
Under review as a conference paper at ICLR 2024

GRAPHMAKER: CAN DIFFUSION MODELS GENERATE
LARGE ATTRIBUTED GRAPHS?

Anonymous authors
Paper under double-blind review

ABSTRACT

Large-scale graphs with node attributes are fundamental in real-world scenarios,
such as social and financial networks. The generation of synthetic graphs that
emulate real-world ones is pivotal in graph machine learning, aiding network evo-
lution understanding and data utility preservation when original data cannot be
shared. Traditional models for graph generation suffer from limited model capac-
ity. Recent developments in diffusion models have shown promise in merely graph
structure generation or the generation of small molecular graphs with attributes.
However, their applicability to large attributed graphs remains unaddressed due
to challenges in capturing intricate patterns and scalability. This paper intro-
duces GraphMaker, a novel diffusion model tailored for generating large attributed
graphs. We study the diffusion models that either couple or decouple graph struc-
ture and node attribute generation to address their complex correlation. We also
employ node-level conditioning and adopt a minibatch strategy for scalability. We
further propose a new evaluation pipeline using models trained on generated syn-
thetic graphs and tested on original graphs to evaluate the quality of synthetic
data. Empirical evaluations on real-world datasets showcase GraphMaker’s su-
periority in generating realistic and diverse large-attributed graphs beneficial for
downstream tasks.

1 INTRODUCTION

Large-scale graphs, enhanced with node attributes, are prevalent in many real-world settings. For
instance, in social networks, nodes often represent individuals with associated demographic fea-
tures (Golder et al., 2007). Similarly, in financial networks, nodes can correspond to agents, each
furnished with a variety of account details (Allen & Babus, 2009). Learning a model to generate
synthetic graphs that may mimic real-world graphs is a fundamental task in graph machine learning
(ML), which has a broad spectrum of applications. A graph generative model may assist network
scientists to better understand the evolution of complex networks (Watts & Strogatz, 1998; Barabási
& Albert, 1999; Barrat et al., 2008; Chung & Lu, 2002; Leskovec et al., 2010). In addition, releasing
the generated graphs from the model to some extent preserves data utility for public usage even if
the original graph data cannot be shared (Jorgensen et al., 2016; Eliáš et al., 2020). For example,
ML experts may develop learning models on public synthetic graphs for domain practitioners who
need a model to process their data while cannot share their data directly.

Traditional approaches primarily use statistical random graph models to generate graphs (Erdős &
Rényi, 1959; Holland et al., 1983; Barabási & Albert, 2002). These models often contain very few
parameters such as triangle numbers, edge densities, numbers of node communities, and degree dis-
tributions, which often suffer from limited model capacity. AGM (Pfeiffer et al., 2014) extends these
models for additionally generating node attributes, but it may only handle very few attributes due
to the curse of dimensionality. Recent research on deep generative models of graphs has introduced
more expressive data-driven methods. Most of those works solely focus on graph structure genera-
tion (Kipf & Welling, 2016; You et al., 2018b; Bojchevski et al., 2018; Li et al., 2018; Liao et al.,
2019). Other works study molecular graph generation that involves attributes, but these graphs are
often small-scale and consist of tens nodes per graph and a single categorical attribute per node (Jin
et al., 2018; Liu et al., 2018; You et al., 2018a; De Cao & Kipf, 2018).

1

Under review as a conference paper at ICLR 2024

("('), $('),))
…

(a) GraphMaker-Sync

("()), $()),), *)

(%,!
(⋅ |))

("()"+), $()"+),), * − 1)
… …

("()),), *)
… …

("('),))

…
("('), $('),))

…
(" ' , $,# ,), /-)

…
…

…

……

(b) GraphMaker-Async

Node Attributes (0):
…

Node Label ()): … Graph Structure (1):

Denoise Attributes Denoise Structure

(%,!"#
(⋅ |))

(%,#
(⋅ |))

(%!,!
(⋅ |))

(%!,.$/#
(⋅ |))

(%",.$
(⋅ |))

(%",#
(⋅ |))

Denoise Attributes and Structure Synchronously

Figure 1: Generation process with two GraphMaker variants.

Diffusion models have achieved remarkable success in image generation (Ho et al., 2020; Rombach
et al., 2022) by learning a model to progressively denoise a noisy sample. They have been recently
extended to graph and molecule generation. Niu et al. (2020) corrupts real graphs by adding Gaus-
sian noise to all entries of dense adjacency matrices. GDSS (Jo et al., 2022) extends the idea for
molecule generation. DiGress (Vignac et al., 2023) addresses the discretization challenge induced
by Gaussian noise. Specifically, DiGress employs D3PM (Austin et al., 2021) to edit individual
categorical node and edge types. However, DiGress is limited to small molecule generation and
cannot be applied to large attributed graph due to a scalability issue. EDGE (Chen et al., 2023)
and GRAPHARM (Kong et al., 2023) propose to employ autoregressive diffusion models while can
only generate graph structures with no attributes. Overall, all previous works on diffusion generative
models cannot be applied to generate large attributed graphs.

Developing diffusion models of large-attributed graphs is challenging on several aspects. First,
a large attributed graph presents substantially different patterns from molecular graphs, including
much more skewed node degree distributions, complex correlations between high-dimensional node
attributes and graph structure. Some graphs may contain node-level labels that govern the other
graph components. Second, generating large graphs poses challenges to model scalability as the
number of possible edges exhibits quadratic growth in the number of nodes, let alone the potential
hundreds or thousands of attributes per node. Third, how to evaluate the quality of the generated
graphs remains an open problem. Although deep models have the potential to capture more com-
plicated data distribution and correlations, most previous studies just evaluate high-level statistics
characterizing structural properties such as node degree distributions, and clustering coefficients of
the generated graphs, which can be already captured well by early-day statistical models (Pfeif-
fer et al., 2012; Seshadhri et al., 2012a). Therefore, a finer-grained way to evaluate the generated
large-attributed graphs is needed to justify the power of deep graph generative models.

Here we present GraphMaker, a diffusion model for generating large attributed graphs. First, we
observe that generating graph structure and node attributes simultaneously with a diffusion model
may not be always the best way to capture the patterns of either component and their joint patterns,
though previous works by default adopt such an approach. Instead, we propose an alternative diffu-
sion process that decouples the generation of the two components, which shows better performance
in learning the generative models for many real-world graphs. Second, to better capture the corre-
lation between node labels (if any) and the other components of graph data, we propose to generate
node labels with their empirical distribution, and leverage node labels as conditions to learn a condi-
tional diffusion model. To the best of our knowledge, this is the first work to build graph generative
models with node-level information as the conditions. Third, for scalability challenges, we employ
a minibatch strategy for structure prediction to avoid enumerating all node pairs per iteration during
training, and design a new message-passing neural network (MPNN) to efficiently encode the data.
Fourth, inspired by (Yoon et al., 2023), we propose to utilize ML models, including graph neural
networks (GNNs) (Wu et al., 2019; Kipf & Welling, 2017; Gasteiger et al., 2019; Kipf & Welling,

2

Under review as a conference paper at ICLR 2024

2016)), by training them on the generated graphs and subsequently evaluating their performance on
the original graphs to assess the quality of data generation. Note that Yoon et al. (2023) just gen-
erates ego-subgraphs (essentially trees) around nodes instead of the full large-attributed graphs like
ours. They also train and evaluate ML models on either the original graph or generated subgraphs
exclusively. Due to the strong discriminative power of ML models, our evaluation protocol works as
a way to check fine-grained attribute-structure-label correlation, which compliments the evaluation
based on high-level graph statistics.

