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Abstract

Image-to-image translation (I2I) methods allow the generation of artificial images that
share the content of the original image but have a different style. With the advances in
Generative Adversarial Networks (GANs)-based methods, I2I methods enabled the gen-
eration of artificial images that are indistinguishable from natural images. Recently, I2I
methods were also employed in histopathology for generating artificial images of in silico
stained tissues from a different type of staining. We refer to this process as stain transfer.
The number of I2I variants is constantly increasing, which makes a well justified choice
of the most suitable I2I methods for stain transfer challenging. In our work, we com-
pare twelve stain transfer approaches, three of which are based on traditional and nine
on GAN-based image processing methods. The analysis relies on complementary quanti-
tative measures for the quality of image translation, the assessment of the suitability for
deep learning-based tissue grading, and the visual evaluation by pathologists. Our study
highlights the strengths and weaknesses of the stain transfer approaches, thereby allowing
a rational choice of the underlying I2I algorithms. Code, data, and trained models for
stain transfer between H&E and Masson’s Trichrome staining will be made available at
https://github.com/Boehringer-Ingelheim/stain-transfer.

Keywords: Image to image translation, stain transfer, virtual staining, histopathology,
generative adversarial networks.

1. Introduction

Image-to-image translation (I2I) methods (Pang et al., 2022) map images from a source to
a target domain, usually preserving semantic information, while changing an image style.
With the success of conditional GAN-based image generation technology (Mirza and Osin-
dero, 2014), I2I techniques gained popularity, suggesting a generic approach for tackling
diverse computer vision problems such as translation between day and night scenes, col-
orizing gray-scale images, or reconstruction of an image from its edges (Isola et al., 2017).
Especially influential were the methods that were able to learn translation between image
domains (e.g. between day and night), given only unpaired examples without scene cor-
respondences between the images from the different domains (Liu et al., 2017; Zhu et al.,
2017).
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In digital histopathology such methods were employed in a few different scenarios, which
we will differentiate into three categories. First, I2I was used for image normalization (Zan-
jani et al., 2018; Kang et al., 2021; Mahapatra et al., 2020; Shaban et al., 2019; BenTaieb
and Hamarneh, 2018) and image augmentation (Wagner et al., 2021) in order to improve
the robustness of image processing systems to variability in staining and image acquisition
settings. Image normalization is performed at the inference stage and adapts an image to
a reference appearance. On the other hand, image augmentation is performed during the
training stage to challenge the system with training examples that vary from the standard
appearance (and may appear in real data in the future).

Second, I2I enabled not only the subtle correction of image appearances due to variability
in staining and image acquisition, but also the translation between colorization styles due
to different types of reagents used for staining (so-called stain transfer) (Xu et al., 2019;
de Haan et al., 2021; Vasiljevic et al., 2021; Boyd et al., 2022; Lahiani et al., 2019). Since
particular types of stains are used for the visualization of specific structures in the tissue (e.g.
nuclei, fibrotic tissue etc.), such technology allows to avoid repeated staining with different
reagents, when there is a need for the analysis of tissue features that are not emphasized
with a single type of staining. Additionally, nowadays histopathological laboratories use
systems for the automated evaluation of tissue samples. Since, it is often required to
analyze samples stained with the reagents that are different from those used for training,
stain transfer algorithms become advantageous (Gadermayr et al., 2018; Brieu et al., 2019).
Stain transfer can be considered as an example of domain adaptation (Srinidhi et al., 2021)
in digital histopathology, where a system needs to be adapted to process images of tissue
samples stained with a different reagent compared to samples used for training the system.

The third and most difficult use of I2I in histopathology is virtual staining, when arti-
ficial images mimicking stained tissues are generated from unstained tissue samples. The
literature targeting this challenging problem is more scarce. Only a few works aimed to
generate artificial images mimicking stained tissues from fluorescence (Li et al., 2021; Riven-
son et al., 2019) and hyperspectral (Bayramoglu et al., 2017) images were published. In (Li
et al., 2020) the authors used paired examples of bright-field images of stained and unstained
tissue samples to train a virtual staining system. We expect that the research activity in
this emerging domain will yet accelerate in the upcoming years, since the ability to perform
virtual staining would have tremendous impact in histopathology (Rivenson et al., 2020).

