defense, and prompt the model to write an adversarial attack that will break
the defense. We then run this code, and evaluate its success rate.

Unsurprisingly, we find that current defenses fail completely at this task, and never successfully
generate an adversarial attack. We therefore consider two alternate approaches which have, in the
past, been found to be effective at increasing the success rate of code-generation agent systems.

Pass@K. Instead of running the LLM a single time, one obvious method to improve performance
is to run the model multiple times and report “success” if any of the attack attempts succeed. De-
spite being a remarkably simple approach, in the past this approach has been a surprisingly simple
technique to significantly increase the success rate (Li et al., 2022).

The challenge in many domains is, after generating K candidate solutions, how to pick the best one.
In coding tasks, for example, this is often done by picking the program that passes the most test cases.
However, here we do not need any heuristic: because security is a worst-case property, we can run
the attack as many times as we would like, evaluate the robustness of the defense under all attacks,
and pick the most successful. Unfortunately, even by doing this and attempting 8 solutions at once,
we observe a 0% attack success rate: the model never succeeds at generating even a single attack
function that runs without crashing and matches our input/output specification. (Implementing the
attacks in this way is also rather (rather) expensive, and increases the cost of an evaluation from 4
USD to 32 USD for no gain.)

Iterative debugging. Instead of simply generating 8 solutions and hoping that one of these will be
effective, we can approach the problem more intelligently, and allow the LLM to see what happens
when its code is executed, and provide a fix of any issues. We find that this debug loop gives, for
the first time, the model the ability to write a successful adversarial attack. While it is only effective
in two cases (for models that were designed as undefended baselines), even this limited progress
hints at the possibility that future models may be able to solve this benchmark with stronger attacks.
The cost of implementing this loop is somewhat expensive (costing 50 USD) in the case of GPT-4o
which does not support prompt caching, but with Claude 3.5-Sonnet’s prompt caching ability, this
attack costs just 10 USD.

5.2 LETS THINK STEP BY STEP

Given that an entirely end-to-end attack fails for almost all defenses, we now attempt to gain some
insight where the model gets stuck. To do this, we break down the task of constructing adversarial
examples into four sub-tasks, and ask the agent to solve each task in sequence.

For each sub-task, we provide the agent with a clear objective and ask it to generate the code that
would accomplish this task. We then run the generated code and return the output to the agent,
allowing it to refine its implementation in the event of errors. As above, the agent is allowed up to
ten iterations to correct any errors in the code.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Agent
Claude 3.5 Sonnet GPT 4o

Forward Pass 26 18
Differentiable 12 9
FGSM Attack 10 8

Average Robust Accuracy 0.771 0.793
Number Attacked 5 4

Table 3: Splitting the process of generating an adversarial attack into distinct steps dramatically
increases the ability of LLMs to exploit adversarial example defenses—although in absolute terms
the attack success rate is still very low. Six unique defenses are successfully attacked by our agent,
meaning their robust accuracy is less than half of the clean accuracy.

Our process consists of four steps that directly mirror the process a human would take to break many
adversarial example defenses (Carlini et al., 2019).

1. The first task is to implement a forward pass of the model. This means the agent must be
able to receive an input image as a tensor, and output a probability distribution over the
output classes. This step ensures that the agent can execute the code correctly as intended.

2. The second task asks the agent to convert this forward pass to a differentiable forward pass.
While in some cases this requires no additional work (if the defended model is already
differentiable), this is often the most challenging step of an adversarial attack. Gradient
masking (Papernot et al., 2017) and obfuscation (Athalye et al., 2018) are the most com-
mon reasons why papers make incorrect adversarial robustness claims. Many defenses,
e.g., pre-process the image before classification, post-process the output, detect and reject
adversarial examples, or modify the network architecture. Each of these requires care in
order to ensure that gradient-based attacks function correctly.

3. The third step is to use this differentiable function to perform a single iteration of the Fast
Gradient Sign Method (FGSM) (Goodfellow et al., 2014)—a very simple attack that just
takes a single step in the direction of the gradient. The goal of this step is to verify that the
gradient direction is actually a useful attack direction.

4. The final step is to extend the single-step FGSM into a multi-step, iterative attack (Madry
et al., 2017; Carlini & Wagner, 2017b). It is the final output of this step that we return as
the resulting adversarial examples to evaluate robust accuracy.