Extensive studies on real-world networks with up to more than 13K nodes, 490K edges, and 1K
attributes demonstrate that GraphMaker overall significantly outperforms the baselines in produc-
ing graphs with realistic properties and high utility for downstream graph ML tasks. For property
evaluation, GraphMaker achieves the best performance for 2/3 cases across all datasets and metrics.
For evaluation on graph ML tasks, GraphMaker achieves the best performance for 80 % cases. In
addition, we demonstrate the capability of GraphMaker in generating diverse novel graphs.

2 PRELIMINARIES

Consider an undirected graph G = (V, E ,X) with the node set V and the edge set E . Each node
v ∈ V is associated with F -dimensional categorical attributes Xv . In many large attributed graphs,
nodes are additionally associated with a categorical label Y ⊂ [CY]

N , where CY is the number of
node classes and N = |V|. Note that we are to generate graphs without edge attributes to show a
proof of concept, while the method can be extended to generate the case with edge attributes.

We aim to learn PG×Y based on one graph (G,Y) sampled from it. In Section 3.4, we provide some
reasoning on why the distribution may be possibly learned from one single observation. As PY can
be typically easily estimated from the data, we propose to learn this joint distribution via the condi-
tional distribution PG|Y . Hence, our model can be denoted as a conditional generative model Pθ

G|Y .
Note that conditional generative models have been proven more valuable in many applications than
unconditional ones, such as generating images consistent with a target text description (Rombach
et al., 2022) or material candidates that satisfy desired properties (Vignac et al., 2023), which often
ask for controllable generation.

3 GRAPHMAKER

3.1 FORWARD DIFFUSION PROCESS AND REVERSE PROCESS

Our diffusion model extends D3PM (Austin et al., 2021) to large attributed graphs. There are two
phases. The forward diffusion process corrupts the raw data by progressively perturbing its node
attributes or edges. Let X ∈ RN×F×CX be the one-hot encoding of the categorical node attributes,
where for simplicity we assume all attributes to have CX possible classes. By treating the absence
of edge as an edge type, we denote the one-hot encoding of all edges by A ∈ RN×N×2. Let G(0)

be the real graph data (X,A).

We individually corrupt node attributes and edges of G(t−1) into G(t) by first obtaining noisy distri-
butions with transition matrices and then sampling from them. By composing the noise over multiple
time steps, for G(t) = (X(t),A(t)) at time step t ∈ [T], we have q(X(t)

v,f |Xv,f) = Xv,fQ̄
(t)
Xf

for any

v ∈ [N], f ∈ [F] and q(A(t)|A) = AQ̄
(t)
A . To ensure G(t) to be undirected, Q̄(t)

A is only applied
to the upper triangular part of A. The adjacency matrix of G(t), i.e., A(t), is then constructed by
symmetrizing the matrix after sampling. We consider a general formulation of Q̄(t)

Xf
and Q̄

(t)
A that

allows asynchronous corruption of node attributes and edges. Let TX = {t1X , · · · , tTX

X } ⊂ [T] be
the time steps of corrupting node attributes, and TA = {t1A, · · · , t

TA

A } ⊂ [T] be the time steps of
corrupting edges. Then,

Q̄
(t)
Xf

= ᾱγX(t)I+
(
1− ᾱγX(t)

)
1m⊤

Xf
, Q̄

(t)
A = ᾱγA(t)I+

(
1− ᾱγA(t)

)
1m⊤

A (1)

where ᾱγZ(t) = ᾱ|{tiZ |tiZ≤t}| if t ≤ tTZ

Z or otherwise ᾱγZ(t) = ᾱ0 = 1, for Z ∈ {X,A}. We
consider the popular cosine schedule in this paper (Nichol & Dhariwal, 2021), where ᾱγZ(t) =

3

Under review as a conference paper at ICLR 2024

cos2(π2
γZ(t)/|TZ |+s

1+s) for some small s, but the model works for other schedules as well. I is the
identity matrix, 1 is a one-valued vector, mXf

is the empirical marginal distribution of the f -th node
attribute in the real graph, mA is the empirical marginal distribution of the edge existence in the real
graph, and ⊤ denotes transpose.

During the reverse process, the second phase of the diffusion model, a denoising network ϕθ,t is
trained to perform one-step denoising pθ(G

(t−1)|G(t),Y, t), where node labels are employed for
guidance. Once trained, we can iteratively apply this denoising network to a noisy graph sampled
from the prior distribution

∏N̂
v=1

∏F
f=1 mXf

∏
1≤u≤N̂

∏
u<v≤N̂ mA for data generation. While

we consider N̂ = N in this paper, the model is capable of generating graphs of a size different
from the original graph. We model pθ(G(t−1)|G(t),Y, t) as a product of conditionally independent
distributions over node attributes and edges.

pθ(G
(t−1)|G(t),Y, t) =

N∏
v=1

F∏
f=1

pθ(X
(t−1)
v,f |G(t),Y, t)

∏
1≤u<v≤N

pθ(A
(t−1)
u,v |G(t),Y, t) (2)

Sohl-Dickstein et al. (2015) and Song & Ermon (2019) show that we can train the denoising network
to predict G(0) instead of G(t−1) as long as

∫
q(G(t−1)|G(t), t, G(0))dpθ(G

(0)|G(t),Y, t) has a
closed-form expression. This holds for our case as detailed in Appendix A.

3.2 TWO INSTANTIATIONS

To model the complex correlations between node attributes and graph structure, we study two par-
ticular instantiations of GraphMaker, named GraphMaker-Sync and GraphMaker-Async.

GraphMaker-Sync. GraphMaker-Sync employs a forward diffusion process that simultaneously
corrupts node attributes and edges for all time steps, which corresponds to setting TX = TA = [T].
The denoising network is trained to recover clean node attributes and edges from corrupted node
attributes and edges. During generation, it first samples clean node labels Y, noisy attributes X(T),
and noisy edges A(T) from the prior distributions. It then repeatedly invokes the denoising network
ϕθ,t to predict G(0) for computing the posterior distribution pθ(G

(t−1)|G(t),Y, t), and then samples
G(t−1). Figure 1(a) provides an illustration.

GraphMaker-Async. In practice, we find that GraphMaker-Sync cannot well capture certain pat-
terns like clustering coefficient distribution and triangle count, as shown in Section 4.2. We suspect
that this problem stems from synchronous refinement of node attributes and graph structure, hence
propose to denoise node attributes and graph structure asynchronously instead. We consider a sim-
ple and practically effective order as a proof of concept, which partitions [1, T] into two subintervals
TA = [1, tm] and TX = [tm + 1, T]. The denoising network ϕθ,t consists of two sub-networks.
ϕθX ,t is an MLP trained to reconstruct node attributes given (X(t),Y, t). ϕθA,t is trained to recon-
struct edges given (A(t),X,Y, t). During generation, it first samples clean node labels Y and noisy
attributes X(T), then repeatedly invokes ϕθX ,t until the generation of node attributes is finished.
Finally, it samples noisy edges A(T) and invokes ϕθA,t(A

(t),X,Y, t) repeatedly to complete the
edge generation. Figure 1(b) provides a visual illustration.