Substantial effort was already made to quantitatively evaluate the effectiveness of dif-
ferent image normalization and augmentation techniques, using both traditional and GAN-
based methods (Tellez et al., 2019; Stacke et al., 2020; Zanjani et al., 2018; Shaban et al.,
2019). Unfortunately, stain transfer and virtual staining methods (as categorized above)
are lacking a comparative study that quantitatively evaluates a broad range of suitable
I2I approaches. Here, we provide such a quantitative comparison of I2I methods for stain
transfer. To this end, we compare several GAN-based state-of-the-art (Liu et al., 2017;
Zhu et al., 2017; Huang et al., 2018; Lee et al., 2018; Kang et al., 2021; Li et al., 2021; Isola
et al., 2017; Shaban et al., 2019; Park et al., 2020) and traditional (Macenko et al., 2009;
Vahadane et al., 2015; Reinhard et al., 2001) methods. Particularly, we experiment with
the conversion between Masson’s Trichrome (MT) and Hematoxylin-Eosin (H&E) staining,
see visual examples in Figure 1(a). We evaluate the performance of I2I approaches using
complementary quantitative measures (Section 3), the tissue grading errors when integrated
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stain transfer in histopathology

into a computer-aided image analysis pipeline (Section 4), and visual pathologists’ analysis
(Section 5). Our comparative evaluation outlines the limitations and advantages of different
I2I methods, thereby allowing practitioners to properly choose the most suitable one.

2. Overview of compared image-to-image translation approaches

We evaluate three stain transfer methods that are based on traditional approaches. Rein-
hard et al. (2001) presented one of the first approaches for transfering color statistics
(ColorStat) that was later adopted for stain conversion in histopathology. The authors
suggest to transfer the mean and standard deviation of images from the target domain
to images from the source domain for each of the three components of LAB color space.
Macenko et al. (2009) proposed to handle variability in staining by introducing a color nor-
malization method. It assumes the linear combination of two stains in the optical density
(OD) space and uses singular value decomposition to represent OD by the product of the
stain and the concentration matrices. The former characterizes the properties of the used
stains, while the latter characterizes the strength of the performed staining. Using the stain
matrix, estimated from the reference image from the target domain, and the concentration
matrix of a source image, the image is normalized to have the appearance of the target
domain. Vahadane et al. (2015) build on (Macenko et al., 2009) work, but forces the values
of the concentration matrix to be non-negative and sparse, which makes the OD decompo-
sition biologically more plausible. A reference image is usually used to learn the unknown
parameters of the traditional methods. Instead of relying on a single reference image, we use
all the images in the training dataset from the target domain. For Macenko and Vahadane
we averaged the stain matrix and pseudo-maxima of stain concentrations over the training
dataset, while for ColorStat we averaged mean and standard deviation.

We also evaluate nine stain transfer methods that are based on Generative Adversarial
Networks (GAN) (Goodfellow et al., 2014). We denote GAN’s generator as G and dis-
criminator as D. x and y are the images from X and Y domains, respectively, between
which we want to find a mapping. Pix2Pix (Isola et al., 2017) uses a conditional GAN
(cGAN) to translate X � Y , conditioning the discriminator on source images x ∈ X. The
discriminator is fed with pairs, either of source and generated {x,G(x)} images or of source
and target {x, y} aligned images. An L1 term is added to the adversarial loss to improve
the cGAN performance. One disadvantage of this method is that it requires aligned images
{x, y} for training. To avoid this limitation, we employ the following trick. We train cGAN
to colorize images according to Y using pairs of y and corresponding gray-scale images. To
transform x to y we first convert x to gray-scale and then apply the trained cGAN. More
specifically, we train cGAN on true pairs {AB(y),L(y)}, and fake pairs {G(L(y)),L(y)},
where L() and AB() denote the mapping of an image to the lightness and the two color
channels of the LAB color space, and G generates A, B color channels. During inference
the trained G generates G(L(x)) color channels that are merged with lightness L(x).