Sub-task results. Splitting out each of these tasks explicitly increases the attack success rate to six
unique defenses successfully attacked, at a cost of 22 USD. Below we investigate how far agents
progress in the four attack steps

• Forward pass. Over half (58%) of defenses can be converted into a tensor-in-tensor-out
format. We find that there are two reasons our agent often fails to make defenses implement
correct forward passes. The most common reason is that many defenses implement com-
plicated (pure-Python) modifications of the input and it is often challenging to convert this
into tensor-to-tensor operations. The second most common failure is due to the model’s
inability to load the model parameters from the correct file on disk; while we provide the
model with a correct forward pass, often there are dozens of configurations available and
the model is unable to select the right one.

• Gradients. A quarter (25.9%) of defenses can be made differentiable. When the model
successfully implements a forward pass but fails to construct a differentiable function, in
almost all cases this is due to the defense applying some Python pre-processing code that
is not easily made differentiable. While this might be expected to have been a failure in
making the function tensor-in-tensor-out, we find that often times the model “succeeds” at
the first step by accepting a tensor as input, converting it back to a Python object, operating
on the Python object, and then converting back to a tensor output.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

• FGSM. Conditioned on a successful gradient operation, almost all attacks (84%) are able
to implement a single FGSM adversarial example step. The only cases where this fails
are ones where the gradient, while technically not zero, is entirely useless as a direction
to find adversarial examples. (For example, in one case the model wraps the entire non-
differentiable operation in a block and writes a custom gradient that just returns the sum of
the input pixels.)

Appendix A discusses case studies where we found the model’s output particularly interesting.

6 CONCLUSION

Current language models do not have the capability of autonomously breaking most adversarial ex-
ample defenses. While they can succeed for the simplest possible defense approaches when imple-
mented in the simplest possible way, current models fail to generate successful attacks on complex
defenses, even when given a human-written 4-step process that walks the model through how to
break most defenses.

In almost all cases, current models fail at even very early steps necessary to break defenses. Specif-
ically, aggregated across all models and attack approaches, models were only able to implement a
differentiable forward pass in 23% of cases—a necessary prerequisite before any “attacking” can
even begin.

But this is exactly why we believe this benchmark is interesting. As mentioned earlier, existing
benchmarks largely side-step the fact that real-world code is difficult to understand, challenging
to modify, and often is only designed for one specific purpose (which is not amenable to security
evaluation). Turning this original code artifact into something that can be reasonably studied requires
significant effort, and current models fail at solving this step of the attack.

We hope that it will be some time before automated methods are able to effectively solve this task,
but the rate of progress in LLMs has been surprisingly rapid; and so we believe constructing chal-
lenging benchmarks such as this one is important. We do not believe an agent that could solve
this task is likely to cause any immediate harm (because humans can already break many of these
defenses, and these attacks have not caused any harm yet).

In the future it may be interesting to extend this style of evaluation to domains beyond image ad-
versarial examples. One promising direction could be to study defenses to jailbreak attacks. But
at present, compared to the decade of research and hundreds of papers on defending against im-
age adversarial examples, there are relatively few papers that focus on defending against jailbreak
attacks.

Overall, we believe it is valuable to benchmark potentially dangerous capabilities in ways that
closely mirror what actual attackers would have to implement. Such end-to-end evaluations that
directly measure the ability of models to cause damage (instead of through some proxy metric) can
help serve as a potential warning sign that models possess dangerous capabilities.

REPRODUCIBILITY STATEMENT

The purpose of this paper is to provide a publicly-usable, reproducible benchmark to evaluate the
ability of LLMs to write adversarial attacks. As such, all aspects of this paper are reproducible-by-
design. We will publish the benchmark (including the 51 defenses and any modifications we made
to make them run correctly), and the exact implementation for our baseline agent along with the
final version of this paper.

REFERENCES

Motasem Alfarra, Juan C. Pérez, Ali Thabet, Adel Bibi, Philip H. S. Torr, and Bernard Ghanem.
Combating adversaries with anti-adversaries, 2021. URL https://arxiv.org/abs/
2103.14347.

10

https://arxiv.org/abs/2103.14347
https://arxiv.org/abs/2103.14347


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Usman Anwar, Abulhair Saparov, Javier Rando, Daniel Paleka, Miles Turpin, Peter Hase,
Ekdeep Singh Lubana, Erik Jenner, Stephen Casper, Oliver Sourbut, et al. Foundational
challenges in assuring alignment and safety of large language models. arXiv preprint
arXiv:2404.09932, 2024.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of se-
curity: Circumventing defenses to adversarial examples. In International conference on machine
learning, pp. 274–283. PMLR, 2018.