3.3 SCALABLE DENOISING NETWORK ARCHITECTURE

Large attributed graphs consist of more than thousands of nodes. This poses severe challenges to the
scalability of the denoising network. We address the challenge by improving both the encoder and
the decoder parts of the denoising network. The encoder computes representations of G(t) and the
decoder transforms them into predictions of node attributes and edges.

Graph encoder. To enhance the scalability of the graph encoder, we propose a message passing
neural network (MPNN) with complexity O(|E|) instead of using a graph transformer (Dwivedi &
Bresson, 2021) with complexity O(N2), which was employed by previous graph diffusion gener-
ative models (Vignac et al., 2023). Empirically, we find that with a 16-GiB GPU, we can use at
most a single graph transformer layer, with four attention heads and a hidden size of 16 per attention
head, for a graph with approximately two thousand nodes and one thousand attributes. Furthermore,

4

Under review as a conference paper at ICLR 2024

while in theory graph transformers surpass MPNNs in modeling long-range dependencies owing to
non-local interactions, it is still debatable whether long-range dependencies are really needed for
large-attributed graphs. They have not demonstrated superior performance on standard benchmarks
for large attributed graphs like OGB (Hu et al., 2020).

Let A(t) and X(t) respectively be the one-hot encoding of the edges and node attributes for the
time step t. The encoder of the denoising network takes A(t),X(t),Y and t as input. It first uses a
multilayer perceptron (MLP) to transform X(t) and the time step t into hidden representations X(t,0)

and h(t), and initializes the node label embedding Y(0) from Y. It then employs multiple MPNN
layers: For any node v ∈ V ,

X(t,l+1)
v = σ

W
(l)
T→Xh(t) + b

(l)
X +

∑
u∈N (t)(v)

1√
|N (t)(v)||N (t)(u)|

[X(t,l)
u ∥Y(l)

u]W
(l)
[X,Y]→X


(3)

Y(l+1)
v = σ

b
(l)
Y +

∑
u∈N (t)(v)

1√
|N (t)(v)||N (t)(u)|

Y(l)
u W

(l)
Y→Y

 (4)

where W(l)
T→X ,W

(l)
[X,Y]→X ,W

(l)
Y→Y ,b

(l)
X and b

(l)
Y are learnable matrices and vectors. N (t)(v) con-

sists of v and the neighbors of v corresponding to A(t) . ∥ stands for concatenation. σ consists of a
ReLU layer (Jarrett et al., 2009), a LayerNorm layer (Ba et al., 2016), and a dropout layer (Srivastava
et al., 2014). Different from Eq. 3, as we do not corrupt node labels, there is no need to incorporate
the time-step encoding h(t) into Eq. 4. The encoder computes the final node representations by
combining the node attribute, node label, and time step representations. To improve the expressive
power of the encoder, we employ the representations across all MPNN layers as in JK-Nets (Xu
et al., 2018), Hv = X(t,0)

v ∥X(t,1)
v ∥ · · · ∥Y(0)

v ∥Y(1)
v ∥ · · · ∥h(t). We employ two separate encoders for

node attribute prediction and edge prediction.

Decoder. The decoder performs node attribute prediction from Hv in the form of multi-label node
classification. To predict edge existence between node u, v ∈ V in an undirected graph, the decoder
performs binary node pair classification with the elementwise product Hu ⊙Hv in addition to trans-
formations with MLPs. Due to limited GPU memory, it is intractable to perform edge prediction
for all N2 node pairs at once. During training, we randomly choose a subset of the node pairs for a
gradient update. For graph generation, we perform edge prediction over minibatches of node pairs.

3.4 CAN A GRAPH GENERATIVE MODEL BE LEARNED FROM A SINGLE GRAPH?

It remains to be answered why we can learn the distribution PG|Y from only one sampled graph.
Due to the permutation equivariance inherent in our MPNN architecture, it becomes evident that the
derived probability distribution is permutation invariant. In other words, altering the node sequence
in a graph doesn’t affect the model’s likelihood of generating it. This suggests that our model is
primarily focused on identifying common patterns across nodes instead of focusing on the unique
details of individual nodes. In this case, a single, expansive graph can offer abundant learning
examples—each node acting as a distinct data point.

This raises an intriguing query: Should a model for large graph generation be calibrated to recognize
individual node characteristics? We think the answer really depends on the use cases. If the aim is to
analyze population-level trends, individual node details might be distractions. Note that traditional
graph generative models like ER (Erdős & Rényi, 1959), SBM (Holland et al., 1983), and their
degree-corrected counterparts (Seshadhri et al., 2012b; Zhao et al., 2012) only capture population-
level statistics, such as degree distributions and edge densities. For scenarios that involve sharing
synthetic graphs with privacy considerations, omitting the node-specific details is advantageous.
Conversely, if node-specific analysis is essential, our model might fall short. Overall, there’s always
a tradeoff between a model’s capabilities, the data at hand, the desired detail level, and privacy
considerations. We think of our work as a first step and will let future works dive deeper into this
issue. In Section 4.5, we empirically study this point. Indeed adopting a more expressive model
that employs node positional encodings and may capture some individual node details does not
consistently improve the quality of the generated graphs in our evaluation.

5

Under review as a conference paper at ICLR 2024

3.5 CONDITIONAL GENERATION GIVEN NODE LABELS

GraphMaker is essentially a conditional generation framework, creating graphs based on provided
node labels, instead of generating node labels explicitly. While it might be straightforward to treat
node label as an additional node attribute, this may prove insufficient in capturing the correlation
between node label and other components, as empirically demonstrated in Section 4.4.

GraphMaker-E. We also explore another GraphMaker variant, named GraphMaker-E, that further
utilizes label conditions. This is a special case of GraphMaker-Async, which generates node at-
tributes through an external approach conditioned on node labels. Consequently, it only requires
training a denoising network for edge generation. A significant benefit of this variant is its compat-
ibility with powerful generative models for other modalities like images and text (Rombach et al.,
2022; OpenAI, 2023).

4 EXPERIMENTS

4.1 DATASETS AND BASELINES

Datasets: We utilize four large attributed networks for evaluation. Cora and Citeseer are citation
networks depicting citation relationships among papers (Sen et al., 2008), with binary node attributes
indicating the presence of keywords and node labels representing paper categories. Amazon Photo
and Amazon Computer are product co-purchase networks, where two products are connected if they
are frequently purchased together (Shchur et al., 2018). The node attributes indicate the presence
of words in product reviews and node labels represent product categories. See Appendix B for the
dataset statistics. Notably, Amazon Computer (13K nodes, 490K edges) is an order of magnitude
larger than graphs adopted by previous deep generative models of graph structures (Chen et al.,
2023; Kong et al., 2023), and hence it provides a challenging testbed for model scalability.