The following GAN-based methods, by design, do not require paired images for training.
CycleGAN (Zhu et al., 2017) proposed training two generators G : X � Y and F : Y
� X, enforcing, in addition to two adversarial loss terms, a cycle consistency loss that
enforces F (G(X)) ≈ X and G(F (Y )) ≈ Y . UTOM (Li et al., 2021) adopts the CycleGAN
architecture adding a saliency constraint to the loss function. This constraint forces the
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retention of the content mask for source and translated images, which should reduce content
distortion during translation. StainGAN (Shaban et al., 2019) employed the CycleGAN
approach for stain normalization in histological images. In contrast to CycleGAN, a stan-
dard ResNet (He et al., 2016) model was used in generator networks. StainNet (Kang
et al., 2021) leverages StainGAN as a teacher to learn a color pixel-to-pixel mapping with
a small convolutional network (using 1x1 convolutions). The L1 loss is used to match the
output of StainGAN. CUT (Park et al., 2020) proposed patchwise contrastive (PatchNCE)
loss as an alternative to the cycle loss. PatchNCE is used to minimize the distance between
the feature representations of patches from a source image x and corresponding patches
from G(x) relatively to the distance to randomly sampled patches from x at other loca-
tions. An additional loss (PatchNCE), applied to images from the target domain, functions
as identity loss that prevents the generator from making unnecessary changes.

UNIT (Liu et al., 2017) introduces a shared latent space forcing corresponding images
from two domains to map to the same latent representation. The architecture consists
of two GANs and two Variational Autoencoders (Kingma and Welling, 2014) (VAE) with
encoders that generate latent codes and with decoders that are also generators of GANs.
The loss function consists of two adversarial losses, two VAE losses, and two VAE-like
losses, which implicitly model cycle consistency forcing the distribution of the latent codes
of translated and original images to coincide. While UNIT assumes a shared latent space,
MUNIT (Huang et al., 2018) postulates that only part of the latent space (the content) can
be shared across domains whereas the other part (the style) is domain specific. To translate
an image to the target domain, its content code is recombined with a random style code
in the target style space. The objective comprises an adversarial loss, an L1 reconstruction
error in the image space, as well as content and style reconstruction errors in the latent
space, all in both directions. Like MUNIT, DRIT (Lee et al., 2018) factorizes feature rep-
resentation space to domain-invariant content and domain-specific attribute (style) spaces.
Similarly to MUNIT, the loss function includes an adversarial loss, L1 self-reconstruction
(image reconstruction) and L1 latent regression (attribute reconstruction) losses. Cross-
cycle consistency forces the twice translated image with swapped attribute features to be
close to the source image. An additional content adversarial loss aims at distinguishing the
domain membership of content codes. Finally, the KL loss forces attribute codes to obey a
normal distribution.

3. Comparative evaluation

3.1. Evaluation metrics

To evaluate the quality of the generated images we consider two factors: a) How well
generated images reproduce the visual appearance of images from the target domain, b)
How well a generated image preserves the structure of a source image. To the best of our
knowledge, there is no single established metric that covers both factors. Therefore, we
selected three metrics that are focused on different aspects: Structural Similarity Index
(SSIM) (Wang et al., 2004), first Wasserstein Distance (WD) (Ramdas et al., 2017), and
Fréchet Inception Distance(FID) (Heusel et al., 2017). SSIM is a perceptual image quality
metric developed to assess the degradation of structural information in processed images.
For aligned x and y local neighborhoods (we used 7 × 7 size), the index is calculated as
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Figure 1: (a) Examples of artificially generated H&E → MT images using four I2I methods.
Real MT and H&E images were obtained from close slices of tissue. More exam-
ples can be found in Appendix A in Figure 2 and Figure 3. (b) Evaluation of I2I:
SSIM is applied to pairs of source and artificially generated images converted to
gray-scale, while WD and FID are applied to sets of target and artificial images.

follows

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (1)

where µ, σ2, σxy are mean, variance, and covariance of pixel intensities, respectively. c1
and c2 are small constants to avoid instability when the denominator is close to zero.
The index was defined as the multiplication of luminance, contrast, and structure factors,
which after simplification results in Equation (1). For entire images, SSIM is calculated by
averaging along all the local neighborhoods and sometimes termed mean SSIM. Similarly
to (Kang et al., 2021), we calculate the mean SSIM between the source and the artificially
generated images, both converted to gray-scale, in order to assess structure preservation
(see Figure 1(b)). We have used the SSIM implementation by Van der Walt et al. (2014).

