
Bridging the Gap Between AI Quantization and Edge
Deployment: INT4 and INT8 on the Edge

Mohammad Ibrahim Köse
Faculty of Engineering and Mathematics

Hochschule Bielefeld (HSBI)
Bielefeld, Germany

mohammad_ibrahim.koese1@hsbi.de

Qazi Arbab Ahmed
Faculty of Engineering and Mathematics

Hochschule Bielefeld (HSBI)
Bielefeld, Germany

qazi.ahmed@hsbi.de

Thorsten Jungeblut
Faculty of Engineering and Mathematics

Hochschule Bielefeld (HSBI)
Bielefeld, Germany

thorsten.jungeblut@hsbi.de

Abstract

Quantization is the key to deploying neural networks on microcontroller-class
edge devices. While INT4 and mixed-precision schemes promise strong compres-
sion–accuracy trade-offs in simulation, current toolchains only support INT8 in
practice. We benchmark FP32, INT8, INT4, and mixed-precision on Tiny YOLOv2,
and deploy INT8 models on STM32N6, exposing this research–deployment gap.
To address it, we propose a heterogeneous sub-INT8 strategy that combines INT8
acceleration with selective INT4 fallback execution, enabling practical hybrid
deployment on today’s edge hardware.

1 Introduction

Deploying object detectors on microcontroller-class edge devices remains challenging due to tight
latency, memory, and energy budgets. Quantization is a standard lever to shrink models and accelerate
inference Ding et al. [1]. Meanwhile, research-grade low-bit schemes (e.g., INT4) routinely show
promising accuracy-compression trade-offs in simulation but fail to translate into real-time, on-device
speedups due to the lack of native kernels and system-level support. While certain toolchains already
provide preliminary support for mixed-precision settings (e.g., INT4 weights with INT8 activations)
NVIDIA [2], Microsoft [3], Qualcomm Incorporated [4], such capabilities are rarely available for
most microcontrollers, further limiting their practical adoption.

Contributions. The main contributions of this paper are as follows: (i) We present a controlled
comparison of FP32, INT8 PTQ/QAT, INT4 QAT, and mixed precision on Tiny YOLOv2 with
latency normalized to a fair FP32 baseline. (ii) We practically evaluate different implementations on
STM32N6, contrasting simulation with deployable INT8 performance and memory use.

2 Background and Related Work

Quantization has emerged as a primary technique for compressing and accelerating deep neural
networks on constrained hardware. While INT8 quantization has become the industry standard,
supported by major frameworks such as TensorFlow Lite, ONNX Runtime, and vendor-specific

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop:
MusiML@NeurIPS2025.



toolchains (e.g., STM32Cube.AI, Arm Ethos-U SDK, Google EdgeTPU compiler), research has
increasingly shown the promise of sub-INT8 schemes.

Recent works on INT4 quantization [5–8] demonstrate competitive accuracy with significant memory
and energy savings. NVIDIA’s Hopper architecture, Qualcomm’s HTP, and ONNX Runtime releases
have also introduced preliminary support for mixed-precision execution, such as INT4 weights
with INT8 activations. However, these developments largely target datacenter- or smartphone-class
hardware, not microcontrollers.

On the embedded side, deployment remains limited to INT8 kernels. For example, TensorFlow
Lite Micro executes only INT8 kernels efficiently, with other operators falling back to float or CPU
execution. The Google Coral EdgeTPU supports only INT8 operators in TensorFlow LiteCoral AI
[9], with unsupported layers falling back to the host CPU. Similarly, the Arm Cortex-M55 with
Ethos-U55/U65 NPUs accelerates INT8 convolutions on the NPU while relying on the Cortex-M55
for unsupported operations Renesas Electronics Corporation [10]. On the STM32N6 platform, the
Neural-ART™ accelerator executes INT8 operators, whereas unsupported operators are automatically
mapped to the Cortex-M55 host.

This situation highlights a persistent research–deployment gap: sub-INT8 quantization works in
simulation but cannot be deployed in practice on MCU-class hardware. Existing fallback mechanisms
could serve as an enabler, yet they have not been systematically explored for heterogeneous quanti-
zation. Our work addresses this gap by evaluating INT4 and proposing a heterogeneous sub-INT8
deployment strategy that leverages fallback execution for selected layers.

3 Methodology

Dataset All experiments are conducted on the VOC Person subset derived from the PASCAL VOC
benchmark. To simplify training while retaining a realistic detection setting, we only include images
that contain at least one instance of the person class. This filtering reduces the dataset size but avoids
trivial negatives and ensures that each sample contributes to the detection task. Images are resized to
the input resolution required by each model and normalized to the [0, 1] range. We follow standard
practice in creating train, validation, and test splits, allocating 70% of the data for training, 20% for
validation, and 10% for testing.

