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Abstract

As characterization and modeling of complex materials by phenomenological models remains challenging, data-
driven computing that performs physical simulations directly frommaterial data has attracted considerable attention.
Data-driven computing is a general computational mechanics framework that consists of a physical solver and a
material solver, based on which data-driven solutions are obtained through minimization procedures. This work
develops a new material solver built upon the local convexity-preserving reconstruction scheme by He and Chen
(2020) A physics-constrained data-driven approach based on locally convex reconstruction for noisy database.
ComputerMethods in AppliedMechanics and Engineering 363, 112791 tomodel anisotropic nonlinear elastic solids.
In this approach, a two-level local data search algorithm for material anisotropy is introduced into the material solver
in online data-driven computing. A material anisotropic state characterizing the underlying material orientation is
used for the manifold learning projection in the material solver. The performance of the proposed data-driven
framework with noiseless and noisy material data is validated by solving two benchmark problems with synthetic
material data. The data-driven solutions are compared with the constitutive model-based reference solutions to
demonstrate the effectiveness of the proposed methods.

Impact Statement

While phenomenological constitutive models have been extensively employed in solving solid mechanics
problems, formulation and characterization of models become difficult and often lose generality for complex
material systems. Data-driven modeling that directly integrates material data with physical laws into simulations
has shown promising potential in recent years. This study aims to develop a data-driven modeling approach for
nonlinear anisotropic materials by introducing a two-level data search scheme that utilizes both stress–strain data
and orientations of material anisotropy to discover the underlying anisotropic material manifold that represents
the anisotropic material behaviors. This data search scheme is implemented with a local convexity-preserving
reconstruction algorithm for enhanced robustness against noise and outliers in data-driven computing.
Ultimately, the direct integration of discrete material data into simulations avoids the need for pre-defining
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the stress–strain relationship. The proposed data-driven modeling approach has demonstrated satisfactory
accuracy in predicting nonlinear anisotropic material behaviors compared with constitutive model-based
solutions, showing promising potential in modeling nonlinear anisotropic material systems.

1. Introduction

Constitutive laws that explicitly describe a stress–strain relationship are one of the key components in
computational mechanics. However, the phenomenological constitutivemodels formaterial modeling are
typically based on empirical observations, hypothesis, and mathematical assumptions, often lack of
generality to capture complex material behaviors, such as, anisotropy and nonlinearity. For example, it
remains challenging to formulate conventional phenomenological constitutive laws for musculoskeletal
systems consisting of multiple highly nonlinear and anisotropic biological materials (Huijing, 1999;
Gillies and Lieber, 2011; Takaza et al., 2013; Zhang et al., 2020).

With advancements in computing power and significant progresses in data mining, machine learning
based data-driven approaches, for example, manifold learning and artificial neural networks, have been
extensively applied to various fields owing to their strong ability of feature/pattern extraction, including
constitutivematerial modeling (Ghaboussi et al., 1991; Furukawa andYagawa, 1998; Lefik and Schrefler,
2003;Wang and Sun, 2018; Liu et al., 2019;Mozaffar et al., 2019; Heider et al., 2020; He andChen, 2020;
He et al., 2020b), surrogate and reduced order modeling (Lee and Chen, 2013; Chen et al., 2015; He et al.,
2019; Lee and Carlberg, 2020; Mendizabal et al., 2020; Rocha et al., 2020; Maulik et al., 2020), solving
partial differential equations and system identification (Raissi et al., 2019; He et al., 2020a; Goswami
et al., 2020), and structural design (Zhang and Ye, 2019; Lei et al., 2019). Recently, a data-driven
computing paradigm has been developed to bypass the material modeling step by formulating boundary
value problems as a new optimization problem to search for a solution that is closest to thematerial dataset
and constrained by equilibrium and compatibility (Kirchdoerfer and Ortiz, 2016; Ibanez et al., 2018;
Conti et al., 2018). Recent developments have extended the physics-constrained data-driven computing
framework to dynamics (Kirchdoerfer and Ortiz, 2018), nonlinear elasticity (Nguyen and Keip, 2018; He
et al., 2020b), inelasticity (Eggersmann et al., 2019), constitutive manifold construction (Ibañez et al.,
2017; Stainier et al., 2019), and multiscale modeling (Xu et al., 2020; Mora-Macías et al., 2020).

To counteract the curse of dimensionality and instability due to noise and outliers present in material
datasets, He and Chen (2020) introduced locally linear embedding manifold learning and convexity-
preserving reconstruction into the data-driven solver, called local convexity data-driven (LCDD) com-
puting. The LCDD framework has been extended to model nonlinear elastic solids and applied to model
mechanical responses of biological heart valve tissues with experimental datasets by He et al. (2020b).
Recently, Eggersmann et al. (2020) introduced a tensor voting machine learning technique into the
entropy based distance-minimizing data-driven (DMDD) framework to construct locally linear tangent
spaces in order to utilize underlying data structures to achieve high-order convergence of data-driven
solutions, referred to as a second-order data-driven scheme. The aforementioned physics-constrained
data-driven computing frameworks have demonstrated promising performances in various scientific
fields. Despite these advances, these data-driven computing frameworks cannot effectively handle
anisotropic material systems with various anisotropic orientations, that is, orientations of material
anisotropy. This is due to the fact that the data-driven solvers of these frameworks do not consider
information of material orientations, which prevents the applications of these data-driven computing
frameworks to complex material systems with direction-dependent material behaviors, for example,
musculoskeletal systems with significant differences in the muscle fiber direction leading to material
anisotropy.

The objective of this study is to develop a new data-driven solver built upon the local convexity-
preserving reconstruction scheme by He and Chen (2020) in order to model anisotropic nonlinear elastic
solids. The remainder of this paper is organized as follows. Section 2 reviews basic formulations of
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physics-constrained data-driven modeling of nonlinear elastic solids and makes a comparison of the
material solvers of the DMDD by Kirchdoerfer and Ortiz (2016) and LCDD by He and Chen (2020). A
local convexity-preserving material solver designed for anisotropic solids is introduced. Particularly, a
rotated material database is constructed offline and a two-level data search is integrated into the material
solver to capture direction-dependent material behaviors during online data-driven computing. In
Section 3, the proposed data-driven computing framework is verified by modeling the deflection of a
cantilever beam with layers containing different fiber directions and inflation of a cylinder where fiber
directions vary along the circumferential direction of the cylinder. The data-driven solutions are compared
with the constitutive model-based reference solutions to examine the effectiveness and robustness of the
proposed methods. Concluding remarks and discussions are given in Section 4.

2. Methodologies

This section revisits the basic formulations of the physics-constrained data-driven computing framework
for nonlinear elastic solids. The distinction between the material solvers of the DMDD by Kirchdoerfer
and Ortiz (2016) and LCDD by He and Chen (2020) and He et al. (2020b) is discussed. To model
anisotropic solids, we propose to integrate a two-level data search scheme into the local convexity-
preserving material solver in LCDD in order to capture the anisotropic material properties with aniso-
tropic orientations (orientations of material anisotropy) information.