The WD, also known as Earth-Mover distance, between two one-dimensional discrete
distributions X and Y can be computed as follows

WD(X,Y ) =
∑
v∈R

|CX(v)− CY (v)|, (2)

where the CX and CY are cumulative distribution functions. We use WD to measure the
discrepancy between color appearances of generated and target images, see Figure 1(b). For
this purpose, we average two WDs computed for the two color channels in LAB color space.
We have used the WD implementation by Virtanen et al. (2020).

The Fréchet Inception Distance (FID) is a widely adopted metric used to assess the qual-
ity of generated images (Parmar et al., 2022). FID compares the distributions of two image
sets (e.g. generated and target, see Figure 1(b)). Namely, it measures the Fréchet distance
(Dowson and Landau, 1982) between the distributions of image deep features generated
with the Inception v3 network (Szegedy et al., 2016) pre-trained on the ImageNet (Deng
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et al., 2009). Since normal distributions are assumed, FID between distributions X and Y
is calculated as follows (Dowson and Landau, 1982)

FID(X,Y ) = ∥µx − µy∥2 + tr(Σx +Σy − 2(ΣxΣy)
1
2 ), (3)

where µ,Σ are distribution mean and co-variance, and tr is the trace operator. In contrast
to the WD described above, FID allows the assessment of not only color but also texture
or structure similarity between image sets. We use the Clean-FID implementation (Parmar
et al., 2022) in our experiments.

3.2. Datasets

To conduct our experiments several datasets of histological images were collected. Whole
slide images (WSIs) were acquired with a Zeiss AxioScan scanner (Carl Zeiss, Jena, Ger-
many) with a 20× objective at a resolution of 0.221 µm/pixel from mouse liver tissue
samples stained with H&E and MT according to established protocols. The WSI were then
subsampled with a factor of 1:2, which resulted in a 0.442 µm/pixel resolution. The training
dataset consists of around 26000 256× 256 tiles, extracted from WSIs, for each of the two
types of staining. This dataset is used to train I2I methods in both directions.

We collected a disjoint validation dataset of around 1300 image tiles for each type of
staining. The tiles were extracted from the WSIs used for the training dataset. Therefore,
even though there is no overlap between tiles of the training and validation sets, both
datasets are coming from the same distribution. We also collected a test dataset of around
1300 image tiles for each type of staining extracted from WSIs originating from different
histological studies so that the image tiles’ distribution is different from the training dataset.

3.3. Results

Table 1 summarizes the average translation performance between both directions (H&E →
MT and MT → H&E) for the I2I methods. The performance for each direction of translation
is separately shown in Appendix C. By calculating the FID measure on the validation
dataset with samples distributed similarly to the training data, we conclude that CycleGAN
excels over other methods in mimicking the structure and color of target images. CUT
and MUNIT performed closely. Our WD measure, which measures the ability to mimic
colors (see Section 3.1), shows a similar ranking of the best performing methods. The
StainGAN method shows close but slightly worse results than CycleGAN, the design of
which was borrowed by StainGAN. UTOM, which also adopted the CycleGAN architecture
but introduced an additional constraint to reduce the distortion of image content, did not
show (based on SSIM) the expected improvement. The SSIM measure shows that Pix2Pix,
StainNet, and ColorStat introduce the lowest level of distortion. However, these methods
are essentially worse in generating the desired color and texture. StainNet, with 1 × 1
filters, as well as all three traditional methods frequently fail to properly generate color
patterns, because they are based on pixel-to-pixel mappings which do not take into account
a local neighborhood. Specifically, they cannot reproduce blue patterns of connective tissue
for H&E → MT translation, see Figure 1(a), and Figure 2, Figure 3 in Appendix A.
As measured by SSIM, the lowest distortion among traditional methods, introduced by
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Table 1: Evaluation of I2I methods with FID (texture & color similarity to target domain),
WD (color similarity to target domain), and SSIM with standard errors (structure
preservation) for the Validation, and Test sets. The methods are ordered according
to FID for the validation set. Best results are in bold. WD has a factor 10−4.