Baselines: For traditional baselines, we compare against Erdős–Rényi (ER) model (Erdős & Rényi,
1959) and stochastic block model (SBM) (Holland et al., 1983). For deep learning (DL) meth-
ods, we consider feature-based matrix factorization (MF) (Chen et al., 2012), graph auto-encoder
(GAE) and variational graph auto-encoder (VGAE) (Kipf & Welling, 2016). Neither these base-
lines nor GraphMaker-E inherently possess the capability for node attribute generation. Therefore,
we equip them with p(Y)

∏
v

∏
f p(Xv,f |Yv) based on empirical distributions, which yields com-

petitive model performance on node label classification using solely node attributes, as shown in
Appendix D. To ensure a fair comparison, we augment the input of the DL baselines with one-hot
encodings of node labels. These two extensions allow a direct comparison between GraphMaker-E
and the baselines.

4.2 EVALUATION WITH STATISTICS

To assess the quality of the generated graph structures quantitatively, following You et al. (2018b),
we report distance metrics for node degree distribution, clustering coefficient distribution, and
four-node orbit count distribution. We adopt 1-Wasserstein distance W1(x, y), where x, y are
respectively a graph statistic distribution from the original graph and a generated graph, and a
lower value is better. Besides distribution distance metrics, we directly compare a few scalar-
valued statistics. Let M(G) be a non-negative-valued statistic, we report EĜ∼pθ

[
M(Ĝ)/M(G)

]
,

where Ĝ is a generated graph. A value closer to 1 is better. In addition to triangle count,
we employ the following metric for measuring the correlations between graph structure and
node label (Lim et al., 2021), where a larger value indicates a higher correlation. ĥ(A,Y) =

1
CY −1

∑CY

k=1 max
{
0,

∑
Yv=k |{u∈N (v)|Yu=Yv}|∑

Yv=k |N (v)| − |{v|Yv=k}|
N

}
, where N (v) consists of the neigh-

boring nodes of v. We also report the metric for two-hop correlations, denoted by ĥ(A2,Y). The
computation of clustering coefficients, orbit counts, and triangle count may be costly for the large
generated graphs. So, in such cases, we sample an edge-induced subgraph with the same number of
edges from all generated graphs.

Table 1 displays the evaluation results for Cora and Amazon Computer. For results on Citeseer and
Amazon Photo, see Appendix C. Unless otherwise mentioned, we report all results in this paper

6

Under review as a conference paper at ICLR 2024

Table 1: Evaluation with statistics on Cora and Amazon Computer. Best results are in bold.

Model

Cora Amazon Computer

W1 ↓ EĜ∼pθ

[
M(Ĝ)/M(G)

]
→ 1 W1 ↓ EĜ∼pθ

[
M(Ĝ)/M(G)

]
→ 1

Degree Cluster Orbit # Triangle ĥ(A,Y) ĥ(A2,Y) Degree Cluster Orbit # Triangle ĥ(A,Y) ĥ(A2,Y)

ER 1.0 2.4e1 1.6 6.1e−3 9.4e−3 9.7e−2 2.5e1 3.1e−1 2.1 9.7e−3 9.2e−4 2.9e−3

SBM 9.6e−1 2.3e1 1.6 2.4e−2 1.0 1.0 2.1e1 3.0e−1 2.0 1.8e−2 1.0 1.6

Feature-based MF 1.3e3 2.4e1 1.6 4.9e−3 1.1e−1 0.0 6.8e3 3.1e−1 2.1 3.6e−3 6.7e−2 0.0
GAE 1.3e3 2.4e1 1.6 7.1e−3 1.1e−1 0.0 7.5e3 3.2e−1 2.1 0.0 3.4e−2 0.0
VGAE 1.4e3 2.4e1 1.6 6.8e−3 1.0e−1 0.0 6.8e3 3.2e−1 2.1 0.0 6.7e−2 0.0

GraphMaker-Sync 6.2e−1 2.3e1 1.3 7.1e−2 9.2e−1 9.5e−1 2.6e2 2.9e−1 1.5 6.6e−2 1.2 5.3e−1

GraphMaker-Async 1.5 9.1 6.1e−1 1.4 1.1 1.1 2.1e2 2.0e−1 1.2 4.2e−1 1.3 1.2
GraphMaker-E 1.0 1.0e1 4.2e−1 1.4 1.1 1.2 2.6e1 1.2e−1 8.4e−1 1.9 1.1 2.5

Table 2: Evaluation with discriminative models on Cora and Amazon Computer. Best results are in
bold. Highest results are underlined.

Model

Cora Amazon Computer

Node Classification → 1 Link Prediction → 1 Node Classification → 1 Link Prediction → 1

1-SGC L-SGC L-GCN 1-APPNP L-APPNP CN 1-GAE L-GAE 1-SGC L-SGC L-GCN 1-APPNP L-APPNP CN 1-GAE L-GAE

ER 0.53 0.75 0.73 0.83 0.90 0.79 0.90 0.77 0.27 0.39 0.19 0.75 0.71 0.85 0.96 0.85
SBM 1.01 1.06 1.02 1.03 1.04 1.00 0.98 0.98 0.89 0.81 0.91 0.95 0.97 1.00 0.97 1.00

Feature-based MF 1.05 0.75 0.65 1.04 1.01 0.70 0.96 0.72 0.20 0.11 0.10 0.90 0.91 0.54 0.99 0.84
GAE 1.05 0.85 0.80 1.05 1.01 0.70 0.96 0.74 0.44 0.30 0.35 0.86 0.68 0.54 0.98 0.87
VGAE 1.01 0.63 0.47 1.03 1.00 0.70 0.97 0.74 0.29 0.22 0.13 0.90 0.88 0.54 0.99 0.80

GraphMaker-Sync 0.93 1.01 1.01 0.99 1.01 1.00 0.98 0.98 0.85 0.89 0.92 0.91 0.94 0.85 0.98 0.99
GraphMaker-Async 0.93 1.00 1.00 0.96 1.01 1.00 0.98 1.00 1.00 0.98 0.96 0.94 0.99 0.82 0.97 1.01
GraphMaker-E 1.00 1.05 1.05 1.04 1.05 1.00 0.98 0.99 0.96 0.96 0.97 0.94 1.00 1.00 0.99 1.01

based on 10 generated graphs that have the same number of nodes as the original graph. Out of 24
metrics, GraphMaker variants achieve the best performance for 16 of them. The best GraphMaker
variants for each dataset collectively yield the best performance on 12 metrics. SBM is the most
competitive baseline. GraphMaker-E performs better than SBM for 13 metrics. GraphMaker-Async
indeed addresses the problem mentioned in Section 3.2, consistently surpassing GraphMaker-Sync
for clustering coefficient distribution and triangle count. Overall, it performs better than or com-
parable to GraphMaker-Sync for 16/24 cases, which demonstrates the benefits of disentangling the
generation of node attributes and graph structure in certain cases.