2.1. Physics-constrained data-driven modeling of nonlinear elastic solids

We start by summarizing the physics-constrained data-driven computing formulation for nonlinear elastic
solids. The deformation of a nonlinear elastic solid defined in a domainΩX with a Neumann boundary ΓX

t
and a Dirichlet boundary ΓX

u are described by two basic laws:

Equilibrium :
DIV F uð Þ �Sð Þþb¼ 0, in ΩX ,

F uð Þ �Sð Þ �N¼ t, on ΓX
t ,

(
(1)

Compatibility :
E¼E uð Þ¼ FTF� I

� �
=2, in ΩX ,

u¼ g, on ΓX
u ,

(
(2)

where the superscript “X” denotes the reference (undeformed) configuration, u is the displacement vector,
E is the Green-Lagrangian strain tensor, and F is the deformation gradient related to u, defined as
F uð Þ¼ ∂ Xþuð Þ=∂X, where X is the material coordinate, S is the second Piola–Kirchhoff (second-PK)
stress tensor, and b, N, t, and g are the body force, the surface normal on ΓX

t , the traction on Γ
X
t , and the

prescribed displacement onΓX
u , respectively. LetZ denote the phase space that contains strain–stress pairs

z¼ E,Sð Þ. The physical laws, Equations (1) and (2), define a material independent subset:

C¼ z ∈ Z : 1ð Þand 2ð Þf g (3)

which contains all states satisfying the physical laws and they are called physical state.
Consider that the behaviors of the elastic solid are described by a discrete material dataset

E¼ ðbE j,bS jÞ
n oM

j¼1
, where M is the number of measured material data and a hat symbol “∧” is used to

denote material quantities. The strain–stress pair bz¼ðbE,bSÞ ∈ E is called the material data. Convention-
ally, the material dataset E is used to characterize material constants associated with a predefined
stress–strain relation, S¼ f Eð Þ in ΩX . The constructed material model with properly estimated model
coefficients is then combined with the physical laws (Equations 1 and 2) to solve the boundary value
problem. However, as material models f are usually based on empirical experimental observations,
physical principles, and mathematical assumptions, with parameters calibrated from experimental data of
material samples (Ghaboussi et al., 1991; Sussman and Bathe, 2009), the phenomenological material
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modeling process inevitably lacks generality, especially for complex material systems (Latorre and
Montáns, 2014; Ibanez et al., 2018).

The recently developed physics-constrained data-driven computing paradigm takes an alternative path
to solve boundary value problems, which directly embeds material data into physical simulations,
bypassing the need of phenomenological model construction (Kirchdoerfer and Ortiz, 2016; Ibanez
et al., 2018; He and Chen, 2020). One class of data-driven computing framework consists of minimizing
the distance between the material data bz and the strain–stress state z satisfying the physical laws in
Equations (1) and (2), which is called distance-minimizing data-driven (DMDD) computing
(Kirchdoerfer and Ortiz, 2016). A global distance functional is defined to measure the distance between
the material data bz and the physical state z

d z,bzð Þ¼
Z
ΩX
d2z z,bzð ÞdΩ (4)

with

d2z z,bzð Þ¼ d2EðE uð Þ,bEÞþd2SðS,bSÞ, (5)

d2EðE uð Þ,bEÞ¼ 1
2
ðE uð Þ� bEÞ :M : ðE uð Þ� bEÞ, (6)

d2SðS,bSÞ¼ 1
2
ðS�bSÞ :M�1 : ðS�bSÞ, (7)

where M is a predefined symmetric and positive-definite weight tensor used to regularize the distances
between z and bz. For a system with multiple materials, multiple material datasets are required for data-
driven computing, with each dataset describing material behaviors of one material. An ensemble of these
material datasets is called a material database, Eem ¼E1�E2�…�Em ⊂ Z, where m denotes the

number of material types, Ep ¼ ðbEp
j,bSpjÞn oMp

j¼1
, andMp is the number of material data in Ep, p¼ 1,…,m.

2.2. Data-driven two-step processes: material and physical solvers

The data-driven computing problem is formulated by stating:

minbz ∈ Eem

min
z ∈ C

d z,bzð Þ¼ min
z ∈ C

minbz ∈ Eem

d z,bzð Þ, (8)

where d z,bzð Þ is the global distance functional defined by Equation (4). The objective is to find thematerial
data bz ∈ Eem in the material database that is closest to the constraint set C of physical states z or
equivalently to find the physical state z ∈ C that is closest to the material database Eem. The data-
driven problem in Equation (8) can be decomposed into a two-step problem:

Physical step : z∗ ¼ argmin
z ∈ C

d z,bzð Þ, (9)

Material step :bz∗ ¼ argminbz ∈ Eem

d z∗,bzð Þ, (10)

where bz∗ is the optimal material data sought from the material step that is closest to the physical state z∗

computed from the physical step.

2.2.1. Physical solver
A physical solver is used to solve the physical step defined in Equation (9), which searches for the physical
state z ∈ C that is closest to a given material data bz. It can be reformulated as a constrained minimization
problem:
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min
z ∈ C

d z,bzð Þ¼ min
u,S

Z
ΩX

d2EðE uð Þ,bEÞþd2SðS,bSÞ� �
dΩ

subject to :DIV F uð Þ �Sð Þþb¼ 0 inΩX ,

F uð Þ �Sð Þ �N¼ tonΓX
t : (11)

Note that the Green–Lagrangian strain tensor E is obtained from the displacement function of
sufficient smoothness so the compatibility condition is naturally imposed in the physical solver. Enforcing
the physical constraints by the Lagrange multiplier λ gives the following functional:Z

ΩX
d2EðEðuÞ,bEÞþd2SðS,bSÞh i

dΩþ λ
Z
ΩX

DIV F uð Þ �Sð Þþb½ �dΩ�
Z
ΓXt

F uð Þ �Sð Þ �N� t½ �dΓ
" #

: (12)

The stationary condition of Equation (12) yields the following data-driven variational equations
(He and Chen, 2020; He et al., 2020b; Nguyen et al., 2020):

δu :
Z
ΩX
δE uð Þ :M : E uð Þ� bE� �

dΩ¼
Z
ΩX
δFT uð Þ �∇λ : SdΩ, (13a)

δS :
Z
ΩX
δS : M�1 : S�FT uð Þ �∇λ� �

dΩ¼
Z
ΩX
δS :M�1 : bSdΩ, (13b)

δλ :
Z
ΩX
δ∇λ : F uð Þ �Sð ÞdΩ¼

Z
ΩX
δλ �bdΩþ

Z
ΓXt

δλ � tdΓ: (13c)

The variational formulation in Equations (13a–c) can be solved by numerical solvers, for example, the
Finite Element Method and the Reproducing Kernel Particle Method (RKPM) (Liu et al., 1995; Chen
et al., 1996). In this study, the RKPM numerical solver is adopted for approximating the displacement
field and the Lagrange multiplier field due to its nodal approximation of state and field variables that are
particularly effective for data-driven computing, see more details of RKPM in Appendix. The stabilized
conforming nodal integration (SCNI) by Chen et al. (2002) scheme is adopted such that the integration
points share the same set of points as the discretization nodes, which allows all material data search and
variable evaluation to be performed only at the nodal points, enhancing efficiency and accuracy of data-
driven computing. Consistent to the nodal integration, the stress S is approximated by indicator functions
X i Xð Þ so that its nodal values are directly associated with the material stress data without introducing
additional interpolation errors, see He and Chen (2020) for details.

S Xð Þ ≈ Sh Xð Þ¼
XN
i¼1

X i Xð ÞSi, (14)

where N is the number of integration points, Si is the nodal stress associated with the ith node, andX i Xð Þ
is expressed as

X i Xð Þ¼ 1, if X ∈ ΩX
i ,

0, if X ∉ ΩX
i :

(
(15)

Employing nodal integration and the stress approximation in Equation (14), the discrete form of
Equation (13b) becomesXN

i¼1

ViδS
T
i M�1

i Si� FT uð Þi �∇λi
� �� �¼XN

i¼1

ViδS
T
i M

�1
i
bSi, ∀ δSi, i¼ 1,…N, (16)

where the subscript i denotes the terms evaluated atXi, e.g., Si ¼ S Xið Þ and FT uð Þi ¼F u Xið Þð Þ, and Vi is
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the integration weight associated with the ith node. Equation (16) yields the stress update for all
integration points:

S¼bSþM : FT uð Þ �∇λ� �
: (17)

Substituting Equation (17) into Equations (13a) and (13c) yields the following nonlinear system of u
and λ (He et al., 2020b)Z

ΩX
δE uð Þ :M : ðE uð Þ� bEÞdΩ¼

Z
ΩX

δFT uð Þ �∇λ� �
:M : FT uð Þ �∇λ� �

dΩ

þ
Z
ΩX

δFT uð Þ �∇λ� �
: bSdΩ, (18a)

Z
ΩX

FT uð Þ �δ∇λ� �
: M : FT uð Þ �∇λ� �þbSh i

dΩ¼
Z
ΩX
δ∇λ �bdΩþ

Z
ΓX
t

δ∇λ � tdΓ, (18b)

which can be solved by the Newton–Raphson method (Belytschko et al., 2000)