Models We use Tiny YOLOv2 Redmon and Farhadi [11] as the primary testbed for quantization
experiments. This architecture is small enough to allow systematic evaluation across quantization
settings but still representative of modern detection pipelines. For deployment experiments on
STM32N6, we additionally evaluate two architectures provided in the STM32Cube.AI ecosystem,
namely YOLOv8n and ST-YOLO-X STMicroelectronics [12], which are only available in INT8
quantized form. These larger models serve to demonstrate real-world feasibility of INT8 deployment
on edge hardware.

Quantization Schemes We compare six representative schemes:

• FP32 (Keras, optimized): Standard floating-point inference using BLAS-optimized kernels,
serving as the accuracy and latency upper bound.

• FP32 (QKeras baseline): A fake-quantized FP32 variant implemented in QKeras, where all
layers use 32-bit quantizers. This ensures fair runtime comparison with quantized models,
as all pass through the same operator paths.

• INT8 PTQ (TFLite): Post-training quantization with TensorFlow Lite, supported by
optimized kernels. This is the format deployed to STM32N6.

• INT8 QAT (QKeras): Quantization-aware training with 8-bit weights and activations,
representing a widely supported compromise between accuracy and efficiency.

• INT4 QAT (QKeras): Aggressive 4-bit quantization for both weights and activations. As
no native INT4 kernels exist in TensorFlow or STM32Cube.AI, this is evaluated only in
simulation.

• Mixed Precision (QKeras): A hybrid scheme with first and last layers quantized to 8 bits,
and all intermediate layers using 1-bit weights and 4-bit activations. This stabilizes sensitive
layers while compressing intermediate ones more aggressively.

2



Table 1: Simulation results on Tiny YOLOv2 (VOC person dataset). Latency measured in Tensor-
Flow/QKeras; size reported relative to FP32 (QKeras baseline).

Scheme mAP Relative Latency Latency (ms)

FP32 (QKeras baseline) 0.5731 1.00× 986
INT8 QAT 0.5110 0.92× 909
INT4 QAT 0.4224 0.89× 875
Mixed precision 0.3189 0.20× 198

FP32 (Keras, optimized baseline) 0.5882 1.00× 24
INT8 PTQ (tflite, optimized) 0.4794 0.83× 20

All QKeras-based models are trained with quantization-aware training to mitigate accuracy degrada-
tion.

Evaluation Metrics We evaluate accuracy in terms of mean Average Precision (mAP) at an
Intersection-over-Union (IoU) threshold of 0.5. Inference latency is measured in two contexts: (i)
within TensorFlow/QKeras for simulation, and (ii) on-device using STM32Cube.AI for deployment.
Since absolute simulated latencies are inflated by the lack of optimized kernels, we report relative
latency normalized to the QKeras FP32 baseline. This highlights speed-ups or slow-downs attributable
to quantization under consistent conditions. For deployment on STM32N6, we additionally report
throughput in frames per second (FPS), flash size, and RAM usage as provided by the toolchain.
Together, these metrics capture accuracy-efficiency trade-offs across simulation and deployment.

4 Results

Simulation Results We first evaluate Tiny YOLOv2 with the different quantization schemes in
TensorFlow using QKeras. The results are summarized in Table 1. To ensure fair runtime comparison,
we use a QKeras-based FP32 baseline in which weights and activations are represented with 32-bit
fake quantization. This baseline runs through the same computational graph as the quantized models,
avoiding unfair acceleration from optimized BLAS kernels. The FP32 QKeras baseline requires
approximately 986 ms per inference and achieves an mAP of 57.3%.

Among the quantized variants, INT8 QAT preserves most of the FP32 accuracy with a moderate
latency reduction (909 ms, 92% relative latency). INT4 QAT achieves further compression but
at the cost of reduced accuracy (42.2% mAP) and only slightly improved runtime (875 ms, 89%
relative latency). The mixed-precision configuration, where the first and last layers are quantized
to 8 bits while intermediate layers use 1-bit weights and 4-bit activations, demonstrates a more
drastic speed-up (198 ms, 20% of the FP32 baseline). However, this comes at a considerable drop in
accuracy (31.9% mAP). Overall, the QKeras experiments highlight the trade-off: lower precision can
reduce runtime within the simulation environment, but accuracy degrades as the bit-width decreases,
especially for aggressive mixed-precision settings.