4.3 EVALUATION WITH DISCRIMINATIVE MODELS

To evaluate the utility of the generated graphs for downstream ML tasks, we introduce a novel
evaluation protocol based on discriminative models. We train one model on the training set of the
original graph (G,Y) and another model on the training set of a generated graph (Ĝ, Ŷ). We then
evaluate the two models on the test set of the original graph to obtain two performance metrics
ACC(G|G) and ACC(G|Ĝ). If the ratio ACC(G|Ĝ)/ACC(G|G) is close to one, then the generated
graph is considered as having a utility similar to the original graph for training the particular model.
We properly tune each model to ensure a fair comparison, see Appendix D for more details.

Node classification. Node classification models evaluate the correlations between unlabeled graphs
and their corresponding node labels. Given our focus on the scenario with a single large graph, we
approach the semi-supervised node classification problem. We randomly split a generated dataset
so that the number of labeled nodes in each class and each subset is the same as that in the original
dataset . For discriminative models, we choose three representative GNNs – SGC (Wu et al., 2019),
GCN (Kipf & Welling, 2017), and APPNP (Gasteiger et al., 2019). As they employ different orders
for message passing and prediction, this combination allows for examining data patterns more com-
prehensively. To scrutinize the retention of higher-order patterns, we employ two variants for each
model, one with a single message passing layer denoted by 1−∗ and another with multiple message
passing layers denoted by L−∗. In addition, we directly evaluate the correlations between node
attributes and node label with MLP in appendix D.

Link prediction. This task requires predicting missing edges in an incomplete graph, potentially
utilizing node attributes and node labels. To prevent label leakage from dataset splitting, we split
the edges corresponding to the upper triangular adjacency matrix into different subsets and then add
reverse edges after the split. Following the practice of Kipf & Welling (2016), we adopt ROC-AUC
as the evaluation metric. We consider two types of discriminative models – CN (Liben-Nowell &
Kleinberg, 2003) and GAE (Kipf & Welling, 2016). CN is a traditional method that predicts edge

7

Under review as a conference paper at ICLR 2024

Table 3: Evaluation for benchmarking ML models. Best results are in bold.

Cora Citeseer Amazon Photo Amazon Computer

Model Pearson ↑ Spearman ↑ Pearson ↑ Spearman ↑ Pearson ↑ Spearman ↑ Pearson ↑ Spearman ↑
ER -0.88 -0.08 -0.81 -0.07 0.25 0.46 0.09 0.07
SBM 0.99 0.91 0.94 0.77 0.52 0.57 0.76 0.71

Feature-based MF 0.01 -0.25 -0.15 -0.21 0.22 0.42 0.33 0.46
GAE -0.01 -0.21 -0.21 -0.15 0.41 0.44 0.22 0.45
VGAE 0.00 -0.30 -0.20 -0.07 0.13 0.33 0.02 0.31

GraphMaker-Sync 0.95 0.98 0.97 0.89 0.84 0.89 0.88 0.83
GraphMaker-Async 0.98 0.96 0.98 0.87 0.95 0.97 0.98 0.80
GraphMaker-E 0.99 0.95 0.97 0.80 0.78 0.89 0.87 0.78

Table 4: Ablation study for conditional generation on label Y for Cora. Better results are in bold.

Model
Conditional W1 ↓ EĜ∼pθ

[
M(Ĝ)/M(G)

]
→ 1 Node Classification → 1 Link Prediction → 1

Y Degree Cluster Orbit # Triangle ĥ(A,Y) ĥ(A2,Y) MLP 1-SGC L-SGC L-GCN 1-APPNP L-APPNP CN 1-GAE L-GAE

Sync ✓ 6.2e−1 2.3e1 1.3 7.1e−2 9.2e−1 9.5e−1 1.00 0.93 1.01 1.01 0.99 1.01 1.00 0.98 0.98
1.2 2.4e1 1.7 3.1e−3 7.3e−2 2.0e−1 0.58 0.41 0.43 0.40 0.41 0.40 0.76 0.92 0.84

Async ✓ 1.5 9.1 6.1e−1 1.4 1.1 1.1 1.04 0.93 1.00 1.00 0.96 1.01 1.00 0.98 1.00
1.6 1.5e1 5.6e−1 8.2e−1 8.6e−1 7.3e−1 0.89 0.89 0.97 1.01 0.94 1.00 1.00 0.98 0.99

existence if the number of common neighbors shared by two nodes exceeds a threshold. GAE is
an MPNN-based model that integrates the information of graph structure, node attributes, and node
labels. As before, we consider two variants for GAE.

Table 2 presents the results for node classification and link prediction on Cora and Amazon Com-
puter. For the detailed results on Citeseer and Amazon Photo, see Appendix D. Out of 32 cases,
GraphMaker variants achieve the best performance for 24 of them. The best GraphMaker variants
for each dataset collectively yield the best performance for 18 cases. SBM still performs the best
among the baselines and leads to the best performance for 8 cases. GraphMaker-E performs better
than or comparable to SBM for 19 cases. Among GraphMaker variants, GraphMaker-Async overall
performs the best and is better than or comparable to GraphMaker-Sync for 20/32 cases, consistent
with the result of statistics-based evaluation. Surprisingly, we find ACC(G|Ĝ) (resp. AUC(G|Ĝ))
to be often greater than ACC(G|G) (resp. AUC(G|G)), sometimes by a quite large margin up to
about 0.2 as in the case of Citeseer. This observation suggests the potential of utilizing generative
models to improve discriminative models for future work.

Utility for Benchmarking ML Models on Node Classification. Another important scenario of
using generated graphs is benchmarking ML models, where industry practitioners aim to select the
most effective model architecture from multiple candidates based on their performance on publicly
available synthetic graphs and then train it from scratch on their proprietary real graph. This use
case requires the generated graphs to yield relative performance of the candidate model architec-
tures reproducible on the original graph. Following Yoon et al. (2023), for each candidate model
architecture, we train and evaluate one model on the original graph for ACC(G|G) and another on
a generated graph for ACC(Ĝ|Ĝ). We then report the Pearson/Spearman correlation coefficients
between them (Myers et al., 2010). Specifically, we include all six model architectures for node
classification in the candidate set of model architectures. Table 3 presents the experiment results.
Out of 8 cases, all GraphMaker variants outperform all baselines for 7 of them.

Diversity. Based on evaluation with statistics and discriminative models, we also show that Graph-
Maker is capable of generating diverse and hence novel graphs in Appendix E.

4.4 ABLATION STUDY FOR DENOISING NODE LABELS

We perform an ablation study on if drawing Y ∼ PY estimated from the original data for conditional
generation yields better generation quality than treating node label as a node attribute and training
GraphMaker to generate it with denoising. Table 4 presents the evaluation results on Cora with
statistics and discriminative models. For more than 80% cases, conditional generation yields a
better performance. In particular, we observe significant performance improvement when evaluating
GraphMaker-Sync with discriminative models by up to more than a half. This demonstrates the
advantage of the conditional generation framework.

8

Under review as a conference paper at ICLR 2024

Table 5: Ablation study for learning a node-personalized model on Cora. Better results are in bold.