2.2.2. Material solver
Following the physical step, a material step is performed to search for the optimal material data bz∗ that is
closest to the physical state z∗ obtained from the physical step byminimizing the distance functional. This
is done by the followingmaterial solver, which decomposes the globalminimization in Equation (10) into
N local minimization problems (Kirchdoerfer and Ortiz, 2016).bz∗i ¼ argminbzi ∈ Eem

d2z z∗i ,bzi� �
, i¼ 1,…,N, (19)

where i denotes the indices of integration points and N is the total number of integration points.
The data-driven solutions are obtained through fixed-point iterations of the physical step (Equations 17

and 18) and the material step (Equation 19) until the variation in material-step solutions between two
consecutive iterations is within a certain tolerance, see Kirchdoerfer and Ortiz (2016) and Conti et al.
(2018) for discussion of convergence properties of this two-step fixed-point iteration solver. The DMDD
computing process is depicted in Figure 1, whereE is thematerial admissible set, vð Þ is the iteration index,
and one iteration contains one physical step and onematerial step. In DMDD computing, given a physical
state z∗ vð Þ of a material point, the material solver searches for the closest material data bz∗ vð Þ directly from
thematerial databaseEem. However, it can result in unsatisfactory accuracy of data-driven solutions when
noise and outliers presented in the material data (Kirchdoerfer and Ortiz, 2017; He and Chen, 2020).

Figure 1. Geometric schematic of the distance-minimizing data-driven (DMDD) solver (Kirchdoerfer
and Ortiz, 2016).
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2.3. Local convexity-preserving material solver

The solutions from the material step are critical to data-driven computing, as they represent the material
behaviors of the anisotropic solids. As discussed in Section 2.2, the conventional DMDDmaterial solver
(Equation 19) that directly searches for the closest material data can lead to inaccurate data-driven
solutions when the material data contains noise and outliers. To enhance the robustness of data-driven
computing against noise and outliers, the LCDD computing (He and Chen, 2020) was developed by
introducing the underlying manifold structure of material data to the material solver, which solves the
below material step: bz∗i ¼ argminbzi ∈ E z∗ið Þ

d2z z∗i ,bzi� �
, i¼ 1,…,N, (20)

whereE z∗i
� �

is a local convex space formedby kmaterial data points that are closest to a given physical state
z∗i ofmaterial pointXi, providing a smooth and bounded solution space for optimalmaterial data search, and
preserving the convexity of the constructed local material manifold for enhanced robustness and conver-
gence stability. Thematerial step defined inEquation (20) involves two substeps. First, given a physical state
z∗i , k nearest neighbors (material data points), bzαf gα ∈ N k z∗ið Þ⊂ Eem, are identified based on the distance

measured by d2z z∗i ,bz� �
, where the indices of the nearest neighbors of z∗i are stored inN k z∗i

� �
. Then, a local

convex space is constructed based on the collected nearest neighbors bzαf gα ∈ N k z∗ið Þ of z∗i , defined as

E z∗i
� �¼Conv bzαf gα ∈ N k z∗ið Þ

� �
¼

X
α ∈ N k z∗ið Þ

wαbzα
�������

X
α ∈ N k z∗ið Þ

wα ¼ 1 and wα≥0, ∀α ∈ N k z∗i
� �8><>:

9>=>;,

(21)

The optimal coefficients wi ¼ wαf gα ∈ N k z∗ið Þ are obtained by solving the following minimization
problem:

w∗
i ¼ argmin

wi

d2z z∗i ,
X

α ∈ N k z∗ið Þ
wαbzα

0B@
1CA

subject to : X
α ∈ N k z∗ið Þ

wα ¼ 1,

wα≥0, ∀α ∈ N k z∗i
� �

,

(22)

where w∗
i ¼ w∗

α

� �
α ∈ N k z∗ið Þ denotes the optimal coefficients. Equation (22) is solved by means of a non-

negative least-square algorithm with penalty relaxation, see details in He and Chen (2020). The optimal
material data bz∗i can then be obtained by the following local convex construction:

bz∗i ¼ X
α ∈ N k z∗ið Þ

w∗
αbzα, (23)

which ensures that the optimal material data bz∗i always lie within the local convex space E z∗i
� �

. The
LCDDcomputing process is depicted in Figure 2, where thematerial solver finds the optimalmaterial data
within the local convex spaceE z∗i

� �
(denoted by enclosed black dash lines) formed by the k selected data

points closest to the given physical state, which expands the feasible solution space for robustness in data-
driven iterations against noise and outliers in the material data (He and Chen, 2020).

2.4. Local convexity-preserving material solver for anisotropic solids

To capture direction-dependent material properties of anisotropic solids, a two-level local data search
scheme is introduced in the local convexity-preserving material solver. Let us consider an anisotropic
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material dataset E¼ ðbE j,bS jÞ
n oM

j¼1
with stress-strain data measured in a global reference frame. Every

material point in a physical system is associated with its anisotropic orientations (orientations of
material anisotropy), which are represented by the vector of Euler angles θi between the local fiber
frame and the global reference frame, where i¼ 1,…,N is the index of material (integration) points. For
simplicity, the methodologies of the proposed material solver for anisotropic solids is illustrated by
using the examples with in-plane (two-dimensional) anisotropy, which can be easily extended to three-
dimensional problems.

Figure 3a shows an in-plane anisotropic material sample under testing in a global reference frame
(eg1,e

g
2), where the dash lines indicate the material anisotropic orientation in eg1 direction. A bar under

uniaxial stretching, as shown in Figure 3b, contains material points Xi associated with certain angles
(anisotropic orientations) θi between the local fiber frame (el1,e

l
2) of material point i and the reference

frame. The corresponding rotation tensor is defined as

Ri ¼
cos θið Þ �sin θið Þ 0

sin θið Þ cos θið Þ 0

0 0 1

264
375: (24)

Figure 2.Geometric schematic of the local convexity data-driven (LCDD) solver, where the physical state
is projected onto the local convex hulls spanned by the nearest material data points located inside the

polygons (He and Chen, 2020).

(a) (b)

Figure 3. (a) Material sample under testing in a reference frame where the dash lines indicate the
material anisotropic orientation; (b) uniaxial stretching of a bar. The material behaviors of the material

point marked in blue are characterized by the material data from the sample shown in (a).
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Applying the rotation Ri to the strain–stress data E¼ ðbE j,bS jÞ
n oM

j¼1
yields the rotated strain–stress

dataEθ
i ¼ ðbEθ

j,bSθjÞn oM

j¼1
representing the material behaviors with the anisotropic orientation θi under the

reference frame:

bEθ

j ¼Ri � bE j �RT
i , j¼ 1,…,M (25a)

bSθj ¼Ri �bS j �RT
i , j¼ 1,…,M: (25b)

The rotatedmaterial datasets are normally obtained offlinewith various angles associatedwithmaterial
points in the physical system. Rotated material datasets are then used to reconstruct the optimal material
data in the material solver during online data-driven computing.

However, it is impractical to prepare rotatedmaterial datasets when a system contains a large number of
varying anisotropic orientations associated with material points as a collection of all possible rotated
material datasets requires prohibitive memory. A typical example is muscle tissues in musculoskeletal
systems that involve randomly oriented fibers. To effectively model anisotropic behaviors in complex
material systems, we introduce a two-level local data search scheme into the material solver. To this end,
the anisotropic orientation θ is encoded as an additional feature in material data and physical states of
material points. Consequently, the distance between the material data and physical state is not only
measured by the distance between their strain–stress values, called state distance, but also the distance
between their anisotropic orientations, called anisotropic distance, expressed as

d2zf ðz,θÞðz,bθÞ� �
¼ d2z z,bzð Þþd2f ðθ,bθÞ: (26)

The state distance dz z,bzð Þ is computed by Equations (6) and (7) and the anisotropic distance d f θ,bθ� �
is defined as

d f ðθ,bθÞ¼ kθ�bθk, (27)

where bθ and θ denote the anisotropic orientations of material data and the material point, respectively.