Manish Bhatt, Sahana Chennabasappa, Yue Li, Cyrus Nikolaidis, Daniel Song, Shengye Wan,
Faizan Ahmad, Cornelius Aschermann, Yaohui Chen, Dhaval Kapil, et al. Cyberseceval
2: A wide-ranging cybersecurity evaluation suite for large language models. arXiv preprint
arXiv:2404.13161, 2024.

Jacob Buckman, Aurko Roy, Colin Raffel, and Ian Goodfellow. Thermometer encoding: One hot
way to resist adversarial examples. In International conference on learning representations, 2018.

Nicholas Carlini. A partial break of the honeypots defense to catch adversarial attacks. arXiv
preprint arXiv:2009.10975, 2020.

Nicholas Carlini. A llm assisted exploitation of ai-guardian. arXiv preprint arXiv:2307.15008, 2023.

Nicholas Carlini and David Wagner. Adversarial examples are not easily detected: Bypassing ten de-
tection methods. In Proceedings of the 10th ACM workshop on artificial intelligence and security,
pp. 3–14, 2017a.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
ieee symposium on security and privacy (sp), pp. 39–57. Ieee, 2017b.

Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber, Dimitris
Tsipras, Ian Goodfellow, Aleksander Madry, and Alexey Kurakin. On evaluating adversarial
robustness. arXiv preprint arXiv:1902.06705, 2019.

Xinglong Chang, Katharina Dost, Kaiqi Zhao, Ambra Demontis, Fabio Roli, Gillian Dobbie, and
Jörg Wicker. Baard: Blocking adversarial examples by testing for applicability, reliability and
decidability. In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 3–14.
Springer, 2023.

Hao-Yun Chen, Jhao-Hong Liang, Shih-Chieh Chang, Jia-Yu Pan, Yu-Ting Chen, Wei Wei, and
Da-Cheng Juan. Improving adversarial robustness via guided complement entropy, 2019. URL
https://arxiv.org/abs/1903.09799.

Jiefeng Chen, Jayaram Raghuram, Jihye Choi, Xi Wu, Yingyu Liang, and Somesh Jha. Stratified ad-
versarial robustness with rejection, 2023. URL https://arxiv.org/abs/2305.01139.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arxiv 2022. arXiv preprint arXiv:2204.02311, 10,
2022.

Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flam-
marion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized adver-
sarial robustness benchmark. arXiv preprint arXiv:2010.09670, 2020.

Francesco Croce, Sven Gowal, Thomas Brunner, Evan Shelhamer, Matthias Hein, and Taylan
Cemgil. Evaluating the adversarial robustness of adaptive test-time defenses. In International
Conference on Machine Learning, pp. 4421–4435. PMLR, 2022.

Jiequan Cui, Zhuotao Tian, Zhisheng Zhong, Xiaojuan Qi, Bei Yu, and Hanwang Zhang. Decoupled
kullback-leibler divergence loss, 2023. URL https://arxiv.org/abs/2305.13948v1.

Edoardo Debenedetti, Vikash Sehwag, and Prateek Mittal. A light recipe to train robust vision
transformers, 2022. URL https://arxiv.org/abs/2209.07399.

11

https://arxiv.org/abs/1903.09799
https://arxiv.org/abs/2305.01139
https://arxiv.org/abs/2305.13948v1
https://arxiv.org/abs/2209.07399


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Edoardo Debenedetti, Jie Zhang, Mislav Balunović, Luca Beurer-Kellner, Marc Fischer, and Florian
Tramèr. Agentdojo: A dynamic environment to evaluate attacks and defenses for llm agents. arXiv
preprint arXiv:2406.13352, 2024.

Chunyuan Deng, Yilun Zhao, Xiangru Tang, Mark Gerstein, and Arman Cohan. Investigat-
ing data contamination in modern benchmarks for large language models. arXiv preprint
arXiv:2311.09783, 2023a.

Gelei Deng, Yi Liu, Vı́ctor Mayoral-Vilches, Peng Liu, Yuekang Li, Yuan Xu, Tianwei Zhang, Yang
Liu, Martin Pinzger, and Stefan Rass. Pentestgpt: An llm-empowered automatic penetration
testing tool. arXiv preprint arXiv:2308.06782, 2023b.

Guneet S. Dhillon, Kamyar Azizzadenesheli, Zachary C. Lipton, Jeremy Bernstein, Jean Kossaifi,
Aran Khanna, and Anima Anandkumar. Stochastic activation pruning for robust adversarial de-
fense, 2018. URL https://arxiv.org/abs/1803.01442.