W1 ↓ EĜ∼pθ

[
M(Ĝ)/M(G)

]
→ 1

Model PE Degree Cluster Orbit # Triangle ĥ(A,Y) ĥ(A2,Y)

Sync 6.2e−1 2.3e1 1.3 7.1e−2 9.2e−1 9.5e−1

✓ 5.3e−1 2.3e1 1.4 6.0e−2 9.1e−1 9.6e−1

Async 1.5 9.1 6.1e−1 1.4 1.1 1.1
✓ 1.2 7.6 4.9e−1 1.6 1.1 1.2

E 1.0 1.0e1 4.2e−1 1.4 1.1 1.2
✓ 1.3 1.3e1 7.0e−1 9.7e−1 1.1 1.2

Node Classification → 1 Link Prediction → 1

Model PE MLP 1-SGC L-SGC L-GCN 1-APPNP L-APPNP CN 1-GAE L-GAE

Sync 1.00 0.93 1.01 1.01 0.99 1.01 1.00 0.98 0.98
✓ 1.02 0.89 0.99 0.99 0.95 1.00 1.00 0.97 0.98

Async / 0.93 1.00 1.00 0.96 1.01 1.00 0.98 1.00
✓ / 0.93 1.00 0.99 0.95 1.00 1.00 0.98 0.99

E / 1.00 1.05 1.05 1.04 1.05 1.00 0.98 0.99
✓ / 1.01 1.06 1.05 1.04 1.05 1.00 0.98 0.99

4.5 ABLATION STUDY FOR NODE PERSONALIZATION

We perform an ablation study to understand if capturing each node’s personalized behavior helps
improve the graph generation quality. We adopt a state-of-the-art positional encoding (PE) method
RFP (Eliasof et al., 2023). RFP uses random node features after a certain number of graph con-
volutions as PEs, where the random initial features can be viewed as some identity information to
distinguish a node from the others. In our experiments, for each noisy graph either during training
or generation, we compute PEs based on the current noisy graph structure and then use PEs as ex-
tra node attributes. This essentially assists the model in encoding more personalized behaviors of
nodes. We examine the effects of such personalization on GraphMaker for Cora. Table 5 presents the
evaluation results with statistics and discriminative models. For more than 80% cases, GraphMaker
variants without PE perform better than or comparable to GraphMaker variants with PE, which sug-
gests that personalized node behaviors may not be really useful to learn a graph generative model,
at least in our downstream evaluation.

5 FURTHER RELATED WORKS

We have reviewed the diffusion-based graph generative models in Section 1. Next, we review some
other non-diffusion deep generative models and some recent improvement efforts on synthetic graph
data evaluation. We leave a review on classical graph generative models to Appendix F.

Non-diffusion deep generative models of large graphs. GAE and VGAE (Kipf & Welling, 2016)
extend AE and VAE (Kingma & Welling, 2014; Rezende et al., 2014) respectively for reconstructing
and generating the structure of a large attributed graph. NetGAN (Bojchevski et al., 2018) extends
WGAN (Arjovsky et al., 2017) for graph structure generation by sequentially generating random
walks. GraphRNN (You et al., 2018b) and Li et al. (2018) propose auto-regressive models that gen-
erate graph structures by sequentially adding individual nodes and edges. GRAN (Liao et al., 2019)
introduces a more efficient auto-regressive model that generates graph structures by progressively
adding subgraphs. CGT (Yoon et al., 2023) considers a simplified version of large attributed graph
generation. It clusters real node attributes during data pre-processing and generates subgraphs with
a single categorical node label that indicates the attribute cluster.

Evaluation of generated graphs with discriminative models. GraphWorld (Palowitch et al., 2022)
is a software that allows users to benchmark discriminative models on a large amount of synthetic
attributed graphs, which can be generated by approaches like SBM, but it does not compare synthetic
graphs against a real graph in benchmarking. CGT (Yoon et al., 2023) has studied using generated
graphs to benchmark GNN models. With fixed model hyperparameters, it evaluates one model for
node classification on the original graph and another on a generated graph, and then measures the
performance correlation and discrepancy of the two models. Our work instead is the first attempt to
train discriminative models on a generated graph and then evaluate them on the original graph.

6 CONCLUSION

We propose GraphMaker, a diffusion model capable of generating large attributed graphs, along with
a novel evaluation protocol that assesses generation quality by training models on generated graphs
and evaluating their performance on real graphs. Overall, GraphMaker achieves better performance
compared to baselines, for both existing metrics and the newly proposed evaluation protocol. In the
future, we plan to extend GraphMaker to generate even larger graphs with 1M+ nodes and more
complex characteristics such as continuous-valued node attributes, node labels that indicate node
anomalies for anomaly detection, etc.

9

Under review as a conference paper at ICLR 2024

REPRODUCIBILITY STATEMENT

We submit the source code for GraphMaker as a supplementary material. After unzipping the down-
loaded file, the README file includes the instructions for setting up the environment, and training
and evaluating GraphMaker models on all four datasets employed.

REFERENCES

Franklin Allen and Ana Babus. Networks in Finance, chapter 21, pp. 367–382. Wharton School
Publishing, 2009.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In Proceedings of the 34th International Conference on Machine Learning, pp. 214–223, 2017.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing
Systems, 2021.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science, 286
(5439):509–512, 1999.

Albert-László Barabási and Réka Albert. Statistical mechanics of complex networks. Reviews of
Modern Physics, 74(47):47–97, 2002.

Alain Barrat, Marc Barthélemy, and Alessandro Vespignani. Dynamical Processes on Complex
Networks. Cambridge University Press, 2008.

Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, and Stephan Günnemann. NetGAN:
Generating graphs via random walks. In Proceedings of the 35th International Conference on
Machine Learning, pp. 610–619, 2018.

Tianqi Chen, Weinan Zhang, Qiuxia Lu, Kailong Chen, Zhao Zheng, and Yong Yu. Svdfeature: A
toolkit for feature-based collaborative filtering. Journal of Machine Learning Research, 13(116):
3619–3622, 2012.

Xiaohui Chen, Jiaxing He, Xu Han, and Li-Ping Liu. Efficient and degree-guided graph generation
via discrete diffusion modeling. In Proceedings of the 40th International Conference on Machine
Learning, 2023.

Fan Chung and Linyuan Lu. The average distances in random graphs with given expected degree.
Proceedings of the National Academy of Sciences of the United States of America, 99(25):15879–
15882, 2002.

Nicola De Cao and Thomas Kipf. MolGAN: An implicit generative model for small molecular
graphs. ICML workshop on Theoretical Foundations and Applications of Deep Generative Mod-
els, 2018.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
AAAI Workshop on Deep Learning on Graphs: Methods and Applications, 2021.

Marek Eliáš, Michael Kapralov, Janardhan Kulkarni, and Yin Tat Lee. Differentially private release
of synthetic graphs. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 560–578, 2020.

Moshe Eliasof, Fabrizio Frasca, Beatrice Bevilacqua, Eran Treister, Gal Chechik, and Haggai
Maron. Graph positional encoding via random feature propagation. In International Conference
on Machine Learning, 2023.

Paul Erdős and Alfréd Rényi. On random graphs i. Publicationes Mathematicae (Debrecen), 6:
290–297, 1959.

10

Under review as a conference paper at ICLR 2024

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In International Conference on Learning
Representations (ICLR), 2019.