2.4.1. Level 1 data search
Let us consider a system constituted by an anisotropic material with various anisotropic orientations, for
example, a musculoskeletal system consisting muscle fibers with various fiber orientations. The aniso-
tropic material with various anisotropic orientations in the global reference frame exhibits the same
material behaviors under the local fiber frame.We first prepare a rotated material database that contains bm
rotated material datasets obtained by rotating the original dataset with bm different angles (anisotropic

orientations). Each rotated material datasets contains strain–stress databz and an anisotropic orientation bθ.
The range of variations in anisotropic orientations of the rotated material database is sufficiently large to
cover all material points in the system. Given a physical state of a material point, zi,θið Þ, where the
subscript i denotes the index of amaterial (integration) pointXi, we first compute the anisotropic distance

(Equation 27) between the material point (θi) and all rotated material datasets (bθp, p¼ 1,2,…, bm). Two
rotated material datasets, Eθ

p and Eθ
q, will then be selected so that bθp ≤ θi ≤ bθq, as illustrated by the blue

dash block in Figure 4. The selected material datasets have the anisotropic orientations closest to that of
the material point and therefore are considered to best represent the anisotropic material behaviors of the
material point.

2.4.2. Level 2 data search
Given the two selected rotated material datasets by the Level 1 search scheme, we search for k nearest
neighbors (KNN ) within each dataset based on the state distance between the physical state of the
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material point and the selected material datasets. The lists of k material data points closest tco the
physical state of the material point from the first and second selected material dataset are denoted as
KNN 1 and KNN2, respectively, as shown in Figure 4. To properly consider the effect of the two KNN
datasets, we propose to use a linear weighting scheme based on the anisotropic orientation information
as follows:

bw2 ¼ d f ðθi,bθpÞ
d f ðbθq,bθpÞ¼ kθi�bθpk

kbθq�bθpk , (28a)

bw1 ¼ 1� bw2: (28b)

The final list of k nearest neighbors, which is formed by int(k � bw1) (rounded to the nearest integer)
nearest neighbors from KNN 1 and int(k � bw2) nearest neighbors from KNN2, is used for local convexity-
preserving reconstruction of the optimal material data that is closest to the physical state of the material
point by

ðbz∗i ,bθ∗i Þ¼ argmin
ðbzi,bθiÞ ∈ eEðz∗i ,θiÞ

d2z ðz∗i ,bziÞþd2f ðθi,bθiÞ, i¼ 1,…,N, (29)

where z∗i is the optimal strain–stress state obtained from the physical step (Equation 9) for the material

pointXi, θi is the anisotropic orientation of the material pointXi, eE z∗i ,θi
� �

is a local convex space formed

by the selected k nearest neighbors ðbzα,bθαÞn o
α ∈ N k z∗i ,θið Þ of the physical state z∗i ,θi

� �
based on the

distance measured by d2z z∗i ,bz� �þd2f ðθi,bθÞ. The anisotropic oritentations θi and bθi are normalized by bθq
before the calculation of anisotropic distance.

Note that the construction of convexity-preserving local manifold takes the anisotropic orientations of

the selected nearest neighbors into account in forming the local convex space eE z∗i ,θi
� �

so that the
anisotropic orientations of nearest neighbors play an important role in reconstructing the optimal material

data ðbz∗i ,bθ∗i Þ closest to the physical state z∗i ,θi
� �

. Let a∗i andbai denote z∗i ,θi
� �

and ðbzi,bθiÞ, respectively. The
total distance between a∗i and bai is denoted by d2zf a∗i ,bai� �

. The local convex space eE a∗i
� �

is constructed

based on the collected nearest neighbors baαf gα ∈ N k a∗ið Þ, defined as

eE a∗i
� �¼Conv baαf gα ∈ N k a∗ið Þ

� �
¼

X
α ∈ N k a∗ið Þ

ewαbaα
�������

X
α ∈ N k a∗ið Þ

ewα ¼ 1 and ewα≥0, ∀α ∈ N k a∗i
� �8><>:

9>=>;, (30)

The optimal coefficients ewi ¼ ewαf gα ∈ N k a∗ið Þ are obtained by solving the following minimization
problem:

Figure 4. Illustration of two-level local data search in the proposed material solver.
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ew∗
i ¼ argminewi

d2zf a∗i ,
X

α ∈ N k a∗ið Þ
ewαbaα

0B@
1CA

subject to : X
α ∈ N k a∗ið Þ

ewα ¼ 1,

ewα ≥ 0, ∀α ∈ N k a∗i
� �

,

(31)

where ew∗
i ¼ ew∗

α

� �
α ∈ N k a∗ið Þ denote the optimal coefficients. Equation (31) is solved by the non-negative

least-square algorithm with penalty relaxation used to solve for the optimal coefficients of the local
convex space in LCDD’s material solver (Equation 22), see more details in He and Chen (2020). The

optimal material data ba∗i ¼ðbz∗i ,bθ∗i Þ can then be obtained by the following local convex construction:

ba∗i ¼ X
α ∈ N k a∗ið Þ

ew∗
αbaα, (32)

The optimal material data sought from the material solver is considered to be “closest” to the physical
state in terms of both state distance and anisotropic distance and thus best represent the anisotropic
material properties of the material point. The optimal material data will then be input to the physical step
(Equations 17 and 18) to solve for the closest physical state in the next data-driven iteration. Note that
anisotropic properties are embedded inmaterial database, which are independent of physical laws. Hence,
the physical solver only requires the optimal strain–stress material data, bz∗i , reconstructed from the
material solver.

2.4.3. Schematic illustration
Figure 5 shows schematic examples of the material step in a two-dimensional space, where bθp ¼ 20∘,bθq ¼ 40∘, and k¼ 6 are considered. Three different anisotropic orientations θi of the material point i are
considered, that is, 36∘, 30∘, and 24∘. The linear weights for selecting the nearest neighbors (KNN weights)
from each material dataset are computed based on the anisotropic orientation information by
Equation (28). The number of nearest neighbors from each material dataset are computed by multiplying
theirKNN weights with the total number of nearest neighbors k, as listed in Table 1, which are rounded to
the nearest integer. This approach follows the idea of instance-based learning (Mitchell et al., 1997) to
learn the underlying relation from the neighboring manifold of observation data, but additionally, it
assigns different number of votes to the selected datasets based on their anisotropic distance d f

(Equation 27). For example, in the case that the anisotropic orientation of the material point i is
θi ¼ 36∘, which is closer to that of Dataset 2 (bθq ¼ 40∘) and thus the computed KNN weight for Dataset
2 is bw2 ¼ 0:8, larger than bw1 ¼ 0:2 of Dataset 1 (bθp ¼ 20∘). Hence, there are 1 and 5 nearest neighbors
selected fromDataset 1 andDataset 2, respectively, which are used to form a local convex space capturing
the underlying anisotropic data structure, as shown in Figure 5a. The optimal material data (red circle in

Figure 5. Schematic illustration of the proposed material solver for anisotropic solids. Dataset 1 has an
anisotropic orientation of bθp ¼ 20∘. Dataset 2 has an anisotropic orientation of bθq ¼ 40∘. The total
number of nearest neighbors k is 6. The material step of a material point with different anisotropic

orientations are compared: (a) θi ¼ 36∘; (b) θi ¼ 30∘; (c) θi ¼ 24∘.
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Figure 5a) is then reconstructed from the local convex space. As the anisotropic orientation of thematerial
point is closer to that of Dataset 2, more nearest neighbors are selected from Dataset 2 for local convex
reconstruction and therefore the optimal material data that is closest to the given physical state will have
anisotropic properties closer to that of Dataset 2. In the case that the anisotropic orientation is θi ¼ 30∘,
both datasets have the same KNN weights and contribute the same number of nearest neighbors to the
construction of local convex space, as shown in Figure 5b, indicating that they have the same effects on
reconstructing the optimal material data.