For reference, the lower block of Table 1 reports results from optimized kernels in TensorFlow and
TFLite. Here, FP32 inference with optimized BLAS kernels achieves only 24 ms latency while
maintaining 58.8% mAP, and INT8 PTQ in TFLite achieves 20 ms latency at 47.9% mAP. This stark
contrast illustrates the limitation of simulation-based latency measurements: while QKeras provides
a fair platform to compare quantization schemes, its latencies are inflated due to the lack of dedicated
low-bit kernels. In practice, hardware and optimized runtimes exploit vectorized instructions and
kernel-level optimizations, which explains why absolute latencies differ by more than an order of
magnitude compared to simulation.

Taken together, these findings emphasize two points: (i) quantization-aware training with INT8
achieves the best accuracy–efficiency balance in simulation, and (ii) INT4 and mixed-precision
schemes remain promising from a model compression perspective, but their practical benefit cannot
be realized without proper runtime support.

Deployment Results on STM32N6 We next deployed quantized models on STM32N6570-DK
STMicroelectronics [13] using STM32Cube.AI. Unlike the simulation experiments, only INT8

3



Table 2: Deployment results on STM32N6.

Model mAP@50 Throughput (FPS) Weights (MB) Act. (MB)

Tiny YOLOv2 INT8 PTQ 0.4794 33.3 10.775 0.016
YOLOv8n INT8 PTQ 0.5893 18.9 2.972 1.353
ST-YOLO-X INT8 PTQ 0.5231 22.3 0.891 0.016

quantization is supported by the toolchain. Table 2 reports the performance of Tiny YOLOv2,
YOLOv8n, and ST-YOLO-X after INT8 PTQ. All three models achieve real-time throughput on
the STM32N6, with YOLOv8n providing the best accuracy–speed balance. The memory footprint
of INT8 models is well within the constraints of the device, confirming the efficiency of INT8
deployment.

Discussion The comparison between simulation and deployment highlights a significant gap. INT4
and mixed-precision quantization are promising in simulation, offering substantial size reductions
with only minor accuracy loss, but are practically unusable due to high latency and lack of runtime
support. On STM32N6, INT8 models run efficiently in real time, yet INT4 and mixed-precision are
unsupported.

Limitations. This study has several limitations. First, all experiments were conducted on a single
dataset (VOC person), which restricts the generalizability of the findings to broader detection tasks.
Second, deployment results are limited to one hardware platform (STM32N6), so conclusions may
not directly transfer to other MCU- or NPU-based systems. Finally, the INT4 results are obtained
only in simulation, since no native INT4 kernels are currently available for deployment.

5 Heterogeneous Sub-INT8 Deployment

We propose a heterogeneous sub-INT8 deployment strategy to bridge the gap between promising
simulation results for sub-INT8 quantization and the lack of native runtime support on current
MCU-class hardware:

• Compute-intensive layers (e.g., large Conv2D blocks in the backbone) are quantized to
INT8 and executed on the NPU/TPU, leveraging hardware acceleration.

• Memory-dominant but latency-insensitive layers (e.g., 1×1 convolutions, bottleneck
transformations, or deeper feature processing) are quantized to INT4 and executed in
software on the host CPU or DSP. This reduces flash and RAM usage while minimizing
impact on overall throughput.

This principle is broadly applicable across embedded AI systems. For instance, Arm Cortex-M55 with
Ethos-U55/U65 NPUs or the Google Coral EdgeTPU. By deliberately quantizing selected Conv2D
layers to INT4, developers can exploit this fallback mechanism to deploy hybrid INT4/INT8 models.

In the short term, heterogeneous sub-INT8 deployment provides a practical mechanism to exploit
INT4 quantization on hardware that officially supports only INT8. In the long term, we envision
toolchains exposing explicit operator placement controls (e.g., force_cpu, force_npu) and NPUs
adding native INT4 kernels. This would enable full exploitation of sub-INT8 quantization while
retaining the performance benefits of hardware acceleration.

6 Conclusion and Future Work

We benchmarked FP32, INT8, INT4, and mixed-precision quantization on Tiny YOLOv2 and
deployed INT8 models on STM32N6, exposing a persistent research–deployment gap: while sub-
INT8 quantization demonstrates promising compression–accuracy trade-offs in simulation, current
toolchains and NPUs only support INT8 execution.

To bridge this gap, we proposed a heterogeneous sub-INT8 deployment strategy: compute-intensive
layers remain in INT8 and execute on the NPU, while memory-heavy but latency-insensitive convo-
lutions are quantized to INT4 and executed on the CPU. This approach leverages existing fallback

4



mechanisms, provides a first pathway for practical INT4 deployment on current MCUs, and general-
izes to other platforms that combine NPUs/TPUs with a host CPU.