Scott A. Golder, Dennis M. Wilkinson, and Bernardo A. Huberman. Rhythms of social interaction:
Messaging within a massive online network. In Communities and Technologies 2007, pp. 41–66,
2007.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances
in Neural Information Processing Systems, 2020.

Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels: First
steps. Social Networks, 5(2):109–137, 1983.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In Ad-
vances in Neural Information Processing Systems, pp. 22118–22133, 2020.

Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun. What is the best
multi-stage architecture for object recognition? In 2009 IEEE 12th International Conference on
Computer Vision, pp. 2146–2153, 2009.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In Proceedings of the 35th International Conference on Machine
Learning, pp. 2323–2332, 2018.

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the
system of stochastic differential equations. In Proceedings of the 39th International Conference
on Machine Learning, pp. 10362–10383, 2022.

Zach Jorgensen, Ting Yu, and Graham Cormode. Publishing attributed social graphs with formal
privacy guarantees. In ACM SIGMOD International Conference on Management of Data (SIG-
MOD), pp. 107–122, 2016.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In International Conference
on Learning Representations (ICLR), 2014.

Thomas N. Kipf and Max Welling. Variational graph auto-encoders. NeurIPS Workshop on Bayesian
Deep Learning, 2016.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations (ICLR), 2017.

Lingkai Kong, Jiaming Cui, Haotian Sun, Yuchen Zhuang, B. Aditya Prakash, and Chao Zhang.
Autoregressive diffusion model for graph generation. In Proceedings of the 40th International
Conference on Machine Learning, pp. 17391–17408, 2023.

Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and Zoubin Ghahramani.
Kronecker graphs: An approach to modeling networks. Journal of Machine Learning Research,
11(33):985–1042, 2010.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep generative
models of graphs. arXiv preprint arXiv:1803.03324, 2018.

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Will Hamilton, David K Duvenaud, Raquel
Urtasun, and Richard Zemel. Efficient graph generation with graph recurrent attention networks.
In Advances in Neural Information Processing Systems, volume 32, 2019.

David Liben-Nowell and Jon Kleinberg. The link prediction problem for social networks. In Pro-
ceedings of the Twelfth International Conference on Information and Knowledge Management,
pp. 556–559, 2003.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. In Advances in Neural Information Processing Systems, pp. 20887–20902, 2021.

11

Under review as a conference paper at ICLR 2024

Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, and Alexander L. Gaunt. Constrained graph vari-
ational autoencoders for molecule design. Advances in Neural Information Processing Systems,
2018.

J.L. Myers, A. Well, and R.F. Lorch. Research Design and Statistical Analysis. Routledge, 2010.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In Proceedings of the 38th International Conference on Machine Learning, pp. 8162–8171, 2021.

Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Per-
mutation invariant graph generation via score-based generative modeling. In Proceedings of the
Twenty Third International Conference on Artificial Intelligence and Statistics, pp. 4474–4484,
2020.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

John Palowitch, Anton Tsitsulin, Brandon Mayer, and Bryan Perozzi. Graphworld: Fake graphs
bring real insights for gnns. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 3691–3701, 2022.

Joseph J. Pfeiffer, Timothy La Fond, Sebastian Moreno, and Jennifer Neville. Fast generation of
large scale social networks while incorporating transitive closures. In 2012 International Confer-
ence on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Comput-
ing, pp. 154–165, 2012.

Joseph J. Pfeiffer, Sebastian Moreno, Timothy La Fond, Jennifer Neville, and Brian Gallagher.
Attributed graph models: Modeling network structure with correlated attributes. In Proceedings
of the 23rd international conference on World wide web, pp. 831–842, 2014.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In Proceedings of the 31st International Con-
ference on Machine Learning, pp. 1278–1286, 2014.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 10684–10695, 2022.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI Magazine, 29(3):93, 2008.

C. Seshadhri, Tamara G. Kolda, and Ali Pinar. Community structure and scale-free collections of
erdös-rényi graphs. Phys. Rev. E, 85:056109, 2012a.

Comandur Seshadhri, Tamara G Kolda, and Ali Pinar. Community structure and scale-free collec-
tions of erdős-rényi graphs. Physical Review E, 85(5):056109, 2012b.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. NeurIPS Workshop on Relational Representation Learning,
2018.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In Proceedings of the 32nd International Con-
ference on Machine Learning, pp. 2256–2265, 2015.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In Advances in Neural Information Processing Systems, 2019.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(56):1929–1958, 2014.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal
Frossard. Digress: Discrete denoising diffusion for graph generation. In International Conference
on Learning Representations, 2023.

12

Under review as a conference paper at ICLR 2024

Table 6: Dataset statistics. For |E|, we add reverse edges and then remove duplicate edges.

Dataset |V| |E| # labels # attributes
Cora 2, 708 10, 556 7 1, 433
Citeseer 3, 327 9, 228 6 3, 703
Amazon Photo 7, 650 238, 163 8 745
Amazon Computer 13, 752 491, 722 10 767

Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature,
393:440–442, 1998.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In Proceedings of the 36th International Conference on
Machine Learning, pp. 6861–6871, 2019.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In Proceedings
of the 35th International Conference on Machine Learning, pp. 5453–5462, 2018.

Minji Yoon, Yue Wu, John Palowitch, Bryan Perozzi, and Russ Salakhutdinov. Graph generative
model for benchmarking graph neural networks. In Proceedings of the 40th International Con-
ference on Machine Learning, pp. 40175–40198, 2023.

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional pol-
icy network for goal-directed molecular graph generation. In Advances in Neural Information
Processing Systems, 2018a.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. GraphRNN: Generat-
ing realistic graphs with deep auto-regressive models. In Proceedings of the 35th International
Conference on Machine Learning, pp. 5708–5717, 2018b.

Yunpeng Zhao, Elizaveta Levina, and Ji Zhu. Consistency of community detection in networks
under degree-corrected stochastic block models. The Annals of Statistics, 40(4):2266, 2012.

A JUSTIFICATION FOR RECONSTRUCTING THE ORIGINAL GRAPH

By the Bayes rule, we have q(X
(t−1)
v,f |G(t), t, G(0)) ∝ X

(t)
v,f (Q

(t)
Xf

)⊤ ⊙Xv,fQ̄
(t−1)
Xf

, where Q
(t)
Xf

=

(Q̄
(t−1)
Xf

)−1Q̄
(t)
Xf

, and ⊙ is the elementwise product. Similarly, we have q(A
(t−1)
u,v |G(t), t, G(0)) ∝

A
(t)
u,v(Q

(t)
A)⊤ ⊙Au,vQ̄

(t−1)
A .

B DATASET STATISTICS

Table 6 presents the detailed dataset statistics.

C ADDITIONAL RESULTS FOR EVALUATION WITH STATISTICS

Table 7 presents the detailed results of evaluation with statistics for Citeseer and Amazon Photo.

D ADDITIONAL DETAILS FOR EVALUATION WITH DISCRIMINATIVE MODELS

We design a hyperparameter space specific to each discriminative model, and implement a simple
AutoML pipeline to exhaustively search through a hyperparameter space for the best trained model.