Note that the relation between the anisotropic properties and anisotropic orientations is nonlinear.
More sophisticated anisotropic distance metrics and local data reconstruction schemes are required
in order to achieve higher accuracy in anisotropic material data reconstruction if the selected
material datasets have a large anisotropic distance, which will be investigated in our future study.
In the cases that the anisotropic distance of the selected rotated material datasets is small, the L2-based
metric for anisotropic distance (Equation 27) and the linear local convexity-preserving reconstruction
scheme (Equation 32) adopted in this study can yield desirable accuracy in the data-driven modeling
of anisotropic materials, which will be demonstrated in the numerical examples in the following
sections.

2.5. Local convexity-preserving data-driven solver for anisotropic solids

Given an anisotropic material dataset E and anisotropic orientations of material points in the system, the
proposed data-driven solver for modeling anisotropic solids is summarized as follows.

Offline stage:
Step 1. Define a range for variations in anisotropic orientations for material data rotation so that it

covers that of the material points in the system. Depending on the distribution of the anisotropic
orientations in the system, anisotropic orientations for data rotation can be evenly distributed in the
defined range or follow certain statistical distributions in order to better capture anisotropic properties of
the system.

Step 2. Construct a rotated material database Eem ¼Eθ
1�⋯�Eθ

m by rotating the original anisotropic
material datasetEwith the anisotropic orientations defined in Step 1. The rotation of strain and stress data
is performed by Equation (25).

Online stage:
Step 1. Randomly initialize bz 0ð Þ

i , i¼ 1,…,N, where i denote the indices of material points and N is the
number of material points in the system, and set the data-driven iteration index v¼ 0.

Step 2. Solve the physical step (Equations 13–19) for physical states of all material points, z∗ vð Þ
i ,

i¼ 1,…,N.
Step 3. For each physical state at each integration point, ðz∗ vð Þ

i ,θiÞ, perform two-level local data search
(material step):

3.1. Search for two rotated material datasets with anisotropic orientations bθp and bθq so that bθp≤θi≤bθq.

Table 1. The number of nearest neighbors from each dataset in the examples shown in Figure 5 with bθp ¼ 20∘, bθq ¼ 40∘, and k¼ 6.

θi bw1 bw2 k � bw1 k � bw2

36∘ 0.2 0.8 1 5

30∘ 0.5 0.5 3 3

24∘ 0.8 0.2 5 1

The weights are computed by Equation (28). k � bw1 and k � bw2 are rounded to the nearest integer.
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3.2. From each selectedmaterial dataset, search for kmaterial data points that are closest to the physical

state based on the state distance d2z ðz∗ vð Þ
i ,bzÞ and obtain the final KNN using the weights computed by

Equation (28).
3.3. Construct local convex space by solving Equation (31) and obtain the optimal material data bz∗ vð Þ

i
within the local convex space by Equation (32).

Step 4. Update v¼ vþ1. If max
i¼1,…,N

d2z ðbz∗ vð Þ
i ,bz∗ v�1ð Þ

i Þ> tolerance, repeat Step 2–4.

Step 5. Data-driven solution: z∗i ¼bz∗ vð Þ
i , i¼ 1,…,N.

Remark: Modeling anisotropic materials by classical computational mechanics requires online
rotation of element stiffness matrices from local fiber frames to the global reference frame before global
assembly, which could lead to high computational cost especially for large systems. In the proposed data-
driven modeling of anisotropic materials, online rotation is replaced with an offline rotation, where
anisotropic material datasets are rotated by various anisotropic orientations under the global reference
frame to form a rotatedmaterial database for efficient online data-driven computing. In the general three-
dimensional orthotropic case, each anisotropic orientation is associated with three Euler angles and thus
for every anisotropic orientation considered, offline rotation operations associated with three Euler
angles are required for every stress–strain data, which could be CPU intensive but can be performed in
parallel especially when dealing with a large amount of data. Once the rotated material database is
constructed offline, it can be efficiently applied to different material points in data-drivenmodeling and to
different systems with the same anisotropic materials. Note that when the size of anisotropic material
datasets is large and the range of variations in anisotropic orientations of the system is very broad, the
offline rotated material database may require a large amount of memory.

If memory resources are not available, one can also adopt online rotation in the data-driven computing
for modeling anisotropic materials. In this case, at each data-driven iteration, the physical step remains
unchanged. In the material step, the physical states are first rotated from the global reference frame to
local fiber frames of material points and then the LCDD material solver (Equations 20–23) can be
applied to find the optimal material data from the unrotated anisotropic material dataset. The optimal
material data is then rotated back to the global reference frame for the next data-driven iteration.
Compared to the proposed data-driven approach with offline rotation, this online rotation approach
requires higher CPU but less memory.

3. Results and Discussion

3.1. Preparation of material datasets

For the following numerical demonstration, the two-dimensional Saint Venant–Kirchhoff phenomeno-
logical model with isotropic and orthotropic elastic tensors are respectively considered as the reference
models and used to generate synthetic data for data-driven computing. The plane-stress isotropic elastic
stress–strain relation in the Voigt notation is expressed as

S11
S22
S12

264
375¼ E

1þ νð Þ 1�2νð Þ

1� ν ν 0

ν 1�ν 0

0 0
1�2ν
2

2664
3775

E11

E22

2E12

264
375, (33)

where E denotes the Young’s modulus and ν is the Poisson’s ratio. As another reference material model,
the plane-stress orthotropic elastic stress–strain relation in the Voigt notation is expressed as

S11
S22
S12

264
375¼ 1

1� ν12ν21

E1 ν21E1 0

ν12E2 E2 0

0 0 G12 1�ν12ν21ð Þ

264
375 E11

E22

2E12

264
375, (34)
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where E1 and E2 are Young’s moduli in the eg1 and e
g
2 directions of the reference frame, respectively, see

Figure 3a. ν12 and ν21 are Poisson’s radios. G12 is the shear modulus.
To demonstrate the robustness of the proposed data-driven computing framework against noise

presented in given material datasets, noisy material datasets are generated and the procedure is described

below. First, a noiseless material dataset, E0 ¼ ðbE0
i ,bS0i Þn oM

i¼1
with M¼ 203, is generated, where each

strain component is uniformly distributed within a certain range, for example, [�0.2, 0.2], and the stress
components are obtained by using the orthotropic material model in Equation (34). M¼ 203 strain and
stress data points with E1 ¼ 104,E2 ¼ 2:5�103,ν21 ¼ 0:1,ν12 ¼ 0:4, and G12 ¼ 4:8�103 are shown in
Figure 6a,c, respectively, serving as a noiseless base dataset without any noise and rotation. The
anisotropic orientation of the noiseless base dataset is along the horizontal direction of the reference
frame, as shown in Figure 3a. Then, each component of the noiseless base dataset is perturbed byGaussian

noise with a scaling factor, 0.4zmax=
ffiffiffiffiffi
M3

p
, where zmax is a vector of the maximum values for each

component among the noiseless dataset. Figure 6b,d show the strain and stress of the noisy base dataset,

(a) Noiseless Strain Data (b) Noisy Strain Data

(c) Noiseless Stress Data (d) Noisy Stress Data

Figure 6. Material datasets with 8,000 data points, E1 ¼ 104,E2 ¼ 2:5�103,ν12 ¼ 0:1,ν21 ¼ 0:4, and
G12 ¼ 4:8�103: (a) noiseless strain data; (b) noisy strain data; (c) noiseless stress data; and (d) noisy

stress data.
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E¼ ðbEi,bSiÞn oM

i¼1
with M¼ 203, generated from the noiseless base dataset E0 shown in Figure 6a,c,

respectively.
Given anisotropic orientations of material points in a physical system, for example, θi of the material

point i in Figure 3b, the strain and stress data of the base dataset can be rotated using Equation (25).
Figure 7 shows the strain and stress data rotated from the base dataset by three different angles 30∘, 60∘,
and 90∘. In the following numerical examples, rotation ofmaterial datasets is performed offline by various
angles (anisotropic orientations) to cover the range of variations in anisotropic orientations of systems. A
collection of rotated material datasets form a rotated material database, which is then used for online data-
driven computing with the material solver equipped with two-level data search designed for capturing
material’s directional dependence.