Model
Validation Test

FID↓ WD↓ SSIM↑ FID↓ WD↓ SSIM↑
CycleGAN 16.33 1.46 0.951 ± 0.001 25.18 5.04 0.934 ± 0.001
CUT 17.10 1.60 0.914 ± 0.001 29.75 6.30 0.901 ± 0.001
MUNIT 19.20 1.61 0.871 ± 0.001 29.36 6.15 0.842 ± 0.001
StainGAN 19.59 3.27 0.952 ± 0.000 26.64 6.97 0.926 ± 0.001
UNIT 20.23 2.54 0.940 ± 0.001 36.78 7.40 0.918 ± 0.001
UTOM 20.64 2.32 0.952 ± 0.000 32.79 7.06 0.951 ± 0.000
DRIT 22.83 2.06 0.915 ± 0.001 33.62 5.44 0.892 ± 0.001
Pix2Pix 48.47 8.42 0.998 ± 0.000 49.71 5.34 0.997 ± 0.000
StainNet 50.49 11.41 0.972 ± 0.000 47.81 12.33 0.967 ± 0.000
ColorStat 62.13 9.60 0.974 ± 0.001 58.42 6.96 0.939 ± 0.001
Macenko 70.39 12.90 0.926 ± 0.001 53.27 11.83 0.910 ± 0.001
Vahadane 76.55 15.14 0.911 ± 0.001 59.94 14.71 0.885 ± 0.001

ColorStat, is similar to the one introduced by CycleGAN and its derivatives UTOM and
StainGAN. This reinforces the suitability of CycleGAN for stain transfer.

The results on the test set again demonstrate that CycleGAN achieves the best per-
formance. However, FID and WD show worse values since the generated colors resemble
images of the training/validation sets rather than the images of the test set. For the same
reason, WD, which exclusively measures color similarity, showed a different ranking of the
methods. MUNIT and DRIT performed worse than the principally different CycleGAN.
However, they may allow the adaptation to the color distribution of a target domain without
the need to retrain an I2I network.

4. Robustness of computer-aided grading of tissue to artificial images

A growing number of tasks in quantitative tissue analysis, such as disease grading, are be-
ing performed with the aid of machine learning systems. We investigated whether artificial
images can be utilized by such systems. This would allow to apply such systems when the
stain used for training is not readily available. We use a deep-learning-based system (Heine-
mann et al., 2019) that was trained on MT stained tissues to replace pathologist grading of
non-alcoholic fatty liver disease, which includes a quantification of liver inflammation. The
condition, if exists, is typically spread homogeneously over tissue. The system was fed with
artificially created H&E → MT images. It analyzes 300×300 tiles and assigns inflammation
scores in the [0, 2] range, which are then averaged for the whole tissue sample. Our study is
based on 77 rodent liver tissue sections (used also for the sampling of 1300 tiles for the test
dataset, see Section 3.2). In Table 2 we report the Mean Square Error (MSE) and Mean
Absolute Error (MAE) between the inflammation scores generated by the system fed with
real and artificial MT stained tissue images. We did not perform an analysis of Pix2Pix and
UTOM, because the generator implementations did not allow to process 300 × 300 image
sizes. When the system was fed with (real) H&E tiles (instead of required MT tiles), we
obtained a MSE = 0.031, MAE = 0.143. Therefore, the methods performing worse do not
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Table 2: MSE, first row, and MAE, second row, of inflammation score [0, 2] when the system
was fed with real versus generated MT images. MSE, MAE, and the standard error
have a factor 10−2.

CycleGAN UNIT StainGAN DRIT MUNIT CUT StainNet ColorStat Macenko Vahadane

1.1± 0.2 1.2± 0.2 1.3± 0.2 1.7± 0.2 2.4± 0.7 3.3± 0.6 3.7± 0.3 5.3± 1.5 9.7± 0.7 10.3± 0.7

8.6± 0.7 8.9± 0.8 8.9± 0.8 11.3± 0.8 11.2± 1.2 13.3± 1.4 17.2± 1.0 14.5± 2.1 28.6± 1.4 29.6± 1.4

provide a benefit, compared to the frequently available H&E stain. In alignment with the
results from Section 3.3, CycleGAN, derived from it StainGAN, and UNIT showed strong
performance with MSE and MAE close to 0 (the theoretical optimum), while the tradi-
tional methods performed poorly. The success of CycleGAN, StainGAN, and UNIT can be
attributed to high SSIM measures and simultaneously low values of FID, see Table 1.