Alec F Diallo and Paul Patras. Sabre: Cutting through adversarial noise with adaptive spectral
filtering and input reconstruction. In 2024 IEEE Symposium on Security and Privacy (SP), pp.
2901–2919. IEEE, 2024.

Richard Fang, Rohan Bindu, Akul Gupta, Qiusi Zhan, and Daniel Kang. Llm agents can au-
tonomously hack websites. arXiv preprint arXiv:2402.06664, 2024.

Iuri Frosio and Jan Kautz. The best defense is a good offense: Adversarial augmentation against
adversarial attacks, 2023. URL https://arxiv.org/abs/2305.14188.

Chaohao Fu, Hongbin Chen, Na Ruan, and Weijia Jia. Label smoothing and adversarial robustness,
2020. URL https://arxiv.org/abs/2009.08233.

Shahriar Golchin and Mihai Surdeanu. Time travel in llms: Tracing data contamination in large
language models. arXiv preprint arXiv:2308.08493, 2023.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens Van Der Maaten. Countering adversarial
images using input transformations. arXiv preprint arXiv:1711.00117, 2017.

Andreas Happe and Jürgen Cito. Getting pwn’d by ai: Penetration testing with large language
models. In Proceedings of the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pp. 2082–2086, 2023.

Dan Hendrycks, Kimin Lee, and Mantas Mazeika. Using pre-training can improve model robustness
and uncertainty, 2019. URL https://arxiv.org/abs/1901.09960.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Mantas Mazeika, and Thomas Woodside. An overview of catastrophic ai risks.
arXiv preprint arXiv:2306.12001, 2023.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Qiyu Kang, Yang Song, Qinxu Ding, and Wee Peng Tay. Stable neural ode with lyapunov-stable
equilibrium points for defending against adversarial attacks, 2021. URL https://arxiv.
org/abs/2110.12976.

Harini Kannan, Alexey Kurakin, and Ian Goodfellow. Adversarial logit pairing, 2018. URL https:
//arxiv.org/abs/1803.06373.

David Kennedy, Jim O’gorman, Devon Kearns, and Mati Aharoni. Metasploit: the penetration
tester’s guide. No Starch Press, 2011.

12

https://arxiv.org/abs/1803.01442
https://arxiv.org/abs/2305.14188
https://arxiv.org/abs/2009.08233
https://arxiv.org/abs/1901.09960
https://arxiv.org/abs/2110.12976
https://arxiv.org/abs/2110.12976
https://arxiv.org/abs/1803.06373
https://arxiv.org/abs/1803.06373


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Lin Li and Michael Spratling. Improved adversarial training through adaptive instance-wise loss
smoothing, 2023. URL https://arxiv.org/abs/2303.14077.

Xin Li and Fuxin Li. Adversarial examples detection in deep networks with convolutional filter
statistics. In Proceedings of the IEEE international conference on computer vision, pp. 5764–
5772, 2017.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688, 2023.

Peter Lorenz, Dominik Strassel, Margret Keuper, and Janis Keuper. Is robustbench/autoattack
a suitable benchmark for adversarial robustness? In The AAAI-22 Workshop on Adversar-
ial Machine Learning and Beyond, 2022. URL https://openreview.net/forum?id=
aLB3FaqoMBs.

Xingjun Ma, Bo Li, Yisen Wang, Sarah M. Erfani, Sudanthi Wijewickrema, Grant Schoenebeck,
Dawn Song, Michael E. Houle, and James Bailey. Characterizing adversarial subspaces using
local intrinsic dimensionality, 2018. URL https://arxiv.org/abs/1801.02613.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks, 2017. URL https://arxiv.
org/abs/1706.06083.

Chengzhi Mao, Mia Chiquier, Hao Wang, Junfeng Yang, and Carl Vondrick. Adversarial attacks are
reversible with natural supervision, 2021. URL https://arxiv.org/abs/2103.14222.

Dongyu Meng and Hao Chen. Magnet: a two-pronged defense against adversarial examples, 2017.
URL https://arxiv.org/abs/1705.09064.

OpenAI. Learning to reason with llms. https://openai.com/index/
learning-to-reason-with-llms/.

Tianyu Pang, Kun Xu, Yinpeng Dong, Chao Du, Ning Chen, and Jun Zhu. Rethinking soft-
max cross-entropy loss for adversarial robustness, 2019. URL https://arxiv.org/abs/
1905.10626.pdf.