3.2. Multi-layer anisotropic cantilever beam subjected to a tip shear load

We first investigate a multi-layer anisotropic cantilever beam benchmark problem to verify the proposed data-
driven modeling framework for anisotropic nonlinear solids, where three layers of orthotropic materials are
considered. Two cases are examined and compared. In Case 1, all material points in the beamhave an identical
anisotropic orientation, which is along the horizontal direction, as shown in Figure 8a. In Case 2, the beam is
made of three layers of anisotropicmaterials with different anisotropic orientations. Thematerial points within
each layer have the same anisotropic orientation. Figure 8b shows that the bottom, the middle, and the top
layers of the beam have anisotropic orientations of �45∘, 0∘, and 45∘, respectively. A synthetic noiseless

(a) Rotation: 30° (b) Rotation: 60° (c) Rotation: 90°

(d) Rotation: 30° (e) Rotation: 60° (f) Rotation: 90°

Figure 7.Rotatedmaterial datasets with 8,000 data points,E1 ¼ 104,E2 ¼ 2:5�103,ν12 ¼ 0:1,ν21 ¼ 0:4,
andG12 ¼ 4:8�103: (a) strain data rotated by 30∘; (b) strain data rotated by 60∘; (c) strain data rotated
by 90∘; (d) stress data rotated by 30∘; (e) stress data rotated by 60∘; and (f) stress data rotated by 90∘.
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orthotropic material dataset with 8,000 strain–stress data points is first generated from the phenomenological
orthotropic elastic model with E1 ¼ 104,E2 ¼ 2:5�103,ν21 ¼ 0:1,ν12 ¼ 0:4, G12 ¼ 4:8�103, and a range
of [�0.2, 0.2] for each strain component, as shown in Figure 6a,c. Then, a noisy orthotropicmaterial dataset is
generated from the noiseless dataset using the procedure described in Section 3.1, as shown in Figure 6b,d.

For Case 1, no rotation of the material dataset is required as the anisotropic orientations of materials
points in the beam are identical with that of the synthetic dataset, which is along the horizontal direction.
For Case 2, a rotated material database is constructed by rotating the generated synthetic noiseless/noisy
dataset from�60∘ to 60∘ with a 10∘ interval, that is,�60∘,�50∘,�40∘,�30∘,�20∘,�10∘, 0∘, 10∘, 20∘, 30∘,
40∘, 50∘, and 60∘. The rotated material database is then used for online data-driven computing. The
numerical studies of both cases are performed with noiseless or noisy material datasets. A tip shear load
P¼ 10E1I=L2 with I¼H3=12 is applied and the data-driven analysis is performed with 20 loading steps.

The normalized tip deflection-loading and stress distribution of data-driven solutions are compared
with those of the constitutive model-based reference solutions obtained from an in-house Finite Element
code, as shown in Figures 9 and 10. The data-driven solutions of both cases show a satisfactory agreement
with the model-based reference solutions, which demonstrates the effectiveness of the proposed data-
driven computing framework for modeling anisotropic nonlinear elastic materials. The data-driven
solutions obtained by using the noisy material datasets agree well with the model-based reference
solutions, showing the robustness of the proposed framework against noise in the datasets, which is
achieved by the local convexity-preserving reconstruction in the material solver.

(a) Case 1 (b) Case 2

Figure 8. Schematic of cantilever beam subjected to a tip shear load: (a) Case 1: material points have
only one anisotropic orientation 0∘; (b) Case 2: material points located in different layers of the beam
have different anisotropic orientations. The anisotropic orientations of the bottom, themiddle, and the top

layers are �45∘, 0∘, and 45∘, respectively. P¼ 10E1I=L2, and I¼H3=12.

(a) Case 1 (b) Case 2

Figure 9. Comparison of data-driven solutions with constitutive model-based reference solutions.
Normalized tip deflection-loading, where I¼H3=12: (a) Case 1 and (b) Case 2.
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3.3. Anisotropic cylinder subjected to internal pressure

To further evaluate the effectiveness of the proposed data-driven computing framework in handling
physical systems with a large variation in anisotropic orientations, an anisotropic cylinder subjected to
internal pressure is analyzed, as shown in Figure 11a, which is composed of an orthotropic material with

(a) Case1 - Reference (b) Case1 - LCDD (Noiseless data) (c) Case1 - LCDD (Noisy data)

(d) Case2 - Reference (e) Case2 - LCDD (Noiseless data) (f) Case2 - LCDD (Noisy data)

Figure 10. Comparison of data-driven solutions with constitutive model-based reference solutions.
Distribution of Sxx: (a) Case 1: reference solution; (b) Case 1: data-driven solution with noiseless data;
(c) Case 1: data-driven solution with noisy data; (d) Case 2: reference solution; (e) Case 2: data-driven

solution with noiseless data; and (f) Case 2: data-driven solution with noisy data.

(a)

(b)

Figure 11. (a) Schematic of a cylinder subjected to internal pressure and a quarter model to be simulated
and (b) red arrows denote nodal anisotropic orientations of material points in a discretization with

10�20 nodes.
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anisotropic orientations along the circumferential direction of the cylinder. Considering axisymmetry of
the geometry and the applied load, only a quarter model shown in Figure 11b is modeled. The inner and
outer radius are 1 and 2, respectively. In Figure 11c, the anisotropic orientations of the 10�20
discretization points are denoted by red arrows. Two cases are examined and compared.

In Case 1, an isotropic elastic material is applied, with Young’s modulus E¼ 9�103 and Poisson’s
ratio ν¼ 0:2. A noiseless synthetic isotropic material dataset with 8,000 strain–stress data points is
generated by the phenomenological isotropic elastic material model with a range of [�0.4, 0.4] for
each strain component. In Case 2, an orthotropic elastic material is applied, with E1 ¼ 4�104,
E2 ¼ 9�103,ν21 ¼ 0:045,ν12 ¼ 0:2, G12 ¼ 2�104, and anisotropic orientations along the circumferen-
tial direction of the cylinder. A noiseless synthetic orthotropic material dataset with 8,000 strain–stress
data points is generated by the phenomenological orthotropic elastic material model with a range of
[�0.4, 0.4] for each strain component. Considering the uniform distribution of anisotropic orientations of
material points in the cylinder, a rotated material database is constructed by rotating the generated
synthetic dataset from 90∘ to 180∘ with a 5∘ interval. Noisy material datasets are generated from the
noiseless material datasets by the procedure described in Section 3.1. Internal pressure p =1,000 is
applied and the data-driven analysis is performed with 20 loading steps.

The cross-sectional (y¼ 0) radial displacement (Ur) as well as the radial and the circumferential stress
distributions of the data-driven solutions are compared with those of the constitutive model-based
reference solutions, as shown in Figures 12–14. The data-driven solutions obtained from using noisy
material datasets are very close to those of reference solutions, which again shows the robustness of the
proposed data-driven framework to deal with noisy datasets. The results of both cases show a good
agreement with the reference solutions, which demonstrates the effectiveness of the proposed data-driven
framework in dealing with systems with a large variation in anisotropic orientations.

4. Conclusion

In this study, we develop a new data-driven material solver built upon the local convexity-preserving
reconstruction scheme by He and Chen (2020) to capture anisotropic material behaviors and enable data-
driven modeling of anisotropic nonlinear elastic solids. The proposed data-driven approach assumes that
the material data of anisotropic materials with a specific anisotropic orientation in a reference frame is
accessible. The information of anisotropic orientations, for example, the rotation angles between local

(a) Case 1 (b) Case 2

Figure 12. Comparison of data-driven solutions with constitutive model-based reference solutions.
Cross-sectional radial displacement Ur: (a) Case 1 and (b) Case 2.
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fiber frames and the reference frame of the material data are utilized to construct an offline material
database, which contains rotated material datasets representing anisotropic material properties with
various anisotropic orientations. The offline rotated material database can be efficiently constructed
and applied to data-driven simulations of anisotropic materials.