5. Pathologist assessment

To understand how well human experts can distinguish between artificial and real images
of stained tissue, we performed an assessment by pathologists. We asked two pathologists
(P1 with 6 years of experience, P2 with 17 years of experience) to identify the 200 artificial
images in a mixture of 200 real and 200 artificial images generated by CycleGAN and
MUNIT. The images were sampled from the validation set. As shown in Table 3, it was
challenging for both pathologists to identify the artificial images. The results for CycleGAN
were close to random guessing, whereas for MUNIT it was possible to identify the artificial
images in some cases.

Table 3: Pathologists test: Accuracy of the identification of 200 artificial images in a mix
of 200 artificial and 200 real images.

MT→H&E H&E→MT

CycleGAN MUNIT CycleGAN MUNIT

P1 0.515 0.545 0.495 0.535
P2 0.53 0.57 0.53 0.66

6. Conclusion

In our study, we evaluated three traditional and nine GAN-based I2I methods for stain
transfer in histopathology. The analysis was based on three quantitative measures that
assess the quality of color and texture translation, as well as the distortion of the image
content. We additionally evaluated the performance of a deep learning grading system that
was fed with artificially stained tissue images. Furthermore, we conducted experiments
where expert pathologists were asked to distinguish real from artificial images.

The results have shown that CycleGAN provides the highest quality of stain transfer
and introduces similar or lower distortions than traditional pixel-to-pixel methods. On
the contrary, pixel-to-pixel methods, i.e., StainNet and the traditional methods, are hardly
suitable for stain transfer. Moreover, all compared approaches derived from CycleGAN did
not show advantages over the original version.
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Our study inspires the use of stain transfer methods for both pathologist visual evalu-
ation and computer-aided assessment when a type of staining is missing. Trained models,
inference code, and data will accompany this paper. We encourage stain transfer researchers
to use our framework for the evaluation of stain transfer methods not included in our study.
For example, a potential of emerging diffusion-based methods for stain transfer has not yet
been shown. We plan to further experiment with stain transfer going from tiles to WSIs
and transferring different types of staining. This would allow pathologists to draw their
conclusions faster by multiplexing between several types of staining.
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Appendix A. Examples of generated Masson’s Trichrome images
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Figure 2: Examples of artificially generated H&E → MT images using GAN-based I2I meth-
ods. Real MT and H&E images in the first two rows were obtained from close
slices of the tissue.
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Figure 3: Examples of artificially generated H&E → MT images using pixel-to-pixel I2I
methods. Real MT and H&E images in the first two rows were obtained from
close slices of the tissue.
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Appendix B. Training details

For all methods, we used the original code available from corresponding online repositories.
The training guidelines provided by the authors were followed, except for the methods men-
tioned below. For MUNIT we removed the spectral weight normalization in the generator
to avoid the erroneous inversion of the bright and dark parts of the tissue. For UTOM we
adapted the saliency thresholds to background and foreground intensities.

A few training hyperparameters (including the number of training epochs) for some I2I
methods deviate from the recommended ones. They were adjusted based on the validation
set, which we used to ensure acceptable quality of generated histological images relying on
visual inspection and the FID score. The resulting number of epochs, as well as training
and inference times are outlined in Table 4. Other parameters will be outlined in the code
repository accompanying this paper. For our experiments we used a machine with NVIDIA
T4 GPU, 16 GB RAM (AWS 4DN Extra Large instance).

Table 4: The number of training epochs, time per epoch, total training time, the number
of network parameters and the inference times.

Model
Training Inference

Epochs Epoch (hours) Time (days) Params GPU (s) CPU (s)

CUT 30 1.63 2.04 11.38 M 0.034 0.876
ColorStat 1 0.059 0.0024 6 0.009
CycleGAN 40 3.34 5.56 11.38 M 0.027 0.571
DRIT 300 0.27 3.5 21.27 M 0.035 0.597
Macenko 1 1.27 0.0528 8 0.317
MUNIT 46 2.66 5.24 30.26 M 0.045 0.833
Pix2Pix 30 0.18 0.23 54.41 M 0.010 0.115
StainGAN 40 4 6.67 11.38 M 0.028 0.560
StainNet 300 0.029 0.36 1.28 K 0.002 0.009
UNIT 115 3.12 14.95 12.56 M 0.030 0.474
UTOM 200 0.57 4.71 54.41 M 0.007 0.113
Vahadane 1 7.95 0.3313 8 2.276
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Appendix C. Results for each direction of stain transfer

Table 5 summarizes the translation performance of the I2I methods for each direction of
translation (H&E → MT and MT → H&E), separately. Here, we also show the metrics for
the training dataset, which may facilitate training on other histopathology datasets. Note
that substantially lower FID values for the training set are due to the high sensitivity of
FID to image set sizes (Binkowski et al., 2018).