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Distillation
as a defense to adversarial perturbations against deep neural networks, 2015. URL https:
//arxiv.org/abs/1511.04508.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram
Swami. Practical black-box attacks against machine learning. In Proceedings of the 2017 ACM
on Asia conference on computer and communications security, pp. 506–519, 2017.

Zhuang Qian, Shufei Zhang, Kaizhu Huang, Qiufeng Wang, Rui Zhang, and Xinping Yi. Improving
model robustness with latent distribution locally and globally, 2021. URL https://arxiv.
org/abs/2107.04401.

Edward Raff, Jared Sylvester, Steven Forsyth, and Mark McLean. Barrage of random transforms for
adversarially robust defense. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 6528–6537, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. arXiv preprint arXiv:2311.12022, 2023.

13

https://arxiv.org/abs/2303.14077
https://openreview.net/forum?id=aLB3FaqoMBs
https://openreview.net/forum?id=aLB3FaqoMBs
https://arxiv.org/abs/1801.02613
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/2103.14222
https://arxiv.org/abs/1705.09064
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://arxiv.org/abs/1905.10626.pdf
https://arxiv.org/abs/1905.10626.pdf
https://arxiv.org/abs/1511.04508
https://arxiv.org/abs/1511.04508
https://arxiv.org/abs/2107.04401
https://arxiv.org/abs/2107.04401


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Sanchari Sen, Balaraman Ravindran, and Anand Raghunathan. Empir: Ensembles of mixed preci-
sion deep networks for increased robustness against adversarial attacks. In International Confer-
ence on Learning Representations, 2020. URL https://openreview.net/forum?id=
HJem3yHKwH.

Shawn Shan, Emily Wenger, Bolun Wang, Bo Li, Haitao Zheng, and Ben Y. Zhao. Gotta catch
’em all: Using honeypots to catch adversarial attacks on neural networks, 2019. URL https:
//arxiv.org/abs/1904.08554.

Minghao Shao, Sofija Jancheska, Meet Udeshi, Brendan Dolan-Gavitt, Haoran Xi, Kimberly Milner,
Boyuan Chen, Max Yin, Siddharth Garg, Prashanth Krishnamurthy, et al. Nyu ctf dataset: A
scalable open-source benchmark dataset for evaluating llms in offensive security. arXiv preprint
arXiv:2406.05590, 2024.

Changhao Shi, Chester Holtz, and Gal Mishne. Online adversarial purification based on self-
supervision, 2021. URL https://arxiv.org/abs/2101.09387.

Zachary S Siegel, Sayash Kapoor, Nitya Nagdir, Benedikt Stroebl, and Arvind Narayanan. Core-
bench: Fostering the credibility of published research through a computational reproducibility
agent benchmark. arXiv preprint arXiv:2409.11363, 2024.

Chawin Sitawarin and David Wagner. Defending against adversarial examples with k-nearest neigh-
bor, 2019. URL https://arxiv.org/abs/1906.09525.

Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On adaptive attacks
to adversarial example defenses. Advances in neural information processing systems, 33:1633–
1645, 2020.

Alex Wang. Glue: A multi-task benchmark and analysis platform for natural language understand-
ing. arXiv preprint arXiv:1804.07461, 2018.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. Advances in neural information processing systems, 32, 2019.

Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and Quanquan Gu. Improv-
ing adversarial robustness requires revisiting misclassified examples. In International Confer-
ence on Learning Representations, 2020. URL https://openreview.net/forum?id=
rklOg6EFwS.

Yulong Wang, Tianxiang Li, Shenghong Li, Xin Yuan, and Wei Ni. New adversarial image detection
based on sentiment analysis, 2023. URL https://arxiv.org/abs/2305.03173.

Boxi Wu, Heng Pan, Li Shen, Jindong Gu, Shuai Zhao, Zhifeng Li, Deng Cai, Xiaofei He, and
Wei Liu. Attacking adversarial attacks as a defense, 2021. URL https://arxiv.org/abs/
2106.04938.

Dongxian Wu, Shu tao Xia, and Yisen Wang. Adversarial weight perturbation helps robust general-
ization, 2020. URL https://arxiv.org/abs/2004.05884.

Chang Xiao, Peilin Zhong, and Changxi Zheng. Enhancing adversarial defense by k-winners-
take-all. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=Skgvy64tvr.