During online data-driven computing, a two-level local data search is integrated into the local
convexity-preserving material solver. In the Level 1 data search, two rotated material datasets with
minimum anisotropic distance (Equation 27) to the material anisotropic orientation are identified as the
local datasets. The selected rotated material datasets are considered to contain anisotropic material
properties closest to that of the material point. In the Level 2 data search, k data points closest to the
given physical state based on strain–stress state distance (Equation 5) are obtained separately from the two
rotated material datasets selected from the Level 1 data search. A linear weighting scheme based on
anisotropic distance is adopted to determine the number nearest data points from each of the selected
material datasets. The final k nearest data points that contain information of strain, stress, and anisotropic
orientations are used to construct a local convex space capturing the underlying anisotropic data structure,
withinwhich the optimalmaterial data is reconstructed by thematerial solver. The optimally reconstructed
material data is closest to the physical state of the material point in terms of both anisotropic distance and
state distance and thus is considered to best represent the anisotropic properties of the material point.

The performance of the proposed data-driven computing framework is examined by two numerical
examples, including deflection of a multi-layer anisotropic cantilever beam made of materials with
different anisotropic orientations and inflation of an anisotropic cylinder where anisotropic orientations
are along the circumferential direction of the cylinder. Synthetic noiseless and noisy material data are

(a) Case 1 - Reference (b) Case 1 - LCDD (Noiseless) (c) Case 1 - LCDD (Noisy)

(d) Case 1 - Reference (e) Case 1 - LCDD (Noiseless) (f) Case 1 - LCDD (Noisy)

Figure 13. Comparison of data-driven solutions with constitutive model-based reference solutions of
Case 1. Distribution of Srr (stress in the radial direction) and Sθθ (stress in the circumferential direction):
(a) Case 1: reference Srr; (b) Case 1: data-driven solution with noiseless data of Srr; (c) Case 1: data-
driven solution with noisy data of Srr; (d) Case 1: reference Sθθ; (e) Case 1: data-driven solution with

noiseless data of Sθθ; and (f) Case 1: data-driven solution with noisy data of Sθθ .
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generated from the phenomenological material models and employed for the data-driven analysis for
accuracy assessment of the proposed method. The data-driven solutions show a good agreement with the
constitutive model-based reference solutions, which demonstrates its effectiveness and robustness of the
proposed data-driven framework against noise present in the material data.

The proposed two-level data search can achieve high computational efficiency if the rotated material
database is constructed offline such that online computation does not involve any frame transformation of
states or data. For applications with a large amount of anisotropic material data and strong variations in
anisotropic orientations, constructing a rotated material database with small anisotropic distance between
rotated datasets requires a large amount ofmemory. In this case,more sophisticatedmetrics for anisotropic
distance and reconstruction schemes will be investigated in order to achieve high accuracy in reconstruct-
ing anisotropic material properties from given material datasets that have a large anisotropic distance. In
future studies, the proposed data-driven anisotropic modeling framework will be further examined with
real-world data on three-dimensional material systems with aniostropic material behaviors, e.g., muscu-
loskeletal systems consisting of muscle fibers with varying anisotropic orientations.
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(a) Case 2 - Reference (b) Case 2 - LCDD (Noiseless) (c) Case 2 - LCDD (Noisy)

(d) Case 2 - Reference (e) Case 2 - LCDD (Noiseless) (f) Case 2 - LCDD (Noisy)

Figure 14. Comparison of data-driven solutions with constitutive model-based reference solutions of
Case 1. Distribution of Srr (stress in the radial direction) and Sθθ (stress in the circumferential direction):
(a) Case 2: reference Srr; (b) Case 2: data-driven solution with noiseless data of Srr; (c) Case 2: data-
driven solution with noisy data of Srr; (d) Case 2: reference Sθθ; (e) Case 2: data-driven solution with

noiseless data of Sθθ; and (f) Case 2: data-driven solution with noisy data of Sθθ .

e19-20 Xiaolong He et al.

https://doi.org/10.1017/dce.2020.20 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2020.20


Data Availability Statement. All data involved in this study are synthetically generated and data generation procedures are
described in Section 3.1.

Author contributions. Conceptualization, J.-S.C., Q.H., X.H.; Methodology, X.H., Q.H., J.-S.C.; Formal Analysis, X.H.; Data
Curation, X.H.; Writing–Original Draft, X.H.; Writing–Review and Editing, X.H., Q.H., J.-S.C., U.S., S.S.; Supervision, J.-S.C.;
Funding Acquisition, J.-S.C., U.S., S.S.; All authors approved the final submitted draft.

References
Belytschko T, Liu WK and Moran B (2000) Nonlinear Finite Elements for Continua and Structures. Chichester: John Wiley &

Sons, Ltd.
Chen J-S, Marodon C and Hu H-Y (2015) Model order reduction for meshfree solution of poisson singularity problems.

International Journal for Numerical Methods in Engineering 102(5), 1211–1237.
Chen J-S, Pan C,WuC-Tand LiuWK (1996) Reproducing kernel particle methods for large deformation analysis of non-linear

structures. Computer methods in applied mechanics and engineering 139(1–4), 195–227.
Chen J-S, Yoon S and Wu C-T (2002) Non-linear version of stabilized conforming nodal integration for galerkin mesh-free

methods. International Journal for Numerical Methods in Engineering 53(12):2587–2615.
Conti S, Müller S and Ortiz M (2018) Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229(1),

79–123.
EggersmannR,Kirchdoerfer T,Reese S, Stainier L andOrtizM (2019)Model-free data-driven inelasticity.Computer Methods

in Applied Mechanics and Engineering 350, 81–99.
Eggersmann R, Stainier L, Ortiz M and Reese S (2021) Model-free data-driven computational mechanics enhanced by tensor

voting. Computer Methods in Applied Mechanics and Engineering 373, 113499.
FurukawaTandYagawaG (1998) Implicit constitutivemodelling for viscoplasticity using neural networks. International Journal

for Numerical Methods in Engineering 43(2), 195–219.
Ghaboussi J, Garrett Jr J and Wu X (1991) Knowledge-based modeling of material behavior with neural networks. Journal of

Engineering Mechanics 117(1), 132–153.
Gillies AR and Lieber RL (2011) Structure and function of the skeletal muscle extracellular matrix. Muscle & Nerve 44(3),

318–331.
Goswami S,Anitescu C,Chakraborty S andRabczuk T (2020) Transfer learning enhanced physics informed neural network for

phase-field modeling of fracture. Theoretical and Applied Fracture Mechanics 106, 102447.
HeQ,Barajas-Solano D,TartakovskyG andTartakovsky AM (2020a) Physics-informed neural networks for multiphysics data

assimilation with application to subsurface transport. Advances in Water Resources 141, 103610.
HeQ andChen J-S (2020) A physics-constrained data-driven approach based on locally convex reconstruction for noisy database.

Computer Methods in Applied Mechanics and Engineering 363, 112791.
He Q, Chen J-S and Marodon C (2019) A decomposed subspace reduction for fracture mechanics based on the meshfree

integrated singular basis function method. Computational Mechanics 63(3), 593–614.
He Q, Laurence DW, Lee C-H and Chen J-S (2020b) Manifold learning based data-driven modeling for soft biological tissues.

Journal of Biomechanics, in press.
Heider Y,WangK and SunW (2020) So (3)-invariance of informed-graph-based deep neural network for anisotropic elastoplastic

materials. Computer Methods in Applied Mechanics and Engineering 363, 112875.
Huijing PA (1999) Muscle as a collagen fiber reinforced composite: a review of force transmission in muscle and whole limb.