Table 5: Evaluation of I2I methods with FID (texture and color similarity to target do-
main), WD (color similarity to target domain) and SSIM with standard errors
(structure preservation of source domain) for the Train, Validation and Test sets.
The first row corresponds to H&E → MT, the second to MT → H&E translation
directions. The methods are ordered according to FID for the validation set. Best
results are highlighted in bold. WD has a factor 10−4.

Model
Train Validation Test

FID↓ WD↓ SSIM↑ FID↓ WD↓ SSIM↑ FID↓ WD↓ SSIM↑

CycleGAN
2.65 1.29 0.950± 0.0 16.76 1.37 0.950 ± 0.001 28.47 7.41 0.947 ± 0.001
2.83 1.30 0.953± 0.0 15.89 1.55 0.953 ± 0.000 21.89 2.68 0.921 ± 0.001

CUT
3.87 1.76 0.917± 0.0 17.64 1.81 0.916 ± 0.001 31.73 7.42 0.921 ± 0.001
3.57 1.46 0.910± 0.0 16.56 1.38 0.912 ± 0.001 27.76 5.18 0.882 ± 0.001

MUNIT
6.28 1.53 0.872± 0.0 19.23 1.67 0.871 ± 0.001 31.69 6.76 0.875 ± 0.001
6.55 1.35 0.869± 0.0 19.18 1.56 0.871 ± 0.001 27.03 5.54 0.808 ± 0.002

StainGAN
5.92 4.42 0.952± 0.0 19.65 4.72 0.953 ± 0.000 30.40 7.08 0.955 ± 0.000
6.38 1.71 0.951± 0.0 19.53 1.83 0.951 ± 0.001 22.88 6.86 0.898 ± 0.001

UNIT
6.53 3.80 0.951± 0.0 20.39 3.84 0.951 ± 0.000 42.42 7.13 0.957 ± 0.000
7.53 1.31 0.929± 0.0 20.07 1.23 0.929 ± 0.001 31.14 7.67 0.880 ± 0.002

UTOM
7.43 2.59 0.950± 0.0 20.81 3.02 0.950 ± 0.000 39.88 6.35 0.959 ± 0.000
7.50 1.47 0.955± 0.0 20.48 1.62 0.955 ± 0.000 25.70 7.77 0.944 ± 0.000

DRIT
12.88 2.21 0.910± 0.0 25.47 1.93 0.912 ± 0.001 44.06 8.09 0.919 ± 0.001
6.77 1.71 0.919± 0.0 20.19 2.18 0.919 ± 0.001 23.18 2.78 0.865 ± 0.002

Pix2Pix
34.44 8.30 0.998± 0.0 49.82 8.62 0.998 ± 0.000 50.79 4.78 0.998 ± 0.000
33.69 7.96 0.998± 0.0 47.11 8.21 0.998 ± 0.000 48.63 5.89 0.997 ± 0.000

StainNet
31.61 13.27 0.971± 0.0 45.83 13.34 0.971 ± 0.000 37.88 11.22 0.973 ± 0.000
42.56 9.56 0.973± 0.0 55.15 9.49 0.973 ± 0.000 57.74 13.44 0.960 ± 0.000

ColorStat
45.30 12.00 0.977± 0.0 59.66 12.55 0.977 ± 0.001 49.82 10.29 0.979 ± 0.001
50.67 6.62 0.971± 0.0 64.60 6.65 0.971 ± 0.001 67.02 3.64 0.899 ± 0.002

Macenko
46.65 21.41 0.918± 0.0 60.45 21.24 0.918 ± 0.001 34.70 19.42 0.910 ± 0.001
67.14 4.33 0.934± 0.0 80.33 4.56 0.934 ± 0.001 71.83 4.25 0.910 ± 0.002

Vahadane
51.87 24.90 0.903± 0.0 65.98 24.73 0.902 ± 0.001 38.70 25.32 0.885 ± 0.001
71.82 5.54 0.915± 0.0 87.11 5.55 0.919 ± 0.001 81.18 4.10 0.885 ± 0.002
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