Future work will focus on systematically identifying which layers benefit most from INT4 placement,
developing compiler-level support for explicit operator placement (e.g., force_cpu, force_npu),
and preparing for upcoming hardware generations with native sub-INT8 kernel support.

References
[1] Caiwen Ding, Shuo Wang, Ning Liu, Kaidi Xu, Yanzhi Wang, and Yun Liang. REQ-YOLO: A

resource-aware, efficient quantization framework for object detection on FPGAs, 2019. arXiv
preprint.

[2] NVIDIA. Working with quantized types — NVIDIA tensorrt documentation (v10.9.0).
https://docs.nvidia.com/deeplearning/tensorrt/10.9.0/inference-library/
work-quantized-types.html, 2025. Accessed: 2025-09-19.

[3] Microsoft. ONNX runtime releases. https://github.com/microsoft/onnxruntime/
releases, 2025. Accessed: 2025-09-19.

[4] Qualcomm Incorporated. HTP guidelines INT4 weights. https://docs.qualcomm.com/
bundle/publicresource/topics/80-63442-50/htp_guidelines_int4_weights.
html, 2025. Accessed: 2025-09-19.

[5] Long Huang, Zhiwei Dong, Song-Lu Chen, Ruiyao Zhang, Shutong Ti, Feng Chen, and
Xu-Cheng Yin. HQOD: Harmonious quantization for object detection, 2024. URL https:
//arxiv.org/abs/2408.02561.

[6] Xiaoxia Wu, Cheng Li, Reza Yazdani Aminabadi, Zhewei Yao, and Yuxiong He. Understanding
INT4 quantization for language models: Latency speedup, composability, and failure cases. In
Proceedings of the 40th International Conference on Machine Learning (ICML), volume 202 of
Proceedings of Machine Learning Research. PMLR, 2023.

[7] Rundong Li, Yan Wang, Feng Liang, Hongwei Qin, Junjie Yan, and Rui Fan. Fully quantized
network for object detection. In Proceedings of the 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2805–2814, 2019. doi: 10.1109/CVPR.2019.
00292.

[8] Bestami Gunay, Sefa Burak Okcu, and Hasan Sakir Bilge. LP-YOLO: Low precision YOLO for
face detection on FPGA. In Proceedings of the 8th World Congress on Electrical Engineering
and Computer Systems and Sciences, 2022. doi: 10.11159/mvml22.108.

[9] Coral AI. Tensorflow models on the edge TPU. https://coral.ai/docs/edgetpu/
models-intro/, 2025. Accessed: 2025-09-22.

[10] Renesas Electronics Corporation. Using the ethos-u npu with RA8 MCUs. Application
Note R01AN7712EU0100 Rev.1.00, Renesas Electronics, July 18 2025. URL https://www.
renesas.com/en/document/apn/using-ethos-u-npu-ra8-mcus.

[11] Joseph Redmon and Ali Farhadi. YOLO9000: Better, faster, stronger, 2016. URL https:
//arxiv.org/abs/1612.08242.

[12] STMicroelectronics. STM32 AI Model Zoo: Object detection use case. https://github.
com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection, 2025.
Accessed: 2025-09-21.

[13] STMicroelectronics. Stm32n6570-dk discovery kit documentation. https://www.st.com/
en/evaluation-tools/stm32n6570-dk.html#documentation, 2025. Accessed: 2025-
09-21.

5

https://docs.nvidia.com/deeplearning/tensorrt/10.9.0/inference-library/work-quantized-types.html
https://docs.nvidia.com/deeplearning/tensorrt/10.9.0/inference-library/work-quantized-types.html
https://github.com/microsoft/onnxruntime/releases
https://github.com/microsoft/onnxruntime/releases
https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/htp_guidelines_int4_weights.html
https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/htp_guidelines_int4_weights.html
https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/htp_guidelines_int4_weights.html
https://arxiv.org/abs/2408.02561
https://arxiv.org/abs/2408.02561
https://coral.ai/docs/edgetpu/models-intro/
https://coral.ai/docs/edgetpu/models-intro/
https://www.renesas.com/en/document/apn/using-ethos-u-npu-ra8-mcus
https://www.renesas.com/en/document/apn/using-ethos-u-npu-ra8-mcus
https://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1612.08242
https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection
https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection
https://www.st.com/en/evaluation-tools/stm32n6570-dk.html#documentation
https://www.st.com/en/evaluation-tools/stm32n6570-dk.html#documentation

	Introduction
	Background and Related Work
	Methodology
	Results
	Heterogeneous Sub-INT8 Deployment
	Conclusion and Future Work