Weilin Xu, David Evans, and Yanjun Qi. Feature squeezing: Detecting adversarial examples in deep
neural networks, 2017. URL https://arxiv.org/abs/1704.01155.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
arXiv preprint arXiv:2405.15793, 2024.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

14

https://openreview.net/forum?id=HJem3yHKwH
https://openreview.net/forum?id=HJem3yHKwH
https://arxiv.org/abs/1904.08554
https://arxiv.org/abs/1904.08554
https://arxiv.org/abs/2101.09387
https://arxiv.org/abs/1906.09525
https://openreview.net/forum?id=rklOg6EFwS
https://openreview.net/forum?id=rklOg6EFwS
https://arxiv.org/abs/2305.03173
https://arxiv.org/abs/2106.04938
https://arxiv.org/abs/2106.04938
https://arxiv.org/abs/2004.05884
https://openreview.net/forum?id=Skgvy64tvr
https://openreview.net/forum?id=Skgvy64tvr
https://arxiv.org/abs/1704.01155


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Jongmin Yoon, Sung Ju Hwang, and Juho Lee. Adversarial purification with score-based generative
models, 2021. URL https://arxiv.org/abs/2106.06041.

Andy K Zhang, Neil Perry, Riya Dulepet, Eliot Jones, Justin W Lin, Joey Ji, Celeste Menders,
Gashon Hussein, Samantha Liu, Donovan Jasper, et al. Cybench: A framework for evaluating
cybersecurity capabilities and risk of language models. arXiv preprint arXiv:2408.08926, 2024.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing, Laurent El Ghaoui, and Michael I. Jor-
dan. Theoretically principled trade-off between robustness and accuracy, 2019. URL https:
//arxiv.org/abs/1901.08573.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for build-
ing autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

A CASE STUDIES

Identifying gradient masking. One of the simplest defenses in our benchmark is a reproduction
of defensive distillation (Papernot et al., 2015), which appears to be robust due to gradient masking
While the model is unable to break this defense end-to-end, when we break down the attack into
four steps, the model succeeds.

The difficulty of this break occurs at the second step, when it must handle the fact that the gradients
after the softmax operator are identically zero. Initially, the model identifies this flaw, and makes a
correction:

It removes the softmax layer from the output to return logits instead of probabilities, which is
useful for computing gradients.

However it does so incorrectly, and returns logits[:-1], which is a modification of the logit
array, and not a modification to the number of layers. When this code is executed and the model is
given the response to analyze, the model corrects itself.

The return logits[:-1] line in the forward method is incorrectly slicing the output, removing all
elements instead of just the last layer.

It then attempts to remove the softmax layer a different way, but fails:

The DifferentiableModel is now correctly instantiated and producing output. The output of
self.convnet(xs) is a tensor with shape [1, 10], which is the expected shape for logits in a 10-
class classification problem. The output tensor has a gradfn=<SoftmaxBackward0>, indicating
that a softmax operation is being applied at the end of the network. The gradient test is still
failing because the gradients are zero.

On its third attempt, the model again fails to correct the issue, this time because it incorrectly slices
the a torch.ModuleList, but it is able to correct this issue:

I think the most likely reason is the first one: self.convnet.layers is a ModuleList, which doesn’t
have a forward method. To fix this, we need to modify our forward method to properly use the
layers in the ModuleList.

At which point the model correctly breaks this defense.

15

https://arxiv.org/abs/2106.06041
https://arxiv.org/abs/1901.08573
https://arxiv.org/abs/1901.08573


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Failing to implement a differentiable forward pass. In one case, we observed the model fail to
implement a differentiable forward pass correctly after 7 rounds of debugging. Eventually the agent
“gave up”, and responded with the following

This implementation does the following:
- We add assertions to check the input tensor’s type, shape, and value range.
- We create a dummy variable with ‘requires grad=True‘ to enable gradient computation.
- We perform the forward pass through the ‘TensorModel‘.
- We add the dummy variable (multiplied by 0) to the output to make it differentiable.

This implementation allows gradients to flow through the model, even though the underlying
‘TensorModel‘ is not inherently differentiable. The dummy variable trick enables PyTorch’s
autograd to compute gradients with respect to the input.

We notice many failures of this type, where the model struggles to find a passing input, and eventu-
ally resorts to “cheating” its way through the test cases. (Of course, after cheating at one step, the
next step becomes functionally impossible.)

16


	Introduction
	Background
	Large Language Model Evaluations
	Adversarial Examples Defenses

	AutoAdvExBench
	Motivation
	Design Methodology
	Limitations

	Evaluating Utility on AutoAdvExBench
	Benchmarking Current LLMs
	End-to-end Evaluation
	Lets think step by step

	Conclusion
	Case studies