Journal of Biomechanics 32(4), 329–345.
IbanezR,Abisset-Chavanne E,Aguado JV,Gonzalez D,Cueto E andChinesta F (2018). Amanifold learning approach to data-

driven computational elasticity and inelasticity. Archives of Computational Methods in Engineering 25(1), 47–57.
Ibañez R, Borzacchiello D, Aguado JV, Abisset-Chavanne E, Cueto E, Ladevèze P and Chinesta F (2017) Data-driven non-

linear elasticity: constitutive manifold construction and problem discretization. Computational Mechanics 60(5), 813–826.
Kirchdoerfer T and Ortiz M (2016) Data-driven computational mechanics. Computer Methods in Applied Mechanics and

Engineering 304, 81–101.
KirchdoerferTandOrtizM (2017)Data driven computingwith noisymaterial data sets.ComputerMethods in AppliedMechanics

and Engineering 326, 622–641.
Kirchdoerfer T and Ortiz M (2018) Data-driven computing in dynamics. International Journal for Numerical Methods in

Engineering 113(11), 1697–1710.
LatorreM andMontáns FJ (2014)What-You-Prescribe-Is-What-You-Get orthotropic hyperelasticity.Computational Mechanics

53(6), 1279–1298.
Lee C-H and Chen J-S (2013) RBF-POD reduced-order modeling of DNA molecules under stretching and bending. Interaction

and Multiscale Mechanics 6(4), 395–409.
Lee K and Carlberg KT (2020) Model reduction of dynamical systems on nonlinear manifolds using deep convolutional

autoencoders. Journal of Computational Physics 404, 108973.

Data-Centric Engineering e19-21

https://doi.org/10.1017/dce.2020.20 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2020.20


Lefik M and Schrefler BA (2003) Artificial neural network as an incremental non-linear constitutive model for a finite element
code. Computer Methods in Applied Mechanics and Engineering 192(28–30), 3265–3283.

Lei X, Liu C, Du Z, Zhang W and Guo X (2019) Machine learning-driven real-time topology optimization under moving
morphable component-based framework. Journal of Applied Mechanics 86(1), 011004.

Liu WK, Jun S and Zhang YF (1995) Reproducing kernel particle methods. International Journal for Numerical Methods in
Fluids 20(8–9), 1081–1106.

LiuZ,WuCandKoishiM (2019) A deepmaterial network formultiscale topology learning and accelerated nonlinearmodeling of
heterogeneous materials. Computer Methods in Applied Mechanics and Engineering 345, 1138–1168.

Maulik R, Lusch B and Balaprakash P (2020) Reduced-order modeling of advection-dominated systems with recurrent neural
networks and convolutional autoencoders. arXiv preprint arXiv:2002.00470.

Mendizabal A, Márquez-Neila P and Cotin S (2020) Simulation of hyperelastic materials in real-time using deep learning.
Medical Image Analysis 59, 101569.

Mitchell RK,Agle BR andWood DJ (1997) Toward a theory of stakeholder identification and salience: Defining the principle of
who and what really counts. Academy of Management Review 22(4), 853–886.

Mora-Macías J, Ayensa-Jiménez J, Reina-Romo E, Doweidar M, Domínguez J, Doblaré M and Sanz-Herrera J (2020) A
multiscale data-driven approach for bone tissue biomechanics. Computer Methods in Applied Mechanics and Engineering 368,
113136.

Mozaffar M, Bostanabad R,ChenW, Ehmann K,Cao J and Bessa M (2019) Deep learning predicts path-dependent plasticity.
Proceedings of the National Academy of Sciences 116(52), 26414–26420.

Nguyen LTK and Keip M-A (2018) A data-driven approach to nonlinear elasticity. Computers & Structures 194, 97–115.
Nguyen LTK, Rambausek M and Keip M-A (2020) Variational framework for distance-minimizing method in data-driven

computational mechanics. Computer Methods in Applied Mechanics and Engineering 365, 112898.
Raissi M, Perdikaris P and Karniadakis GE (2019) Physics-informed neural networks: a deep learning framework for solving

forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics 378,
686–707.

Rocha I, Kerfriden P and van der Meer F (2020) Micromechanics-based surrogate models for the response of composites: a
critical comparison between a classical mesoscale constitutivemodel, hyper-reduction and neural networks. European Journal of
Mechanics-A/Solids 82, 103995.

Stainier L, Leygue A and Ortiz M (2019) Model-free data-driven methods in mechanics: material data identification and solvers.
Computational Mechanics 64(2), 381–393.

Sussman TandBathe KJ (2009) Amodel of incompressible isotropic hyperelastic material behavior using spline interpolations of
tension-compression test data. Communications in Numerical Methods in Engineering 25(1), 53–63.

TakazaM,Moerman KM,Gindre J, Lyons G, and Simms CK (2013) The anisotropic mechanical behaviour of passive skeletal
muscle tissue subjected to large tensile strain. Journal of the Mechanical Behavior of Biomedical Materials 17, 209–220.

Wang K and Sun W (2018) A multiscale multi-permeability poroplasticity model linked by recursive homogenizations and deep
learning. Computer Methods in Applied Mechanics and Engineering 334, 337–380.

XuR,Yang J,YanW,HuangQ,GiuntaG,Belouettar S,ZahrouniH,Zineb TB andHuH (2020) Data-driven multiscale finite
element method: From concurrence to separation. Computer Methods in Applied Mechanics and Engineering 363, 112893.

Zhang Y, Chen J-S., He Q, He X, Basava RR, Hodgson J, Sinha U and Sinha S (2020). Microstructural analysis of skeletal
muscle force generation during aging. International Journal for Numerical Methods in Biomedical Engineering 36(1), e3295.

Zhang Yand YeW (2019) Deep learning–based inverse method for layout design. Structural and Multidisciplinary Optimization
60(2), 527–536.

Appendix. Reproducing Kernel Particle Method
The reproducing kernel (RK) approximations (Liu et al., 1995; Chen et al., 1996) is adopted in the physical solver of the proposed
data-driven framework due to its nodal approximation of state and field variables that are particularly effective for data-driven
computing. The RK approximation functions can be constructed to possess desired completeness and continuity, which are
determined by basis functions and kernel functions, respectively. Figure 15a shows a domain Ω discretized by a set of nodes.

The RK approximation of a field variable u Xð Þ is given by

u Xð Þ≈uh Xð Þ¼
XNP
i¼1

Ψi Xð Þdi, (35)

where NP is the number of discretization nodes, di is the nodal coefficient associated with the ith node, and Ψi Xð Þ is the RK
approximation function expressed as

Ψi Xð Þ¼HT X�Xið Þb Xð Þϕa X�Xið Þ, (36)

where HT X�Xið Þ¼ 1,X1�X1i,X2�X2i,X3�X3i,…, X3�X3ið Þn½ � is a vector of monomial basis functions up to nth order, and
ϕa X�Xið Þ is a kernel function with a local support size “a,”which controls the smoothness of the RK approximation function. For
example, the cubic B-spline kernel function is widely used as a kernel function in RK approximation, see Figure 15b,

e19-22 Xiaolong He et al.

https://doi.org/10.1017/dce.2020.20 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2020.20


ϕa yð Þ¼

2
3
�4y2þ4y3, 0≤y<

1
2

4
3
�4yþ4y2�4

3
y3,

1
2
≤y< 1

0, y≥1

8>>>><>>>>: with y¼kX�Xik
a

: (37)

The vector b Xð Þ in Equation (36) is a parameter vector determined by imposing the n-th order reproducing conditions (Liu et al.,
1995; Chen et al., 1996), XNP

i¼1

Ψi Xð ÞXi
1iX

j
2iX

k
3i ¼Xi

1X
j
2X

k
3, ∣iþ jþ k∣¼ 0,1,…,n: (38)

Substituting Equation (36) into Equation (38) yields b Xð Þ¼M�1 Xð ÞH 0ð Þ, where M Xð Þ is a moment matrix given by

M Xð Þ¼
XNP
i¼1

H X�Xið ÞHT X�Xið Þϕa X�Xið Þ: (39)

The RK approximation function is expressed as, see Figure 15c,

Ψi Xð Þ¼HT 0ð ÞM�1 Xð ÞH X�Xið Þϕa X�Xið Þ: (40)
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(a)
(b) (c)

Figure 15. (a) A domainΩ discretized by the a set of RK nodes; (b) a cubic B-spline function widely used
as a kernel function in RK approximation; and (c) an example of RK approximation function centered at

X¼ 5 with a support size a¼ 1:5 � (nodal spacing).
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