Table 8 presents the results for node attribute classification with MLP. The conditional
empirical distribution p(Y)

∏
v

∏
f p(Xv,f |Yv) consistently outperforms the unconditional

13

Under review as a conference paper at ICLR 2024

Table 7: Evaluation with statistics on Citeseer and Amazon Photo. Best results are in bold.

Model

Citeseer Amazon Photo

W1 ↓ EĜ∼pθ

[
M(Ĝ)/M(G)

]
→ 1 W1 ↓ EĜ∼pθ

[
M(Ĝ)/M(G)

]
→ 1

Degree Cluster Orbit # Triangle ĥ(A,Y) ĥ(A2,Y) Degree Cluster Orbit # Triangle ĥ(A,Y) ĥ(A2,Y)

ER 8.5e−1 1.4e1 1.6 3.5e−3 9.0e−3 1.8e−1 1.9e1 4.0e1 1.5 7.0e−3 1.9e−3 2.2e−3

SBM 8.0e−1 1.4e1 1.5 8.3e−3 1.0 8.1e−1 1.5e1 3.8e1 1.4 3.9e−2 1.0 1.2

Feature-based MF 1.7e3 1.4e1 1.6 3.9e−3 1.1e−1 0.0 3.8e3 4.0e1 1.5 7.2e−3 1.0e−1 0.0
GAE 1.7e3 1.4e1 1.6 2.0e−3 7.7e−2 0.0 3.8e3 4.0e1 1.5 7.2e−3 6.2e−2 0.0
VGAE 1.7e3 1.4e1 1.6 3.2e−3 8.5e−2 0.0 3.8e3 4.0e1 1.5 7.2e−3 1.2e−1 0.0

GraphMaker-Sync 1.1 1.4e1 1.2 3.6e−2 9.3e−1 7.9e−1 7.6e1 3.7e1 1.2 1.0e−1 1.1 7.6e−1

GraphMaker-Async 9.3 1.3e1 8.8e−1 2.6e−1 1.4 1.4 9.7 1.9e1 4.3e−1 4.4e−1 1.1 1.4
GraphMaker-E 6.8 1.0e1 6.8e−1 4.8e−1 1.2 1.1 1.6e1 2.6e1 6.8e−1 2.4e−1 1.1 1.5

Table 8: Evaluation with MLP. Best results are in bold. Highest results are underlined.

Model Cora Citeseer Amazon Photo Amazon Computer

p(Y)
∏

v

∏
f p(Xv,f) 0.58 0.35 0.16 0.11

p(Y)
∏

v

∏
f p(Xv,f |Yv) 1.10 1.23 0.99 0.97

GraphMaker-Sync 1.00 1.12 0.97 0.94
GraphMaker-Async 1.04 1.10 1.04 0.97

variant p(Y)
∏

v

∏
f p(Xv,f). On three datasets, GraphMaker variants are better than

p(Y)
∏

v

∏
f p(Xv,f |Yv) in capturing the correlations between node attributes and node label. Ta-

ble 9 and 10 present the detailed evaluation results with discriminative models on Citeseer and
Amazon Photo.

E EVALUATION FOR DIVERSITY AND NOVELTY

Degree
!!

MLP
Accuracy

GraphMaker-Sync GraphMaker-Async GraphMaker-E

Figure 2: Histogram plots of metrics, which demonstrate the diversity of the generated graphs.

To study the diversity of the graphs generated by GraphMaker, we generate 50 graphs with each
GraphMaker variant and make histogram plots of metrics based on them. For structure diversity, we
report W1 for node degree distribution. For node attribute and label diversity, we train an MLP on
the original graph and report its accuracy on generated graphs. Figure 2 presents the histogram plots
for Cora, which demonstrates that GraphMaker is capable of generating diverse and hence novel
graphs.

14

Under review as a conference paper at ICLR 2024

Table 9: Evaluation with discriminative models on Citeseer. Best results are in bold. Highest results
are underlined.

Node Classification → 1 Link Prediction → 1

Model 1-SGC L-SGC L-GCN 1-APPNP L-APPNP CN 1-GAE L-GAE

ER 0.81 0.85 0.96 0.96 0.99 0.90 0.93 0.80
SBM 1.13 1.13 1.12 1.12 1.15 0.90 0.99 0.98

Feature-based MF 1.20 0.96 0.67 1.16 1.16 0.75 0.97 0.75
GAE 1.22 0.67 0.29 1.16 1.16 0.75 0.97 0.75
VGAE 1.20 0.79 0.52 1.15 1.15 0.75 0.97 0.76

GraphMaker-Sync 1.05 1.06 1.06 1.04 1.09 1.00 0.98 0.98
GraphMaker-Async 1.13 1.12 1.12 1.07 1.13 1.00 0.97 0.97
GraphMaker-E 1.19 1.16 1.14 1.15 1.18 1.00 0.98 0.99

Table 10: Evaluation with discriminative models on Amazon Photo. Best results are in bold. Highest
results are underlined.

Node Classification → 1 Link Prediction → 1

Model 1-SGC L-SGC L-GCN 1-APPNP L-APPNP CN 1-GAE L-GAE

ER 0.34 0.59 0.15 0.73 0.66 0.90 0.94 0.67
SBM 1.05 1.00 0.82 0.82 0.81 1.00 0.99 0.99

Feature-based MF 0.77 0.22 0.15 0.84 0.73 0.54 0.99 0.81
GAE 0.77 0.22 0.16 0.82 0.77 0.54 0.99 0.75
VGAE 0.77 0.30 0.20 0.83 0.79 0.54 0.99 0.77

GraphMaker-Sync 1.00 0.97 0.89 0.88 0.90 0.99 0.98 0.98
GraphMaker-Async 1.11 1.06 0.94 0.92 0.93 1.00 1.00 0.99
GraphMaker-E 1.00 0.92 0.87 0.88 0.88 1.00 0.99 0.98

F REVIEW ON CLASSIC GRAPH GENERATIVE MODELS

ER (Erdős & Rényi, 1959) generates graph structures with a desired number of nodes and average
node degree. SBM (Holland et al., 1983) produces graph structures with a categorical cluster label
per node that meet target inter-cluster and intra-cluster edge densities. BA (Barabási & Albert, 2002)
generates graph structures whose node degree distribution follows a power law. Chung-Lu (Chung &
Lu, 2002) generates graphs with a node degree distribution that equals to a pre-specified node degree
distribution in expectation. Kronecker graph model (Leskovec et al., 2010) generates realistic graphs
recursively by iterating the Kronecker product.

15

	Introduction
	Preliminaries
	GraphMaker
	Forward Diffusion Process and Reverse Process
	Two Instantiations
	Scalable Denoising Network Architecture
	Can a Graph Generative Model be Learned from a Single Graph?
	Conditional Generation Given Node Labels

	Experiments
	Datasets and Baselines
	Evaluation with Statistics
	Evaluation with Discriminative Models
	Ablation Study for Denoising Node Labels
	Ablation study for Node Personalization

	Further Related Works
	Conclusion
	Justification for reconstructing the original graph
	Dataset statistics
	Additional results for evaluation with statistics
	Additional details for evaluation with discriminative models
	Evaluation for Diversity and Novelty
	Review on Classic Graph Generative Models

